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In many engineering and machine learning applications, we often encounter optimization

problems (e.g., resource allocation, clustering) for which finding the exact solution is com-

putationally intractable. In such problems, ad-hoc approximate solutions are often used,

which have no performance guarantees. Our goal is to develop approximate optimization

methods with the following features a) provable performance guarantees, and b) computa-

tional tractability. In this dissertation, we focus on several challenging problems in resource

allocation and machine learning and develop optimization methods for the same.

In the first part of this dissertation, we develop optimization methods to solve funda-

mental resource allocation problems encountered in the design of different systems, namely

wireless networks, crowdsourcing systems, and healthcare systems.

Dense deployment of heterogeneous small cells (e.g., picocells, femtocells) is becoming

the most effective way to combat the exploding demand for the wireless spectrum. Given

the large-scale nature of these deployments, developing resource sharing policies using a

centralized system can be computationally and communicationally prohibitive. To this end,

we propose a general framework for distributed multi-agent resource sharing. We show

that the proposed framework significantly outperforms the state-of-the-art. We prove quite

general constant factor approximation guarantees with respect to the optimal solutions.

Matching platforms for freelancing (for e.g., Upwork) are becoming mainstream. These

platforms are faced with the challenging task of allocating workers to clients in order to

ii



generate maximum revenues, taking into consideration that both sides are self-interested,

have limited information about the other, and desire to be matched with the best possible

partners. We propose a dynamic matching mechanism that takes these challenges into

account and achieves many of the aforesaid properties.

Screening plans are used for the early detection of several diseases, such as breast cancer

and colon cancer. These screening plans are not personalized to the history and demographics

of the subject and can often lead to a delay in the detection of the disease and in other cases

cause unnecessary invasive tests such as biopsies. We show that constructing exactly optimal

personalized screening plans that minimize the number of screens given a tolerance on the

delay is computationally intractable. We develop a framework to solve the proposed problem

approximately. We establish general performance guarantees and show that the proposed

solution is computationally tractable. We apply the framework to breast cancer screening

and establish its utility in comparison to the existing clinical guidelines.

In the second part of this dissertation, we develop optimization methods useful for ma-

chine learning applications. Machine learning models are increasingly becoming a part of

many of the decision making systems, for instance, clinical decision support systems. Many

of the machine learning models are hard to interpret and thus are often called “black-box”

models. We propose a method that approximates the black-box models using piecewise-linear

approximations. This approach helps explain the model using linear models in different re-

gions of the feature space. We provide provable fidelity, i.e., how well does approximation

reflect the black-box, guarantees and show that the method is computationally tractable.

We carry out experiments on different datasets and establish the utility of our approach.

Kullback-Leibler divergence is a fundamental quantity used in many disciplines, such

as machine learning, statistics, and information theory. We develop an optimization-based

approach to estimate the Kullback-Leibler divergence, which relies on the Donsker-Varadhan

representation. The state-of-the-art estimator based on this representation relies on solving

a non-convex optimization problem and hence, is not consistent. We propose a convex

reformulation to construct an estimator, which we show is consistent. We also carry out

experiments to show that the proposed estimator is better than the competing estimator.
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CHAPTER 1

Introduction

1.1 Motivation

The design and analysis of engineering systems often requires us to solve intractable optimiza-

tion problems (for instance, non-convex optimization problems, combinatorial optimization

problems). We often encounter problems of this nature in engineering applications (e.g.,

resource allocation), and also in machine learning applications (e.g., clustering). In many

of these problems the solutions that are proposed are ad-hoc in nature, i.e., there are no

provable performance guarantees. In this dissertation, we develop approximate optimization

methods to solve several such optimization problems with two desirable features a) provable

performance guarantees, and b) computational tractability. We focus on problems in the

areas of resource allocation and machine learning.

Resource allocation is central to many disciplines such as engineering, operations re-

search, and statistics. Examples of resource allocation in engineering are channel/time-slot

allocation for interference management, medium access control, etc. Some examples from

operations research and statistics are task allocation for crowdsourcing platforms such as

Upwork, Amazon Mechanical Turk, and designing screening policies for early detection of

rare diseases such as different types of cancers. Each of these problems is very different in

nature and present very different challenges. For instance, interference management requires

understanding how different devices contending for the resources impact each other. In a

crowdsourcing system, task allocation mechanism design requires understanding of how dif-

ferent strategic workers contending for different tasks behave under different mechanisms.

Screening policy design for different diseases requires understanding the disease dynamics
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for different diseases and the costs associated with screening. In the first part of this dis-

sertation, we develop optimization methods that address the various challenges presented

by these resource allocation problems. We show that the proposed methods outperform the

state-of-the-art methods. While we apply our methods to the particular applications we

described, we show that the proposed methods are very general and can be applied in many

other settings.

In the second part of this dissertation, we develop optimization methods for machine

learning applications. In recent years, machine learning models are increasingly being used

in different decision making systems such as clinical decision support systems, and security

systems. Deployment of these systems in real life is faced with several challenges. One main

challenge is that of interpretability. These systems are based on machine learning models,

which are hard to interpret and are thus referred to as “black-boxes”. The European Union’s

Law on Data Regulation that took effect in 2018 [GF16] makes it mandatory for “black-box”

models to explain how they arrive at the decisions before implementing them in practice.

We propose new methods to better understand these black-box models and interpret their

outcomes.

Kullback-Leibler (KL) divergence is a fundamental quantity used in machine learning,

statistics, and information theory. At the end, we propose an optimization-based approach

to estimate Kullback-Leibler divergence. We establish the utility of the proposed estimator

in comparison to the competing estimators.

1.2 Roadmap

In Chapter 2, we provide some background and references that would be useful for a reader

not familiar with the area. In Chapter 3-6, we focus on optimization methods for resource

allocation and in Chapters 7-8, we focus on optimization methods for machine learning

applications. In Chapter 9, we conclude this dissertation.
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1.2.1 Optimization Methods for Resource Allocation

1.2.1.1 Resource Allocation in Multi-Agent Systems

In the first part of this dissertation (based on works [AXS15a] [AXS15b], [XAS14]), we study

large scale resource allocation in multi-agent systems with strong negative local externalities

(i.e. strong interference and congestion), where the decisions are made by the agents in a

distributed fashion. In Chapter 3, we start with a simpler problem. We relax the constraint

that the agents have to act in a distributed manner and instead we let one centralized agent

make the decisions. Even with a centralized agent, the optimization problem at hand is

intractable to solve exactly. We propose an approximately optimal polynomial time solution

that is guaranteed to achieve a constant factor approximation of the optimal value under

many scenarios. One of the key ideas that the approach rests on is to abstract the local

interference constraints as a graph. We then combine ideas from graph theory and optimiza-

tion theory to arrive at the proposed optimal solutions. The whole framework is presented

with the application to interference management in wireless networks in mind but all the

ideas are general and transfer to other domains. We show that the proposed framework can

achieve an improvement of up to 130 % over the state-of-the-art interference management

policies.

Since the framework we developed was centralized we need to extend it to a distributed

setting, which is fairly non-trivial. In Chapter 4, we leverage ideas from graph theory to

propose new distributed maximal independent set generation algorithms and combine them

with state-of-the-art distributed Alternating Direction Method of Multipliers (ADMM) to

arrive at the proposed distributed solutions. We are able to show that the proposed solution is

distributed, achieves a constant factor approximation (for many scenarios that extend beyond

interference management) and is computationally efficient. We show that the proposed

framework can achieve an improvement of up to 700 % over the state-of-the-art distributed

interference management policies.
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1.2.1.2 Dynamic Matching with Strategic Agents

In Chapter 5, we study multi-agent resource allocation with strategic agents in a matching

environment (based on [AS16])). Suppose the two sides to be matched are workers and

clients/tasks such as in crowdsourcing. Each client wants to hire one worker, i.e., the workers

contend for one slot, which is the resource. Both the client side and the worker side learn

preference for each other by being matched over time. Although we describe this matching

environment with workers and clients, the setup proposed is general and applies to other

matching environments as well. We derive mechanisms that ensure that in equilibrium the

final matches that are achieved satisfy stability (an appropriate notion defined later) and

achieve social optimality (for instance, maximum total output). We also carry out numerical

experiments to show the effectiveness of the proposed mechanism.

1.2.1.3 Dynamic Resource Allocation Planning

In Chapter 6 (based on [AZS17]), we focus on resource allocation in stochastic environments.

The abstract formulation of the problem is described as follows. We are given a budget of

how many times we are allowed to sample from a stochastic process. Hence, sampling is a

limited resource. Every time we sample we gain some information on the underlying state

and our goal is to track the stochastic process as well as possible without missing certain key

states. Existing frameworks in the literature formulate this problem as a Partially Observable

Markov Decision Process (POMDP) and often assume that the underlying stochastic process

is a Markov Process. We derive a general framework that does not require us to make

the assumption that the underlying stochastic process is Markov. We provide provable

performance guarantees for the proposed framework and show that the performance can be

achieved in polynomial time.

The proposed framework is motivated from screening for cancers. In diseases such as

breast cancer, it is common to have screening programs. For instance, in the US, the women

between the age of 45-54 are advised to do a mammogram every year. In other countries,

such as Canada and Japan, the women are advised to do a mammogram every two years after
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the age of 40. Taking a mammogram can result in false positive and lead to unnecessary

biopsies, which is detrimental to the subject. Therefore, the screening policies should be

personalized to the patient’s history of past tests and to the patient’s family history and

other static features. We use our methodology and apply it to breast cancer screening. We

are able to reduce the number of screens that are needed by 40-50 %.

1.2.2 Optimization Methods for Machine Learning Applications

1.2.2.1 Black-Box Model Interpretation

Machine learning models are increasingly being used in many critical decision making systems

such as clinical decision support systems. Some systems that we described above are based

on data-driven models such as the breast cancer screening system. Many of these data-

driven models (for e.g., random forest based models, deep neural network based models)

are often hard to interpret and thus are regarded as black-boxes. In Chapter 7, we propose

a framework (based on our work in [AZS18]) that takes as input a black-box model and

returns as output a piecewise linear approximation of it. The main premise of the work is

that linear models are easier to interpret and hence, breaking a model into piecewise linear

functions can be very useful in certain cases. In general, constructing optimal piecewise

linear approximations is a non-trivial problem because the number of ways to divide the

feature space into pieces is extremely large. We provide provable guarantees to show that

our method outputs efficient approximation of the black-box and also carry out simulations

on several real datasets to establish the utility of our proposed approach.

1.2.2.2 Kullback-Leibler divergence estimation

Kullback-Leibler (KL) divergence is a fundamental quantity used in machine learning and

statistics. In Chapter 8 (based on our work in [Ahu19]), we propose an optimization based

approach for estimating the KL divergence.
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CHAPTER 2

Background

In this chapter, we provide a brief introduction to the different areas of optimization and

game theory that would be useful for understanding this dissertation. This chapter only

provides an introduction to some basic concepts that can help a reader not familiar with

the areas get started. To gain an in-depth understanding of these areas, please refer to the

detailed materials in [BV04] [BPC11] [Kri16] [Erc13] [SS01] [BBB95].

2.1 Background for Resource Allocation in Multi-Agent Systems

The first part of this section describes optimization problems and some of their important

properties. This part is heavily based on [BV04]. This section would be useful to understand

Chapters 3 and 4.

2.1.1 Standard Formulation of Optimization Problem

Consider a set of functions {fi}mi=0 and {hi}pi=1, where fi : Rn → R and hi : Rn → R. We

define a standard optimization problem below.

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., p

(2.1)

where x ∈ Rn is the optimization variable, f0 is the objective function, fi is the inequality

constraints, and hi is the equality constraint.
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2.1.2 Convex Sets

A set is defined as a convex set if any line segment joining two points in the set also belongs

to the set. Formally stated, a set C is convex if for any x1, x2 that are in the set C, the line

segment z = θx1 + (1− θ)x2 is also in the set C, where 0 ≤ θ ≤ 1.

2.1.3 Convex Functions

A function f : Rn → R is convex if the domain of f is a convex set and

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)

for all x1, x2 in the domain f and for all 0 ≤ θ ≤ 1.

2.1.4 Standard Formulation of Convex Optimization Problem

If the functions {fi}mi=0 are convex (2.1), and the equality constraints {hi}pi=1 are affine,

then the optimization problem in (2.1) is a standard form of a convex optimization problem.

Hence, we can rewrite the convex optimization problem below as follows.

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m

atix = bi, i = 1, ..., p

(2.2)

2.1.5 Local Minima

Local minima of a function is a point in the domain of the function, where the function is

lower than the neighborhood points. Suppose x is a local minimum. Then it satisfies the

following conditions. x is feasible and ∃ R > 0 such that

f0(x) = inf{f0(z); z is feasible and ‖z − x‖ ≤ R}
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2.1.6 Global Minima

If the optimization problem is a convex optimization problem, then a local minimum of

that problem is also the global minimum. This property of convex optimization problems

makes them unique. There are many computational procedures such as the gradient descent

method and Newton’s method that can be used to find the local minimum of an optimization

problem. Hence, it is easy to find the global minimum of a convex optimization problem.

In many cases, a problem is formulated as a non-convex optimization problem but it can be

equivalently reformulated as a convex optimization problem.

2.1.7 Duality

We first define the Lagrange dual function. We consider the optimization problem in (2.1).

Define the domain D as the intersection of the domains of functions {fi}mi=0 and {hi}pi=1. We

assume that the optimization problem in (2.1) is feasible and thus an optimal value exists,

which is equal to p∗. Define the Lagrangian L : Rn × Rm × Rp :→ R as follows.

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x) (2.3)

where λi is the Lagrange multiplier for fi(x) ≤ 0, νj is the Lagrange multiplier for hj(x) = 0,

λ = [λ1, ..., λm], and ν = [ν1, .., νp].

The Lagrange dual function is defined as follows.

g(λ, ν) = inf
x∈D

L(x, λ, ν) (2.4)

g(λ, ν) is a pointwise infimum of a set of affine functions, thus we can conclude that it is

concave [BV04]. We now state some important properties of the dual function. If λi ≥ 0, ∀i,

then the dual function provides a lower bound on the optimal value p∗. We can write this

as p∗ ≥ g(λ, ν).
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2.1.8 The Dual Problem

The dual problem is stated as follows.

max g(λ, ν)

λi ≥ 0, ∀i ∈ {1, ..,m}
(2.5)

We denote the optimal solution of the above dual problem as d∗.

2.1.8.1 Weak Duality

The optimal solution of (2.1), which is also referred to as the primal problem, is always

greater than or equal to the optimal solution of the dual problem p∗ ≥ d∗. The above

inequality is always true for both convex and non-convex problems. Since g(λ, ν) is concave,

the above dual problem is a concave maximization problem and hence, it is easier to solve.

Therefore, we can use weak duality combined with the concave nature of the problem to

arrive at the conclusion that we can find a lower bound to the optimal solution p∗ tractably.

2.1.8.2 Strong Duality

The optimal solution of (2.1) is equal to the optimal solution of the dual problem p∗ =

d∗. This condition is usually true for convex optimization problems. There are different

conditions in the literature that when satisfied ensure that strong duality holds [BV04]. One

example is if the optimization problem is convex, and it is strictly feasible, i.e., there exists

a solution to the constraints fi(x) < 0, ∀i ∈ {1, ...,m}.

We refer the readers to further explore the theory and applications of convex optimization

in [BV04]. Since the first part of the dissertation is focused on distributed optimization we

next introduce some key concepts in distributed optimization. Our discussion on distributed

optimization is based on [BPC11].
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2.1.9 Centralized vs Distributed Optimization

A problem is centralized if one centralized decision maker/computing unit solves the prob-

lem. A problem is distributed if there is more than one computing unit/decision maker

cooperating to solve the problem. There are multiple reasons that make distributed op-

timization important. Firstly, one centralized computing unit may not be equipped with

enough memory to handle the data or there might be a constraint on the time to compute.

With multiple computational units, which work distributedly, both the memory and time

can be potentially addressed. In many cases, the decision makers are not co-located, which

is another reason why distributed optimization is so important. For instance, in ad-hoc wire-

less communication networks, the devices are geographically distributed and need to make

decisions in a distributed manner.

2.1.10 Dual Decomposition

We assume that the objective f0 is separable, i.e., f0(x1, .., xN) =
∑N

k=1 f
k
0 (xk), where fk0 (xk)

is the objective for the kth decision maker. Suppose we are considering the following equality

constrained optimization problem.

minimize f0(x)

subject to
n∑
i=1

Aixi = b
(2.6)

where Ai ∈ Rp×ni is the matrix associated with xi ∈ Rni and b ∈ Rp. A more succinct

representation of the above problem is

minimize f0(x)

subject to Ax = b
(2.7)

where A = [A1, ..., AN ] and x = (x1, .., xN)

We write the Lagrangian for the above problem as

L(x, λ) =
N∑
k=1

fk0 (xk) + λt(
N∑
k=1

Akxk − b)
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Define Lk(xk, λ) = fk0 (xk) + λtAkxk. Hence, we can write

L(x, λ) =
N∑
k=1

Lk(xk, λ)− λtb (2.8)

The dual decomposition method’s key steps are described as follows.

• xl+1
k = arg minLk(x

l
k, λ), ∀k ∈ {1, ..., N}

• λl+1 = λl + αl(
∑

k Akxk − b)

where αl > 0 is the step size. Dual decomposition methods converge to the optimal solution

under strong assumptions. The main advantage of the dual decomposition is that the xk

can be computed in parallel. The computation of λ by all the decision makers requires

communication of current estimates of xk unless there is a centralized entity gathering xk to

compute λ.

2.1.11 Augmented Lagrangian

In this section, we discuss Augmented Lagrangians that were developed to make the dual

decomposition method more robust. The objective function is modified as follows: f0(x) +

ρ‖Ax − b‖2. We define the augmented lagrangian Lρ as Lρ(x, λ) = f0(x) + λt(Ax − b) +

ρ‖Ax − b‖2. We write the optimality conditions (Karush-Kuhn-Tucker also known as the

KKT conditions). Suppose x∗ and λ∗ are the optimal values.

Ax∗ − b = 0

∇f(x∗) + Atλ∗ = 0
(2.9)

The steps under the Augmented Lagrangian method are given below.

• xl+1 = arg minLρ(x, λ
l)

• λl+1 = λl + ρ(Axl+1 − b)

The above approach converges to the optimal solution x∗, λ∗ under much more relaxed

conditions in comparison to the dual decomposition approach. The strict convexity due to
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adding the penalty ρ‖Ax− b‖2 ensures that we do not need f0 to be differentiable. However,

the disadvantage now is that the update for x cannot be carried out in parallel as we lost

separability by adding the penalty term.

2.1.12 Alternating Direction Method of Multipliers

In this section, we briefly discuss Alternating Direction Method of Multipliers (ADMM) that

is built to overcome the limitations of the methods described in the previous sections. We

consider two convex functions f and g and say the objective is f(x)+g(z). The optimization

problem under consideration is

min f(x) + g(z)

subject to Ax+Bz = c
(2.10)

We define the Lagrangian for the above problem as follows: Lρ(x, z, λ) = f(x) + g(z) +

ρ‖Ax+Bz − c‖2 + λt(Ax+Bz − c). The steps in the ADMM method are described below.

• xl+1 = arg minLρ(x, z
l, λl)

• zl+1 = arg minLρ(x
l, z, λl)

• λl+1 = λl + ρ(Axl+1 +Bzl+1 − c)

This method allows x and z to be updated separately in parallel. Update of λ requires

both x and z. Note this method overcomes the limitation of both dual decomposition, which

requires that the function be differentiable and the augmented Lagrangian based approach,

which does not permit parallel updates.

2.1.13 Graph Theory Basics and Algorithms

Graph theory based algorithms have been commonly used for many resource allocation

problems. In this section, we give a brief overview of some definitions and concepts in

graph theory. This part is based on [Erc13]
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Define a set of vertices V . In this dissertation, we will only deal with finite graphs, i.e.

the set V is finite. Define an edge e, where e = (v1, v2) is an ordered pair of the vertices. Let

the set of edges be E.

Definition 1 Graph: A graph is defined as a tuple G = (V,E), where V is the set of vertices

and E is the set of edges.

Definition 2 Vertex Adjacency: Two vertices v1 ∈ V and v2 ∈ V are said to be adjacent if

there is an edge e ∈ E such that e = {v1, v2}

Definition 3 Edge Adjacency: Two edges e1 ∈ E and e2 ∈ E are said to be adjacent if there

is a vertex v ∈ V that is incident to both the edges.

Definition 4 Neighborhood: Neighborhood of a vertex v N(v) is the set of vertices that are

adjacent to v. Formally, N(v) = {u ∈ V, s.t. {u, v} ∈ E}

Definition 5 Adjacency Matrix: The adjacency matrix A of a graph with n vertices is an

n× n matrix such that the element at (i, j) A[i, j] is one if the vertex i and j are connected

and is zero otherwise.

2.1.13.1 Vertex Coloring

The objective is to color the vertices of the graph such that no two neighbors are assigned the

same color. Vertex coloring has different applications such as resource allocation in wireless

networks, task scheduling etc.

Definition 6 Vertex Coloring: Vertex coloring is a procedure of assigning a color cv to each

vertex v ∈ V such that cv is different from any of the colors assigned to the neighbors of v.

Definition 7 Chromatic Number: The chromatic number of a graph G, X (G), is the mini-

mum number of colors needed to color G.

Calculation of X (G) is Non-deterministic Polynomial (NP) complete [Erc13].
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2.1.13.2 Sequential Vertex Coloring Algorithm

We label the vertices of the graph in a certain order v1, v2,..., vn. We start by describing

a simple greedy vertex coloring algorithm. In this algorithm, we pick the uncolored vertex

from the remaining vertices uniformly. Suppose that the maximum number of vertices in

the neighborhood of a certain vertex is ∆. Suppose we have a palette that consists of a total

of O(∆ + 1) colors. We define an array of colors neighcolors, where neighcolors[v] is the set

of colors that have been used to color the neighbors of v so far. The algorithm proceeds

by assigning the smallest available color to an uncolored vertex from the palette that its

neighbors have not been assigned yet. Once a color is assigned to v that color is added to

the array neighcolors for each neighbor of v. The time complexity of the algorithm is O(n)

and it uses O(∆ + 1) colors.

2.1.13.3 Maximal Independent Sets

Definition 8 Independent Set: An independent set S of the graph is a subset of the vertices

V such that no two vertices in the set S have an edge connecting them

Definition 9 Maximal Independent Set (MIS): Maximal Independent Set of a graph is an

independent set to which no further vertices can be added without losing independence.

Definition 10 Maximum Independent Set: Maximum Independent Set is the largest inde-

pendent set for a graph.

Finding the maximum independent set of a graph is an NP-hard problem [Erc13].

2.1.13.4 Sequential Maximal Independent Set Algorithm

We describe a simple algorithm to compute an MIS. Consider set S, which at the start of

the algorithm consists of all the vertices in the graph. Arbitrarily select a vertex v from the

set of remaining vertices S. Update S by removing the neighbors of v and v from the set S.
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Repeat the first step, i.e. select a vertex arbitrarily from S and remove it and its neighbors

from S. Continue to do this procedure until the set S is empty.

2.2 Background for Dynamic Matching with Strategic Agents

Game theory is a study of interactions between strategic agents. These strategic interactions

can be found everywhere around us such as poker, chess, designing contracts, international

trade or hiring workers. This section is based on [Mih16]. This section would be useful to

understand Chapter 5.

2.2.1 Non-Cooperative Game Theory

Non-cooperative games characterize interactions between individuals. The main characteris-

tic of non-cooperative games is that there is no external entity to enforce agreements and the

individuals behave in such a way that it has to be self-enforcing. We discuss the most basic

form of a game, which is referred to as normal or strategic game. Suppose N = {1, ..., n}

is a finite set of players. Si is the set of pure strategies for player i. S = S1 × S2... × Sn is

the set of pure strategy profiles. S−i is the set of pure strategy profiles for i’s opponents.

ui : S → R is the payoff function of player i. We write the tuple of the payoffs of all the

players as u = (u1, .., un). The normal form game is defined as the tuple (N,S, u). The

structure of the game is common knowledge, i.e., every player knows the tuple, every player

knows that everyone knows the tuple, and so on. If S is a finite set, then the game is finite.

Define ∆(X) as the set of probability measures over X. ∆(Si) is the set of mixed strategies

for player i. σ ∈ ∆(S1)×∆(S2)...×∆(Sn) is a mixed strategy profile for all the players.

Each player i has von Neumann-Morgenstern preferences, i.e., expected utility is defined

as ui(σ) =
∑

s∈S ui(s)σ(s). Next, we try to characterize ways in which a game is played

in terms of solution concepts. We start with the example of a very simple game, prisoner’s

dilemma. There are two persons arrested. Each person has the option of taking one of the

following two actions- Cooperate (C) and Defect (D). If both defect, then both are accused

of a minor crime and sent to one year in prison. If both cooperate, then both are accused
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of a major crime and sent to prison for 2 years. If Player 1(2) cooperates and Player 2(1)

defects, then Player 2(1) is accused and sent to 3 years in prison and Player 1(2) is set free.

Observe that defecting is strictly beneficial for each player, i.e., under both strategies for

Player 2(1) it is strictly better for Player 1(2) to defect. We give the actions and payoffs in

Table 2.1.

Table 2.1: Utility matrix for prisoner’s dilemma.

C D

C (-2,-2) (-3,0)

D (0,-3) (-1,-1)

Next we define Nash Equilibrium, which is a solution concept central to non-cooperative

game theory.

Definition 11 Nash Equilibrium: A mixed strategy σ is a Nash Equilibrium if for every

i ∈ N ,

ui(σi, σ−i) ≥ ui(si, σ−i)∀si ∈ Si

For the game that we defined above, (D,D) is the Nash Equilibrium (as defect is the

dominant strategy for both the players). The reader can refer to [Mih16] and references in

there for further exposure to game theory.

2.3 Background for Dynamic Resource Allocation Planning

In this section, we give a brief background on Markov decision processes, which would be

relevant for understanding Chapter 6. This section is heavily based on [Kri16].
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2.3.1 Fully Observed Markov Decision Processes

Consider a discrete time stochastic system with state xk ∈ X , where k is the index of the

time and k ∈ {0, 1, .., N − 1}.

xk+1 = Ak(xk, uk, wk) (2.11)

The initial x0 has a distribution π0. {wk} is an i.i.d. process with probability density pw

that is statistically independent of the initial state x0. Also, uk ∈ U is the action taken

by a decision-maker, where U denotes the set of actions. We assume that the decision

maker observes the state at each time k. If action uk is taken at the time instance k, an

instantaneous cost c(uk, xk, k) is incurred at k. We define the Markov transition probabilities

P(xk+1 ∈ B | xk = x, uk = u) =

∫
P(I(Ak(x, u, w) ∈ B))pw(w)dw (2.12)

where B denotes a measurable set and I is an indicator function, which takes the value

one when the condition inside is true and zero otherwise. We use the Dirac Delta function

to obtain the following

p(xk+1|xk = x, uk = u) =

∫
δ(xk+1 − Ak(x, u, w))pw(w)dw (2.13)

In summary, a discrete-time Fully Observable Markov Decision Process is characterized

using the following tuple

(X ,U , p(xk+1|xk = x, uk = u), c(uk, xk, k)) (2.14)

The decision maker chooses a sequence of the actions u0, u1, ....., uN and as a result,

the random process moves into different states x0, x1, ...., xN . Suppose Hk is the set of

observations made by the decision maker up to time k. We define the policy at time k, πk,

as a mapping from Hk to U . We define the policy π as π = (π0, ...πN−1). We define a finite

horizon objective function for the decision maker as

Vπ(x) = Eπ[
N−1∑
k=0

ck(xk, π(Hk), k) + cN(xN)|x0 = x] (2.15)
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where Eπ is the expectation with respect to (w.r.t) the joint probability distribution on the

histories in HN . We refer to Vπ as the value function w.r.t. to policy π. The goal of the

decision-maker is to solve for the optimal policy given as

π∗ = argmin
π

Vπ(x) (2.16)

A general policy πk maps the entire history up to time k to action uk. If a policy makes

a decision only based on the most recent state xk, i.e., πk(xk) = uk, then the policy is

Markovian. It is sufficient to search for the optima in the space of Markov policies to achieve

the minimum in (2.16) (See [Kri16]).

2.3.1.1 Bellman’s Stochastic Dynamic Programming Algorithm

Bellman’s stochastic dynamic programming algorithm relies on backward recursion. Initialize

VN(x) = cN(x). For k = N − 1, ..., 0, the algorithm works as follows.

Vk(x) = min
u∈U

{
c(x, u, k) +

∫
Vk+1(Ak(x, u, w))pw(w)dw

}
π∗k(x) = argmin

u∈U

{
c(x, u, k) +

∫
Vk+1(Ak(x, u, w))pw(w)dw

} (2.17)

Finally, the optimal policy is π∗ = (π∗0, π
∗
1, ..., π

∗
N−1). The total cost associated with the

optimal policy π∗ denoted as Vπ∗ is computed based on (2.16).

Theorem 1 The output of the stochastic dynamic programming algorithm π∗ achieves the

minimum in (2.16)

In this section, we discussed fully observed Markov decision processes. In the special

case, where the number of possible states is finite, the objective and the recursion in (2.16)

and (2.17) can be simplified (See [Kri16] for more details).

2.3.2 Partially Observable Markov Decision Process

We first define the building blocks of a Partially Observable Markov Decision Process

(POMDP). Time is discrete and the planning horizon is finite. Each time index is k ∈
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{0, ..., N − 1}. X = {1, ..., X} is a finite state space. U = {1, ..., U} is a finite action space.

Y denotes the observation space which can either be finite or a subset of R. xk and uk

are the states and actions respectively in time slot k. For each u ∈ U , P (u) denotes a

X ×X transition matrix with each element defined as Pij(u) = P(xk+1 = j|xk = i, uk = u).

For each u ∈ U , B(u) denotes the observation distribution with each element defined as

Biy(u) = P(yk+1 = y|xk+1 = i, uk = u). For state xk and action uk pair, the cost c(xk, uk)

and at terminal time N the cost incurred is cN(xN). Hence, a POMDP is character-

ized by the tuple given below. Define the prior distribution over the initial state x0 as

b0 = {P(x0 = i), ∀i ∈ X}. The sequence of policies for time slots {0, ..., N − 1} are given as

π = (π0, ..., πN−1). The total expected cost of the decision-maker is given as

Vπ(b0) = Eπ[
N−1∑
k=0

c(xk, uk) + cN(xN)|b0] (2.18)

where Eπ is the expectation w.r.t to the history induced by the policy π. The goal of

the decision-maker is to find the optimal policy such that the objective defined above is

minimized, i.e.,

π∗ = argminVπ(b0) (2.19)

In the case of fully observed MDPs described in the previous section, we discussed how

the most recent state xk is a sufficient statistic and hence, it is sufficient to search the space

of Markovian policies. In POMDPs since we don’t necessarily observe the state xk we can

only form a belief over the states conditioned on the observations. This belief as we discuss

next forms a sufficient statistic for the POMDPs. We define the belief distribution as

bk(i) = P(xk = i|hk) (2.20)

where hk = (µ0, y0, u0, ..., yk, uk) and i ∈ X . We write the belief vector as

bk = [bk(0), ..., bk(N − 1)]

We use the observation distribution defined above to define a X ×X diagonal matrix given

as By(u) = diag(P(yk+1 = y|xk+1 = 0, uk = u), ....,P(yk+1 = y|xk+1 = N − 1, uk = u)). The

belief is updated based on the observation in time slot k as follows.
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bk+1 = T (bk, yk+1, uk) =
Byk+1

(uk)P
t(uk)bk

σ(bk, yk+1, uk)
(2.21)

where σ(bk, yk+1, uk) = 1tP t(uk)bk, where 1 is a N dimensional column vector.

Vπ(b0) = Eπ[
N−1∑
k=0

c(xk, uk) + cN(xN)|b0]

= Eπ[
N−1∑
k=0

X∑
i=1

c(i, uk)bk(i) +
X∑
i=1

cN(i)bk(i)|b0]

= Eπ[
N−1∑
k=0

ctukbk + ctNbk|b0]

(2.22)

where cuk = [c(1, uk), ..., c(N, uk)]
t and cN = [cN(1), ..., cN(X)]t. Based on the above

equation (2.22), we realize that the belief vector bk can be understood as the state vector

and then this equation can be analyzed similarly to the Fully Observed Markov Decision

Process in (2.15). This also leads us to realize that we only need to search in the space of

policies that map from the belief vector to the actions. The optimal policy π∗ = (π∗0, .., π
∗
N−1)

for a POMDP can be obtained as a solution to the following backward recursion. Initialize

VN(b) = ctNb and then for k = N − 1, ..0.

Vk(b) = min
u∈U

{
ctub+

∑
y∈Y

Vk+1(T (b, y, u)σ(b, y, u))
}

π∗k(b) = argmin
u∈U

{
ctub+

∑
y∈Y

Vk+1(T (b, y, u)σ(b, y, u)
} (2.23)

The total number of belief vectors forms an uncountable set. Hence, the above recursive

algorithm is not tractable. There are certain standard approaches described in [Kri16] that

help overcome these limitations. For further discussion on POMDPs refer to [Kri16]. In

Chapter 7, we rely on principles of dynamic programming, which we briefly discussed for the

stochastic settings in 2.3.1.1, to construct our Algorithm. For further discussion on dynamic

programming refer to [BBB95]. We did not cover the relevant background for Chapter 8 is

quite involved and is out of the scope of this chapter. Instead, we refer the reader to [SS01].
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2.4 Conclusion

In this chapter, we gave a brief background for a reader new to these areas. This background

would be useful in understanding the next chapters. A reader further interested should

explore the references we cited in the chapter.
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CHAPTER 3

Centralized Large Scale Multi-Agent Resource Sharing

3.1 Introduction

In this chapter, we describe a large scale resource sharing method for multi-agent systems.

We describe the proposed method in the context of wireless networks. At the end of the

chapter, we show that the proposed method is general and applies to many scenarios. Our

objective is to solve an optimization problem that determines how should a resource be shared

among multiple agents over a long period of time. We show that computing the exactly

optimal solution to this problem is computationally intractable. We develop a solution that

runs in polynomial time and in many cases is able to achieve a constant factor approximation

in terms of the performance. This chapter is based on [AXS15b].

Motivation. As more and more devices are connecting to cellular networks, the demand

for wireless spectrum is exploding. Dealing with this increased demand is especially difficult

because most of the traffic comes from bandwidth-intensive and delay-sensitive applications

such as multimedia streaming, video surveillance, video conferencing, gaming etc. These

demands make it increasingly challenging for the cellular operators to provide sufficient

quality of service (QoS). Dense deployment of distributed low-cost femtocells (or small cells

in general, such as microcells and picocells) has been viewed as one of the most promising

solutions for enhancing access to the radio spectrum [GMR12], [ACD12]. Femtocells are

attractive because they can both extend the service coverage and boost the network capacity

by shortening the access distance (cell splitting gain) and offloading traffic from the cellular

network (offloading gain). However, in a closed access network when only registered mobile

users can connect to the femtocell base station, dense deployment of femtocells operating in
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the same frequency band leads to strong co-tier interference. In addition, since the macrocell

users usually operate in the same frequency, the problem of interference (to both femtocells

and macrocells) is further exacerbated due to cross-tier interference across macrocells and

femtocells. In this chapter, we study a closed access network. Hence, it is crucial to design

interference management policies to deal with both co-tier and cross-tier interference.

Interference management policies specify the transmission scheduling and transmit power

levels of femtocell user equipments (FUEs) and macrocell user equipments (MUEs) in uplink

transmissions, and specify the transmission scheduling and power levels of femtocell base

stations (FBSs) and macrocell base stations (MBSs) in downlink transmissions. We focus on

uplink transmissions in this chapter, but our framework can be easily applied to downlink

transmissions. An efficient (interference management) policy should fulfill the following

important requirements (as we will discuss in details in Section 3.2, state-of-the-art policies

do not fulfill one or more of the following requirements):

• Interference management based on network topology : Effective interference manage-

ment policies must take into account that uplink transmissions from neighboring UEs

create strong mutual interference, but must also recognize and take advantage of the

fact that non-neighboring UEs do not. Hence, the network topology (i.e. locations of

femtocells/macrocells) must play a crucial role.

• Limited signaling for interference coordination: In dense, large-scale femtocell deploy-

ments, the UEs cannot coordinate their transmissions by sending a large amount of

control signals across the network. Hence, effective interference management policies

should not rely on heavy signaling and/or message exchanges across the UEs in the

network.

• Scalability (in terms of performance and complexity) in large networks : Femtocell

networks are often deployed on a large scale (e.g. in a city). Effective interference

management policies should scale in large networks, namely achieve efficient network

performance while maintaining low computational complexity.
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• Support for delay-sensitive applications : Effective interference management policies

must support delay-sensitive applications, which constitute the majority of wireless

traffic.

• Versatility in optimizing various network performance criteria: The appropriate net-

work performance criterion (e.g. weighted sum throughput, max-min fairness, etc.)

may be different for different networks. Effective interference management policies

should be able to optimize a variety of network performance criteria while ensuring

performance guarantees for each MUE and each FUE.

In this chapter, we propose a novel, systematic, and practical methodology for designing and

implementing interference management policies that fulfill all of the above requirements.

Specifically, our proposed policies aim to optimize a given network performance criterion,

such as weighted sum throughput and max-min fairness, subject to each UE’s minimum

throughput requirements. Our proposed policies can efficiently manage a wide range of

interference. We manage strong interference between neighboring UEs by using time-division

multiple access (TDMA) among them. We take advantage of weak interference between non-

neighboring UEs by finding maximal sets of UEs that do not interfere with each other and

allowing all the UEs in those sets to transmit at the same time. More specifically, we find

the maximal independent sets (MISs) 1 of the interference graph 2, and schedule different

MISs to transmit in different time slots. The scheduling of MISs in our proposed policy is

particularly designed for delay-sensitive applications: the schedule of MISs across time is

not cyclic (i.e. the policies do not allocate transmission times to MISs in a fixed (weighted)

round-robin manner), but rather follows a carefully designed non-stationary schedule, in

which the MIS to transmit is determined adaptively online. For delay-sensitive applications,

cyclic policies are inefficient because transmission opportunities (TXOPs) earlier in the cycle

are more valuable than TXOPs later in the cycle (earlier TXOPs enhances the chances of

1A set of vertices in which no pair is connected by an edge is independent (IS) and if it is not a subset of
another IS then it is MIS.

2Each vertex in the interference graph corresponds to a UE-BS pair, where the pair constitutes the BS
and the UE it serves. An edge represents high interference from/to a neighboring vertex.
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transmission before delay deadlines). The cyclic polices are unfair to UEs allocated to later

TXOPs.

Another distinctive feature of our work is that we do not take the interference graph as

given as in most existing works; instead, in our work we show how to choose the interference

graph that maximizes the network performance. Specifically, in our construction of interfer-

ence graphs, we determine how to choose the threshold on the distance between two cells,

based on which we determine if there is an edge between them, in order to maximize the

network performance. Moreover, we prove that under certain conditions, the proposed pol-

icy, computed based on the optimal threshold, can achieve the optimal network performance

(weighted sum throughput) within a desired small gap. Note that for large networks, in gen-

eral it is computationally intractable to find all the MISs of the interference graph [JYP88].

We propose efficient polynomial-time algorithms to find a subset of MISs, and prove that

under a wide range of deployment scenarios, the proposed policy, computed based on the

constructed subset of MISs, can achieve a constant competitive ratio (with respect to optimal

weighted sum throughput) that is independent of the network size.

Finally, we summarize the main contributions of our work:

1. We propose interference management policies that are based on scheduling the MISs

of the interference graph. The schedule of MISs is constructed in order to maximize the

network performance criterion subject to minimum throughput requirements of the UEs. In

addition, the schedule adapts to the delay sensitivity requirements of the UEs by scheduling

transmissions in a non-stationary manner.

2. We construct the interference graph by comparing the distances between the BSs with

a threshold (i.e. there is an edge between two cells if the distance between their BSs is

smaller than the threshold). We develop a procedure to choose the optimal threshold such

that the proposed scheduling of MISs leads to a high network performance. Importantly, we

prove that under certain conditions, the proposed scheduling of MISs based on the optimal

threshold achieves within a desired small gap of the optimal network performance (weighted

sum throughput).
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3. Since it is computationally intractable to find all the MISs in large networks, we

propose an approximate algorithm that computes a subset of MISs within polynomial time.

We prove that under a wide range of deployment scenarios, the proposed policy based on

this subset of MISs has a constant competitive ratio (with respect to the optimal weighted

sum throughput) that is independent of the network size.

The rest of the chapter is organized as follows. In Section 3.2, we discuss the related works

and their limitations. We describe the system model followed by the problem formulation in

Section 3.3 and 3.4, respectively. The design framework and its low-complexity variant for

large networks are discussed in Section 3.5 and Section 3.6, respectively. In Section 3.7, we

use simulations to compare the proposed policy with state-of-the-art policies. In Section 3.8,

we discuss how the proposed framework is general and can be applied to other applications.

Finally we conclude the chapter in Section 3.9.

3.2 Related Works

In this section we provide a comparison of state-of-the-art policies with the proposed policy.

The interference management policies in the existing works can be categorized in two classes:

1) policies based on constant power control, and 2) policies based on spatial time/frequency

reuse.

3.2.1 Interference Management Policies Based on Constant Power Control

The first and most widely-used interference management policies [HYC09, GI10, LLJ11,

BPB13a, JMM09, CAM09] are based on constant power control. In these policies, all the

UEs in the network transmit at a constant power at all time (provided that the system

parameters remain the same) in the entire frequency band.3 When the cross channel gains

among BSs and UEs are high, simultaneous transmissions at the same time and in the same

3Although some power control policies [HYC09], [CAM09] go through a transient period of adjusting the
power levels before converging to the optimal power levels, the users maintain the constant power levels after
the convergence.
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  Coloring based scheduling, 

Less than 2 UEs scheduled per 

time slot

a)

 MIS based scheduling,  

2 UEs scheduled per 

time slot

b)

Figure 3.1: Coloring based scheduling in a) schedules less than two UEs per time slot on an

average, while MIS based scheduling in b) is more efficient and schedules two UEs per time

slot.

frequency band will cause significant interference among cells. Such strong interference is

common in macrocells underlaid with femtocells. For example, in [CMK08] it is shown that

interference from MUEs near the FBS severely affects the uplink transmissions of FUEs.

Also, in offices and apartments, where FBSs are installed close to each other, inter-cell in-

terference is particularly strong [LCV09]. In contrast, our proposed solutions mitigate the

strong interference by letting only a subset of UEs (who do not interference with each other

much) to transmit at the same time (i.e. use time division multiplexing (TDM)).

3.2.2 Interference Management Based on Spatial Time/Frequency Reuse

Some existing works mitigate strong interference by letting different subsets of UEs to trans-

mit in different time slots (spatial time reuse) [RL93,HS95,RP89,CS89,PST12,BBS06,ET90,

AAS11,JPP05] or in different frequency channels (spatial frequency reuse) [LXH10,UAB11,

LLJ10, LVD09, KL08, SHL12, Nec08]. Specifically, they partition UEs into disjoint subsets

such that the UEs in the same subset do not interfere with each other [LXH10,UAB11,LLJ10,

LVD09,KL08,SHL12,Nec08,BBS06,ET90,JPP05,AAS11,RL93,HS95,RP89,CS89,PST12].

Given the same partition of the UEs, the policies based on spatial time reuse and those

based on spatial frequency reuse are equivalent. Hence, we focus on policies based on spatial

time reuse hereafter.

Some policies based on spatial time reuse partition the UEs based on the coloring of the
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interference graph [RL93,HS95,PST12] which is not efficient. In general, a set of UEs with

the same color (i.e. the UEs who can transmit simultaneously) may not be maximal (See

Fig. 3.1.), in the sense that there may be UEs who do not interfere but have different colors

(we will also show this in the motivating example in Subsection 3.4.2). In this case, it is more

efficient to also let those non-interfering UEs to transmit simultaneously, although they have

different colors. In other words, the partitioning based on coloring the interference graph is

not efficient, because the average number of active UEs (i.e. the average cardinality of the

subsets of UEs with the same color) can be low.

Some policies based on spatial time reuse [RP89,CS89,BBS06,ET90,JPP05,AAS11] par-

tition the UEs based on the MISs of the interference graph, which is more efficient, because

we cannot add any more UEs to an MIS without creating strong interference. However, they

are still inefficient compared to our proposed policies for delay-sensitive applications. Specif-

ically, they schedule different MISs in a cyclic and (weighted) round-robin manner, in which

each UE transmits at a fixed position in each cycle. For delay-sensitive applications, earlier

positions in the cycle are more desirable because they enhance the chances of transmitting

prior to delay deadlines. Hence, a cyclic schedule is not fair to the UEs allocated to later

positions. In contrast, our proposed policies schedule the MISs in an efficient, non-stationary

manner for delay-sensitive applications.

Another notable difference from the existing works based on spatial time/frequency reuse

is that they usually take the interference graph as given. On the contrary, our work discusses

how to construct the interference graph optimally such that the network performance is

maximized.

3.2.3 Other Interference Management Policies

Besides the above two categories, there are several other related works. For instance in

[NBG10], [BPB13b], the authors propose reinforcement learning and evolutionary learning

techniques for the femtocells to learn efficient interference management policies. In [NBG10],

the femtocells learn the fixed transmit power levels, while in [BPB13b], the femtocells learn
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to randomize over different transmit power levels. However, the interference management

policies in [NBG10] and [BPB13b] cannot provide minimum throughput guarantees for the

UEs. In contrast, we provide rigorous minimum throughput guarantees for the UEs. In

both [NBG10], [BPB13b] the femtocell UEs need to limit their transmission powers in every

time slot such that the signal to interference and noise ratio (SINR) of the macrocell UE is

sufficiently high. If there is strong interference between some femtocells and the macrocell,

the femtocell UEs will always transmit at lower power levels, leading to a low sum throughput

for them.

Another method to mitigate interference is to use coordinated beam scheduling [CHH12],

[YCC11]. In [CHH12] and [YCC11], the authors schedule a subset of beams to maximize

the total reward associated with the scheduled subset, where the reward per beam reflects

the channel quality and traffic. The first difference from our work is that the approach

in [CHH12], [YCC11] schedules a fixed subset of beams and leaves the other UEs inactive.

Hence, some UEs have no throughput, which means the minimum throughput as well as the

delay-sensitivity of the UEs is not satisfied. Second, we rigorously prove that our proposed

policy achieves good performance with low (polynomial-time) complexity, while [CHH12],

[YCC11] do not. Third, the schemes in [CHH12], [YCC11] are proposed for a specific network

performance criterion and may not be flexible enough for other network performance criteria

(such as the minimum throughput). Finally, [CHH12], [YCC11] do not consider the delay

sensitivity of the UEs.

3.3 System Model

3.3.1 Heterogeneous Network of Macrocells and Femtocells

We consider a heterogeneous network of N femtocells (indexed by {1, 2, . . . , N}) and M

macrocells (indexed by {N+1, ..., N+M}) operating in the same frequency band, a common

deployment scenario considered in practice [HYC09], [JMM09], [CAM09]. We assume that

each FBS/MBS serves only one FUE/MUE as in [CAM09]. Our model can be easily
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Figure 3.2: A) System model for the three-cell network, B) The interference graph for the

three-cell network.

generalized to the setting where each BS serves multiple UEs, at the expense of complicated

notations to denote the association among UEs and BSs. For notational clarity, we focus on

the case where each BS serves one UE, and will demonstrate the applicability of our work

to the setting where one BS serves multiple UEs in Subsection 3.7-B.

Since there is only one FUE or MUE in a femtocell or a macrocell, the index of each

UE and that of each BS are the same as the index of the cell they belong to. We focus on

the uplink transmissions. The proposed framework can be applied directly to the downlink

scenarios in which each BS serves one UE at a time. See Fig. 3.2. for an illustration of a

3-cell network with N = 2 femtocells and M = 1 macrocell. Each UE i chooses its transmit

power pi from a compact set Pi ⊆ R+. We assume that 0 ∈ Pi, ∀i ∈ {1, ...N +M}, namely

a UE can choose not to transmit. The joint power profile of all the UEs is denoted by

p = (p1, ....pN+M) ∈ P , where P =
∏N+M

i=1 Pi. The power profile of all the UEs other than i

is denoted by p−i. When a UE i chooses a transmit power pi, the signal to interference and

noise ratio (SINR) experienced at BS i is γi(p) = giipi∑
j 6=i

gjipj+σ2
i
, where gji is the channel gain

from UE j to BS i, and σ2
i is the noise power at BS i. Since the BSs cannot cooperate to

decode their messages, each BS i treats the interference as white noise, and gets the following

throughput [BPB13a], [CAM09] at the power profile p, ri(p) = log2(1 + γi(p)).
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3.3.2 Interference Management Policies

The system is time slotted at t = 0,1,2..., and the UEs are assumed to be synchronized

as in [XS12], [EPT07], [WWL09]. At the beginning of time slot t, each UE i decides its

transmit power pti and obtains a throughput of ri(p
t). Each UE i’s strategy, denoted by

πi : Z+ = {0, 1, ..} → Pi, is a mapping from time t to a transmission power level pi ∈

Pi. The interference management policy is then the collection of all the UEs’ strategies,

denoted by π = (π1, ..., πN+M). Each UE is delay sensitive and hence discounts the future

throughput as in [EPT07, XS12, WWL09, XS14]. The average discounted throughput for

UE i is given as Ri(π) = (1 − δ)
∞∑
t=0

δtri(p
t),where pt = (π1(t), ..., πN+M(t)) is the power

profile at time t, and δ ∈ [0, 1) is the discount factor assumed to be the same for all the

UEs as in [EPT07, WWL09, XS12, XS14]. We also assume the channel gain to be fixed

over the considered time horizon as in [BBS06,ET90,JPP05,AAS11,LXH10,UAB11,LLJ10]

[EPT07, WWL09, XS12, TFL11, XS14]. However, we will illustrate in Subsection 3.7.3 that

the proposed framework can be adapted to the scenarios in which the channel conditions are

time-varying.

An interference management policy πconst is a policy based on constant power control

[HYC09, GI10, CAM09, LLJ11, BPB13a, JMM09], if π(t) = p for all t. Write the joint

throughput profile of all the UEs as r(p) = (r1(p), ..., rN+M(p)). Then the set of all joint

throughput profiles achievable by policies based on constant power control can be written as

Rconst = {r(p), p ∈ P}. As we have discussed before, our proposed policy is based on MISs

of the interference graph. The interference graph G has M+N vertices, which are the M+N

UE-BS pairs. Each pair constitutes the BS and the UE it serves. There is an edge between

two vertices if their cross interference is high. We will describe in detail how to construct the

interference graph later. Given an interference graph, we write IG = {IG1 , ..., IGs(G)} as the set

of all the MISs of the interference graph. Let pI
G
j be a power profile in which the UEs in the

MIS IGj transmit at their maximum power levels, namely pk = pmaxk , maxPk if k ∈ IGj and

pk = 0 otherwise. Let PMIS(G) = {pIG1 , ...,pI
G
s(G)} be the set of all such power profiles. Then

π is a policy based on MIS if π(t) ∈ PMIS(G) for all t. We denote the set of policies based
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on MISs by ΠMIS(G) = {π : Z+ → PMIS(G)}. The set of joint instantaneous throughput

profiles achievable by policies based on MIS is then RMIS(G) = {r(p) : p ∈ PMIS(G)}. We

will prove in Theorem 2 that the set of joint discounted throughput profiles achievable by

policies based on MIS is VMIS(G) = conv{RMIS(G)}, where conv{X} representing the convex

hull of set X.

3.4 Problem Formulation

In this section, we formalize the interference management policy design problem, and sub-

sequently give a motivating example to highlight the advantages of the proposed policy over

existing policies in solving this problem.

3.4.1 Policy Design Problem

The designer of the network (e.g. the network operator) aims to design an optimal inter-

ference management policy π that fulfills each UE i’s minimum throughput requirement

Rmin
i and optimizes a chosen network performance criterion W (R1(π), ...., RN+M(π)). The

network performance criterion W is an increasing function in each Ri. For instance, W

can be the weighted sum of all the UEs’ throughput, i.e.
N∑
i=1

wFUEi Ri(π) +
M∑
j=1

wMUE
j RN+j(π)

with
N∑
i=1

wFUEi +
M∑
j=1

wMUE
j = 1 and wMUE

i , wFUEj ≥ 0 . We emphasize that the higher-

priority of MUEs can be reflected by setting higher weights for the MUEs (i.e. wMUE
i ≥

wFUEj , ∀i = 1, . . . , N, ∀j = 1, . . . ,M), and by setting higher minimum throughput require-

ments for MUEs. Another example of performance criterion W is the max-min fairness (i.e.

the worst UE’s throughput), i.e. miniRi(π) .The policy design problem is given as follows.

Design Problem

maxπ W (R1(π), ...., RN+M(π)) (3.1)

s.t. Ri(π) ≥ Rmin
i ,∀i ∈ {1, ..., N +M}

The key steps and the challenges in solving the design problem are as follows: 1) How
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to determine the set of achievable throughput profiles? Note that the set depends on the

discount factor δ. It is an open problem to determine the set of achievable throughput

profiles, even for the special case of δ = 0 (i.e. the set of throughput profiles achievable

by policies based on constant power control). 2) How to construct the optimal policy that

achieves the optimal target throughput profile? The optimal policy again depends on δ. It

is much more challenging to determine the policy for delay-sensitive applications (i.e. δ < 1)

than for delay-insensitive applications (i.e. δ → 1), because the optimal policy is not cyclic.

3) How to construct a policy that requires minimum communication overhead among the

UEs?

3.4.2 Motivating Example

We consider a network of 5 femtocells. On the left plot of Fig. 3.1., we have portrayed the

interference graph of this network. Each vertex denotes a pair of FBS and its FUE. Each edge

denotes strong local interference between the connected vertices (i.e. the distance between

the FBSs is below some threshold). The interference graph is a pentagon, where each UE

interferes only with two neighbors. We show the partitioning of the UEs by coloring the

interference graph. There are three colors, and there is one color (i.e. black) to which only

one UE belongs. On the right plot of Fig. 3.1., we show the 5 MIS’s, each of which consists

of two UEs. Note that the MIS are not disjoint. For illustrative purposes, suppose that

the 5 femtocells and their UEs are symmetric, in the sense that all the UEs have maximum

transmit power of 30mW, direct channel gain of 1, cross channel gain of 0.25 between the

neighbors, noise power at the receiver of 2mW, minimum throughput requirement of 1.2

bits/s/Hz, and discount factor of 0.8 representing delay sensitivity. For simplicity, we set

the cross channel gain between non-neighbors to be 0.

We compare our proposed policy against the following policies discussed in Section 3.2:

• Policies based on constant power control [HYC09, GI10, CAM09, LLJ11, BPB13a], in

which each UE chooses a constant (time-invariant) power level all the time.

• Coloring-based TDMA policies [RL93,HS95,PST12], in which the UEs are partitioned
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into mutually exclusive subsets by coloring the interference graph; in each time slot,

all the UEs of one color are chosen to transmit. In this example, 3 colors are required

and there exists a color to which only one UE belongs. Hence, the average number

of active UEs in each time slot is less than 2. Note that the optimal performance of

coloring based frequency reuse policies is the same as the optimal performance that

can be attained by any coloring based TDMA of any arbitrary cycle length. This is

due to the fact that FDM and TDM are equivalent provided the frequency/time can

be divided arbitrarily.

• Cyclic MIS-based TDMA policies [RP89,CS89,BBS06,ET90,JPP05,AAS11], in which

different MISs of UEs are scheduled in a cyclic manner. In this example, there are 5

MISs, each of which consists of 2 UEs. Hence, the average number of active UEs in

each time slot is 2. This is the major reason why MIS-based TDMA policies are more

efficient than coloring-based TDMA policies. To completely specify the policy we must

also specify a cycle length and order of transmissions; note that the efficiency of the

policy will depend on the cycle length due to delay sensitivity.

We illustrate the performance of the above policies vs the proposed policy in Table 3.1.

The performance criterion is max-min fairness, i.e. we aim to maximize the worst UE’s

throughput. Constant policies are inefficient, because simultaneous transmission results in

strong mutual interference. Coloring-based TDMA policies eliminate the interference but

they do so inefficiently, because there are slots in which only one UE is transmitting; this is

wasteful (the average number of UEs transmitting in each time slot is less than 2). MIS-based

cyclic TDMA policies improve on the coloring-based schemes because 2 UEs transmit in every

slot but they are still inefficient due to delay-sensitivity. The inefficiency of cyclic MIS-based

policies for delay-sensitive applications comes from the fact that not all the transmission

opportunities (TXOPs) (i.e. positions) in a cycle are created equal: the earlier TXOPs

guarantee higher chances to deliver packets prior to their deadlines. The UEs that transmit

in later TXOPs of a cycle suffer from delay.

Remarkably, the proposed policy is not only much more efficient than existing policies, it
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Table 3.1: Comparisons against spatial reuse TDMA based policies.

Policies Max-min throughput (bits/s/Hz) Performance Gain %

Optimal constant power 1.32 21.2%

Optimal Coloring TDMA (arbitrary L) 1.33 (Upper Bound) 20.3 %

Optimal MIS TDMA (L=5) 1.36 17.6 %

Optimal MIS TDMA (L=7) 1.49 7.8 %

Optimal Proposed 1.60 –

is much easier to compute. To compare with constant policies, note simply that finding the

optimal constant policy is NP-hard [TFL11] in general, because the optimization problem

is non-convex due to the mutual interference. To compare with different classes of TDMA

policies, note that for (coloring-based and MIS-based) cyclic TDMA policies, the complexity

of finding the optimal cyclic policy of a given length grows exponentially with the cycle

length (and exponentially with the number of MISs when the cycle length is large enough

for reasonable performance). To get a hint of why this is so, note that in a cyclic policy,

the UE’s performance is determined not only by the number of TXOPs in a cycle but also

by the positions of the TXOPs since UEs are discounting their future utilities (due to delay

sensitivity). Thus it is not only the length of the cycle that is important but also the

ordering of transmissions within each cycle. For instance, for the 5-UE case above, achieving

performance within 10% of the optimal proposed policy requires that the cycle length L be

at least 7, and so requires searching among the thousands (16800) 4 of different nontrivial

schedules (the schedules in which each UE transmits at least once in each cycle) of cycle

length 7. Even this small problem is computationally intensive. For a moderate number of

10 femtocells, assuming a completely connected interference graph which has 10 MISs, and

a cycle length of 20, we need to search more than ten billion (i.e. 1010) non-trivial schedules

– a completely intractable problem.

4We compute the number of nontrivial schedules by exhaustively searching among all the possible policies.
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Figure 3.3: Steps in the design framework.

3.5 Design Framework

In this section, we develop a general design framework for solving the Design Problem.

We will provide sufficient conditions under which our proposed framework is optimal, and

demonstrate a wide variety of networks that fulfill the sufficient conditions.

3.5.1 Description of the Proposed Design Framework

The proposed methodology for solving the design problem consists of 5 steps which are

illustrated in Fig. 3.3. We describe them in detail as follows.

3.5.1.1 Step 1. The Designer Gathers Network Information

The designer is informed by each BS i of the minimum throughput requirement Rmin
i of

its UE, the channel gain from each UE j to its receiver gji its UE’s maximum transmit

power level pmaxi , the noise power level at its receiver σ2
i , and its location as in [LXH10],

[UAB11], [LLJ10]. Such information is sent to the designer via the backhaul link. In some

circumstances, the information about the location of FBSs is available to the femtocell
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gateways [LXH10], [LLJ10], who can send this information to the designer.

3.5.1.2 Step 2. The Designer Constructs the Interference Graph and Computes

the MISs

The designer constructs the interference graph using the information of cell locations ob-

tained in Step 1. Specifically, it uses a distance based threshold rule as in [HS95] [Hal80] to

construct the graph: there is an edge between two cells if the distance between BSs in these

two cells is smaller than a threshold D.5 Given the threshold D, we denote the resulting

graph by GD, and the set of its MISs by IGD , which can be calculated as in [JYP88]. We

assume that the distance threshold D is fixed for now, and will discuss how to select the

threshold in the next subsection.

3.5.1.3 Step 3. The Designer Characterizes Achievable the Throughput

Based on the MISs computed in Step 2, the designer identifies the set VMIS(GD)(δ) of through-

put vectors achievable by MIS-based policies. Note that VMIS(GD)(δ) depends on the dis-

count factor. Recall that RMIS(GD) = {r(p) : p ∈ PMIS(GD)} is the set of instantaneous

throughput profiles achievable by MIS-based policies in ΠMIS(GD). The theorem below proves

that VMIS(GD)(δ) is a convex hull of RMIS(GD), i.e. VMIS(GD) when the discount factor

δ ≥ 1− 1
s(GD)

, where s(GD) is the number of MISs in the interference graph GD.

Theorem 2 Given the interference graph GD, for any δ ≥ δ̄ = 1− 1
s(GD)

, the set of through-

put profiles achieved by MIS-based policies is VMIS(GD)(δ) = VMIS(GD).

We provide the proof sketches here, while all the detailed proofs can be found in the

Appendix Section at the end of this chapter.

Proof Sketch 1 The main step involved in proving the above is to derive the conditions on

the discount factor such that each throughput vector in VMIS(GD) can be decomposed into a

5Note that the interference actually depends on the distance between a BS and a UE in another cell,
instead of the distance between two BSs. When the distance from a BS to its UE is small, then the distance
between BSs is an accurate representation of interference.
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current throughput vector which belongs to RMIS(GD) and a continuation throughput which

belongs to VMIS(GD). To derive the conditions, we show that for any vector in VMIS(GD) there

exists at least one throughput vector in RMIS(GD) to decompose the vector. Since the continu-

ation throughput also belongs to VMIS(GD), it can be decomposed as well in a similar fashion.

Hence, all the vectors in VMIS(GD) are achievable. �

Theorem 2 is important because it analytically characterizes the set of throughput profiles

achievable by MIS-based policies, and gives us the requirements that need to be fulfilled by

the discount factor.

3.5.1.4 Step 4. The Designer Determines the Optimal Target Weights

Among all the achievable throughput profiles identified in Step 3, the designer selects the

target throughput profile in order to optimize the network performance. Note that each UE

i’s average throughput Ri can be expressed as a convex combination of the instantaneous

throughput vectors achieved by MIS-based policies (i.e. the throughput vectors inRMIS(GD)).

Thus determining the optimal target vector and its corresponding coefficients in the convex

combination can be formulated as the following optimization problem:

max
y,α

W (y1(GD), ..., yN+M(GD))

s.t. yi(GD) ≥ Rmin
i , ∀i ∈ {1, ..., N +M}

yi(GD) =

s(GD)∑
j=1

αjri(p
I
GD
j ), ∀i ∈ {1, ...., N +M} (3.2)

s(GD)∑
j=1

αj = 1, αj ≥ 0, ∀j ∈ {1, .., s(GD)}

The above optimization problem is a convex optimization problem and is easy to solve if

W is concave (e.g. weighted sum throughput or max-min fairness). The resulting optimal

target vector and its corresponding coefficient is given as y∗(GD) = [y∗1(GD), ...., y∗N+M(GD)]

and α∗(GD) = [α∗1(GD), ...., α∗s(GD)(GD)] respectively. Note that the optimal value depends

on the interference graph GD which we assume to be fixed in this section. The optimal
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coefficient for the ith MIS IGDi , i.e., α∗i (GD) can be interpreted as the fraction of time for

which IGDi transmits.

3.5.1.5 Step 5. Each UE Implements the Policy Distributedly to Achieve the

Target

The designer informs each UE i of the optimal coefficients, i.e. α∗(GD) and the indices of

MISs that UE i belongs to. The designer can send the above information to each BS i, who

will forward the information to its UE. Each UE i executes the policy in Table 3.2. The

policy in Table 3.2 leads to a non-stationary scheduling of the MISs. Note that each UE i

computes its own policy online without information exchange. Hence, the computed policy

is implemented in a decentralized manner by the UEs. Next we state the condition under

which the policy indeed converges to the target vector y∗(GD).

Theorem 3 For any δ ≥ δ̄ = 1− 1
s(GD)

, the policy computed in Table 3.2 achieves the target

throughput profile y∗(GD).

Proof Sketch 2 We show that when δ ≥ δ̄ = 1 − 1
s(GD)

, the policy developed in Table

3.2 ensures that the decomposition property given in Proof Sketch of Theorem 2 is satisfied

in each time slot. This is used to show that the distance from the target, y∗(GD) strictly

decreases in each time slot. �

We briefly discuss the intuition behind our proposed policy. We determine which MIS to

transmit based on a metric that can be interpreted as the “fraction of time slots allocated to

an MIS in the future”: the MIS that has the maximum fraction of time slots in the future,

i.e. the highest metric, will transmit at the current time slot. The metric is updated in

each time slot as follows: the fraction of time slots for the MIS who has just transmitted

will decrease, and those of the other MISs will increase. Hence, the resulting schedule is

non-stationary and does not necessarily follow a cyclic pattern.
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3.5.2 Constructing Optimal Interference Graphs

In Step 2 of the design framework, we construct the interference graph by comparing the

distances between two BSs with a threshold D. Here we show how to choose the optimal

threshold D∗ and hence the optimal interference graph GD∗ , based on which the proposed

policy achieves the highest network performance achievable by any MIS based policy in

ΠMIS(GD). Formally, the designer chooses the optimal threshold D∗ that results in the

optimal interference graph GD∗ = arg maxGD∈GW (y∗(GD)), where G is the set of all possible

interference graphs constructed based on the distance rule.The designer solves the above

optimization problem by performing Steps 2-4 for each of the |G| = J interference graphs

as shown in Fig 3.3 and chooses the optimal one. Note that the number |G| of all such

interference graphs is finite and upper bounded by (M+N)·(M+N−1)
2

+ 1, because the number

of different distances between BSs is finite and upper bounded by (M+N)·(M+N−1)
2

+ 1. Note

that the Steps 3-5 of our design framework can be used for any given interference graph,

which is not necessarily constructed based on the distance based threshold rule. We assume

a distance based threshold rule as a concrete example, in order to describe how to choose

the optimal interference graph.

3.5.3 Optimality of the Proposed Design Framework

Our proposed design framework first constructs the interference graph based on the distances

between BSs, and then schedules the MISs of the constructed interference graph. Then our

proposed policy let the UEs in the scheduled MIS to transmit at their maximum power levels.

To some extent, the interference graph is a binary quantization of the actual interference (i.e.

“no interference” among non-neighbors and “strong interference” among neighbors). Hence,

the performance of the proposed policy depends crucially on how close the interference graph

is to the actual interference pattern. If we choose a smaller threshold D, the interference

graph will have fewer edges, the non-neighboring UEs will have higher cross channel gains.

Hence, the UEs in a MIS may experience high accumulative interference from the non-

neighbors. If we choose a higher threshold D, the interference graph is more conservative
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Table 3.2: The algorithm run by each UE i.

Require: Target weights α∗(GD) = [α∗1(GD), ...., α∗
s(GD)

(GD)]

Initialization: Sets t = 0, αj = α∗j (GD) for all j ∈ {1, ..., s(GD)}.

repeat

Finds the MIS with the maximum weight: r∗ = arg maxj∈{1,..,s(GD)} αj

if i ∈ IGD
r∗ then

Transmits at power level pti = pmaxi

end if

Updates αj for all j ∈ {1, ..., s(GD)} as follows

αr∗ =
αr∗−(1−δ)

δ
,

αj =
αj

δ
∀j 6= r∗

t← t+ 1

until ∅

and will have more edges. Hence, some UEs outside a MIS may cause low interference and

should be scheduled together with the UEs in the MIS. Our proposed policy will achieve

performance close to optimal, if the interference graph is well constructed such that: 1)

neighbors have strong interference, and 2) non-neighbors have weak interference. Next, we

analytically quantify the above intuition and provide rigorous conditions for the optimality

of the proposed design framework.

Let W ∗ denote the optimal network performance, namely the optimal value of the design

problem (1) with the performance criterion being the weighted sum throughput. We give

conditions under which the proposed policy can achieve within ε of the optimal performance

W ∗. We first quantify strong local interference among neighbors as follows. Define r′i(p) =

log2(1 + giipi∑
j∈Ni(GD) gjipj+σ

2
i
), where Ni(GD) is the set of neighbors of i in GD and let Rconst

a =

{r′i(p), p ∈ P} , RMIS(GD)
a = {r′i(p), p ∈ PMIS(GD)} and VMIS(GD)

a = conv{RMIS(GD)
a }.

Note that r′i(p) is not the actual throughput ri(p), because we do not count the interference

from non-neighbors in r′i(p).
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Definition 1 (Strong Local Interference): The interference graph GD exhibits

Strong Local Interference (SLI) if VMIS(GD)
a dominatesRconst

a , in the sense that every through-

put profile inRconst
a is weakly Pareto dominated [MS06b] by a throughput profile in VMIS(GD)

a .

Definition 1 states that for an interference graph with SLI, it is more efficient to use MIS-

based policies than constant power control policies. Next, we quantify the weak interference

among non-neighbors.

Definition 2 (Weak Non-neighboring Interference): The interference graphGD has

ε −Weak Non-neighboring Interference (ε-WNI) if each UE i’s maximum interference from

its non-neighbors is below some threshold, namely Intmaxi (GD) =
∑

j 6∈Ni(GD),j 6=i gjip
max
j ≤

(2ε − 1)σ2
i , ∀i ∈ {1, ..., N +M}.

The two definitions above combined in a general sense ensure that there is negative

externalities locally and no negative externalities from the rest. Hence, these two definitions

combined are referred to as strong negative local externalities. Now we state Theorem 4

which uses the above two definitions to ensure optimality.

Theorem 4 If the constructed interference graph GD∗ exhibits SLI and ε-WNI, then the

proposed policy computed through Steps 1-5 of Subsection 3.5.1 achieves within ε of the

optimal network performance W ∗.

Proof Sketch 3 The set of throughput vectors achievable by any policy is conv{Rconst}. De-

note the optimal throughput vector by v∗ ∈ conv{Rconst}, namely W (v∗) = W ∗. There must

exist a vector ṽ ∈ conv{Rconst
a } such that ṽ ≥ v∗, because we do not count the interference

from non-neighbors when we calculate r′i(p) ∈ Rconst
a . SLI indicates that there exists a vector

v′ ∈ VMIS(GD∗ )
a such that v′ ≥ ṽ ≥ v∗. This condition implies that if hypothetically there

was zero interference from non-neighbors, then MIS based policies will achieve the optimal

throughput vector. However, since there is interference from non-neighbors, we use ε-WNI to

bound the loss in throughput caused by the interference from non-neighbors. Using ε-WNI we

can find a throughput profile v ∈ VMIS(GD∗ ) which is within ε from v′ ∈ VMIS(GD∗ )
a . Hence,

we have v
′ ≥ v≥ v

′ − ε and vi ≥ Rmin
i − ε. This shows that we can achieve a throughput

vector that is ε close to the optimal one, i.e. v≥ v∗− ε . �

42



Time Division 

among  MIS

FUE1's 

throughput 

(bits/s/Hz)

FUE3's 

throughput 

(bits/s/Hz)

FUE2's throughput 

(bits/s/Hz)

FUE1, maxFUE3, max

(FUE3,max,0,FU1,max)

FUE2, max

Constant Power 

Policies

FUE1

FUE2

FUE3

FBS1

FBS2

FBS3

1m

1m

Figure 3.4: An example to illustrate the optimality of proposed framework.

Example: Consider 3 UEs and their corresponding FBS located on 3 different floors as shown

in Fig. 3.4. Each UE can transmit at a maximum power of 100 mW. The channel model for

determining the gain from a UE i to BS j, which includes the attenuation from the floor, is

set based on [SR92]. Specifically, we have Gii = 0.5, Gji = 0.25 for |j − i| = 1, Gji = 0.0032

for |j − i| = 2, and the noise power of 2 mW. We aim to maximize the average throughput

while fulfilling a minimum throughput requirement of 1.2 bits/s/Hz for each FUE. Under

three different thresholds D, we have the following three interference graphs (there are only

three interference graphs because there are only three different values of distance between

the BSs): 1) the triangle graph {D ≥ 4m}, 2) the chain graph {2m ≤ D < 4m} and 3) the

edge-free graph {0m ≤ D < 2m}. For each of these graphs, we apply the design framework

described in Subsection 3.5.1 to obtain the corresponding policy, and achieve the following

average throughput: 1) 1.56 bits/s/Hz 2) 2.7 bits/s/Hz and 3) 1.5 bits/s/Hz. Hence, the

chain graph is the optimal choice among the three graphs. Also the chain graph exhibits

SLI as illustrated in Fig. 3.4. and also exhibits ε−WNI for ε = 0.2. Hence, the proposed

policy calculated based on the chain graph yields an average throughput within ε = 0.2 of

the optimal solution W ∗ to the design problem in (1) (i.e. W ∗ ≤ 2.9 bits/s/Hz).

3.5.4 Complexity for Computing the Policy

We only compare the computational complexity of the proposed policies against cyclic MIS-

based TDMA policies, since determining the optimal constant power based policy is a non-

convex problem and has been shown to be NP-hard [TFL11]. We compare the two for a given
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interference graph GD. Both the optimal cyclic MIS TDMA and the proposed policy need to

compute the set of MISs. Determining all the MISs is in general computationally expensive

[JYP88]. However, the computational complexity is acceptable if the network is small, or if

the number of MIS, s(GD) = O((N + M)c), c > 1 is bounded by a polynomial function in

the number of vertices in GD. We will develop an approximate algorithm to compute only

a subset of MISs within polynomial time and with performance guarantees in Section 3.6.

In our framework, the remaining amount of computation (other than computing MISs) is

dominated by the amount of computation performed in Step 4, because in Step 5, the policy is

computed online with a small amount O(s(GD)) of computations per time slot. In Step 4, we

solve the optimization problem in (5) with the objective function W and linear constraints.

When W is linear (e.g. weighted sum throughput) or is the minimum throughput of any UE

(in which case the problem can be transformed into a linear programming), the worst-case

computational complexity for solving (5) is O((s(GD)+N+M)3.5B2) [Kar84] where B is the

number of bits to encode a variable. In contrast, the complexity of computing the optimal

cyclic MIS-based TDMA policy of cycle length L scales by [s(GD)]L. The complexity quickly

becomes intractable when cycle lengths are moderately higher than N +M , which is usually

needed for acceptable performance. In summary, the complexity of computing our policies

is much lower than that of computing cyclic MIS-based TDMA policies.

3.5.5 Impact of the Density of Femtocells and Macrocells

The density of the network is defined as the average number of neighbors of a UE in the

interference graph. To obtain sharp analytical results, we restrict our attention to a class of

interference graphs with N+M vertices and H cliques of the same size. Note that a clique is

a subset of vertices, where any two vertices are connected. Assuming that no two cliques are

connected, we can compute the density as N+M
H
− 1. When the total number N +M of UEs

remains the same and the density increases, the number H of cliques will decrease. Since

the vertices in a MIS can only come from different cliques, the number of MISs decreases

as H decreases. As a result, the complexity of the policy will decrease. When the density

increases, the multi-user interference increases, leading to a decrease in the throughput and
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in the network performance.

3.6 Efficient Interference Management for Large-Scale Networks

3.6.1 Efficient Computation of a Subset of MISs

In our design framework proposed in Section 3.5, we require the designer to compute all

the MISs in Step 2. However, computing all the MISs is computationally prohibitive for

large networks. We propose an approximate algorithm to compute a subset of MISs for a

given interference graph GD in polynomial time and provide performance guarantees for our

algorithm. Note that the graph GD belongs to the class of unit-disk graphs [MBH95].

The subset of MISs are computed as follows.

i). Approximate Vertex Coloring: The designer first colors the vertices 6 of interference

graph GD using the approximate minimum vertex coloring scheme in [MBH95]. Let C1 =

{1, ..., C(GD)} be the indices of the colors. It is proven in [MBH95] that the number of colors

used is bounded by C∗(GD) ≤ C(GD) ≤ 3C∗(GD) where C∗(GD) is the minimum number

of colors that can be used to color the vertices of GD.

ii). Generating MISs in a Greedy Manner: The set of vertices with color i corresponds

to an independent set I
′GD
i . For each independent set I

′GD
i , the designer adds vertices in a

greedy fashion until the set is maximally independent. The procedure is described in Table

3.3. Let the output MIS obtained from Table 3.3 be IGDk(i), where k(i) is the index of the

MIS in the original set of MISs IGD . Hence, the set of ISs which are input to this step are

{I
′GD
1 , ...I

′GD
C(GD)}. and the set of MISs that are output are {IGDk(1), ...I

GD
k(C(GD))}.

iii). Generating the Approximate Maximum Weighted MIS : Define a weight correspond-

ing to each UE/vertex i as w̄i = rmaxi , where rmaxi is the maximum throughput achievable by

UE i when all the other UEs do not transmit. Given these weights, the designer ideally will

like to find the maximum weighted MIS, namely the MIS with the maximum sum weight of

6In minimum vertex coloring the objective is to use minimum number of colors and each vertex has to
be assigned at least one color and no two neighbors are assigned the same color.
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its vertices. However, finding the maximum weighted MIS is NP-hard [Rob86]. Hence, the

designer will find the η-approximate maximum weighted MIS, denoted IGDk(C(GD)+1), using the

algorithm in [NHK05].

The set of MISs computed from the above steps is then IGDapprox = {IGDk(1), ...I
GD
k(C(GD)+1)}.

Note that {IGDk(1), ...I
GD
k(C(GD))} ensure that all the UEs are included in the scheduled MISs,

and IGDk(C(GD)+1) is included for performance improvement. Given this subset of MISs, we

can define PMIS(GD)
approx = [pI

GD
k(1) , ...,p

I
GD
k(C(GD)+1) ], RMIS(GD)

approx = {r(p), p ∈ PMIS(GD)
approx } and

VMIS(GD)
approx = conv{RMIS(GD)

approx }. Let Πapprox(GD) = {π : Z+ → PMIS(GD)
approx } be the set of

policies in which only the subset of MISs are scheduled. Steps 3,4 and 5 of the design frame-

work in Section 3.5 are performed given this subset (See Fig. 3.3). The results of Theorem 2

and 3 still apply to the policies in Πapprox(GD) and the set of achievable throughput profiles

is VMIS(GD)
approx given the δ ≥ 1− 1

C(GD)+1
. The target vector in VMIS(GD)

approx and the corresponding

coefficient is computed as in Step 4 of Section 3.5 and is denoted as y∗approx(GD), α∗approx(GD)

respectively. The coefficient vector α∗approx(GD) along with the indices of the MISs that UE

i belongs to is transmitted to the BS i as in the Step 5 of Section 3.5.

The main intuition for the procedure developed above is as follows. Steps i) and ii) find

MISs that contain all the UEs, and hence ensure that the minimum throughput requirements

are satisfied. Step iii) finds the MIS that contains UEs with higher weights to optimize

performance. Given the MISs obtained in Steps i)-iii) the Steps 3-5 of the design framework

are performed.

3.6.2 Performance Guarantees for Large Networks

In this subsection, we consider the network performance criterion as the weighted sum

throughput, and give performance guarantees for the policy when we compute the subset of

MISs by Steps i)-iii) in the Subsection 3.6.1. Note that as we will show in the Section 3.7,

the subset of MISs perform well in large networks for other network performance metrics as

well. In particular the performance guarantee implies that the performance scales with the

optimum W (y∗(GD)) (the optimal network performance achieved by the policy proposed in
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Table 3.3: Algorithm run by the designer.

Require: V = 1, .., N +M set of vertices, w̄ vector of weights of vertices,

Independent set I
′GD
i and Adj(I

′GD
i ) where Adj(X) is the set of neighbors of X

Initialization: I
GD
k(i)

= I
′GD
i , N ′i = V ∩ (I

′GD
i ∪Adj(I

′GD
i ))c, here (X)c

is the complement of X

While( N ′i 6= φ)

N ′i = sort(N ′i ) , sort the vertices in N ′i in the decreasing order of

the weights w̄j

v
′

= N ′i,1 , here N ′i,1 is the first vertex in N ′i

I
GD
k(i)

= I
GD
k(i)
∪ v′

N ′i = N ′i ∩ ({v′} ∪Adj({v′})c

end

Section 3.5.1) as the network size N+M increases. Define DUE
ij as the distance from UE-i to

BS-j. We make the following homogeneity assumption, pmaxi = pmax, σ2
i = σ2, Rmin

i = Rmin,

maxiD
UE
ii ≤ ∆ and wi = 1

N+M
.7 Here ∆ is fixed and does not depend on the size of the

network. We fix these parameters in order to understand the performance guarantee as a

function of the network size. Let the channel gain gij = 1
(DUEij )np

, where np is the path loss

coefficient.

We choose the trade-off variables ρ, ζ, κ that satisfy

ρ+ 1 < min{
log2(1 + pmax

∆np2ζσ2 )

3Rmin
,

κ

ζ(1 + η)
log2(1 +

pmax

∆npσ2
)}

and 0 < κ < 1. Any eligible triplet ρ, ζ, κ will define a class of interference graphs that

exhibit ζ-WNI and have maximum degrees upper bounded by ρ. Note that such interference

graphs can have arbitrarily large sizes (see the example at the end of this subsection). Then

the following theorem provides performance guarantees for the policy described in Subsection

3.6.1 for this class of interference graphs.

7We can extend our result to a heterogeneous network with pmax
i ≥ pmax, σ2

i ≤ σ2, Rmin
i ≤ Rmin,

maxiD
UE
ii ≤ ∆ andwi ≥ c

N+M with c as a constant. But we do not show this general result to avoid overly

complicated notations.
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Theorem 5 For any interference graph that has a maximum degree no larger than ρ and

exhibits ζ-WNI with ρ+ 1 < min{
log2(1+ pmax

∆np2ζσ2 )

3Rmin
, κ
ζ(1+η)

log2(1 + pmax

∆npσ2 )} the policy in Subsec-

tion 3.6.1 achieves a performance W(y∗approx(GD)) with a guarantee that W(y∗approx(GD)) ≥
(1−γ)(1−κ)

(1+η)
·W(y∗(GD)), where γ = (3(ρ+ 1)) Rmin

log2(1+ pmax

∆np2ζσ2 )
.

Proof Sketch 4 The condition that the graph does not have a degree more than the given

threshold and the ζ-WNI condition ensure that the algorithm proposed in Subsection 3.6.1

yields a feasible solution satisfying each UE’s minimum throughput constraint. Also, it is

shown that the minimum coefficient/fraction of time allocated to IGDk(C(GD)+1)is ≥ (1−γ). Then

it is shown that if UEs in IGDk(C(GD)+1) were to transmit all the time then the competitive ratio

achieved is no smaller than 1−κ
(1+η)

. This combined with minimum coefficient of IGDk(C(GD)+1)

leads to the competitive ratio guarantee of no less than (1−γ)(1−κ)
(1+η)

. �

The trade-off variables ρ, ζ, κ as their name suggests provide trade-offs between how large

is the class of interference graphs for which we can provide performance guarantees, and how

good are the competitive ratio guarantees. On one hand, a higher κ allows higher ρ, and

higher ρ and ζ allow a larger class of graphs. On the other hand, as we can see from Theorem

5, higher ρ and ζ, provided that they are eligible (higher ζ decrease the maximum eligible

ρ), result in higher γ, and higher γ and κ give lower competitive ratio guarantees. Hence,

we can tune the design parameters to provide different levels of competitive ratio guarantees

for different classes of interference graphs.

Next, we give an example to illustrate Theorem 5.

Example: Consider a layout of FBSs in a K × K square grid, i.e. K2 FBSs with a

distance of 5m between the nearest FBSs, and assume that each FUE is located vertically

below its FBS at a distance of 1 m. Fix the parameters pmax = 100 mW, σ2 = 3 mW,

Rmin = 0.1bits/s/Hz, η = 0.1 , np = 4 and the threshold D = 7 m, which gives us the upper

bound ρ = 4 on the maximum degrees. We can also verify that the interference graphs under

any number K2 of FBSs exhibit ζ-WNI with ζ = 0.15. Given ρ = 4 and ζ = 0.15, we choose

the minimum κ = 0.17, which provides the highest competitive ratio guarantee of 0.53. This

performance guarantee holds for any interference graph of any size K.
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We now discuss the low complexity construction of efficient interference graph for large

networks, which is useful especially when the procedure proposed in Subsection 3.5.2 is

computationally prohibitive. In this case, the designer computes the subset of MISs as

described in Subsection 3.6.1 and compares the optimal solution obtained to decide the

best distance threshold for computing the policy. Formally stated, the designer computes

GD∗approx = arg maxG∈GW (y∗approx(G)). See Fig 3.3 for a comparison of the design framework

in Subsection 3.6.1 for large networks with that in Subsection 3.5.1 for small networks.

3.6.3 Complexity for Computing the Subset of MISs

We show that the proposed approximation method for computing the subset of MISs de-

scribed in Subsection 3.6.1 has a complexity bounded by a polynomial in the number of

vertices, i.e., O((N +M)c), c > 1. This is because Steps i) and iii) use the algorithms devel-

oped in [MBH95] and [NHK05] for which the complexity has been proven to be polynomial

and Step ii) uses a greedy strategy in which there can be a maximum of N + M iterations

since at least one vertex is always removed from N ′i in each iteration. The worst possible

number of computations in an iteration is bounded by (N+M)2. Hence, the upper bound of

the complexity of Step ii) is O((N +M)3). Hence, the subsets of the MISs can be computed

within polynomial time, and the policy computed using this subset can guarantee a constant

competitive ratio as shown in Subsection 3.6.2.

3.6.4 Extensions

3.6.4.1 Construction of Interference Graphs Based on Other Rules

Our design frameworks in Subsection 3.5 and Subsection 3.6 do not rely on a specific method

for constructing the interference graph. In Step 2 of the design frameworks (i.e., the step in

which the interference graph is constructed), we can replace our distance-based construction

of the interference graph with construction based on other criteria, such as SINR, interference

levels [UAB11], etc. Then we can use the resulting interference graph as the input to Step

3. For construction rules based on other criteria, we can also use the procedure described in
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Subsection 3.5.2 to optimize the construction rule (e.g., to choose the optimal threshold of

SINR or the interference level, above which an edge is drawn between two nodes).

Note that in the design framework in Section 3.6, we find a subset of MISs, instead of all

the MISs, because the network is large. To find this subset, we use the coloring algorithm

in [NHK05], which is known to have polynomial-time complexity for unit-disk graphs. This

is where we used the fact that the interference graph is constructed based on distances (such

that the resulting graph is a unit-disk graph). However, we can use other polynomial-time

coloring algorithms if the interference graph is generated based on other criteria. We can

use a standard greedy coloring algorithm as in [Erc13]. In the next step we extend the ISs

obtained by coloring to MISs. We can do this based on Step ii) in Subsection 3.6.1. The

target weights and the corresponding schedule for these MISs can be generated based on

Subsection 3.6.1. Results about the performance guarantees in terms of competitive ratio

(See Theorem 5) can also be extended to this case.

3.6.4.2 Incorporating Uncertainty in Channel Gains

Our design frameworks in Section 3.5 and Subsection 3.6 can be extended to the deploy-

ment scenarios in which the channel gains are not static. For fast fading, we can replace

the instantaneous throughput with the expected instantaneous throughput in our design

frameworks. For slow fading, we can track the fading by regularly re-computing the policy.

Re-computing the entire policy every time may be costly. In Section 3.7.3 we show that the

designer does not need to re-compute the entire policy to get considerable gains compared to

the state-of-the-art. Specifically, the designer fixes the interference graph that is selected in

the beginning, and only re-computes the target weights rather than re-compute the optimal

interference graph and the corresponding target weights. We also show that the performance

loss incurred with respect to the latter approach, which is based on an entire re-computation

is limited (8%).
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1 2 3 4 5

Figure 3.5: Different interference graphs for the 3 x 3 BS grid.

3.6.4.3 Incorporating Beamforming

We focus on the case where each UE has one antenna. When UEs have multiple antennas,

we can easily incorporate beamforming in our framework. Beamforming mitigates the in-

terference among the UEs served by the same BS. Hence, we can remove the edges between

UEs in the same cell from the interference graph. Then we can use the new interference

graph as the input to Step 3 of our design framework.

3.7 Illustrative Results

In this section, we show via simulations that our proposed policy significantly outperforms

existing interference management policies under different performance criteria. These perfor-

mance gains are obtained under varying interference levels for both small and large networks.

We also evaluate the proposed policy when the channel conditions are time-varying due to

fading. In this case, the designer ideally needs to recompute the optimal interference graph

each time the channels change at the cost of a higher complexity. We show the robustness of

the proposed policy when we choose a fixed interference graph regardless of the time-varying

fading.

In each setting, we compare with the state-of-the-art policies described in Section 3.2,

namely the constant power control based policies and the cyclic MIS TDMA based poli-

cies. We do not compare with coloring based TDMA/Frequency reuse policies as it was

already shown in Subsection 3.4.2 that the MIS based TDMA policies will always lead to

better network performance. Throughout this section, we will set the discount factor as the

minimum one required when we use our original design framework in Section 3.5 (namely
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δ = 1− 1
s(GD)

according to Theorems 2, 3), and the minimum one required when we use the

approximate design framework for large networks in Section 3.6 (namely δ = 1− 1
C(GD)+1

). In

this way, we evaluate the performance of our proposed policies under the most delay-sensitive

applications.

3.7.1 Performance Gains Under Varying Interference Levels

Consider a 3x3 square grid of 9 BSs (see Fig. 3.5) and corresponding UEs with the minimum

distance between any two BSs given as d. Each UE i has δ = 0.89 and a maximum power
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Figure 3.8: Illustration of the setup with 3 rooms.

of 200 mW and the noise power at the base station is 1 mW. Assume that the UEs and

the BSs are in two parallel horizontal hyperplanes separated by a distance 3.16m. Each

BS is vertically above its UE with a distance of 3.16m. Then the distance from UE i to

another BS j is DUE
ij =

√
3.162 + (DBS

ij )2 , where DBS
ij is the distance between BSs i and

j. The channel gain from UE i to BS j is gij = 1
(DUEij )2 . The performance criterion is the

max-min fairness. Under different thresholds D chosen by the designer, there are 5 possible

topologies of the interference graph, as shown in the Fig. 3.5. For each grid size d, the

optimal solution to (2) is computed for each interference graph as described in Subsection

3.5.2. Fig. 3.6. shows that under different grid sizes (i.e. different interference levels), the

optimal interference graph (i.e. the optimal threshold) changes. As the interference level

increases, the corresponding optimal interference graph has more edges. Fig 3.7 compare

the performances of different policies under different grid sizes d (i.e. different interference

levels). For a fixed grid size the optimal interference graph (computed as discussed above)

is used as the input to each policy that we compare with. We can see that the proposed

policy achieves up to 67% performance gain over the second best policy. Through the above

results, we see that 1) it is important to construct different interference graphs based on

the interference level, and 2) the proposed non-stationary schedule of MISs outperform the

cyclic schedules.

3.7.2 Performance Scaling in Large Networks

We study a dense deployment scenario to evaluate the performance gain of our proposed

scheme over the state-of-the-art. We allow more than one UE to transmit to a single BS,
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and will increase the number of UEs associated with a BS. Consider the uplink of a femtocell

network in a building with 12 rooms adjacent to each other. Fig. 3.8 illustrates 3 of the 12

rooms with 5 UEs in each room. For simplicity, we consider a 2-dimensional geometry, in

which the rooms and the FUEs are located on a line. Each room has a length of 6 meters.

In each room, there are P uniformly spaced FUEs, and one FBS installed on the left wall of

the room at a height of 2m. The distance from the left wall to the first FUE, as well as the

distance between two adjacent FUEs in a room, is 6
(1+P )

m. Based on the path loss model

in [SR92], the channel gain from each FBS i to a FUE j is 1
(DUEij )2∆nij , where ∆ = 100.25 is

the coefficient representing the loss from the wall, and nij is the number of walls between

FUE i and FBS j. Each UE has a maximum transmit power level of 1000 mW and a

minimum throughput requirement of Rmin
i = 0.05 bits/s/Hz. The noise power at the base

station is 1 mW. For each P , the designer chooses the optimal threshold to construct the

optimal interference graph. Note that the UEs in the same room accessing the same BSs

are all connected to each other in the interference graph, since the distances between their

receiving BSs is 0.

We vary the number P of FUEs in each room from 5 to 15. We fix the δ = 0.97 , i.e.

the least value it can take based on the largest number of UEs per room, i.e. P = 15. For

each P , the designer constructs the optimal graph G as described in Subsection 3.6.1 using

the low complexity method as the number of UEs is large. Under all the considered values

of P , the optimal interference graph connects all the UEs in adjacent rooms with edges

and does not connect the UEs in non-adjacent rooms. We use the same optimal graph to

compute the optimal cyclic MIS TDMA of cycle length L. The cycle length is varied from

12 to 58 depending upon the number of UEs (we try to choose as large cycle lengths as

possible to maximize performance within a feasible computational complexity). The number

of non-trivial cyclic policies under different P may vary from 108 to even more than 1050

which renders exhaustive search to be intractable. Hence, for each P we do a randomized

search in 4 million policies to search for the optimal one. Fig. 3.9 compares the performance

of different policies in terms of both the max-min fairness and the sum throughput. The

constant power policy cannot satisfy the feasibility conditions for any number of UEs in
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Figure 3.10: Illustrating the robustness of interference graph selection based on path loss.

each room. The performance gain over cyclic MIS TDMA policies increases as the network

becomes larger. When there are 15 UEs in each room, we can improve the worst UE’s

throughput by 131% compared to cyclic MIS TDMA policies.

3.7.3 Performance under Dynamic Channel Conditions

We consider a 9-cell network with a grid size d = 4.74 m, where each BS is vertically above

its UE at a distance of 3.16m as in Subsection 3.7.1. Each UE has a maximum power level of

1000 mW, δ = 0.89 and the noise power at the base station is 1 mW. The channel gain is the

product of path loss as in Subsection 3.7.1 and fading component, fij ∼ Rayleigh(β). Here,

we assume that the fading component changes every 50 time slots independently and the
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new channel conditions are reported to the designer by each FBS as in Step-1 in Subsection

3.5.1. The designer has the choice of recomputing the optimal interference graph and thereby

the optimal target every 50 time slots at the cost of a higher complexity, or choosing a fixed

optimal interference graph based on the channel gains computed from the path loss model

(which will be graph 3 in Fig. 3.5) and selecting the optimal target every 50 time slots based

on it. In Fig. 3.10 we compare the loss due to choosing a fixed interference graph with

choosing the optimal interference graph every 50 time slots. We average the performance

for a duration over a total of 10000 time slots for a fixed β. In Fig. 3.10, we see that for

a low β, i.e. β = 0.1 which implies a lower variance in fading the loss is only 1% and even

when β is large, i.e. β = 1 then as well the loss is 8%. We also compare with Cyclic MIS

TDMA, cycle length L = 9 and optimal constant power policy, the performance gain with

the proposed policy using a fixed interference graph is consistently 10 % for varying fading

conditions, while choosing the optimal interference graph leads to a maximum gain of 20%.

3.8 Discussion on the Generality of the Framework

The framework described in the previous sections focused on the application of interference

management in wireless networks. In the framework that we described, each UE’s utility

for one time slot t was defined as the Shannon capacity ri(p
t). In this section, we make no

restrictions on the functional form of ri(p
t). For a general framework, we consider a problem

with N users and each user’s utility for taking an action pti ∈ Pi in time slot t is defined as

ri(p
t) and the long-term utility is defined as Ri(π), where π is the joint resource sharing

policy. We define a general design problem as follows.

General Design Problem (GDP)

maxπ W (R1(π), ..., RN(π))

subject to Ri(π) ≥ Rmin
i , ∀i ∈ {1, ..., N}

There are different problems where resource sharing is useful such as task scheduling when

different tasks compete for limited computational resources. Next, we describe the design
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framework for the above GDP. We comment on how different steps of the design framework

can be adapted to this setting. In Step 1 and 2 the designer constructs the interference graph

and computes the MISs. In this case as well the designer can construct the interference graph

based on the externalities between the different users as follows. The interfering neighbors

of a user i depends on the utility function for each user i. In the design framework described

earlier, the identification was carried out by a centralized entity using certain protocols. In

a general case, we can analyze the utility functions ri(p) of all the pairs of users. If the

worst case utility of a user when the other user is using the resource to the maximum is

below a certain threshold, then we assume that there is an edge between the two users in

the interference graph. In Theorem 2, we characterized the set of achievable rates. The

same theorem also directly carries over to this case and we can characterize the set of

achievable payoffs in the same way (because the proof of the previous theorem did not rely

on the functional form of ri(p). We follow the exact same steps as in Step 4 and Step 5

for the general problem as well. In Theorem 4, the optimality of the proposed scheme was

shown. We adapt the definition of weak non-neighboring interference to the general case

of as follows. If the the maximum difference between the utility achieved any user when

all the non-neighbors use the resource to the maximum extent possible and when all the

non-neighbors do not use the resource at all is bounded by a small value ε, then the system

exhibits weak non-neighboring interference. We can invoke the assumption of SLI directly

and do not need to change it. As long as this assumption and SLI holds, the Theorem 4 also

holds in this more general case.

3.9 Conclusion

In this chapter, we proposed a novel and systematic method for centralized resource shar-

ing. We mainly focused on the problem of interference management but we showed that

the framework’s results are general and extend to other scenarios. The proposed framework

relies on constructing optimal interference graphs and optimally scheduling the MIS of the

constructed graph to maximize the network performance given the minimum throughput
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requirements. Importantly, the proposed policy is non-stationary and can address the re-

quirements of delay sensitive users. We prove the optimality of the proposed policies under

various deployment scenarios. The proposed policy can be implemented in a decentral-

ized manner with low overhead of information exchange between BSs and UEs. For large

networks, we develop a low-complexity design framework that is provably efficient. Our

proposed policies achieve significant (up to 130 %) performance improvement over existing

policies, especially for dense and large-scale deployments of femtocells.

3.10 Appendix

We would begin by defining a self-generating set similar to what is defined in repeated game

theory [MS06a]. However, our definition is less restrictive since it does not involve incentive

compatibility as required in strategic user setting in repeated games.

Definition 1. Decomposability : A throughput vector v ∈ RN+M is decomposable

on a set W with respect to a discount factor δ, if there exists a power profile p ∈ PMIS(GD)

and a mapping γ : PMIS(GD) →W such that ∀i ∈ {1, ...N +M}

vi = (1− δ)ri(p) + δγi(p) (3.3)

Define D(W , δ) = {v : v is decomposable onW}.

Definition 2. Self-Generation : W is self-generating with respect to discount factor

δ, if each throughput vector v ∈ W is decomposable on W , thus W ⊆ D(W , δ)

3.10.1 Appendix A

Proof of Theorem 2. VMIS(GD) = conv{RMIS(GD)}, where RMIS(GD) = {r(pI
GD
j ),∀j ∈

{1, ..., s(GD)}} and conv{X} is the convex hull of the set X. We will show that VMIS(GD) is

self-generating for δ ≥ δ̄. If we can show that the set is self-generating then we can contruct

an MIS-based policy which achieves any given target vector in that set. This is explained as

follows. Let us assume that VMIS(GD) is self-generating with respect to certain δ, then given

a vector v ∈ VMIS(GD) it can be decomposed as, v = (1− δ)r(pI
GD
j ) + δγ(pI

GD
j ). The vector
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γ(pI
GD
j ) obtained on decomposition is treated as the target vector for the transmissions

starting the next period. We know that γ(pI
GD
j ) ∈ VMIS(GD) and VMIS(GD) is assumed to

be self-generating, which means γ(pI
GD
j ) can also be decomposed in the same manner by

a certain MIS based power profile pI
GD
j ∈ RMIS(GD). This step can be recursively followed

for all the future periods to generate a policy and hence, the target v is achieved. Next, we

show the conditions under which the set VMIS(GD) is indeed self-generating.

Let v ∈ VMIS(GD) and we can express

v =

s(GD)∑
k=1

αkr(pI
GD
k ), αk ≥ 0, ∀k ∈ {1, ...., s(GD)}

and
∑s(GD)

k=1 αk = 1. If VMIS(GD) is self-generating with respect to certain discount factor δ

then ∃ pI
GD
j and γ(pIj) ∈ VMIS(GD) about which v can be decomposed as follows

v = (1− δ)r(pI
GD
j ) + δγ(pI

GD
j ) (3.4)

Next, we come up with sufficient conditions for γ(pI
GD
j ) ∈ VMIS(GD)

γ(pI
GD
j ) =

v− (1− δ)r(pI
GD
j )

δ

=
s∑

k=1,k 6=j

αk
δ

r(pI
GD
k ) +

αj − (1− δ)
δ

r(pI
GD
j )

Observe that
∑s

k=1
αk
δ

+
αj−(1−δ)

δ
= 1. If 0 ≤ αk

δ
≤ 1,∀k ∈ {1, ..., s(GD)}, k 6= j and

0 ≤ αj−(1−δ)
δ

≤ 1 then γ(pI
GD
j ) ∈ VMIS(GD). This can be combined into one condition on δ

given as

δ ≥ {max
k 6=j
{αk}, 1− αj}

Note that decomposition condition requires the existence of at least one profile pI
GD
j . This

means we can choose the least possible bound on δ, which is sufficient to ensure that there

will exist at least one profile pI
GD
j for decomposition.

δ ≥ min
j∈{1,..s(GD)}

{max
k 6=j
{αk}, 1− αj},

= 1− α[s(GD)],
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where α[s(GD)] = maxj∈{1,...,s(GD)}{α1, ..., αs(GD)}. Also,
∑s(GD)

k=1 αk = 1, αk ≥ 0, ∀k ∈

{1, ..., s(GD)} yields that α[s(GD)] ≥ 1
s(GD)

. Hence, the condition δ ≥ 1− 1
s(GD)

is sufficient to

ensure decomposition of every vector in the convex hull. Thus VMIS(GD) is self-generating

for all the discount factors δ ≥ δ̄ = 1 − 1
s(GD)

. Hence, we have been able to show that for

a discount factor δ ≥ 1 − 1
s(GD)

each vector in VMIS(GD) can be achieved by an MIS based

policy, i.e. VMIS(GD) ⊆ VMIS(GD)(δ). The throughput achieved by any MIS based policy is

R(π) = (1 − δ)
∑∞

t=0 δ
tr(pt), here r(pt) ∈ RMIS(GD). Since the coefficients (1 − δ)δt ≥ 0

and the sum of the coefficients of the throughput vector sum to 1, i.e.
∑∞

t=0(1 − δ)δt = 1,

this implies R(π) ∈ VMIS(GD). Hence, VMIS(GD)(δ) ⊆ VMIS(GD). Therefore, VMIS(GD)(δ) =

VMIS(GD) for δ ≥ 1− 1
s(GD)

. Next, we give a corollary of the above Theorem 2, which states

the restriction on the discount factor and the corresponding achievable set for the policy

based on the subset of MISs in Section 3.6. �

Corollary 1 Given the interference graph GD, if the δ ≥ 1 − 1
C(GD)+1

then the throughput

vectors achieved by the policies in Π
MIS(GD)
approx is VMIS(GD)

approx .

Proof: This follows on the same lines as Theorem 2. VMIS(GD)
approx = conv{RMIS(GD)

approx },

where RMIS(GD)
approx = {r(pI

GD
j ), ∀j ∈ {k(1), ..., k(C(GD) + 1)}}. It can be shown on the same

lines that VMIS(GD)
approx is self-generating if δ ≥ 1− 1

C(GD)+1
. This is due to the fact that VMIS(GD)

approx

has C(GD) + 1 extreme points. �

3.10.2 Appendix B

Proof of Theorem 3. The policy in Table 3.2 is based on the decomposition property of

VMIS(GD) (explained in the proof of Theorem 2). Define γ(t) =
s(GD)∑
k=1

αk(t)r(pI
GD
k ), where

αk(t), ∀k ∈ {1, ..., s(GD)}, ∀ t ≥ 0 correspond to the coefficient α = (α1, ..., αN+M) at the

beginning of time slot t in the policy in Table 3.2. Also, let pI
GD
rt correspond to the power

vector used for transmission at time t for t ≥ 0. First, we show that if δ ≥ δ̄ then γ(t+ 1) ∈

VMIS(GD), ∀t ≥ 0. Expressing γ(t+ 1) in terms of coefficients of αk(t), ∀k ∈ {1, ..s(GD)} as
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in Table 3.2.

γ(t+ 1) =

s(GD)∑
k=1

αk(t+ 1)r(pI
GD
k ) =

s(GD)∑
k=1,k 6=rt

αk(t)

δ
r(pI

GD
k ) +

αrt(t)− (1− δ)
δ

r(pI
GD
rt ) (3.5)

where αrt(t) = maxk αk(t). If 0 ≤ αk(t)
δ
≤ 1,∀k ∈ {1, ..., s(GD)}, k 6= rt and 0 ≤ αrt (t)−(1−δ)

δ
≤

1 then γ(t + 1) ∈ VMIS(GD). If δ ≥ maxt≥0 1 − αrt(t) then γ(t + 1) ∈ VMIS(GD), ∀t. We

know that αrt(t) ≥ 1
s(GD)

,∀t, this is true because αrt(t) = maxk αk(t). The condition on

δ ≥ 1− 1
s(GD)

implies that γ(t+ 1) ∈ VMIS(GD), ∀t ≥ 0. Therefore, we can express

γ(t) = (1− δ)r(pI
GD
rt ) + δγ(t+ 1)

here γ(t+ 1) ∈ VMIS(GD). Hence using this recursively we get,

γ(0)− (1− δ)
t∑

τ=0

δτr(pI
GD
rτ ) = δt+1γ(t+ 1) (3.6)

Here, γ(t + 1) ∈ VMIS(GD) and γ(0) = y∗(GD) The above expression in (3.6) specifies the

difference from the target vector and the vector achieved till time t. Next, we find the time

T after which the norm of difference in (3.6) is below ε. γ(t + 1) can be bounded above

(since VMIS(GD)is closed and bounded), ||γ(t + 1)|| ≤ θbd, ∀t ≥ 0. Hence, T =
log( ε

θbd
)

log(δ)
− 1

is sufficiently high to ensure the norm of difference in 3.6 is below ε. Hence as ε is chosen

small, the policy would converge to the target payoff.

Next, we give a corollary, which states the condition on the policy based on the subset

of the MISs computed in Subsection 3.6.1. �

Corollary 2 For any δ ≥ 1− 1
C(GD)+1

the policy computed in Table 3.2 based on the subset

of MISs computed in Subsection 3.6.1 achieves the target throughput y∗approx(GD))

Proof: The policy in Table 3.2 using the target weights α∗approx(GD) is based on the de-

composition property of VMIS(GD)
approx . Here also using the decomposition property repeatedly

it can be shown that the difference between the target and the target vector achieved till

time t decreases exponentially which proves convergence.

Next, we state two lemmas which will be used to prove Theorem 4 and 5. Also, note that

any inequality between two vectors would represent a component-wise inequality.
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Lemma 1 In a bounded degree graph with N+M vertices and bound on the maximum degree

ρ there exists a maximal independent set with size N+M
ρ+1

Proof of Lemma 1. In a bounded degree graph the maximum chromatic number for

the conventional vertex coloring is ρ+ 1 [Erc13]. Let the independent sets corresponding to

each color class obtained by using the minimum coloring with at most ρ+ 1 colors be given

as {I ′1, ...., I
′
ρ+1} and let the sets of the sizes corresponding to each of these independent sets

be given as {n1, ...., nρ+1}. Let the set of maximum size be I
′

[1] and the corresponding size

be given as n[1]. We know that
∑ρ+1

i=1 ni = N + M and n[1] ≥ ni,∀i ∈ {1, ..., ρ + 1}. From

these conditions we can obtain (ρ+ 1)n[1] ≥ N +M . Hence, n[1] ≥ N+M
ρ+1

. �

Lemma 2 If the interference graph exhibits ε-WNI then the expression r
′
i(p) (as defined

in Subsection 3.5.3) is an ε approximation to the actual rate ri(p) and this holds for all

i ∈ {1, ..., N +M} and ∀ p ∈ P.

Proof of Lemma 2. To show that r
′
i(p) is an ε approximation, it is sufficient to show

that maxp∈P |ei(p)| ≤ ε, where ei(p) = r
′
i(p) − ri(p). Solving for arg maxp∈P |ei(p)|, we

get pi = pmaxi , pj = 0, ∀j ∈ Ni(GD) and pk = pmaxk , ∀k ∈ (Ni(GD) ∪ {i})c. This is

explained as follows. Since the accumulative interference from non-neighbors is not ac-

counted for in r
′
i(p) this means r

′
i(p) ≥ ri(p) =⇒ ei(p) ≥ 0, ∀p ∈ P . Note that

ei(p) = log2(
1+

giipi∑
j∈Ni(GD) gjipj+σ2

i

1+
giipi∑

j 6=i gjipj+σ2
i

) is an increasing function in pi and pk, ∀k ∈ (Ni(GD)∪{i})c

and a decreasing function of pj, ∀j ∈ Ni(GD). From this we get that ei(p) takes its maximum

value when pi = pmaxi and pk = pmaxk , ∀k ∈ (Ni(GD) ∪ {i})c and pj = 0, ∀j ∈ Ni(GD). The

corresponding maximum value is emaxi = log2(
1+

giip
max
i
σ2

1+
giip

max
i∑

∀k∈(Ni(GD)∪{i})c gkip
max
k

+σ2

). This combined

with ε-WNI, i.e. Intmaxi (GD) =
∑

k∈(Ni(GD)∪{i})c gkip
max
j ≤ (2ε − 1)σ2

i gives that emaxi ≤ ε.

The same argument holds for any i. �

3.10.3 Appendix C

Proof of Theorem 4. With constraint tolerance of ε, the optimization problem in Step 5

of the design framework is stated as follows.
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max
y,α

W (y1(GD), ...., yN+M(GD)) (3.7)

yi(GD) ≥ Rmin
i − ε, ∀i ∈ {1, ..., N +M}

yi(GD) =

s(GD)∑
k=1

αkri(p
I
GD
k ), ∀i ∈ {1, ..., N +M}

αk ≥ 0,∀k ∈ {1, ...s(GD)}
s(GD)∑
k=1

αk = 1

The optimal argument of the above problem is y∗(GD). Define

y∗(GD∗) = arg max
D≤DBSmax

W (y∗(GD))

Consider the design problem in in Subsection 3.4.1. The feasible region for average

throughput vectors for the design problem is a subset of conv{Rconst}. This is explained as

follows. The throughput vector achieved by an interference management policy can be writ-

ten as: R(π) = (1− δ)
∑∞

t=0 δ
tr(pt), here R(π) = (R1(π), ..., RN+M(π)). The coefficients of

r(pt) are positive and the sum of these coefficients is 1 and r(pt) ∈ Rconst, which implies that

R(π) ∈ conv{Rconst}. Let v∗ ∈ conv{Rconst} be the optimal solution to the design problem

in Subsection 3.4.1 with weighted sum throughput as the objective and the corresponding

optimal value of the objective is W ∗ =
∑N+M

i=1 wiv
∗
i , where wi ≥ 0 ∀i ∈ {1, ..., N + M} and∑N+M

i=1 wi = 1. Note that we have assumed that the design problem in Subsection 3.4.1 is

feasible, otherwise if it is not feasible then clearly the proposed framework will be infeasible

as well. Expressing v∗ in terms of throughput vectors in Rconst as follows, v∗ =
∑q

j=1 θjr
j,∗

where rj,∗ ∈ Rconst , θj ≥ 0, ∀j ∈ {1, ..., N + M} and
∑q

j=1 θj = 1. Here, v∗ ≥ Rmin

where Rmin = [Rmin
1 , ..., Rmin

N+M ] and the inequality between the vectors is a component-wise

inequality. Our aim is to show that there exists v ∈ VMIS(GD∗ ) which is ε close to the optimal

and satisfies the minimum throughput constraint within a tolerance of ε. Let r(pj,∗) = rj,∗

and let r
′
(pj,∗) ∈ Rconst

a be the corresponding throughput taking only the interference from

neighbors into account (given in Subsection 3.5.3). Let ṽ ∈ conv{Rconst
a } defined as fol-

lows ṽ =
∑q

j=1 θjr
′
(pj,∗). Since r

′
is computed only from the interference contribution of the
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neighbors we have r
′
(pj,∗) ≥ r(pj,∗) and from SLI we know that there exists v

′,j ∈ VMIS(GD∗ )
a

which satisfies

v
′,j ≥ r

′
(pj,∗) ≥ r(pj,∗),∀j ∈ {1, ...., q} (3.8)

Let v
′
=
∑q

j=1 θjv
′,j. Using above (3.8) we get,

v
′ ≥ ṽ ≥ v∗ (3.9)

Expressing v
′,j in terms of the throughput vectors in RMIS(GD∗ )

a we get

v
′,j =

s(GD∗ )∑
k=1

βjkr
′
(pI

GD∗
k )

and the corresponding actual throughput is given as vj =
∑s(GD∗ )

k=1 βjkr(pI
GD∗
k ). From the

condition in the Theorem we know GD∗ exhibits ε-WNI which means Intmaxi (GD∗) ≤ (2ε −

1)σ2
i ∀i ∈ {1, .., N+M}. Hence using Lemma 2, we have r

′
i(p) is an ε approximation to ri(p)

and this holds for all i ∈ {1, ..., N+M}. Using r(pI
GD∗
k ) ≥ r

′
(pI

GD∗
k )−ε, ∀k ∈ {1, .., s(GD∗)}

we get

vj ≥ v
′,j − ε. (3.10)

Hence, using the lower bound on v
′,j ≥ r(pj,∗) we get vj ≥ r(pj,∗) − ε. Also, the same

can be done in general ∀j ∈ {1, ..., q}. Using this we get

q∑
j=1

θjv
j =

s(GD∗ )∑
k=1

q∑
j=1

θjβ
j
kr(pI

GD∗
k ) ≥ v∗ − ε

Let v =
∑q

j=1 θjv
j and let v = [v1, .., vN+M ]. We can get the following relationship.

v ≥ v∗ − ε (3.11)

It can be seen that we can write v =
∑s(GD∗ )

k=1 αkr(pI
GD∗
k ) with αk =

∑q
j=1 θjβ

j
k. Since

αk ≥ 0,∀k ∈ {1, ...., s(GD∗)} and
∑s(GD∗ )

k=1 αk = 1, which means v ∈ VMIS(GD∗ ). This gives∑N+M
i=1 wivi ≥

∑N+M
i=1 wiv

∗
i − ε and v ≥ Rmin − ε. Hence, v is a feasible throughput vector
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for (3.7). Since y∗(GD∗) is the optimal solution to the above problem in (3.7), we can state

the following,
N+M∑
i=1

wiy
∗
i (GD∗) ≥

N+M∑
i=1

wivi ≥
N+M∑
i=1

wiv
∗
i − ε′ (3.12)

This proves the result. �

3.10.4 Appendix D

Proof of Theorem 5. We make the following homogeneity assumption pmaxi = pmax, Rmin
i =

Rmin,max(DUE)ii ≤ ∆, wi = 1
N+M

. These quantities are fixed to understand the effect of

scaling of network size, i.e. N + M . Let rmaxi = ri(pi = pmax,p−i = 0) The optimization in

Step 4 in Subsection 3.5.1.4 is stated with weighted sum throughput as the objective.

max
y,α

N+M∑
i=1

wiyi (3.13)

subject to yi =

s(GD)∑
j=1

αjri(p
I
GD
j ), ∀i ∈ {1, ..., N +M}

yi ≥ Rmin

s(GD)∑
j=1

αj = 1

αj ≥ 0, ∀j ∈ {1, ..., s(GD)}

We formulate another optimization problem whose solution is an upper bound to the

above.

max
y,α

N+M∑
i=1

wiyi (3.14)

subject to yi =

s(GD)∑
j=1

αjr
max
i 1

i∈IGDj
, ∀i ∈ {1, ..., N +M}

s(GD)∑
j=1

αj = 1

αj ≥ 0, ∀j ∈ {1, ..., s(GD)}

Here 1
i∈IGDj

is an indicator function which takes value 1 if i ∈ IGDj and 0 otherwise.

Note that the solving the above optimization problem in (3.14) is equivalent to finding
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the maximum weighted independent set [NHK05] with the weights assigned to each vertex i

given as w̄i = 1
N+M

rmaxi . Let y∗(GD) be the optimal solution to (3.13) and the corresponding

optimal value is
∑N+M

i=1 wiy
∗
i (GD). Let the maximum weighted independent set which is a

solution to (3.14) be denoted as IGDp∗ and hence the optimal value of the objective in (3.14) is∑N
i=1wir

max
i 1

i∈IGDp∗
. The solution to the problem in (3.14) is an upper bound to the solution

of (3.13) , this is formally stated as

N∑
i=1

wir
max
i 1

i∈IGDp∗
≥

N+M∑
i=1

wiy
∗
i (GD) (3.15)

This is explained as follows. Let the feasible sets of problem (3.13) and (3.14) be

given as F1, F2 respectively. If [α
′
,y
′
] ∈ F1 then for the same α

′
the corresponding

y′′ =
∑s

j=1 α
′
jr
max1

i∈IGDj
satisfies y

′′ ≥ y
′

since rmaxi ≥ ri(p
I
GD
j ).

Next, we use the fact that if the interference graph exhibits ζ-WNI, i.e. {Intmaxi (GD) =∑
j 6∈Nij 6=i gjip

max ≤ (2ζ−1)σ2} then ri(p)
′
= log2(1+ giip

max∑
j∈Ni(GD) gjipj+σ

2 ) is an ζ approximation

of ri(p). This follows from Lemma 2. Thus we have

rmaxi 1
i∈IGDj

− ri(pI
GD
j ) ≤ ζ (3.16)

The weight of approximate weighted maximum independent set IGDk(C(GD)+1) is given as∑N+M
i=1 wir

max
i 1

i∈IGD
k(C(GD)+1)

. IGDk(C(GD)+1) is η approximate independent set computed using

the algorithm in [NHK05], hence, we can write

N+M∑
i=1

wir
max
i 1

i∈IGD
k(C(GD)+1)

≥ 1

1 + η
(
N+M∑
i=1

wir
max
i 1

i∈IGDp∗
) (3.17)

If αk(C(GD)+1) = 1 and αj = 0, ∀j 6= k(C(GD) + 1) then the resulting value of the

objective function is
∑N+M

i=1 wiri(p
I
GD
k(C(GD)+1)). From (3.16) and (3.17) we have,

N+M∑
i=1

wiri(p
I
GD
k(C(GD)+1)) ≥

N+M∑
i=1

wir
max
i 1

i∈IGD
k(C(GD)+1)

−ζ ≥ 1

1 + η
(
N+M∑
i=1

wir
max
i 1

i∈IGDp∗
)−ζ (3.18)

The minimum value that the expression ( 1
1+η

∑N+M
i=1 wir

max
i 1

i∈IGDp∗
) can take is given

as 1
(ρ+1)(η+1)

log2(1 + 1
∆np

pmax

σ2 ). To derive this, first substitute the value of wi = 1
N+M

.
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From Lemma 1 we know that there exists a maximal independent set with size no less

than N+M
ρ+1

. Also, using the minimum value of the direct channel gain gii ≥ 1
∆np we get

rmaxi ≥ log2(1 + 1
∆np

pmax

σ2 ). Combining the fact that maximal independent set has a size no

less than N+M
ρ+1

and rmaxi ≥ log2(1 + 1
∆np

pmax

σ2 ) we get the minimum value of the expression.

From the condition in the Theorem we have ζ < κ
(ρ+1)(η+1)

log2(1 + 1
∆np

pmax

σ2 ), where

0 < κ < 1 determines the distance from the optimal solution. If ζ is selected based on this

threshold then,
∑N+M

i=1 wiri(p
Ik(C(GD)+1) ≥ 1−κ

1+η
(
∑N+M

i=1 wir
max
i 1

vi∈I
GD
p∗

). Using the fact that

solution to (3.14) is an upper bound to (3.13) as stated in (3.15), we get the following.

N+M∑
i=1

wiri(p
Ik(C(GD)+1)) ≥ 1− κ

1 + η
(
N+M∑
i=1

wir
max
i 1i∈Ip∗) ≥

1− κ
1 + η

N+M∑
i=1

wiy
∗
i (GD) (3.19)

Next, we state the optimization problem to compute W (y∗approx(GD)) which is similar to the

problem in Step-4 in the Section 3.5 but uses the subset of the MISs computed in Subsection

3.6.1, here y∗approx(GD) is the corresponding optimal argument. Note that W (y∗approx(GD)) is

the optimal value that can be attained by the policy based on the subset of MISs computed

in Subsection 3.6.1.

max
y,α

N+M∑
i=1

wiyi (3.20)

subject to yi =

C(GD)+1∑
j=1

αjri(p
I
GD
k(j)), ∀i ∈ {1, ..., N +M}

yi ≥ Rmin, ∀i ∈ {1, ..., N +M}
C(GD)+1∑

j=1

αj = 1

αj ≥ 0, ∀j ∈ {1, ..., C(GD) + 1}

Using gii ≥ 1
∆np and the fact that Intmaxi (GD) ≤ (2ζ−1)σ2 (ζ-WNI) ensures that following

is true

ri(p
I
GD
k(j)) ≥ log2(1 +

pmax

∆np2ζσ2
)1

i∈IGD
k(j)

, ∀j ∈ {1, ..., C(GD)} (3.21)

We now develop a feasible solution to the above problem in (3.20). Assign βapprox,k(j) =
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Rmin

log2(1+ pmax

∆np2ζσ2 )
, ∀j ∈ {1, ..., C(GD)}. Hence, we can write

C(GD)∑
j=1

βapprox,k(j)ri(p
I
GD
k(j)) ≥ Rmin

C(GD)∑
j=1

1
i∈IGD

k(j)

,∀j ∈ {1, ..., C(GD)} (3.22)

The maximal independent sets {IGDk(1), ...., I
GD
k(C(GD))} are obtained by adding vertices in

a greedy manner in ii) to the independent sets constituting color classes, as in Subsection

3.6.1. Hence, all these MISs together contain all the vertices in the graph, this ensures∑C(GD)
j=1 1

i∈IGD
k(j)

≥ 1. Therefore, this assignment of βapprox,k(j) ensures the minimum through-

put constraint in (3.20) is satisfied. However, it still needs to be checked if
∑C(GD)

j=1 βapprox,k(i) ≤

1. Since C(GD) ≤ 3.(ρ + 1) from [MBH95]. The condition on ρ, i.e. ρ <
log2(1+ pmax

∆np2εσ2 )

3Rmin
− 1

ensures
∑C(GD)

j=1 βapprox,k(i) = γ = (3(ρ + 1)) Rmin

log2(1+ pmax

∆np2εσ2 )
< 1. Hence, the solution obtained

is feasible. The remaining fraction 1 − γ is assigned in such a way to ensure a constant

competitive ratio.

Assign βapprox,k(C(GD)+1) = (1 − γ) then the lower bound is given as W (y∗approx(GD)) ≥

(1−γ)
∑N+M

i=1 wiri(p
I
GD
k(C(GD)+1)). This combined with the lower bound in (3.19) derived above

gives:

W (y∗approx(GD)) ≥ (1− κ)(1− γ)

1 + η

N+M∑
i=1

wiy
∗
i (GD) (3.23)

�
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CHAPTER 4

Distributed Large Scale Multi-Agent Resource Sharing

4.1 Introduction

In this chapter, we describe a method for distributed large scale resource sharing between

multiple agents. We describe the proposed method in the context of wireless networks. At

the end of the chapter, we show how the proposed method is general and applies to many

scenarios. This chapter tries to solve the problem in Chapter 3 but with the additional

constraints that all the agents cooperate and distributedly compute a resource sharing plan.

The approach proposed in this chapter also extends the method and the results described in

Chapter 3. This chapter is based on my work in [AXS15a].

Motivation. Dense deployment of low-cost heterogeneous small cells (e.g. picocells,

femtocells) has become one of the most effective solutions to accommodate the exploding

demand for wireless spectrum [HLN13] [GMR12] [ACD12]. On one hand, dense deployment

of small cells significantly shortens the distances between small cell base stations (SBSs) and

their corresponding user equipments (UEs), thereby boosting the network capacity. On the

other hand, dense deployment also shortens the distances between neighboring SBSs, thereby

potentially increasing the inter-cell interference. Hence, while the solution provided by the

dense deployment of small cells is promising, its success depends crucially on interference

management by the small cells. Efficient interference management is even more challenging

in heterogeneous small cell networks, due to the lack of central coordinators, compared to

that in traditional cellular networks.

In this chapter, we propose a novel framework for designing interference management

policies in the uplink of small cell networks, which specify when and at what power level
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each UE should transmit.1 Our proposed design framework and the resulting interference

management policies fulfill all the following important requirements:

• Deployment of heterogeneous small cell networks: Existing deployments of small cell

networks exhibit significant heterogeneity such as different types of small cells (picocells

and femtocells), different cell sizes, different number of UEs served, different UEs’

throughput requirements etc.

• Interference avoidance and spatial reuse: Effective interference management policies

should take into account the strong interference among neighboring UEs, as well as the

weak interference among non-neighboring UEs. Hence, the policies should effectively

avoid interference among neighboring UEs and use spatial reuse to take advantage of

the weak interference among non-neighboring UEs.

• Distributed implementation with local information and message exchange: Since there

is no central coordinator in small cell networks, interference management policies need

to be computed and implemented by the UEs in a distributed manner, by exchanging

only local information through local message exchanges among neighboring UE-SBS

pairs.

• Scalability to large networks: Small cells are often deployed over a large scale (e.g.,

in a city). Effective interference management policies should scale in large networks,

namely achieve efficient network performance while maintaining low computational

complexity.

• Ability to optimize different performance criteria: Under different deployment scenar-

ios the small cell networks may have different performance criteria, e.g., weighted sum

throughput or max-min fairness. The design framework should be general and should

prescribe different policies to optimize different network performance criteria.

1Although we focus on uplink transmissions in this chapter, our framework can be easily applied to
downlink transmissions.
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• Performance guarantees for individual UEs: Effective interference management should

provide performance guarantees (e.g., minimum throughput guarantees) for individual

UEs.

As we will discuss in detail in Section 4.2, existing state-of-the-art policies for interference

management cannot simultaneously fulfill all of the above requirements.

Next, we describe our key results and major contributions:

1. We propose a general framework for designing distributed interference management

policies that maximizes the given network performance criterion subject to each UE’s min-

imum throughput requirements. The proposed policies schedule maximal independent sets

(MISs)2 of the interference graph to transmit in each time slot. In this way, they avoid

strong interference among neighboring UEs (since neighboring UEs cannot be in the same

MIS), and efficiently exploit the weak interference among UEs in a MIS by letting them to

transmit at the same time.

2. We propose a distributed algorithm for the UEs to determine a subset of MISs. The

subset of MISs generated ensures that each UE belongs to at least one MIS in this subset.

Moreover, the subset of MISs can be generated in a distributed manner in logarithmic time

(logarithmic in the number of UEs in the network) for bounded-degree interference graphs.3

The logarithmic convergence time is significantly faster than the time (linear or quadratic in

the number of UEs) required by the distributed algorithms for generating subsets of MISs

in [RP89,CS89,ET90].

3. Given the computed subsets of MISs, we propose a distributed algorithm in which

each UE determines the optimal fractions of time occupied by the MISs with only local

message exchange. The message is exchanged only among the UE-SBS pairs that strongly

2Consider the interference graph of the network, where each vertex is a UE-SBS pair and each edge
indicates strong interference between the two vertices. An independent set (IS) is a set of vertices in which
no pair is connected by an edge. An IS is a MIS if it is not a proper subset of another IS.

3Bounded-degree graphs are the graphs whose maximum degree can be bounded by a constant indepen-
dent of the size of the graph, i.e., ∆ = O(1). As we will show in Theorem 10, for the interference graphs
that are not bounded-degree graphs, even the centralized solution, given all the MISs, cannot satisfy the
minimum throughput requirements.
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interfere with each other, i.e. among neighbors in the interference graph. The distributed

algorithm will output the optimal fractions of time for each MIS such that the given network

performance criterion is maximized subject to the minimum throughput requirements.

4. Under a wide range of conditions, we analytically characterize the competitive ratio

of the proposed distributed policy with respect to the optimal network performance. Im-

portantly, we prove that the competitive ratio is independent of the network size, which

demonstrates the scalability of our proposed policy in large networks. Remarkably, the

constant competitive ratio is achieved even though our proposed policy requires only local

information, is distributed, and can be computed fast, while the optimal network perfor-

mance can only be obtained in a centralized manner with global information (e.g., all the

UEs’ channel gains, maximum transmit power levels, minimum throughput requirements).

5. Through simulations, we demonstrate significant (from 160% to 700 %) performance

gains over state-of-the-art policies. Moreover, we show that our proposed policies can be

easily adapted to a variety of heterogeneous deployment scenarios, with dynamic entry and

exit of UEs.

The rest of the chapter is organized as follows. In Section 4.2, we discuss the related works

and their limitations. We describe the system model in Section 4.3. Then we formulate the

interference management problem and give a motivating example in Section 4.4. We propose

the design framework in Section 4.5, and demonstrate the performance gain of our proposed

policies in Section 4.6. In Section 4.7, we discuss how the proposed framework is general

and can be applied to other applications. Finally, we conclude the chapter in Section 4.8.

4.2 Related Works

State-of-the-art interference management policies can be divided into three main categories:

policies based on power control, policies based on spatial reuse, and policies based on joint

power control and spatial reuse. In the following, we discuss their limitations for the consid-

ered distributed interference management problem in heterogeneous small cell networks.
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4.2.1 Distributed Interference Management Based on Power Control

Policies based on distributed power control (representative works [HBH06,SMG01,HYC09])

have been used for interference management in both cellular and ad-hoc networks. In these

policies, all the UEs in the network transmit at constant power levels all the time (provided

that the system parameters remain the same).4 For this reason, we refer to them as constant

power control policies in the rest of this chapter. The major limitation of constant power

control policies is the difficulty in providing minimum throughput guarantees for each UE,

especially in the presence of strong interference. Some works [HBH06, SMG01, HYC09]

use pricing to mitigate the strong interference. However, they cannot strictly guarantee

the UEs’ minimum throughput requirements [HBH06, SMG01, HYC09]. Indeed, the low

throughput experienced by some users, caused by strong interference, is the fundamental

limitation of constant power control policies, even for the optimal constant power control

policy obtained by a central controller5 [CTP07]. Since strong interference is very common

in dense small cell deployments (e.g., in offices and apartments where SBSs are installed

close to each other [LCV09]), constant power control policies do not perform well in these

scenarios. Note that there exist a different strand of works based on [FM93], which proposes

distributed algorithms to achieve the desired minimum throughput requirement for each

UE with the objective of minimizing transmit power levels. These works cannot optimize

network performance criteria such as weighted sum throughput, max-min fairness etc., and

hence are suboptimal under these performance criteria.

4.2.2 Distributed Spatial Reuse Based on Maximal Independent Sets

An efficient solution to mitigate strong interference is spatial reuse, in which only a subset

of UEs (those who do not significantly interfere with each other) transmit at the same time.

4Although some power control policies [HBH06,SMG01,HYC09] go through a transient period of adjusting
the power levels before the convergence to the optimal power levels, the users maintain constant power levels
after the convergence.

5In the case of average sum throughput maximization given the minimum average throughput constraints
of the UEs, the power control policies are inefficient if the feasible rate region is non-convex [SWB09] .
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Spatial Time reuse based Time Division Multiple Access (STDMA) has been widely used in

existing works on broadcast scheduling in multi-hop networks [RP89] [ET90].6 Hence, we

also compare with these works to have a comprehensive literature review. Specifically, these

policies construct a cyclic schedule such that in each time slot an MIS of the interference

graph is scheduled. The constructed schedule ensures that each UE is scheduled at least

once in the cycle.

In terms of performance, STDMA policies [RP89, CS89, ET90] cannot guarantee the

minimum throughput requirement of each UE, and usually adopt a fixed scheduling (i.e.

follow a fixed order in which the MISs are scheduled), which may be very inefficient depending

on the given network performance criteria. For example, the policies in [ET90] are inefficient

in terms of fairness. In terms of complexity, for the distributed generation of the subsets

of MISs, the STDMA policies in [RP89, CS89, ET90] require an ordering of all the UEs,

and have a computational complexity (in terms of the number of steps executed by the

algorithm) that scales as O(|V |)) (in [CS89] [ET90]) or O(|V ||E|)) (in [RP89]), where |V |

and |E| are the number of vertices/UEs and the number of edges in the interference graph,

respectively. Hence, in large-scale dense deployments, the complexity grows superlinearly

with the number of UEs, making the policies difficult to compute. By contrast, our proposed

distributed algorithm for generating subsets of MISs does not require the ordering of all the

UEs, and has a complexity that scales as O(log |V |), namely logarithmically with the number

of the UEs, for bounded-degree graphs.7

Finally, the STDMA policies in [RP89,CS89,ET90] are designed for the MAC layer and

assume that all the UEs are homogeneous at the physical layer. In practice, different UEs

are heterogeneous due to their different distances from their SBSs, their different maximum

transmit power levels, etc. This heterogeneity is important, and will be considered in our

design framework.

6These works [RP89,CS89,ET90] do not have exactly the same model as in our setting. However, these
works can be adapted to our model.

7As we will show in Theorem 10, for graphs which do not have bounded degrees, even a centralized
solution based on all the MISs cannot satisfy the minimum throughput requirements.
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Figure 4.1: Illustration of a heterogeneous small cell network.

4.2.3 Distributed Power Control and Spatial Reuse For Multi-Cell Networks

The works discussed in the above two subsections either focus on distributed power control

in the physical layer [HBH06, SMG01, HYC09] or focus on distributed spatial reuse in the

MAC layer [RP89,CS89,ET90]. Similar to our chapter, some works (see [KG08] [GKG07] for

representative works) adopted a cross-layer approach and proposed joint distributed power

control and spatial reuse for multi-cell networks. Although these works schedule a subset of

UEs to transmit at each time slot, the subset is not the MIS of the interference graph [KG08]

[GKG07]. For example, the policies in [KG08] [GKG07], called power matched scheduling

(PMS) policies, schedule one UE from each small cell at the same time, even if some UEs

from different cells are very close to each other. In this case, these UEs will experience strong

inter-cell interference. Hence, the works in [KG08] [GKG07] cannot perfectly eliminate strong

interference from neighboring cells and exploit weak interference from non-neighboring cells.

Moreover, the works in [KG08] [GKG07] cannot provide minimum throughput guarantees

for the UEs.

4.3 System Model

4.3.1 Heterogeneous Network of Small Cells

We consider a heterogeneous network of K small cells operating in the same frequency

band (see Fig. 4.1), which represents a common deployment scenario considered in practice

[GMR12] [HYC09] [lte]. Note that the small cells can be of different types (e.g. picocells,
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femtocells, etc.) and thereby belong to different tiers in the heterogeneous network. Each

small cell j has one SBS, (SBS j), which serves a set of UEs under a closed access scenario

[HYC09]. Denote the set of UEs by U = {1, ..., N}. We write the association of UEs to

SBSs as a mapping T : {1, ..., N} → {1, .., K}, where each UE i is served by SBS T (i). The

interference graph G of the network has N vertices, each of which is a UE-SBS pair. There

is an edge between two pairs/vertices if their cross interference is high (rules for deciding if

interference is high will be discussed later).

We focus on the uplink transmissions; the extension to downlink transmissions is straight-

forward when each SBS serves one UE at a time (e.g., TDMA among the UEs connected

to the same SBS). Each UE-i chooses its transmit power pi from a compact set Pi ⊆ R+.

We assume that 0 ∈ Pi, ∀i ∈ {1, ..., N}, namely any UE can choose not to transmit. The

joint power profile of all the UEs is denoted by p = (p1, ...., pN) ∈ P , ΠN
i=1Pi. Under

the joint power profile p, the signal to interference and noise ratio (SINR) of UE i’s signal,

experienced at its serving SBS j = T (i), can be calculated as γi(p) =
gijpi

N∑
k=1,k 6=i

gkjpk+σ2
j

, where

gij is the channel gain from UE i to SBS j, and σ2
j is the noise power at SBS j. Since

the UEs do not cooperate to encode their signals to avoid interference, each UE-SBS pair

treats the interference from other UEs as white noise. Hence, each UE i gets the following

throughput [KG08], ri(p) = log2(1 + γi(p)).8

4.3.2 Interference Management Policies

The system is time slotted at t = 0,1,2..., and the UEs are assumed to be synchronized.9

At the beginning of each time slot t, each UE i decides its transmit power pti and obtains a

throughput of ri(p
t). Each UE i’s strategy, denoted by πi : Z+ , {0, 1, ..} → Pi, is a mapping

from time t to a transmission power level pi ∈ Pi. The interference management policy is then

the collection of all the UEs’ strategies, denoted by π = (π1, ..., πN). The average throughput

8We use the Shannon capacity here. However, our analysis is general and applies to the throughput
models that consider the modulation scheme used.

9Strict synchronization is required for inter-cell interference coordination (ICIC) in Release 10 of 3GPP
[lte] and is widely assumed in the literature as well [GMR12] [RP89,CS89,ET90] [KG08] [GKG07].
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for UE-i is given by Ri(π) = limT→∞
1

T+1

∑T
t=0 ri(p

t), where pt = (π1(t), ..., πN(t)) is the

power profile at time t. We assume that the channel gains are fixed over the considered time

horizon as in [KG08] [JPP05,LXH10,UAB11,LLJ10]. However, we will illustrate in Section

4.6 that our framework performs well under time-varying channel conditions (e.g., due to

fading) as well.

An interference management policy πconst is a constant power control policy [HBH06,

SMG01, HYC09] if πconst(t) = p for all t. As we have discussed before, our proposed

policy is based on MISs of the interference graph. Given an interference graph, we write

I = {I1, ..., INMIS
} as the set of all the MISs of the interference graph. Let pIj be a power

profile in which the UEs in the MIS Ij transmit at their maximum power levels and the

other UEs do not transmit, namely p
Ij
k = pmaxk , maxPk if k ∈ Ij and pk = 0 otherwise.

Let PMIS =
{
pI1 , ...,pINMIS

}
be the set of all such power profiles. Then π is a policy

based on MIS if π(t) ∈ PMIS for all t. We denote the set of policies based on MISs by

ΠMIS =
{
π : Z+ → PMIS

}
.

4.4 Problem Formulation

In this section, we formulate the interference management policy design problem.

4.4.1 The Interference Management Policy Design Problem

We aim to optimize a chosen network performance criterion W (R1(π), ..., RN(π)), defined

as a function of the UEs’ average throughput. We can choose any performance criterion

that is concave in R1(π), ...., RN(π). For instance, W can be the weighted sum of all the

UEs’ throughput
∑N

i=1 wiRi(π) with
∑N

i=1 wi = 1 and wi ≥ 0. Alternatively, the network

performance can be max-min fairness (i.e., the worst UE’s throughput) miniRi(π). The

policy design problem (PDP) can be then formalized as follows
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Step 1.

Each UE identifies

the interfering UE-

SBS pair

Step 2.

Distributed generation of MISs:

Each UE executes Phase 1 and 2

to identify the MIS it belongs to

(Theorem 6)

Step 3.

Each UE executes the procedure

in Table 4.4 to compute optimal

fraction of time allocated to each

MIS (Theorem 7 and 8)

Step 4.

Each UE computes

the cycle length and

duration of each MIS

in the cycle

Figure 4.2: Steps in the design framework.

Policy Design Problem (PDP)

maxπ W (R1(π), ..., RN(π))

subject to Ri(π) ≥ Rmin
i , ∀i ∈ {1, ..., N}

The above design problem is very challenging to solve even in a centralized manner (it is

NP-hard [TFL11] when W is the sum throughput). Denote the optimal value of the PDP as

Wopt. Our goal is to develop distributed, fast algorithms to construct policies that achieve a

constant competitive ratio with respect to Wopt, with the competitive ratio independent of

the network size. We achieve our goal by focusing on policies based on MISs ΠMIS, among

other innovations that will be described later.

4.5 Design Framework for Distributed Interference Management

4.5.1 Proposed Design Framework

Our proposed design framework (see Fig. 4.2) consists of the following four steps.

Step 1. Identification of the interfering neighbors: In Step 1, each UE-SBS pair

identifies the UE-SBS pairs that strongly interfere with it. Essentially, each pair obtains a

local view (i.e., its neighbors) of the interference graph. Note that an edge exists between

two pairs if at least one of them identifies the other as a strong interferer.
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Figure 4.3: Illustration of the distributed generation of MISs in Step 2.

Specifically, each UE-SBS pair is first informed of other pairs in the geographical prox-

imity by managing servers (e.g., femtocell controllers/gateways) [HWK10] [LGD11] [LXH10]

[UAB11]. Then each pair can decide whether another pair is strongly interfering based

on various rules, such as rules based on Received Signal Strength (RSS) in the Physical

Interference Model [HWK10] [LXH10] [UAB11], and rules based on the locations in the

Protocol Model [JPP05]. If one pair identifies another pair as strongly interfering, its deci-

sion can be relayed by the managing servers to the latter, such that any two pairs can reach

consensus of whether there exists an edge between them.

Step 2. Distributed generation of MISs that span all the UEs: In Step 2, the

UE-SBS pairs generate a subset of MISs in a distributed fashion. It is important that the

generated subset spans all the UEs, namely every UE is contained in at least one MIS in the

subset. Otherwise, some UEs will never be scheduled.

The key idea is that from a given list of colors, each UE has to choose a set of colors such

that the choice does not conflict with its neighbors. We should ensure that each UE has

at least one color. We call the set of UEs with the same color “a color class”. In addition,

we should also ensure that every color class is a MIS. This step is composed of two phases:

first, distributed coloring of the interference graph based on [Joh99], and second, extension

of color classes to MISs. All the UEs are synchronized and carry out their computation

simultaneously. We now explain the algorithm in detail. The pseudo-codes can be found in

Table 4.2 and 4.3.

Phase 1. Distributed coloring of the interference graph: Let H10 be the maximum

10The maximum number of colors H should be set to be larger than the maximum number of UE-SBS
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number of colors given to all SBSs at the installation and di be the degree (number of

neighbors in the interference graph) of the ith pair. The goal of this phase is to let each

UE-SBS pair i choose one color from C0
i , {1, ...H} ∩ {1, .., di + 1}, such that no neighbors

choose the same color. The distributed coloring works as follows.

i) At the beginning of each time slot t, each UE i chooses a color from the set of remain-

ing colors Ct
i uniformly randomly, and informs its neighbors of its tentative choice. This

information can be transmitted through the back-haul network/X2 interface that is used for

ICIC [LGD11].

ii) If the tentative choice of a UE does not conflict with any of its neighbors, then it

fixes its color choice and informs the neighbors of its choice. This UE does not contend for

colors any further in Phase 1. The neighbors delete the color chosen by i from their lists

Ct+1
j

, ∀j ∈ N (i), where N (i) is the set of i’s neighbors.

iii) Otherwise, if there is a conflict, then the UE does not choose that color and repeats

i) and ii) in the next time slot.

There are dc1 log 4
3
Ne + 1 time slots in Phase 1, where c1 is the parameter given by

the protocol. The number of time slots is known to the SBSs at installation. Phase 1 is

successful if all the UEs acquire a color, which implies that the set of color classes (i.e., the

set of UE-SBS pairs with the same color) spans all the UEs.

Phase 2. Extending color classes to the MISs: Each color class obtained at the

end of Phase 1 is an independent set (IS) of the graph. In Phase 2, we extend each of these

ISs to MISs and possibly generate additional MISs. After Phase 1, each UE has chosen one

color and deleted some colors from its list. But there may still be remaining colors in its list

that are not acquired by any of its neighbors. If the UEs can acquire these remaining colors

without conflicting with its neighbors, then each color class will be a MIS. Phase 2 works as

follows.

pairs interfering with any UE-SBS pair. The SBSs can determine H according to the deployment scenario.
H in general will also include the number of UEs that use the same SBS who interfere with each other along
with the other neighboring UEs. For example, H can be 10-15 in an office building with dense deployment
of SBSs, and can be 3-5 in a residential area.
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i) At each time slot in Phase 2, UE i chooses each color from the remaining colors in its

list independently with probability c. Each UE i then sends the set of its tentative choices

to its neighboring UEs, and receives their neighbors’ choices.

ii) For any tentative choice of color, if there is a conflict with at least one neighbor, then

that color is not fixed; otherwise, it is fixed.

iii) At the end of each time slot, each UE deletes its set of fixed colors from its list, and

transmits this set of fixed colors to its neighbors, who will delete these fixed colors from their

lists as well. Note that a UE deletes a particular color if and only if the UE itself or some

of its neighbors have chosen this color. Based on this key observation, we can see that if a

color is not in any UE’s list, the set of UEs with this color is a MIS. If all the UEs have an

empty list, then for any color in the set {1, ..., H}, the set of UEs with this color is a MIS.

There are dc2 logxNe + 1 time slots in Phase 2, where x = 1

1−(c)H(1−c)H2 , and c2 is

the parameter given by the protocol. The number of time slots is known to the SBSs at

installation. We say that Phase 2 is successful, if it finds H MISs, or equivalently if all the

UEs have an empty list.

Example: We illustrate Step 2 in a network of 4 UE-SBS pairs, whose interference graph

is shown in Fig. 4.3. At the start, each pair has a list of 3 colors {Red, Yellow, Green}.

Phase 1 is run for P1 = dc1 log 4
3

5e time slots. At the end of Phase 1, UE 1 and UE 2 acquire

Green and Yellow respectively, while UEs 3-4 acquire Red. Hence, UE 1 (UE 2) has an

empty list, as Green (Yellow) is acquired by itself and Red, Yellow (Green) by its neighbors.

UE 3 (UE 4) has Green (Yellow) color in its list of remaining colors. At the end of Phase

1, the Red color class is a MIS, while the Yellow and Green color classes are not. Phase 2

is run for P2 = dc2 logx 5e + 1 time slots. UE 3 (UE 4) acquires the remaining color Green

(Yellow). At the end of Phase 2, the Green and Yellow color classes become MISs too.

The next theorem establishes the high success probability of Step 2.

Theorem 6 For any interference graph with the maximum degree ∆ ≤ H − 1, the proposed

algorithm in Table 4.2 and 4.3 outputs a set of H MISs that span all the UEs in (dc1 log 4
3
Ne+

dc2 logxNe + 2) time slots with a probability no smaller than (1 − 1
Nc1−1 )(1 − 1

Nc2−1 ), where
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c1 and c2 are design parameters that trade-off the run time and the success probability.

The proofs to all the theorems in this chapter can be found in the Appendix given at the

end of the chapter.

Theorem 6 characterizes the performance of our proposed algorithm, in terms of the run

time of the algorithm and the lower bound of the success probability. When the parameters

c1 and c2 are larger, the lower bound of the success probability increases at the expense of a

longer run time. When the maximum degree of the interference graph is larger, we need to

set a higher H, which results in a longer run time. This is reasonable, because it is harder

to find coloring and MISs when the number of interfering neighbors is higher. Finally, we

can see that the lower bound of the successful probability is very high even under smaller c1

and c2, especially if the number of UEs is large. Note that the exact successful probability

should depend on the probability c in Phase 2, while the lower bound in Theorem 6 does

not. Hence, our lower bound is robust to different system parameters. Note also that the

interference graph here is a bounded-degree graph since the maximum degree is bounded by

a given constant, H − 1. The algorithms in [RP89] [ET90] (require ordering of the vertices,

work sequentially and have a higher complexity) can be used to output the MISs spanning

all the UEs for arbitrary graphs. However, we will show in Theorem 10, that the restriction

to bounded-degree graphs is a must to ensure that the minimum throughput requirement of

each UE is satisfied for any MIS based policy.

Step 3. Distributed computation of the optimal fractions of time for each

MIS: Let the set of MISs generated in Step 2 be {I ′1, ..., I
′
H}. In Step 3, the UE-SBS pairs

compute the fractions of time allocated to each MIS in a distributed manner.

When an MIS is scheduled, the UEs in this MIS transmit at their maximum power levels,

and the other UEs do not transmit. Define Rk
i as the instantaneous throughput obtained

by UE i in the MIS I
′

k, which can be calculated as log2(1 +
giT (i)p

I
′
k
i∑N

r=1,r 6=i grT (i)p
I
′
k
r +σ2

T (i)

), where

p
I
′
k
i = pmaxi if i ∈ I

′

k and p
I
′
k
i = 0 otherwise. To determine Rk

i , the UE needs to know the

total interference it experiences when transmitting in I
′

k. This can be measured by having an

initial cycle of transmissions of UEs in each MIS in the order of the indices of MISs/colors.
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From now on, we assume that the network performance criterion W (y) is concave in y

and is separable, namely W (y1, ...yN) =
∑N

i=1 Wi(yi). Examples of separable criteria include

weighted sum throughput and proportional fairness. Our framework can also deal with max-

min fairness, although it is not separable (see the discussion in the Appendix). The problem

of computing the optimal fractions of time for the MISs is given as follows:

Coupled Problem (CP)

maxα
∑N

i=1Wi

(∑H
k=1 α

kRk
i

)
subject to

∑H
k=1 α

kRk
i ≥ Rmin

i , ∀i ∈ {1, .., N}∑H
k=1 α

k = 1, αk ≥ 0, ∀k ∈ {1, .., H}

Each UE i knows only its own utility function Wi and minimum throughput requirement

Rmin
i . Hence, it cannot solve the above problem by itself. We will first reformulate the

above problem into a decoupled problem and then show that the reformulated problem can

be solved in a distributed manner. Let each UE i have a local estimate βki of the fractions

of time allocated to each MIS I
′

k (including those MISs that UE i does not belong to). We

impose an additional constraint that all the UEs’ local estimates are the same. Note that this

constraint will be satisfied by our solution, and is not an assumption. Such a constraint is

still global, because any two UEs, even if they are not neighbors, need to have the same local

estimate. Hence, global message exchange among any pair of UEs is still needed to solve this

problem with local estimates and global constraints11. To avoid global message exchange, we

reformulate the CP into a decoupled problem (DP) that involves only local coupling among

the neighbors and can be solved with local message exchange using Alternating Direction

Method of Multipliers (ADMM) [WO13].

Write βi = (β1
i , ..., β

H
i ) as UE i’s local estimates of the fractions of time allocated to each

MIS, and Ri = (R1
i , ..., R

H
i ) as UE i’s throughput when each MIS is scheduled. Each UE

11If the UEs could exchange messages globally, i.e. broadcast messages to all the UEs in the network,
and if the network performance criterion is strictly concave, we could use standard dual decomposition
with augmented Lagrangian in [BT89] to derive a distributed algorithm. However, in large networks, the
UEs cannot exchange messages globally with other UEs, and the network performance criterion may not be
strictly concave (e.g., the weighted sum throughput is linear).
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i’s local estimates should be in the polyhedron Bi , {βi :1Tβi = 1,βi ≥ 0,βTi Ri ≥ Rmin
i },

where ()T is the transpose. Let E be the set of edges, where each edge e = {i, j} is an

ordered set of the vertices, i < j that are directly connected. As we will prove in Theorem

7, in a connected interference graph12, the requirement that all UEs’ local estimates are the

same can be reduced to the requirement that every UE has the same local estimate as its

neighbors, namely βi = βj for i, j s.t. {i, j} = e, where e ∈ E. To make the problem solvable

by ADMM, we rewrite the constraints by introducing auxiliary variables θkei, where i ∈ e is

one endpoint of the edge. Then the constraint for each edge e = {i, j} can be rewritten as

βki = θkei, −βkj = θkej, θ
k
ei + θkej = 0. Hence, the auxiliary variable θkei can be interpreted as i’s

estimate of its neighbor j’s estimate βkj . For e = {i, j} define the set of the auxiliary variables

Θk
e = {(θei, θej) ∈ R2 : θkei + θkej = 0, −1 ≤ θei ≤ 1,−1 ≤ θej ≤ 1} and let Θk = Πe∈EΘk

e .

Also for each edge e = {i, j}and for each k ∈ {1, .., H} define Dk
ei = 1 and Dk

ej = −1. Then

the decoupled problem is given as follows.

Decoupled Problem (DP)

min{βi∈Bi}Ni=1,{θk∈Θk}Hk=1
−
∑N

i=1Wi

(
βTi Ri

)
subject to Dk

eqβ
k
q = θkeq, ∀q ∈ e,∀e ∈ E, ∀k ∈ {1, .., H}

Theorem 7 For any connected interference graph, the coupled problem (CP) is equivalent

to the decoupled problem (DP).

The above theorem shows that the original problem (CP), which requires global informa-

tion and global message exchange to solve, is transformed into an equivalent problem (DP),

which as we will show, can be solved in a distributed manner with local message exchange.

We denote the optimal solution to the DP by WG
distributed. We associate with each con-

straint Dk
eqβ

k
q = θkeq a dual variable λkeq. The augmented Lagrangian for DP is

12A graph is connected, if any two nodes are connected by a path of edges.
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Figure 4.4: A heterogeneous network of 2 PBS and 2 FBS and their corresponding UEs.

Ly
(
{βi}i, {θkeq}k,e,q, {λkeq}k,e,q

)
= −

N∑
i=1

Wi(β
T
i Ri) +

H∑
k=1

∑
e∈E

∑
q∈e

[λkeq
(
Dk
eqβ

k
q − θkeq

)
+

y

2

(
Dk
eqβ

k
q − θkeq

)2
]

(4.1)

In the ADMM procedure (see Table 4.4), each UE i solves for its optimal local estimates

βi(t) that maximizes the augmented Lagrangian given the previous dual variables λkei(t− 1)

and auxiliary variables θkei(t − 1). Then it updates its dual variable λkei(t) and auxiliary

variable θkei(t) based on its local estimate βki (t) and its neighbor j’s local estimate βkj (t).

This iteration of updating local estimates, dual variables, and auxiliary variables is repeated

P times. Next, it is shown that this procedure will indeed converge.

Theorem 8 If DP is feasible13, then the ADMM algorithm in Table 4.4 converges to the

optimal value WG
distributed with a rate of convergence O( 1

P
).

Step 4. Determining the cycle length and transmission times: At the end of

Step 3, all the UEs have a consensus about the optimal fractions of time allocated to each

MIS, namely β∗i = γ∗ = (γ∗1 , ..., γ
∗
H), ∀i ∈ {1, .., N}. The MISs transmit in the order of

their indices (i.e., {1, .., H}) in cycles. In each cycle of transmission, MIS I
′

k transmits for⌈
γ∗k

mini∈1,...,N γ∗i
× 10d

⌉
slots, where we multiply by 10d such that the rounding error is reduced

or eliminated in case that
γ∗k

mini∈1,...,N γ∗i
is not an integer.

13If the feasible region resulting from the constraints in DP is non-empty, then DP is feasible.
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4.5.2 A Motivation Example

Consider a network of 2 picocell base stations (PBS) and 2 femtocell base stations (FBS),

each serving one UE. The network topology is shown in Fig. 4.4. We assume a path loss

model for channel gains, with path loss exponent 4. The maximum transmit power of each

UE is 80 mW, and the noise power at each SBS is 1.6 × 10−3 mW. UEs in different tiers

have different minimum throughput requirements: FUE (femtocell UE) 1 and FUE 2 in the

femtocells require a minimum throughput 0.4 bits/s/Hz, and PUE (picocell UE) 1 and PUE

2 in the picocells require 0.2 bits/s/Hz. The interference graph is constructed according to

a distance based threshold rule similar to [JPP05]. Specifically, an edge exists between two

UE-BS pairs if the distance between any pair of SBSs is less than a threshold, which is set to

be 1.2m here. There are two MISs. MIS 1 consists of FUE 1 and FUE 2, and MIS 2 consists

of PUE 1 and PUE 2. We consider two performance criteria: the max-min fairness and the

sum throughput. We will compare with the following state-or-the-art policies:

1. Distributed Constant Power Control Policies [HBH06, SMG01, HYC09]: In

these policies, all the UEs choose constant power levels determined by distributed algo-

rithms utilizing information (e.g., power levels used by neighbors) made available through

local/global message exchange.

2. Optimal Centralized Constant Power Policies: In these policies, all the UEs

choose constant power levels determined by a central controller utilizing global information.

3. Distributed MIS STDMA-1 [ET90] and STDMA-2 [RP89]: These policies con-

struct a subset of the MISs of the interference graph in a distributed manner and propose

fixed schedules of the MISs. Different works adopt different schedules, and we differentiate

them by referring to them as MIS STDMA-1 [ET90] and STDMA-2 [RP89].

4. Distributed Joint Power Control and Spatial Reuse [KG08] [GKG07]: These

policies choose one UE from each cell to form a subset, and schedule these subsets of UEs

based on their channel gains to maximize the sum throughput. The policies are named power

matched scheduling (PMS).

In Table 4.1, we compare the performance of our proposed policy with state-of-the-art

86



policies for the same setup as in Fig. 4.1. We compute the optimal centralized constant

power control policy by exhaustive search, which serves as the performance upper bound of

the distributed constant power control policies [HBH06,SMG01,HYC09] centralized constant

power control policies [CTP07]. In PMS policies [KG08] [GKG07], UEs within the same cell

are scheduled in a time-division multiple access (TDMA) fashion, and the active UEs in

different cells transmit simultaneously. In this motivating example, there is one UE in each

cell, which will be scheduled to transmit all the time. Therefore, the PMS policy reduces to

a constant power control policy, and is worse than the optimal centralized constant power

control policy. We can see that our proposed policy outperforms all constant power control

policies and distributed PMS policies by at least 375% and 32.8%, in terms of max-min

fairness and sum throughput, respectively. The significant performance improvement over

the constant power control policies results from the elimination of the high interference

among the users through scheduling MISs. Our proposed policy also outperforms distributed

STDMA policies by 30%-40%. As we will see in Section 4.6, the performance gain is even

higher (160%-700%) in realistic deployment scenarios. Finally, in this motivating example,

the proposed policy achieves the optimal performance of the benchmark problem defined in

Section 4.6, which is a close approximation of the original problem (PDP).

4.5.3 Performance Guarantees for Large Networks and Properties of Interfer-

ence Graphs

In this subsection, we provide performance guarantees for our proposed framework described

in Section 4.5.1. Specifically, we prove that the network performance WG
distributed achieved

by the proposed distributed algorithms has a constant competitive ratio with respect to the

optimal value Wopt of the PDP. Moreover, we prove that the competitive ratio does not

depend on the network size. Our result is strong, because the solution to PDP needs to be

computed by a centralized controller with global information, while our proposed framework

allows the UEs to compute the policy fast in a distributed manner with local information

and local message exchange.
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Table 4.1: Comparisons in terms of max-min fairness & sum throughput criterion.

Policies Max-min throughput Performance Sum throughput Performance

(bits/s/Hz) Gain % (bits/s/Hz) Gain %

Distributed constant power control <0.28 >375 % 6.1 32.8 %

[HBH06,SMG01,HYC09]

Distributed PMS [KG08,GKG07] <0.28 >375% 6.1 32.8 %

Optimal centralized 0.28 375% 6.1 32.8 %

constant power control

Distributed MIS STDMA-2/1 [RP89,ET90] 0.96 38.5% 6.25 30.0 %

Proposed (Section- 4.5) 1.33 - 8.12 -

Benchmark Problem (BP) 1.33 - 8.12 -

Before characterizing the competitive ratio analytically, we define some auxiliary vari-

ables. Define the upper and lower bounds on the UEs’ maximum transmit power levels

and throughput requirements as, 0 < pmaxlb ≤ pmaxi ≤ pmaxub ,∀i ∈ {1, ..., N} and, 0 <

Rmin
lb ≤ Rmin

i ≤ Rmin
ub , ∀i ∈ {1, ..., N} respectively. Let Dij is the distance between UE i

and SBS j. Define upper and lower bounds on the distance between any UE and its serv-

ing SBS and the noise power at the SBSs as, 0 < Dlb ≤ DiT (i) ≤ Dub, ∀i ∈ {1, ..., N} and,

σ2
lb ≤ σ2

j ≤ σ2
ub, ∀j ∈ {1, ..., K} respectively. We assume that the channel gain is gij = 1

(Dij)np
,

where np is the path loss exponent.

Definition 1 (Weak Non-neighboring Interference): The interference graph G

exhibits ζ Weak Non-neighboring Interference (ζ-WNI) if for each UE i the maximum inter-

ference from its non-neighbors is bounded, namely
∑

j 6∈N (i),j 6=i gjT (i)p
max
j ≤ (2ζ − 1)σ2

ub, ∀i ∈

{1, ..., N}.

Define ∆max =
log2(1+

pmaxlb
(Dub)np2ζσ2

ub

)

Rminub
−1. Then we have the following theorem for the network

performance criterion, sum throughput.14

14We can extend this result for weighted sum throughput, with weights wi = Θ( 1
N ), it is not done to avoid

complex notations.

88



Theorem 9 For any connected interference graph, if the maximum degree ∆ ≤ ∆max and

it exhibits ζ-WNI then, our proposed framework of interference management described in

Section 4.5.1 achieves a performance WG
distributed ≥ Γ·Wopt with a probability no smaller than

(1 − 1
Nc1−1 )(1 − 1

Nc2−1 ). Moreover, the competitive ratio Γ =
Rminub

log2(1+
pmax
ub

(Dlb)npσ2
lb

)
is independent

of the network size.

Note that the analytical expression of competitive ratio, Γ =
Rminub

log2(1+
pmax
ub

(Dlb)npσ2
lb

)
, does not

depend on the size of the network. Our results are derived under the conditions that the

interference graph has a maximum degree bounded by ∆max, and that the interference from

non-neighbors is bounded (i.e. ζ−WNI). These conditions do not restrict the size of the

network. The next example illustrates this. In addition, our results hold for any interference

graph that satisfy the conditions in Theorem 9, regardless of how the graph is constructed.

Example: Consider a layout of SBSs in a K×K square grid, i.e. K2 SBSs with a distance

of 5m between the nearest SBSs. Assume that each UE is located vertically below its SBS

at a distance of 1m. Fix the parameters pmaxi = 100 mW, σ2
i = 3 mW, Rmin

i = 0.1bits/s/Hz,

∀i ∈ {1, .., K2}, np = 4. We construct the interference graph based on the distance rule

[JPP05], namely there is an edge between two pairs if the distance between their SBSs exceeds

6m, which gives us the maximum degree ∆ = 4. We can also verify that the interference

graphs under any number K2 of SBSs exhibit ζ-WNI with ζ = 0.15 and ∆ < ∆max, where

∆max = 48. Given ∆ = 4 and ζ = 0.15, from Theorem 9, we get the performance guarantee

of 0.17 for any network size K2. Note that the number 0.17 is a performance guarantee, and

that the actual performance is much higher compared to the performance guarantee as well

as those achieved by state-of-the-art policies (see Section 4.6)

Both Theorem 6 and 9 restricted the interference graph to be bounded-degree. We

justify our restriction by showing that the bounded-degree property is necessary to fulfill the

minimum throughput requirements of each UE. Specifically, we prove that if the maximum

degree exceeds some threshold, then no MIS based policy in ΠMIS (which is a large policy

space) is feasible. Suppose that the interference graph is constructed based on a distance

based threshold rule similar to [JPP05]: an edge exists between two UE-SBS pairs if and

89



only if the distance between two SBSs is no greater than Dth. We define the threshold of

the maximum degree as ∆∗ (See the Appendix for the expression).

Theorem 10 If the maximum degree of the interference graph ∆ ≥ ∆∗, then any MIS based

policy in ΠMIS fails to satisfy the minimum throughput requirements of the UEs.

The intuition behind Theorem 10 is that, if the degree of the interference graph is large

then there must be a large number of UE-SBS pairs which interfere with each other strongly,

which makes it impossible to allocate each UE enough transmission time to satisfy their

minimum throughput requirements simultaneously.

4.5.4 Self-Adjusting Mechanism for Dynamic Entry/Exit of UEs

We now describe how the proposed framework can adjust to dynamic entry/exit by the UEs

in the network without recomputing all the four steps. We allow the UEs to enter and exit,

but the number of SBSs is fixed. We only let one UE enter or leave the network in any time

slot.

1. UE leaves the network: Suppose UE i, which was transmitting to SBS T (i), leaves the

network. If the UE i was transmitting in a set of colors Ci, then as soon as it leaves, these

colors can be potentially used by some neighbors, N (i). SBS T (i) can still be serving other

UEs which are still in the network and transmitting. Then for each color c′ ∈ Ci it first

searches among these UEs that are not already transmitting in c′ and who also do not have

a neighboring UE-SBS pair which is already transmitting in c′. Let the set of such UEs be

UEc′

i,left. SBS T (i) allocates color c′ to the UE whose index is arg maxj∈UEc′i,left
Rc′
j . In case

UEc′

i,left is empty then that color, c
′

is left unused.

2. UE enters the network: Suppose a UE i registered with SBS T (i) enters the network.

SBS T (i) creates the list of colors Cvalid
i,enter, which are either unused or the UEs transmitting in

the colors are transmitting at more than their minimum throughput requirement. SBS T (i)

allocates some portions from the fractions of time allocated to the colors in Cvalid
i,enter, to satisfy

UE-i’s throughput requirement to the best possible extent, making sure that the minimum
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throughput requirements of UEs transmitting to SBS T (i) in Cvalid
i,enter are not violated. If the

requirement of UE-i is not satisfied then, SBS T (i) requests the neighboring UE-SBSs to

announce the set of colors, which are either not being used or in which the UEs being served

are operating at more than their throughput requirement. From the list of colors received,

T (i) chooses those in which UE i can transmit without conflicting with neighbors. For each

of these colors it sends the request (portion of time needed) to the neighbors. SBS T (i) and

the neighbors go through a phase of communication (more detail in the Appendix), based

on which SBS T (i) can decide how much time UE-i can transmit in these colors.

4.5.5 Extensions

In our model, UEs operate in the same frequency band. However, our methodology can be

extended to scenarios where UEs operate in different frequency channels (frequency reuse)

and transmit at the same time. In this case, the problem is to find the optimal frequency

allocation with the same objective function and constraints as in PDP. To solve this prob-

lem, the first two steps of the framework remain the same. In Step 3, the UEs compute

distributedly the optimal fractions of bandwidth to be allocated to each MIS. This step is

equivalent to computing the optimal fraction of time allocated to each MIS as in our current

formulation. In Step 4, the UEs compute the number of frequency channels allocated to

each MIS based on the bandwidth allocation.

Note that we do not implement beamforming, although beamforming can be used in

conjunction with our policy. If the UEs transmitting to the same SBS cooperate to do

beamforming, we can delete the edge between them in the interference graph, and use the

new interference graph in the scenario with beamforming.

4.6 Illustrative Results

In this section, we evaluate our proposed policy under a variety of scenarios with different

levels of interference, large numbers of UEs, different performance criteria, time-varying

channel conditions, and dynamic entry and exit of UEs.
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We compare our policy with the optimal centralized constant power control policy, the

distributed MIS STDMA-1 [ET90] and STDMA-2 [RP89], distributed PMS [KG08] [GKG07],

in terms of sum throughput and max-min fairness. We do not separately compare with

distributed/centralized constant power control policies in [HBH06,SMG01,HYC09] [CTP07],

because their performance is upper bounded by the optimal centralized power control. Since

it is difficult to compute the solution to the NP-hard PDP, we define a benchmark problem,

where we restrict our search to policies in which a UE either transmits at its maximum

power level or does not transmit. The space of such policies can be writtenas ΠBC =

{π = (π1, ..., πN) : πi : Z+ → {0, pmaxi } ∀i ∈ {1, .., N}}. The policy space ΠBC is a subset of

all policies Π and is a superset of MIS based policies ΠMIS. In other words, the benchmark

problem has the same objective and constraints as PDP; the only difference is the policy

space to search. Hence, the benchmark problem is a close approximation of the PDP. Note

that the benchmark problem is also NP-hard (See the Appendix).

4.6.1 Performance under Time-Varying Channel Conditions

Consider a 3x3 square grid of 9 SBSs with the minimum distance between any two SBSs

being d = 4.7m. Each SBS serves one UE, who has a maximum power of 1000 mW and

a minimum throughput requirement of 0.45 bits/s/Hz. The UEs and the SBSs are in two

parallel horizontal hyperplanes, and each SBS is vertically above its UE with a distance of
√

10m. Then the distance from UE i to another SBS j is Dij =
√

10 + (DBS
ij )2 , where DBS

ij

is the distance between SBSs i and j. The channel gain from UE i to SBS j is a product

of path loss and Rayleigh fading fij ∼ Rayleigh(β) , namely gij = 1
(Dij)2fij. The density

function of Rayleigh(β) is v(z) = z
β2 e
− z2

2β2 for z ≥ 0, and v(z) = 0 for z < 0. The SBSs

identify neighbors using a distance based rule with the threshold distance as in Section 4.5.3

with Dth = 7m. Note that different thresholds lead to different interference graphs, and

hence different performance, which will be discussed next. Although we use a distance based

threshold rule, our framework is general and does not rely on a particular rule. The resulting

interference graph for this setting is graph 3 shown in Fig. 4.7 a).
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Figure 4.5: Comparison of the proposed policy with state of the art under different interfer-

ence strength and time-varying channel conditions.

At the beginning, the UE-SBS pairs generate the set of MISs (Step 2 of the design

framework in Section 4.5), and compute the optimal fractions of time allocated to each MIS

(Step 3). In our simulation, we assume a block fading model [Gol05] and the fading changes

every 100 time slots independently. To reduce complexity, the UEs do not recompute the

interference graph and the MISs, but will recompute the optimal fractions of time under

the new channel gains every 100 time slots. In Fig. 4.5, we compare the performance of

the proposed policy with state of the art policies under different variances β of Rayleigh

fading. We do not plot the performance of distributed PMS for this scenario since it is

upper bounded by optimal centralized constant power control (because there is one UE per

cell). We do not plot the distributed MIS STDMA -1 either, when the performance criterion

is average throughput per UE (i.e., sum throughput
N

), because it cannot satisfy the minimum

throughput constraints. From Fig. 4.5, we can see that in terms of both average throughput

and max-min fairness, our proposed policy achieves large performance gain (up to 88%) over

existing policies, and achieves performance close to the benchmark (as close as 9%).

Selecting the Optimal Interference Graph : For different values of d, there can be five

possible interference graphs, which are shown in Fig. 4.7 a). In Fig. 4.6 a) we show that

as the grid size d decreases (d = 4.7m,d = 3.7m and d = 2.5m), the levels of interference

from the adjacent UEs increases, and as a result, the interference graph with higher degrees

perform better (as d decreases, the optimal graph changes from graph 3 to graph 1) .
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Figure 4.6: a) Comparison of max-min fairness under different grid sizes, b) Sample paths

of sum throughput under dynamic entry/exit of UEs in the network.
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Figure 4.7: a) Different interference graphs for the 3 x 3 BS grid, b) Illustration of setup

with 3 rooms.

4.6.2 Performance Scaling in Large Networks

Consider the uplink of a femtocell network in a building with 12 rooms adjacent to each

other. Fig. 4.7 b) illustrates 3 of the 12 rooms with 5 UEs in each room. For simplicity, we

consider a 2-dimensional geometry. Each room has a length of 20 meters. In each room, there

are P uniformly spaced UEs, and one SBS installed on the left wall of the room at a height

of 2m. The distance from the left wall to the first UE, as well as the distance between two

adjacent UEs in a room, is 20
(1+P )

meters. Based on the path loss model in [SR92], the channel

gain from each SBS i to a UE j is 1
(Dij)2∆nij , where ∆ = 100.25 is the coefficient representing

the loss from the wall, and nij is the number of walls between UE i and SBS j. Each

UE has a maximum transmit power level of 50 mW, a minimum throughput requirement

of Rmin
i = 0.025 bits/s/Hz, and a noise power level of 10−11mW at its receiver. Here, we
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Figure 4.8: Comparison of max-min fairness and average throughput per UE against state

of the art for large networks.

consider that the UEs use a distance based threshold rule as in Section 4.5.2 with Dth = 30

m. This results in interference graphs which connects all the UE-SBS pairs within the room

and in the adjacent rooms. We vary the number P of UEs in each room from 5 to 9 and

compare the performance in Fig. 4.8. Note that the optimal centralized constant power

policy cannot satisfy the feasibility conditions for any number of UEs in each room. Hence,

only the performance of distributed MIS STDMA-1,2 and distributed PMS is shown in Fig.

4.8. We can see that under both criteria, the performance gain of our proposed policy is

significant (from 160% to 700%). Note that since the number of UEs is large, solving the

benchmark problem (which is NP-hard) requires enormous computational power.

4.6.3 Self-adjusting Mechanism for Dynamic Entry/Exit of the UEs

The self-adjusting mechanism proposed in Section 4.5.4 is aimed to provide incoming UEs

with the maximum possible throughput without affecting the incumbent UEs, and to reuse

the time slots left vacant by exiting UEs efficiently. Consider the same setup as in Section

4.6.2 with 3 rooms and a maximum of P = 3 UEs in each room. Each UE has a maximum

transmit power of 1000 mW and a minimum throughput requirement of 0.25 bits/s/Hz.

In Fig. 4.6 b) we show different sample paths of the sum throughput under different

entry and exit processes. In the legends (i.e., Rmintol), we show the minimum throughput
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achieved at any point in the sample path. We repeated the same procedure 100 times. We

can see that the self-adjusting mechanism works well by guaranteeing a worst-case minimum

throughput requirement of 0.23 bits/s/Hz, which is just 0.02 bits/s/Hz below the original

requirement more than 80% of the time.

4.7 Discussion on the Generality of the Framework

The framework described in the previous sections focused on the application of interference

management in wireless networks. In the framework that we described, each UE’s utility

for one time slot t was defined as the Shannon capacity ri(p
t). In this section, we make no

restrictions on the functional form of ri(p
t). For a general framework, we consider a problem

with N users and each user’s utility for taking an action pti ∈ Pi in time slot t is defined as

ri(p
t) and the long-term utility is defined as Ri(π), where π is the joint resource sharing

policy. We define a general policy design problem as follows.

General Policy Design Problem (GPDP)

maxπ W (R1(π), ..., RN(π))

subject to Ri(π) ≥ Rmin
i , ∀i ∈ {1, ..., N}

Next, we describe the design framework for the above GPDP.

The framework follows the very same steps as the framework proposed earlier for PDP

problem.

Step 1. Identification of the interfering neighbors: The interfering neighbors of

a user i depend on the utility function for each user i. In the PDP case, the identification

was carried out by a centralized entity using certain protocols. In a general case, we can

analyze the utility functions ri(p) of all the pairs of users. If the worst case utility of a user

when the other user is using the resource to the maximum is below a certain threshold, then

we assume that there is an edge between the two users in the interference graph.

Once we have the interference graph the remaining steps Step 2-4 are exactly the same.

Theorems 6, 7, 8 continue to hold for this case. Next, we discuss how Theorem 9 can be
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adapted for this case. In Theorem 9, there are two conditions that need to be satisfied to

prove that the proposed distributed resource sharing policy is a constant factor approxima-

tion.

Consider a user who is using the resource to the maximum and all the non-neighbors

are also using the resource to the maximum limit possible. In such a case, the minimum

utility attained by the user is defined as Rmin
nb−max. Define ∆max =

Rminnb−max
Rminub

− 1. Suppose the

maximum utility that a user can achieve as Rmax. The modified Theorem 9 adapted to this

setting is

Theorem 11 For any connected interference graph, if the maximum degree ∆ ≤ ∆max,

our proposed framework achieves a performance WG
distributed ≥ Γ ·Wopt with a probability no

smaller than (1− 1
Nc1−1 )(1− 1

Nc2−1 ). Moreover, the competitive ratio Γ =
Rminub

Rmax
is independent

of the network size.

The proof of the above follows from the proof of Theorem 9 given in the Appendix.

4.8 Conclusion

In this chapter, we proposed a novel and systematic method for distributed resource sharing.

We mainly focused on the problem of interference management but the framework is general

and can be useful in other applications as discussed in Section 4.7. Our framework allows

each UE to have only local knowledge about the network and communicate only with its

interfering neighbors. There are two key steps in our framework. First, we propose a novel

distributed algorithm for the UEs to generate a set of MISs that span all the UEs. The

distributed algorithm for generating MISs requires O(logN) steps (which is much faster

than state-of-the-art) before it converges to the set of MISs with a high probability. Second,

we reformulate the problem of determining the optimal fractions of time allocated to the

MISs in a novel manner such that the optimal solution can be determined by a distributed

algorithm based on ADMM. Importantly, we prove that under wide range of conditions,

the proposed policy can achieve a constant competitive ratio with respect to the policy
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design problem which is NP-hard. Moreover, we show that our framework can adjust to UEs

entering or leaving the network. Our simulation results show that the proposed policy can

achieve large performance gains (160%-700%).

4.9 Appendix

4.9.1 Appendix A

Discussion on max-min fairness: We now discuss as to how the proposed framework can

be extended to incorporate inseparable function like max-min fairness. The coupled problem

with max-min fairness objective is restated below:

Coupled Problem (CP) maxα min
i∈{1,..,N}

Wi(
H∑
k=1

αkR
k
i )

subject to
H∑
k=1

αkR
k
i ≥ Rmin

i , ∀i ∈ {1, ...N}

H∑
k=1

αk = 1, αk ≥ 0, ∀k ∈ {1, ..., H}

Transforming the above problem into an equivalent problem with auxiliary variable t is

given as

maxα,t t

subject to Wi(
H∑
k=1

αkR
k
i ) ≥ t, ∀i ∈ {1, ..., N}

H∑
k=1

αkR
k
i ≥ Rmin

i , ∀i ∈ {1, ...N}

H∑
k=1

αk = 1, αk ≥ 0, ∀k ∈ {1, ..., H}

To decouple the above problem, we introduce local variables for each UE i given as,

{β1
i , ..., β

H+1
i }. Now we state a problem which we claim is equivalent to CP, (the proof to
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Table 4.2: Generating MISs in a distributed manner, algorithm for UE i.

Phase 1- Initialization: Txitent = φ, Txifinal = φ, tentative and final choice of UE i,

Rx
N (i)
tent = φ ,Rx

N (i)
final = φ tentative and final choice made by the neighbors,

C0
i = {1, ..., H} ∩ {1, .., di + 1} the current list of subset of available colors,

Ci = φ, list of colors used by i, Ficolored = φ, C10
i = {1, ..., H},the current list of

all available colors

for n = 0 to dc1 log 4
3
Ne

Txitent = φ, Txifinal = φ

if(Ficolored = φ)

Txitent = rand{Cn
i }, rand randomly selects a color and informs the neighbors

Rx
N (i)
tent = {Txktent,∀k ∈ N (i)}

If(Txitent 6= Rx
N (i)
tent (j), ∀j ∈ N (i)), UE-i checks if there is a conflict with any of the

neighbor’s choice

Txifinal = Txitent, Ci = {Txifinal},if there is no conflict then UE-i transmits its

final color choice to the neighbors,

else

Txifinal = φ

end

end

Rx
N (i)
final = {Txkfinal,∀k ∈ N (i)}

Cn+1
i = Cn

i ∩ {Rx
N (i)
final ∪ Txifinal}c, C1n+1

i = C1ni ∩ {Rx
N (i)
final ∪ Txifinal}c

if(Txifinal 6= φ)

Ficolored = 1

end

end
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Table 4.3: Phase 2 of the distributed MIS generation.

Phase 2-Initialization: Txset
tent,i = φ,Txset

final,i = φ, the set of tentative and

i,Rxset
tent,i = φ, final colors chosen by Rxset

final,i = φ, the set of tentative

and final colors chosen that are received from the neighbors, x = 1

1−(c)H(1−c)H2

for n = dc1 log 4
3
Ne+ 1 to dc1 log 4

3
Ne+ dc2 logxNe+ 1

Txset
tent,i = φ,Txset

final,i = φ,

for m = 1 to |C1ni |

with probability c, Txset
tent,i(m) = C1ni (m), randomly selecting and

informing the neighbors about tentative choice with probability 1− c, Txset
tent,i(m) = φ

end

Rxset
tent,i = ∪k∈N (i)Txset

tent,k, set of tentative color choices of the neighbors of i

for r = 1 to |Txset
tent,i|

If(Txset
tent,i(r) 6= Rxset

tent,i(j)∀j ∈ N (i) )

Txset
final,i(r) = Txset

tent,i(r)

else

Txset
final,i(r) = φ

end

Ci = Ci ∪ Txset
final,i

Rxset
final,i = ∪k∈N (i)Txset

final,k, set of final color choices of the neighbors of i

C1n+1
i = C1ni ∩ {Rxset

final,i ∪ Txset
final,i}c

end
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Table 4.4: ADMM update algorithm for UE i.

Initialization: arbitrary βi(0) ∈ Bi, θkei(0) such that θk ∈ Θk,

and λkei(0) = 0, ∀k ∈ {1, ..., H},∀e such that i ∈ e

For t = 0 to P − 1

βi(t+ 1) = arg minβi∈Bi −
∑N

i=1Wi(β
T
i Ri)

+
∑H

k=1

∑
e∈E
∑

q∈e

[
λkeq
(
Dk
eqβ

k
q − θkeq

)
+ y

2

(
Dk
eqβ

k
q − θkeq

)2
]

βi(t+ 1) is transmitted to all of its neighbors in N (i).

λkei(t) is transmitted to its neighbor connected with edge e,

∀k ∈ {1, ..., H} and ∀e such that i ∈ e

Update ∀k ∈ {1, ..., H} and ∀e such that i ∈ e

λkei(t+ 1) = 1
2
(λkei(t) + λkej(t))−

y
2
(Dk

eiβ
k
i (t+ 1) +Dk

ejβ
k
j (t+ 1)),

where j is the other endpoint of e.

θkei(t+ 1) = 1
y
(λkei(t+ 1)− λke,i(t)) +Dk

eiβ
k
i (t+ 1)

end
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this claim is very similar to the proof of Theorem 7 and we will highlight this fact in the

proof clearly).

P1 maxβ

N∑
i=1

βH+1
i

subject to Wi(
H∑
k=1

βki R
k
i ) ≥ βH+1

i , ∀i ∈ {1, ..., N}

H∑
k=1

βki R
k
i ≥ Rmin

i , ∀i ∈ {1, ...N}

H∑
k=1

βki = 1, βki ≥ 0, ∀k ∈ {1, ..., H}, ∀i ∈ {1, ..., N}

βki = βkj ,∀j ∈ N (i), ∀k ∈ {1, ..., H + 1}

Here, β = (β1, .., βN ), with βi = (β1
i , ..., β

H+1
i ),∀i ∈ {1, ..., N}. Now, given the two

problems CP and the problem P1 are equivalent, we focus on solving P1. P1 can be changed

to a problem similar to DP. To do that we introduce some additional variables similar to

the ones introduced for DP. If UE i and l are connected by an edge (i, l) then for each set

I
′

k define θk(i,l)i = βki and θk(i,l)l = −βkl , note that these auxiliary variables are introduced to

formulate the problem into the ADMM framework [WO13]. Define a polyhedron for each

i, T ′i = {(β1)i|s.t. 1t(β
′′

i ) = 1, (β1)i ≥ 0, R
′

i(β
′′

i ) ≥ Rmin
i ,Wi(R

′

i(β
′′

i )) − βH+1
i ≥ 0},

here β
′′

i = (β1
i , ..., β

H
i ) and Ri = (R1

i , ..., R
H
i ) and ()

′
corresponds to the transpose. Let

β = (β1, ..., βN) ∈ T ′ , where T ′
=
∏N

i=1 T
′
i and

∏
corresponds to the Cartesian product

of the sets. Also, let βk = (βk1 , ..., β
k
N), ∀k ∈ {1, .., H}. Define another polyhedron Θk

(i,l) =

{(θk(i,l)i, θk(i,l)l) : θk(i,l)i + θk(i,l)l = 0, −1 ≤ θk(i,l)s ≤ 1, ∀s ∈ {i, l}}, Θk =
∏

(i,l)∈E Θk
(i,l) here

E = (e1, ..eM) is the set of all the M edges in the interference graph. A vector θk ∈ Θk

is written as θk = (θke1,z(e1), θ
k
e1,t(e1), .., θ

k
eM ,z(eM ), θ

k
eM ,t(eM )), here z(ei), t(ei) correspond to the

vertices in the edge, ei. Similarly define, θ = (θ1, ..., θH+1) ∈ Θ
′

, where Θ
′
=
∏H+1

k=1 Θk.

The reformulated problem is stated as follows:
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DP1 minβ∈T ′ ,θ∈Θ
′ −
∑N

i=1Wi(Ri
′
βi)

subject to Dkβk − θk = 0, ∀k ∈ {1, .., H + 1}

Then, DP1 can be solved using the ADMM procedure similar to the one described for

DP.

4.9.2 Appendix B

Discussion on Benchmark Problem’s complexity: Benchmark Problem is restated

here for convenience:

Benchmark Problem (BP) max
π∈ΠBC

W (R1(π), ..., RN(π))

subject to. Ri(π) ≥ Rmin
i , ∀i ∈ {1, ..., N}

Let the power set of U be SU , where SU consists of 2N subsets of UEs. Let SU(j) denote

the jth element of SU . Define a set of power profiles, PSU , where the PSU (j) corresponds

to the jth element in the set and it corresponds to the power profile when the UEs in set

SU(j) transmit at their maximum power levels and the rest of the UEs do not transmit.

Note that for π ∈ ΠBC , π(t) corresponds to a power profile in PSU . Therefore, the av-

erage throughput achieved by UE i, Ri(π), where π ∈ ΠBC , can also be expressed as

Ri(π) =
∑2N

j=1 αjri(PSU (j)), with αj ≥ 0,∀j ∈ {1, .., 2N}and
∑2N

j=1 αj = 1. Here the frac-

tion αj associated with each profile PSU (j) corresponds to the fraction of transmission time

associated with that power profile.

103



Consider the following problem:

BP1 max
y,α

W (y1, ..., yN)

subject to. yi ≥ Rmin
i , ∀i ∈ {1, ..., N}

yi =
2N∑
i=1

αiri(PSU (j)), ∀i ∈ {1, ..., N}

αj ≥ 0,∀j ∈ {1, .., 2N},
2N∑
j=1

αj = 1

Next, in order to show that the above problem is NP-hard we will show intuitively

why is it so, but the detailed proof follows from proof of Theorem 1 in [LZ08]. Consider

W (y1, .., yN) =
∑N

i=1 yi, to be a linear function, Rmin
i = 0, ∀i ∈ {1, ..., N} and the cross

channel gains amongst some users who do not share an edge in the interference graph to be

0 and the cross channel gains amongst the interfering neighbors to be∞. This implies that in

any optimal solution will correspond to the transmission by a MIS of the interference graph.

This can be justified as follows. Consider an optimal solution in which two neighboring

UEs are transmitting, making one of the UEs not transmit will definitely increase the sum

throughput contradicting the optimality. Specifically, this problem reduces to finding the

maximum weighted maximum indpendenet set which is NP-hard. Here the weight of each

MIS corresponds to
∑N

i=1 ri(p
Ij ).

4.9.3 Appendix C

Proof of Theorem 6. The success probability of Phase 1 is high, (1− 1
Nc1−1 ) (lower bound),

(see [Joh99] for detail), here we analyze Phase 2.

We first show that, if the list of remaining colors given as, C1ni is empty at n ≥

dc1 log 4
3
Ne + dc2 logxNe + 2 and if this holds ∀i ∈ {1, ..., N} then the Phase 2 has con-

verged to a set of H MISs which span all the UEs. Let us assume otherwise, i.e. C1ni is

empty ∀i ∈ {1, ..., N} however, the set corresponding to some color h ∈ {1, ..., H}, I ′h is not

a MIS. I
′

h has to be an IS. Assume otherwise, i.e. I
′

h is not an IS, which implies that there

must exist a pair of UEs, i and j, which are neighbors and are a part of I
′

h. If this is true
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then both acquired the color h either in the same time slot or in different time slots, in Phase

1 or 2. In case the color is acquired in different time slots, then after the first time slot when

either of the UEs in the pair acquires the color it will transmit the final color choice, h to

the neighbors (see Table 4.2 and 4.3) who in turn delete that color. However, if the color is

deleted by the neighbor then it cannot acquire it in the future thus, ruling out the case that

the colors were acquired in two different time slots. If the color was acquired by the UEs

in the same time slot, then it implies that despite the conflict in tentative choice the UEs

acquire the color which is not possible (see Table 4.2 and 4.3). This shows that I
′

h is an IS.

Since I
′

h is not maximal then ∃ at least one UE-j 6∈ I ′k which can be added to this set

without violating independence. From the assumption, we have C1nj = φ which implies that

the color h was deleted at some stage from the original list of all the colors either in Phase

1 or 2. The deletion of h was a result of that color being acquired finally by at least one of

the neighbors k ∈ N (j) since j 6∈ I ′k. In that case, j cannot acquire h as it will violate the

independence property.

Next, we show that indeed the list of all colors available C1ni is empty at the end of

Phase 2 with a high probability. Let Un correspond to the number of UEs which have

a non-empty list at the beginning of time slot n and, let Tn(Un) correspond to the total

time needed before all the UEs have an empty list. The probability that a UE at time slot

n with a non-empty list will have an empty list in next time slot is always greater than

cH(1− c)H2
. This can be explained as, if the UE chooses all the colors in the list assuming

(worst case H number of colors remain) and all the neighbors (worst case H neighbors) do

not choose any color, then all the colors in the UE’s list will be deleted. From this, we get

E(Un+1) ≤ (1 − cH(1 − c)H2
)Un = 1

x
Un and Tn(Un) = 1 + Tn(Un+1). Assuming that the

Phase 2 will start with N UEs whose list are non-empty (worst case) and from [Kar94] we

get P (Tn(N) ≥ dc2 logxNe) ≤ 1
Nc2−1 . This gives the lower bound on success probability of

Phase 2 and thereby the result in the Theorem. �
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4.9.4 Appendix D

Proof of Theorem 7. The two problems which are introduced to transit from CP to DP

are

Global Primal Problem (GPP) max{βki }i,k
∑H

k=1 Wi(
∑N

i=1 β
k
i R

k
i )

subject to
∑H

k=1 β
k
i R

k
i ≥ Rmin

i ,
∑H

k=1 β
k
i = 1, ∀i ∈ {1, ..., N}

βki = βkl , ∀i 6= l,∀k ∈ {1, ..., H}, βki ≥ 0, ∀i ∈ {1, ..., N},∀k ∈ {1, ...H}

The second problem, Local Primal Problem (LPP) is the same as GPP except we choose a

subset of the constraints from the above problem. Basically, instead of an equality constraint

between the UE’s estimate and every other UE in the network, we only keep the equality

constraints between the UE and its neighbors, i.e. βki = βkl , ∀k ∈ {1, ..., H},∀l ∈ N (i). This

is formally stated below:

Local Primal Problem (LPP) max{βki }i,k
∑H

k=1Wi(
∑N

i=1 β
k
i R

k
i )

subject to
∑H

k=1 β
k
i R

k
i ≥ Rmin

i ,
∑H

k=1 β
k
i = 1, ∀i ∈ {1, ..., N}

βki = βkl , ∀l 6∈ N (i),∀k ∈ {1, ..., H}, βki ≥ 0, ∀i ∈ {1, ..., N},∀k ∈ {1, ...H}

To show that problems CP and GPP are equivalent, we need to show that from β∗ =

(β∗1, .., β
∗
N ), an optimal argument of GPP, we can obtain an optimal argument of CP, i.e. α∗

and vice versa. Since β∗ is the optimal value (assuming feasibility) we know that β∗i = β∗j

(component-wise) holds ∀i, j ∈ {1, ..., N}.

a) Let α
′
= β∗i . α

′
satisfies the constraints in CP. The objective of CP at α

′
attains the

optimal value of GPP. We need to establish that α
′

is indeed the optimal argument of CP.

Assume that α
′
is not the optimal value, then there exists another α∗ which is indeed optimal.

Next, using α∗, we can obtain another β
′
as follows, β

′
1 = α∗and β

′

i = β
′
1, ∀i ∈ {1, ..., N}.

The objective of GPP at β
′
should be higher than β∗ which contradicts β∗ being the optimal

argument. Note that if either of CP or GPP is infeasible then the other problem can be
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shown to be infeasible as well. On the same lines we can show that from an α∗ we can obtain

β∗ as well.

b) Let α∗ be the optimal solution to CP, and define β
′′
a solution to GPP as follows. Let

β
′′
1 = α∗ and β

′′

i = β
′′

j , ∀j 6= i and since α∗ satisfies the constraints of CP, i.e. it is feasible,

implies that β
′′

as well satisfies constraints of GPP. We want to show that β
′′
is the optimal

value as well, assume that it is not and there exists an argument β∗ for which the objective

takes a higher value. If this is the case then, from β∗ we can construct a α
′
as in part a).

which, if β∗ takes a higher value than β
′′
, takes a higher value than α∗ thus, contradicting

optimality.

To show that GPP and LPP are equivalent, we use the following fact, since LPP consists

of a subset of the constraints then the solution of LPP is an upper bound of the solution

to GPP. We need to show that the gap between the solution of LPP and GPP is always 0.

Note that for an optimal solution of LPP, γ∗ = (γ∗1 , .., γ
∗
N) we know that γ∗i = γ∗j ∀j ∈ N (i)

(component-wise). If we can show that γ∗i = γ∗j ∀j ∈ {1, ..., N} then LPP and GPP will

be equivalent, since it will also satisfy all the constraints of GPP. Assume that this does

not hold then ∃ i, j such that γ∗i 6= γ∗j . Since the interference graph is connected ∃ a path

i → j = {i1, ..., is} which implies, γ∗i = γ∗i1 ... = γ∗j . This leads to a contradiction, thereby

establishing the claim.

Lastly, our goal is to show that DP is equivalent LPP. Given γ∗, define κ = γ∗ and a

θ = (θ1, ..., θH) to satisfy Dkκk − θk = 0, ∀k ∈ {1, .., H}, where κk = (γ∗,k1 , .., γ∗,kN ). It

can be shown using the same approach as we did for GPP and CP that (κ,θ) is indeed

optimal argument for DP. Assume that (κ,θ) is not the optimal solution then we know that

there exists (κ∗,θ∗) for which the objective in DP takes a higher value. If this is the case,

let us define γ
′

= κ∗, here γ
′

satisfies the constraints in LPP. Also, since the objective in

DP at (κ∗,θ∗) takes a higher value than that at (κ,θ), this yields that the objective in LPP

at γ
′
should take a higher value than that at γ∗, which contradicts optimality of γ∗. On the

same lines, it can be easily shown that from (κ∗,θ∗) we can construct the optimal solution

γ∗ of the LPP. This, will establish equivalence between LPP and DP. Hence, all the four

problems are equivalent. This is shown in Fig. 4.9.
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1.

CP

2.

GPP

3.

LPP

4.

DP

Problems 

given in 

Appendix

CP- Coupled Problem

 GPP-Global Primal Problem

LPP-Local Primal Problem

DP-Decoupled Problem

Figure 4.9: Problems used to transit from the Coupled Problem (CP) to Decoupled Problem

(DP).

�

4.9.5 Appendix E

Proof of Theorem 8. According to [WO13], the ADMM algorithm converges with rate

O(1/P ) if the DP is feasible and if the feasible set is compact. Since Bi and Θk are all closed

and bounded polyhedrons, the feasible set is compact. �

4.9.6 Appendix F

Proof of Theorem 9.Here, we need to show three things,

i) if ∆ ≤ ∆max then the distributed policy yields a feasible solution,

ii) the size of any MIS is ≥ N
∆+1

, thereby using this to show that the distributed policy

if feasible will yield a network performance of at least N
∆+1

log2(1 +
pmaxlb

(Dub)np2ζσ2 ) and

iii) the upper bound on the network performance, sum throughput here is N log2(1 +

pmaxub

(Dlb)npσ2 ).

i) In the Phase 1 of the algorithm the maximum number of colors used is ∆ + 1, since

each UE selects colors from a subset of {1, ..., H} ∩ {1, ..., di + 1}. The first ∆ + 1 output

MISs, {I ′1, ..., I
′
∆+1} span all the UEs in the network. If the fraction of time assigned to

each of these ∆ + 1 MISs is, α
′

k =
Rminub

log2(1+
pmax
lb

(Dub)np2ζσ2
ub

)
, ∀k ∈ {1, ..,∆ + 1} then such an

assignment satisfies the constraint that sum of fractions assigned to all the colors cannot
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be more than 1, i.e. since ∆ ≤ ∆max =⇒ (∆ + 1)
Rminub

log2(1+
pmax
lb

(Dub)np2ζσ2 )
≤ 1. Using the fact

that network exhibits ζ−WNI we can write the minimum instantaneous throughput that

can be obtained by UE-i as, log2(1 +
pmaxi

(DiT (i))
np2ζσ2

ub
), and minimum instantaneous throughput

of any UE as, log2(1 +
pmaxlb

(Dub)np2ζσ2
ub

). Thus, given the fractions assigned to the MISs, α
′

k =

Rminub

log2(1+
pmax
lb

(Dub)np2ζσ2
ub

)
, ∀k ∈ {1, ..,∆ + 1}, which span all the UEs. each UE i’s throughput

requirement is satisfied, i.e.,
Rminub

log2(1+
pmax
lb

(Dub)np2ζσ2
ub

)
log2(1 +

pmaxi

(DiT (i))
np2ζσ2

ub
) ≥ Rmin

ub .

ii) Assume that ∃ an MIS whose size is S < N
∆+1

. Each UE in the MIS can exclude a

maximum of ∆ UEs from being included in the MIS. This implies that S(∆ + 1), represents

the total number of UEs excluded and the UEs in the MIS which put together should

exceed N . Since this is not the case here, the contradiction implies that S ≥ N
∆+1

. This

combined with the minimum instantaneous throughput of any UE, we get the lower bound

N
∆+1

log2(1 +
pmaxlb

(Dub)np2ζσ2
ub

), for our policy.

iii) The upper bound on the optimal network performance is obtained by summing maxi-

mum instantaneous throughput of any UE log2(1+
pmaxub

(Dlb)npσ2
lb

) for all UEs, N log2(1+
pmaxub

(Dlb)npσ2
lb

).

Computing the ratio of the lower bound of proposed scheme N
∆+1

log2(1 +
pmaxlb

(Dub)np2ζσ2 ) and

N log2(1 +
pmaxub

(Dlb)npσ2 ), we get
log2(1+

pmaxlb
(Dub)np2ζσ2 )

(∆+1) log2(1+
pmax
ub

(Dlb)npσ2 )
which is no less than, Γ =

Rminub

log2(1+
pmax
ub

(Dlb)npσ2 )

since ∆ ≤ ∆max. �

4.9.7 Appendix G

Proof of Theorem 10.Let ∆∗ = 6η with η = d
log2(1+ 1

(Dlb)npσ2
lb

pmaxub )

Rminlb
e. We assume that the

interference graph is constructed using a distance threshold rule (Subsection 4.5.2). Note that

each UE’s minimum throughput requirement is at least Rmin
lb ; this combined with maximum

instantaneous throughput of any UE log2(1 +
pmaxub

(Dlb)npσ2
lb

) yields that each UE needs at least

Rminlb

log2(1+
pmax
ub

(Dlb)npσ2
lb

)
fraction of time slots. First, we need to show that if there exists a clique (a

subset of vertices in the graph which are mutually connected) in the interference graph of size,

X greater than η then the minimum throughput constraints cannot be satisfied. Assume that

there does exist such a clique, then any MIS based scheduling policy will allocate separate
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time slots to each UE in the clique. This is true because no two UEs in the clique will belong

to the same MIS. This implies that X
Rminlb

log2(1+
pmax
ub

(Dlb)npσ2
lb

)
is the total fraction of separate time

slots needed which has to be less than 1. But as X ≥ η, this leads to infeasibility. Next, if

∆ ≥∆∗, we claim that we will have at least one clique in the graph satisfying this condition.

∃ UE-i with a degree di ≥ 6η, this implies that within a radius of Dth around SBS-T (i) ∃

6η SBSs. Also, this circle around SBS-T (i) can be partitioned into 6 sectors subtending π
3

at the center.The distance between any two points located in the sector is ≤ Dth, which we

justify next. Hence, all the points in a sector are mutually connected, thus forming a clique.

Let the 2-D polar coordinates of two points i, j in a sector be (ri, 0) and (rj, θ), where

0 ≤ ri ≤ Dth, 0 ≤ rj ≤ Dth and 0 ≤ θ ≤ π
3
. Hence, the square of the distance between

the two points is expressed as f(ri, rj, θ) = r2
i + r2

j − 2rirjcosθ and our claim is that the

maximum value f(ri, rj, θ), in the set of constraints above is no greater than (Dth)2. We

formally state this as an optimization problem below:

max
ri,rj ,θ

f(ri, rj, θ)

0 ≤ ri ≤ Dth, 0 ≤ rj ≤ Dth

0 ≤ θ ≤ π
3

Since, both ri, rj are non-negative, this implies that in the above optimization problem,

θ = π
3

has to be satisfied in the optimal argument. Substituting θ = π
3

in f(ri, rj, θ) we get,

f(ri, rj,
π
3
) = r2

i + r2
j − rirj. Next, we show that r2

i + r2
j − rirj ≤ (Dth)2 for 0 ≤ ri ≤ Dth, 0 ≤

rj ≤ Dth. Fix a 0 ≤ rj ≤ Dth,then r2
i + r2

j − rirj takes its maximum value at ri = Dth, which

gives (Dth)2 + r2
j −Dthrj. Since 0 ≤ rj ≤ Dth, this yields (Dth)2 + r2

j −Dthrj ≤ (Dth)2 which

establishes the claim.

If we have a total of 6η SBSs in the circle then at least one sector has to have more than

η SBSs (Pigeonhole principle), which implies that a clique of size X ≥ η will exist. �
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CHAPTER 5

Dynamic Matching with Strategic Agents

5.1 Introduction

In the previous chapters, we studied the problem of resource allocation when the agents are

not selfish and work towards optimizing a common systemwide objective. In this chapter,

we focus on a mechanism design problem when different agents competing for resources

are selfish and want to maximize their own utilities and the mechanism designer ought to

ensure that a system wide objective is maximized at the same time. We study the problem of

matching strategic agents such as matching clients and workers. On crowdsourcing platforms

such as Upwork, different clients compete for the workers, which are the resources for the

clients, and vice-versa. Our goal is to design matching mechanism that achieve a desirable

equilibrium (further details are provided later). This chapter is based on my work in [AS16].

Motivation. The seminal work of [Hol99] analyzes how the career concerns of an indi-

vidual, i.e. the incentives to influence the current behavior of the individual and the ability

of the future employers to learn about her and hence, the individual’s future rewards, rep-

resent a significant force to explain the behaviors observed in many market environments.

These career concerns also arise in many two-sided matching settings. For instance, in job

recruitment markets, the workers desire to be matched with the clients. In industries, the

managers desire to be matched with tasks/divisions. In medical school internships, the med-

ical students desire to get internships. In these setups, the workers have career concerns,

as their performance plays a significant role in determining their matches/position in the

future. Both sides are self-interested and do not have sufficient information about their own

and the other side’s characteristics. The interactions between the two sides are repeated
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in nature, and the learning influences the future opportunities. The learning during each

interaction also depends on the actions taken by the two sides (e.g. the effort exerted by

the workers during the interview, or the effort exerted by the managers on the tasks), which

are not directly observed. Thus there is moral hazard. There can be many possible ways to

organize the interactions, i.e. the matchings over time. For instance, in job recruitments,

the management needs to decide how to organize the interviews and how to set the payment

contracts for different tasks, in crowdsourcing, the platform (such as Upwork) decides the

matching rule and can prescribe payment rules for different tasks. The matching mechanism

should ensure that it facilitates learning on both sides before final matches are achieved and

that one side does not feel incentivized to obscure learning on the other side through their

actions. Despite the ubiquitous nature of settings with matching and learning, there is no

systematic theory that models these environments and characterizes the optimal mechanisms

that lead to desirable matchings.

Problem overview and contributions. In this chapter, we consider a repeated match-

ing setting with two sides- workers and clients. All the workers and clients start with no

knowledge about their characteristics, i.e. productivities of the workers, the cost of exert-

ing effort for the workers, and the revenue generated by the tasks. Every time a worker is

matched to a task for the client, she decides the amount of effort to exert; the effort is not

observed by the client. Thus there is moral hazard. The client observes the output of the

worker, which depends on both the productivity and the effort from the worker. Since the

effort is not observed by the client, she cannot learn the worker’s true productivity. The

worker may feel incentivized to select actions to obscure the learning and achieve better

matches in the future. The worker observes the payments made by the clients, the effort it

exerted, and the cost for the effort exerted. The observations by the worker help her learn

about her own characteristics.

Our main objectives in this chapter are as follows.

a. Define coalitional stability for dynamic matching with learning under moral hazard.

b. Construct a dynamic matching mechanism that ensures workers are not incentivized
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to hinder learning through their actions, and maximizes the revenue in a coalitionally stable

equilibrium.

We propose a definition of coalitional stability for environments with dynamic match-

ing with learning in the presence of moral hazard. We construct a simple mechanism that

achieves optimal revenue and coalitional stability under equilibrium in many settings. The

mechanism has an initial assessment phase where each worker and client are matched ex-

actly once followed by a reporting phase where both sides report their preferences. In the

final phase, the clients and workers are matched based on their preferences using the Gale-

Shapley algorithm. There can be many alternate choices for the design of the mechanism.

For instance, the mechanism might solely match workers and clients based on the revenue

generated/output generated and without use of reports [XDS14] or the mechanism might

ask the workers to report their characteristics instead of their preferences. These alter-

nate choices suffer from different limitations (as discussed later in the Appendix) while our

mechanism satisfies the desired properties.

Prior work. There are several ways to categorize works in the area of matching: match-

ing with or without transfers, matching with complete or incomplete information (with or

without learning), matching with self-interested or obedient participants, matching in the

presence/absence of moral hazard and adverse selection. We do not describe the works in

these categories separately. Instead, in Table 5.1 at the end of the chapter, we compare with

a set of representative works in each category. Next, we broadly position our work with

respect to the existing works and then describe the works that are closest to us.

In many real matching setups, the presence of incomplete information is natural. For

instance, in labor markets and marriage markets the two sides to be matched do not know

each other’s characteristics. However, in these markets when the entities on the two sides are

matched to interact (worker producing output for the clients in labor markets, interaction

during dating in marriage markets), they use the observations made in the interaction to

learn about each other. The observations made often depend both on the characteristics and

on the actions (effort in the worker-client setting) taken strategically during the interaction,

which makes learning the characteristics separately non-trivial. The interaction of such a
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learning process (obscured by actions) and its impact on the matching has not been studied

in the existing works.

Our previous works, [XDS14], [SXZ16], have studied matching settings where both the

costly unobservable effort (moral hazard) and unknown types (adverse selection) play a

major role. In [XDS14], the workers are assumed to be bounded-rational as they optimize

a proxy version of their utility as defined by the conjecture function, while in the present

work the workers are rational, foresighted and maximize their long-run utilities. In [XDS14],

[SXZ16], there is no learning of the workers’ and tasks’ characteristics (along the equilibrium

path). The model proposed in [XDS14], [SXZ16] only applies to environments where the

productivity of the worker does not vary across the tasks. In comparison, the model in this

current work is more general and practical as it applies to general matching environments

where the tasks are heterogeneous. In [XDS14], [SXZ16], the equilibrium matching need

not necessarily be efficient: no provable guarantees with regard to optmization of revenue

are given. Moreover, [XDS14], [SXZ16], do not provide any stability gurarantees, unlike our

work.

5.2 Dynamic matching mechanism design

In this section, we first describe the model and problem formulation. We use A for a matrix,

A(i, j) for an element of the matrix, A for a set, and a/A for a scalar.

5.2.1 Model and Problem Formulation

There is one planner, N clients and N workers who desire to be matched.1 We define the

set of N workers as N = {1, ..., N} and the set of tasks as S = {1, .., N}. We consider a

discrete time infinite horizon model. We write each discrete time slot as t ∈ {0, 1, ...,∞}.

Each client has one task that it wants to be repeatedly executed in each time slot. The

clients and workers are assumed to be rational. In each time slot, the clients and workers

1The entire analysis can be extended to the setting when the number of clients and workers is not equal.
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are assessed and matched according to the matching rule explained later. We assume that in

each time slot one worker can be matched to at most one client and vice-versa (one-to-one

matchings).

Quality distribution of the tasks. Each task is characterised by its quality level,

which is equal to the revenue generated per unit of the task. g : S → [gmin, gmax] maps each

task to its quality level of the task, where gmin > 0. We assume that g is a strictly increasing

function without loss of generality. We assume that the quality of the tasks is not known to

anyone.

Productivity distribution of the workers. Each worker i’s productivity is a measure

of her skill level; it is the number of units of task a worker can complete per unit time.

The productivity depends on both the worker and the type of the task that she performs.

F : N × S → [fmin, fmax] is a mapping from every combination of worker and task to

a productivity level. We assume that no two workers have the same productivity for a

particular task x, i.e. F (i, x) = F (k, x) =⇒ i = k . We assume that the productivity of

the worker in performing a task is not known to anyone. (In Upwork, 96% of the workers

have no significant experience [TSR14] to know their productivities).

Efforts and outputs of the workers. Each worker i decides (strategically) how much

effort ei to exert (time invested in working) on a task x, which is assigned in a particular

time slot. We assume that ei ∈ Eix = {0, δ, 2δ, ..emaxix }, where emaxix ∈ [emaxl , emaxu ], ∀i ∈

N , ∀x ∈ S. The output produced, i.e. the total number of units of task x completed, is

given as F (i, x)ei (speed of executing the task times the time spent working on it). The

effort exerted by a worker is known privately to the worker only. The revenue generated is

given as [F (i, x)ei] g(x). We assume that the output produced and the revenue generated is

observed by the client and the planner; this is a natural assumption, see [Hol99].

We define a cost function C : S ×N → [0,∞). It costs worker i C(i, x)e2
i to exert effort

ei on task x, where C(i, x) ∈ [cmin, cmax], ∀i ∈ N ,∀x ∈ S. We assume a quadratic function

here for simplifying the presentation; all the results extend to any convex cost function

that increases in effort. The worker i does not know their own costs C(i, x), ∀x ∈ S
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and no one else knows it as well. If worker i is matched to a task x, then the worker

observes the cost C(i, x)e2
i and thus learns C(i, x). Also, we define a constant Wmax =

fmax [maxi∈N ,x∈S{emaxix }], which denotes the maximum output across all the workers.

Payment rule. We assume that the payment rules are given and the clients are required

to follow the payment rules; only the concerned clients know the payment rules. In the

Extensions Section and the Appendix Section at the end of the chapter, we discuss the

client selected payment rules. If worker i works on task x and produces W (i, x) units of

output (units of task completed by the worker), then the worker is paid pF (W (i, x), x) =

αW (i, x)2g(x) by client x, where α is a given positive constant.2 We assume α to be less

than 1
2Wmax to guarantee a non-negative profit to all the clients (See Appendix Section at

the end of the chapter for details.) The payment rule is quadratic in the output of the

worker to ensure proportional compensation of the quadratic costs for exerting effort. We

can generalize the analysis to any form of payment rule (for instance, linear etc.); we provide

details in the Appendix Section at the end of the chapter.

Set of dynamic matching mechanisms. The planner selects the matching rule and

makes it public knowledge. We first define a general vector of observations made by the

planner up to time t − 1 (end of time slot t − 1) as ht0. The elements of this general

observation vector consist of the output histories of the workers, the actions that are taken

by the workers (for instance, sending report about preferred clients to the planner, etc.).

We define the set of all the possible histories of all possible lengths as H0. A general

matching rule is given as m : H0 → Π(S), where Π(S) is the set of all possible permutations

of S. The matching rule maps each history of observations ht0 to a vector of tasks. m(ht0)[i]

denotes the ith element of the vector m(ht0) and corresponds to the task assigned to worker

i following history ht0.

In this chapter, we are interested in settings where each individual wants to find a long-

term match. Such situations arise in long-term contracts on platforms such as Upwork, job

rotation [Ort01]. Therefore, we restrict ourselves to matching rules that satisfy the following

2We choose a quadratic function for payments because the cost for exerting effort is quadratic.
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condition: limt→∞m(ht0) exists for all ht0 ∈ H0. Since these rules lead to a long-term match,

we refer to these matching rules as long-term matching rules. We denote the set of all long-

term matching rules as M. What about the matching rules for which the limits do not

exist? This is true in the settings where the workers and clients do not engage in long-term

contracts and instead work on short-term basis. For instance, on platforms such as Upwork

the clients in some cases offer short-term contracts and not the long-term contracts that we

already discussed. We call the matching rules for which the limit do not exist as short-term

matching rules. Note that our analysis does not apply to these short-term matching rules.

Strategies of the workers and clients. We define a strategy as a mapping from the

history of observations of the worker to the actions. We denote the strategies of the workers

as {πi}Ni=1 and the strategy for the clients as {πi}2N
i=N+1. Each worker and client first need

to decide whether or not to participate in the mechanism m. Each client and worker starts

with no observation history, i.e. φ. πi(φ) ∈ {P,NP} where P is for participation and NP

is for not participation. Participation is the only active choice of a client (In the Extensions

Section, we discuss the client selected payment rules). If a set of clients or workers choose

not to participate in the matching mechanism, they can continue to select their partners on

their own and interact on the platform.

In each period, each worker decides to exert some effort on the task assigned, where the

effort level is only known to the worker. In some mechanisms, the planner can solicit reports

from the workers about their preference over different tasks. Each worker also observes the

payments made and the costs incurred for exerting effort on the tasks. We define the history

of observations for each worker separately. The vector of observations of a worker i up to

time t as hti, which consists of the efforts exerted, reports sent, the payments received and

the tasks assigned upto time slot t− 1 (end of time slot t− 1). In addition, hti includes the

task assigned in time slot t. The set of all the possible observations histories of all possible

lengths is given as Hi. We define the strategy of worker i as a mapping from the history of

observations of the worker to the actions, πi : Hi → Ai, where Ai is the set of actions that

a worker takes. ai ∈ Ai has two components ai[1] is the effort exerted and ai[2] is the report

vector. Different choices for m that impact the action set differently. We define the set of
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all the possible strategies as Π(m).

The stage game In time slot t, worker i is matched to play a stage game with client

x = m(ht0)[i] (assuming both agreed to participate in the mechanism). The worker i exerts

eti effort following a private history hti (πi(h
t
i)[1] = eti). We define the output and the

revenue generated by worker i in time slot t for client x as Wi(h
t
0,h

t
i,πi|m) = F (i, x)eti

and ri(h
t
0,h

t
i,πi|m) = F (i, x)g (x) eti respectively. The payment made by client x to worker

i for the corresponding output is given as p(Wi(h
t
0,h

t
i,πi|m), x). Therefore, the utility

derived by the worker i in the stage game played in time slot t is computed as follows.

ui(h
t
0,h

t
i,πi|m, p) = p(Wi(h

t
0,h

t
i,πi|m), x)−C(i, x)(eti)

2

Note that the above utility is quasi-linear (linear in the payments). Similarly, the utility

of client x (linear in the revenue and the payments made) who is matched to worker i in time

slot t is given as follows. vx(h
t
0,h

t
i,πi|m, p) = ri(h

t
0,h

t
i,πi|m)− p(Wi(h

t
0,h

t
i,πi|m), x).

The repeated endogenous matching game. In every time slot, a stage game is

played between a worker and a client who are matched endogenously based on the observa-

tion history of the planner based on m. We refer to this repeated game as the “repeated

endogenous matching game” and define the long-run utility for each client and each worker

next.

We define the long-run utility for worker i and client x as

Ui({πk}2N
k=1|m, p) = limT→∞

1
T+1

∑T
t=0 ui(h

t
0,h

t
i,πi|m, p),

Vx({πk}2N
k=1|m, p) = limT→∞

1
T+1

∑T
t=0 vx(h

t
0,h

t
i,πi|m, p) respectively.

The total long-run revenue is R({πk}2N
k=1|m) = limT→∞

1
T+1

∑T
t=0

∑N
i=1 ri(h

t
0,h

t
i,πi|m).

It is fairly common to assume long-run average utilities in environments with career-concerns

[Hol99]. We can extend the entire analysis to discounted utilities (assuming discount factor

is sufficiently high).

Knowledge and observation structure The workers and the clients are rational,

independent decision makers who do not cooperate in decision making and who wish to

maximize their long-run utilities. The total number of time slots in the mechanism and the

matching rules are public knowledge. The payment rules are known to the concerned client
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and the planner; the quality of the task is not known to anyone. The productivities and the

costs of exerting effort on a task for the workers are not known to anyone. The effort exerted

by the worker and the corresponding set of effort levels are known to the worker privately.

The structure of the utility (but not the parameters in the utility) of the workers and clients

is known to the planner. The output and the revenue produced by the worker is observed

by the concerned client and the planner. The payment made by the client to the worker are

observed by the worker, the client and the planner. The reports sent by the workers to the

planner are kept private between the workers and the planner. This knowledge structure is

common knowledge. We summarize the knowledge structure in Table 5.2 at the end of the

chapter.

5.2.1.1 Long-run stability of matching

We propose a definition of stability that extends the standard definitions to environments

where dynamic matching is carried out with learning in the presence of moral hazard. Stabil-

ity ensures that a client and a worker do not prefer to interact by themselves on the platform

instead of following the matching mechanism proposed by the planner.

Consider a matching rule m ∈ M and payment rule p ∈ P . Suppose the joint strategy

of all the workers and clients is given as π = {π1, ...,π2N}. The history for the planner

induced by the joint strategy π is denoted as ht,π0 and the history for the worker i induced

by the joint strategy π is given as ht,πi . The matching rule takes a limiting value depending

upon the history, which we define as m∗π = limt→∞m(ht,π0 ). The expression for the long-run

utilities for worker i and client x = m∗π[i] are simplified below (See details in the Appendix

Section at the end of the chapter).

Ui({πk}2N
k=1|m, p) =

lim
T→∞

1

T + 1

T∑
t=0

[
p
(
F (i,m∗π[i])πi(h

t,π
i ),m∗π[i]

)
−C(i,m∗π[i])πi(h

t,π
i )2

]
(5.1)
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Vx({πk}2N
k=1|m, p) =

lim
T→∞

1

T + 1

T∑
t=0

[
F (i,m∗π[i])πi(h

t,π
i ))g(j)− p

(
F (i,m∗π[i])πi(h

t,π
i ),m∗π[i]

)] (5.2)

The above expression for long-run utility shows that the worker’s utility depends on the

task assigned in the limit and not on the utility derived in the phases before being matched

to this task finally. We now formalize the condition that no worker-task pair that is not

matched in m∗π cannot strictly gain by being matched to one another by jointly choosing

to deviate from participating in the matching mechanism. We assume that there are no

side-payments, i.e., the payments are done solely based on worker’s output following the

given payment rule p. Consider worker i and a task y, where y 6= m∗π[i], and suppose that

this worker-task pair is matched instead of i and m∗π[i]. In such a case, the long-run utilities

achieved by worker i and client y (in the limit), when the strategy for worker i is π
′
i, is

defined below in (5.3) and (5.4) respectively. Observe that we are considering the case where

worker i’s final match, i.e. task y, as fixed. Therefore, the strategy of others cannot impact

worker i and client y’s long-run utilities. Hence, it is sufficient to consider the strategy π
′
i

to be a function of time only.

Ûy
i (π

′

i) = lim
T→∞

1

T + 1

[
T∑
t=0

p

(
F (i, y)π

′

i(t), y

)
−C(i, y)π

′

i(t)
2

]
(5.3)

V̂ i
y (π

′

i) = lim
T→∞

1

T + 1

T∑
t=0

F (i, y)π
′

i(t)g(y)− p

(
F (i, y)π

′

i(t), y

)
(5.4)

If a mechanism m is implemented, then we define long-run stability in terms of the above

expressions for long-run pairwise utilities, (5.1), (5.2), (5.3), (5.4) as follows.

Definition 12 Long-run pairwise stability: A joint strategy π is long-run stable under m

if there exists no worker-client pair (i, y), not matched in the limit of m (y 6= m∗π(i)), and

a strategy for worker i π
′
i that leads to a strict increase in the long-run utility for worker i

and client y, i.e. Ûy
i (π

′
i) > Ui({πk}2N

k=1|m, p), V̂ i
y (π

′
i) > Vy({πk}2N

k=1|m, p).

We extend the above definition from a pair of worker and client to any coalition of workers

and clients. Suppose X is the set of the workers and clients who want to deviate and we
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define the strategy that a worker i in the deviating set follows as π
′
i. The long-run utility of

the worker i ∈ X (client y ∈ X ) is given as Ûi({π
′
j}j∈X ) (V̂y({π

′
j}j∈X )). If a subset consisting

of both workers and clients deviate, then the workers and clients can arrive at a different

matching on their own. If a subset consisting of only workers deviate, then these workers

can jointly try to obscure the learning on the client side.

Definition 13 Long-run coalitional stability: A joint strategy π is long-run coalition-stable

under m if there exists no subset X , and a set of strategies for worker and clients in it given

as {π′i}i∈X that leads to a strict increase in the long-run utility for each worker i ∈ S and

client y ∈ X , i.e. Ûi({π
′
i}i∈X ) > Ui({πk}2N

k=1|m, p), V̂y({π
′
i}i∈X ) > Vy({πk}2N

k=1|m, p).

From the above it is clear that long-run coalition-stability implies long-run pairwise-

stability.

We now compare and contrast the difference of the proposed definition of long-run sta-

bility with the existing definitions. Shapley’s works [GS62] and [SS71] proposed pairwise

stability and core respectively. More recently, there have been works on stability in dynamic

matching markets. In [KK18], [KMT14], the authors analyze pairwise stability in dynamic

matching markets. In [DL05], [Kur09], [Dov14], authors analyze coaliational stability in dy-

namic matching markets. In our setup, unlike the existing setups, the preferences are learnt

as there is incomplete information and the preferences are affected by the actions of one side.

Planner’s problem. The planner decides the mechanism m to maximize the total

long-run revenue subject to three types of constraints. The first type of constraints are

the individual rationality (IR) constraints, which if satisfied guarantee that the workers and

the clients participate in the mechanism. The second type of constraints are the incentive-

compatibility (IC) constraints, which guarantee that every worker follows an optimal strategy

(given the strategies of others). If the strategy of each worker can satisfy the IC constraint,

then the joint strategy of all the workers is an equilibrium (i.e. no worker will want to

deviate). We also require that the joint strategy π is long-run coalitionally stable under m.

The planner’s problem is
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max
m∈M,p∈P

R({πk}2N
k=1|m, p)

s.t. Vx({πk}2N
k=1|m, p) ≥ 0, ∀x ∈ S (IR-clients)

Ui({πk}2N
k=1|m, p) ≥ 0 ∀i ∈ N (IR-workers)

Ui(πi, {πk}2N
k=1,k 6=i|m, p) ≥ Ui(π

′

i, {πk}2N
k=1,k 6=i|m, p) ∀i ∈ N ∀π′i; (IC-workers)

π is long-run coalition-stable under m

The planner’s problem outlined above is challenging because

• Incomplete information- The planner needs to select m to maximize the total

long-run revenue achieved by an equilibrium strategy, which depends on both the

productivity of the workers F and the costs C that are not known to the planner.

In our model, the planner and the workers do not even know the distribution of the

workers’ characteristics as is typically assumed in games of incomplete information.

• Computational intractability- The sets of possible matching rulesM, the payment

rules P , and the strategies of the workers Π(m) is extremely large, thus making the

problem computationally intractable.

5.2.2 Proposed Mechanism and its Properties

First, we give a brief description of the proposed mechanism. The proposed matching rule

is designed to evaluate each worker on every type of task exactly once. Since the worker is

evaluated only once we refer to the proposed matching rule as “first impression is the last

impression” (FILI). Based on the output of the workers a ranking of the workers over the

different tasks is computed and the workers also submit a preference for the tasks to the

planner. The planner computes a final matching based on these rankings and preferences,

which remains fixed for all the future time slots. Next, we give a detailed description of the

mechanism, which we denote as mF .

Matching rule. The FILI matching rule mF operates in three phases described below.
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1. Assessment phase (0 ≤ t ≤ N − 1) In this phase, the matching is carried out with

the aim to evaluate workers’ performances over different tasks. In time slot t, where

t ≤ N − 1, worker i is assigned to task [(t+ i) mod N ], where mod is the modulus

operator. Observe that in each time slot all the workers are matched to different tasks.

Also, each worker is matched to every task exactly once in the first N time slots, i.e.

0 ≤ t ≤ N − 1. At the end of each time slot, the worker, the client and the planner

observe the output of the worker on the assigned task. At the end of the t = N − 1

time slot, the planner must have observed the output of each worker-task combination.

We write the observation of the planner in the form of a matrix W e, where W e(i, x)

is the output of worker i on task x in the assessment phase.

2. Reporting phase (t = N) At the start of this phase (start of the time slot t = N),

worker i is matched to task [(t+ i) mod N ] and the planner requests all the workers

to submit their preferences in the form of ranks (strictly ordered) for tasks. The

workers form these preferences based on the task qualities and the outputs. These

rank submissions are a part of the strategy for the workers, which we describe later.3

The planner computes the preferences for the clients over the workers based on the

outputs W e as follows. For every client x, the planner ranks the workers based on the

outputs produced on task x {W e(i, x)}Ni=1. If two workers have the same output, then

the tie is broken in favor of worker with higher index.

3. Operational phase (t ≥ N + 1) In this phase, the final matching is computed based

on the assessments in the previous phase and the preferences submitted by the workers.

The planner computes the matching based on the G-S algorithm [GS62] as follows. The

planner executes the G-S algorithm with the workers as the proposers and the clients as

the acceptors. In each iteration of the algorithm, each worker proposes to her favorite

task that has not already rejected it. Each client based on the proposals it gets keeps

its favorite worker on hold and rejects the rest. At the end of at most N2 − 2N + 2

iterations, the matching that is achieved is final. The matching computed above is

3In practical settings, not all the tasks on the platform are very different and many of them can be
categorized into one type, for instance, translation (each worker has the same productivity for tasks of the
same type). In such cases, it is sufficient to evaluate the workers on tasks of different types.
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fixed for the remaining time slots starting from N + 1. (Note that the N2 − 2N + 2

iterations are carried out at the start of time slot N + 1. Moreover, the G-S algorithm

is executed by the planner and there is no direct interaction between the workers and

the clients to execute the G-S algorithm.)

Next, we state a proposition which shows that the workers and clients are always willing

to participate in the above mechanism.

Proposition 1 It is individually rational for all the clients and the workers to participate

in the proposed mechanism.

The proofs of all the theorems and propositions are given in the Appendix at the end of

the chapter. See Appendix at the end of the chapter for the proof of Proposition 1. The

proposed mechanism induces a repeated endogenous matching game as described in Section

5.2.1. In the next section, we derive an equilibrium strategy for this repeated endogenous

matching game and also show that it has some very useful properties.

5.2.2.1 Equilibrium analysis for the repeated endogenous matching game.

For our mechanism mF , the action of the workers consists of the effort to exert in the

assessment phase and the operational phase, while in the reporting phase the actions for

the workers consists of both the effort to exert and the preference lists to report. Next, we

propose a strategy for each worker i, which we refer to as MTBB (M-maximum, T-truthful,

BB-bang-bang) strategy πMTBB
i for the following reason. A worker following MTBB exerts

maximum effort in the assessment phase, then reports the preferences truthfully in the

reporting phase, and then uses a bang-bang type structure for exerting effort (maximum or

no effort) in the operational phase. We will show that the MTBB strategy maximizes the

long-run utility of the worker.

1. Assessment phase (0 ≤ t ≤ N − 1) In each time slot t in this phase, where t ≤ N ,

worker i should exert the maximum effort possible, i.e. emax
imF (ht0)[i]

, where mF (ht0)[i] =

(t + i) mod N . In each time slot, the worker receives a payment from the matched
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client and also observes the cost for exerting effort. We denote the payment received

by worker i in time slot t as P (i,mF (ht0)[i]) and the cost incurred by worker i in time

slot t as C̄(i,mF (ht0)[i]). At the end of this phase, worker i knows the P (i, x) and

C̄(i, x) for all the tasks x ∈ S.

2. Reporting phase (t = N) The worker i constructs the vector of long-run utilities

that the worker expects to derive by being matched as follows, U(i, x) = P (i, x) −

C̄(i, x), ∀x ∈ S. The worker submits a truthful ranking, i.e., ranking in the decreasing

order of U(i, x). Worker i exerts maximum effort on task (t + i) mod N assigned to

it in this time slot.

3. Operational phase (t ≥ N+1) The planner executes the G-S algorithm (as described

above) and assigns to worker i a task y. IfU(i, y) > 0, then the worker exerts maximum

effort emaxiy in every time slot, and otherwise the worker exerts zero effort in every time

slot. Note that the ranking list of other workers and clients is not known to worker i

and thus the worker cannot predict the task she will be matched to in the operational

phase.

In the next theorem, we show that the proposed MTBB is a weakly dominant strategy for

each worker. Therefore, if all the workers follow the MTBB strategy, then the joint strategy

will comprise an equilibrium of the repeated endogenous matching game (induced by the

proposed mechanism ΩF ), which we refer to as the bang-bang equilibrium (BBE).

Theorem 12 MTBB strategy and its properties

1. The MTBB strategy is a weakly dominant strategy for each worker.

2. If all the workers follow the MTBB strategy, then the joint strategy is bang-bang equi-

librium.

See Appendix for the proof of Theorem 12.

The MTBB strategy is only weakly dominant and thus it does not imply that the bang-

bang equilibrium is the unique NE. In order to play MTBB, the worker does not need

information about the strategy of other workers. We study the uniqueness of BBE in next

section.
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Mechanism incentivizes truthful revealation and no hindrance in learning.

The structure of the mechanism ensures that if a worker exerts maximum effort on one

task, then there is no decrease in the chance of getting accepted by a task that the worker

prefers more. Our design involves reporting of preferences from the worker side. Using the

G-S algorithm with workers as proposers incentivizes truthful revelation [Rot82] and gives

workers no incentive to hinder learning through their actions. In mechanisms that only

operate based on the output and try to achieve efficient long-run performance, it can be

shown that workers can strategically try to under-perform on some tasks (See Appendix at

the end of the chapter for details).

Bayesian Nash Equilibrium. If we consider the case where the workers also have some

knowledge of the form of the distribution of the productivities of other workers, then as well

the above theorem continues to hold because the MTBB strategy is a dominant strategy.

Therefore, the bang-bang equilibrium will be a Bayesian Nash equilibrium.

Next, we analyze properties of the BBE. We state certain assumptions next. Note that

the planner/clients/workers do not know that these assumptions hold.

Assumption 1 F (i, x) > F (k, x) ⇐⇒ C(k, x) > C(i, x) ⇐⇒ emaxix > emaxkx , ∀i, k ∈

N , ∀x ∈ S

Assumption 1 states that if a worker i has a higher productivity than another worker k on

a task x, i.e. F (i, x) > F (k, x), then it has a lower cost C(i, x) < C(k, x) for exerting effort

on the same task and this is true for all the tasks x ∈ S and vice-versa. The same condition

holds for the maximum effort. Assumption 1 is natural in many settings. It states that if a

worker has more experience (and skill) in performing a task, i.e. (F (i, x) > F (k, x)), then

the worker also has more interest in that task and is willing to spend more time on it, i.e.

(C(i, x) < C(k, x)).

Theorem 13 Long-run Stability. Suppose the proposed mechanism is used. If Assump-

tion 1 holds, then bang-bang equilibrium is long-run coalition-stable under FILI matching

mechanism.
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See Appendix for the proof of Theorem 13. In the Appendix, we give example of a

mechanism that leads to unstable outcomes.

The above Theorem also implies that the BBE is long-run pairwise stable. Next, we

compare the pairwise stability aspect with existing results in literature. Our Theorem 13

bears similarity to Theorem 5 in [Rot89]. In Theorem 5 in [Rot89] it is shown that if

the matching rule is worker-optimal and outputs stable outcomes (stability in the sense

of [GS62]), then the truthful revelation of preferences is the dominant strategy for all the

workers. Recall that in our setting, the preference list submitted in the MTBB strategy

corresponds to the true preference list. In Theorem 13, we prove that if the proposed

mechanism is used (it uses worker-optimal matching in the operational phase), then we know

that for every worker MTBB strategy, which leads to the truthful revelation of preferences,

is a dominant strategy and is long-run stable. In both [Rot89] and our setting, it is shown

that it is possible to achieve truthful revelation on the worker side and also achieve stability.

Assumption 2 The productivity of a worker, the cost of exerting effort, and the maximum

effort of a worker, is the same across all the tasks, i.e. F (i, x) = F (i, y), ∀x, y and is

denoted as F (i), C(i, x) = C(i, y), ∀x, y and is denoted as C(i), emaxix = emaxiy , ∀x, y and is

denoted as emaxi .

Assumption 2 states that the type of a worker across the different tasks are the same.

This is natural in settings where the tasks are homogeneous, i.e. of the same type. For

instance, all the tasks can relate to a particular language of software development. This

assumption requires homogeneity in task types but still allows the tasks to have different

qualities. For instance, different software development tasks can generate different revenues

(qualities). Moreover, the workers can still have different qualities over the tasks even though

the tasks are of the same type.

Uniqueness of the equilibrium. In the next theorem, we show that in many cases

the repeated endogenous matching game has a unique equilibrium payoff (vector of long-run

utilities of the workers), which is achieved by the bang-bang equilibrium strategy. Note that
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the uniqueness in terms of payoffs means that there can be multiple equilibrium strategies

possible but all of them lead to the same unique equilibrium payoff.

Theorem 14 Uniqueness of the equilibrium payoff. If the Assumptions 1, and 2

hold, then the repeated endogenous matching game induced by the proposed mechanism has

a unique equilibrium payoff, which is achieved by the bang-bang equilibrium strategy.

See Appendix for the proof of Theorem 14.

It should be pointed out that we can even relax Assumption 2 to prove Theorem 14

(See details in the Appendix). Next we establish the conditions under which the proposed

mechanism can be shown to be effective in mitigating both moral hazard and adverse selection

and thus achieving optimal long-run revenue.

Assumption 3 The quality of a task g(x) is either more than gu (high quality task) or less

than gl (low quality task).

The above assumption ensures that if a task’s quality is greater than gu, then every

worker wants to exert non-zero effort on it, else if the task’s quality is lower than gl, then no

worker wants to exert effort on it.

Theorem 15 Long-run Revenue. If Assumptions 2 and 3 hold, then the proposed mech-

anism mF achieves the optimal total long-run revenue among all the mechanisms M.

See Appendix for the proof of Theorem 15.

5.3 Numerical Experiments

In this section, we present numerical simulations to show that the performance achieved

by the proposed mechanism is very high. We assume that each worker’s productivity and

the cost for exerting effort on every task is drawn from distributions that are known to

the planner. We show that our mechanism is not restricted to quadratic payments and the
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results presented extend to different payment rules. The set of payment rules we use here is

the union of the following two families- i) Linear payments: A worker is paid a fixed amount

per unit output that it generates. Specifically, a worker is paid a fraction of the revenue

generated, where the fraction is a parameter of the payment rule that needs to be selected

by the designer. ii) Quadratic payments: The client x pays a worker αw2g(x) amount for

producing w units of output. We assume that the workers also have the knowledge of the

structure of the payment rule being used (linear type or quadratic type). Next, we describe

the mechanisms that we will compare against.

1. Initial belief based matching combined with optimal payment. The planner

matches the workers based on its initial beliefs about the workers as follows. The planner

ranks the workers based on the mean of the beliefs across the tasks and matches the workers

with the tasks assortatively, where the tasks are ranked based on their qualities. If two

workers share the same rank, then the matching is done randomly for those workers. Using

this as the matching rule, the planner can select the optimal payment rule from the above

family of payment rules to optimize the chosen performance criterion, which can be the total

long-run revenue or the total long-run profit.

Next, we describe existing mechanisms that are similar to this initial belief based match-

ing combined with optimal payment. In many existing setups, the matching rules are similar

to initial belief based matching. For instance, on Upwork the clients and the workers are

matched based on their interaction and there is no mechanism to aggregate the preferences

of the clients and workers. Also, the firms that do not practice job rotation follow a similar

mechanism [Ort01] that relies only on the initial beliefs. The payment rules on platforms

such as Upwork generally follow a linear payment structure.

2. Proposed mechanism combined with optimal payment. For our mechanism,

we will use the proposed FILI matching rule mF . We will allow the planner to select the

optimal payment rules from the same family of payment rules described at the beginning of

this section (given the fixed choice of matching rule mF ).

3. Upper bound on the total long-run revenue and the profit. We use the upper
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Figure 5.1: Comparison of the proposed mechanism with other approaches.

bound for the total long-run revenue and the total long-run profit that we derive in the

Appendix.

In Figure 5.1, we compare the performance of the proposed mechanism combined with

optimal payment against the mechanisms described above and the upper bound derived

in the Appendix. The details of the setup for the numerical simulations can be found in

Appendix. It can be seen that the proposed mechanism leads to large gains of over 75

percent and is always long-run stable.

5.4 Extensions

Payment rules decided by the clients. In Section 5.2, we considered the settings where

the clients comply and use the payment rules set by the planner. We can extend some of

the important results presented in this chapter to settings where the choice of payment rules

is a part of the client’s strategy and are not set by the planner. For ease of exposition, we

will assume that each client has to choose from a set of linear payment rules- client pays

the worker a fraction of the revenue generated, where the fraction is decided by the client.

The costs for exerting effort for the workers is a linear function in the exerted effort as well.

Suppose that Assumptions 1, 2, and 3 hold. We also assume that the clients know the
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distribution from which the workers are drawn and vice-versa. Under these conditions, we

can arrive at an equilibrium strategy, which is very similar to the bang-bang equilibrium

strategy. We can also show that the matching achieved is long-run stable with respect to

this equilibrium strategy. The only new component in the equilibrium strategy that needs

explanation are clients’ payment rules. The client with the highest quality task will want to

attract the worker with highest quality (since Assumptions 1 and 2 hold). The client with

highest task quality will need to use a payment rule that guarantees that the worker with

highest quality is paid at least as much as being offered by the client with second highest

task quality. The same argument applies to the client with second highest task quality and

so on. In such a case, all the clients will set a payment rules such that the amount paid to

all the workers (fraction × revenue) is the same. Further details are in the Appendix. We

also discuss some other extensions in the Appendix.

5.5 Conclusion

In this chapter, we consider an environment with career concerns, where the workers are

assessed by different clients over time before finally getting matched and then working for

a particular client. The mechanism considered requires the planner to take actions based

on the outputs produced by the self-interested workers, where the outputs depend on both

productivity of workers (unknown thus adverse selection) and efforts exerted (unobserved

thus moral hazard). Therefore, the model features both adverse selection (on both sides)

and moral hazard (on one side). We construct a mechanism − assessment, matching and

payment rules − that ensures that both moral hazard and adverse selection thereby achieving

high total long-run revenue (total long-run profits) in a wide-range of settings. We also show

that in the proposed mechanism, the workers find it optimal to follow simple maximum

truth bang-bang (MTBB) strategies. We propose a notion of stability - “long-run stability”,

which is meaningful for matching environments with incomplete information and learning. In

a wide-range of settings, we prove that our proposed mechanism achieves long-run stability.
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5.6 Appendix

In all the proofs we will use I(A) as the indicator function. If the condition A holds, then

the indicator is one and zero otherwise.

5.6.1 Appendix A

Proof of Proposition 1. It is easy to see that the workers can always ensure a zero long-run

utility (outside option of the worker gives zero utility) by exerting zero effort. Therefore, the

participation constraint for the workers is trivially satisfied. If α ≤ 1
2Wmax , then the profit

per unit output is always greater than or equal to zero which ensures that the clients cannot

have a negative profit in any period. Thus the clients cannot have a negative long-run profit.

�

5.6.2 Appendix B

Proof of Theorem 12. From the Proposition 1 we know that the clients will participate

in the mechanism. Hence, in this proof we only focus on the worker’s strategies. There are

two parts to the Theorem. In the first part, we need to show that the MTBB strategy is

a weakly dominant strategy. First, we will simplify the expression for the long-run utility

of the worker i when the proposed mechanism ΩF = (mF , pF ) is implemented. We write

the joint strategy for all the workers as π = (π1, ...,πN). In Section 5.2, where we defined

the strategy of the workers for a given mechanism Ω, we used a general definition for the

action set. The strategy consisted of two parts, πi(h
t
i)[1] is the effort exerted by worker i

and πi(h
t
i)[2] is the reports submitted by the worker. For our proposed mechanism ΩF , the

second component of reports only plays a role in time slot N , i.e. the reporting phase, and

for the rest of the time slots the clients can choose to send no reports as it does not impact

the interactions in any way.

We write the private history of worker i, which is induced by the joint strategy π as ht,πi .
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We write the preference list provided by worker i in the reporting phase as

bi = πi(h
N,π
i )[2] (5.5)

The output produced in time slot t by worker i assigned to task j = (t+i) mod N is written

as

W e(i, j) = F (i, j)πi(h
t,π
i ) (5.6)

The G-S algorithm executed by the planner at the beginning of the operational phase

takes as input the preference lists {bi}Ni=1 and the outputs produced by the workers W e. We

represent the output of the G-S algorithm as

mGS({bi}Ni=1,W
e) (5.7)

where mGS is a function that takes the preference lists and performance of workers as input

and outputs the matching. Note that we do not explicitly write the observation history of

the planner ht0. The joint strategy π induces an observation history for the planner, which

we write as ht,π0 . Note that ht,π0 and {bi}Ni=1,W
e contain the same relevant information

needed for the final matching to be determined by G-S algorithm. For consistency, we state

that when t ≥ N + 1,

mF (ht,π0 ) = mGS({bi}Ni=1,W
e) (5.8)

is the notation for the proposed matching rule given in Section 5.2.

The expression for the long-run utility for worker i defined in Section 5.2. is simplified

by substituting (5.8) as follows.

Ui({πk}Nk=1|mF , pF ) =

lim
T→∞

1

T + 1

T∑
t=N+1

[
αF (i,mGS({bk}Nk=1,W

e)[i])2g(mGS({bk}Nk=1,W
e)[i])−

C(i,mGS
(
{bk}Nk=1,W

e[i]
) ]

(eti)
2

(5.9)

In the above expression (5.9), eti = πi(h
t,π
i )[1]. In the above expression (5.9), we did not

write the utility from the assessment and reporting phase because the number of time slots in
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assessment phase are finite N+1 and thus utilities in the assessment phase do not contribute

to the long-run utility.

We define

ē2
i = lim

T→∞

T∑
t=0

1

T + 1
(eti)

2 (5.10)

We define

Hi({bk}Nk=1,W
e) =

αF (i,mGS({bk}Nk=1,W
e)[i])2g(mGS({bk}Nk=1,W

e)[i])−C(i,mGS
(
{bk}Nk=1,W

e[i]
) (5.11)

Thus we can simplify the above utility (5.9) by substituting (5.10), (5.11) as follows.

Ui({πk}Nk=1|m, p) = ē2
iHi({bk}Nk=1,W

e) (5.12)

Next, we want to solve for the optimal strategy πi given the fixed strategy of the rest of

the workers π−i. Formally stated, the optimization problem is given as follows.

max
πi

Ui({πk}Nk=1|mF , pF ) (5.13)

We will first compute an upper bound for (5.12). Observe that

Ui({πk}Nk=1|m, p) = ē2
iHi({bk}Nk=1,W

e) ≤

(emaximGS({bk}Nk=1,W
e)[i])

2Hi({bk}Nk=1,W
e)I

(
Hi({bk}Nk=1,W

e) ≥ 0

)
(5.14)

In the above expression (5.14), the LHS will achieve the same value as the RHS provided

worker i follows the following strategy. If t ≥ N + 1 and Hi({bk}Nk=1,W
e) ≥ 0, then

eti = emax
imGS({bk}Nk=1,W

e)[i]
and eti = 0 zero otherwise. We now compute the optimal value for

the maximum for the RHS. The expression in RHS depends only on the actions taken in the

assessment and the reporting phase. Based on the above inequality (5.14), we can say that

the optimizer of the RHS in terms of the actions in the assessment and reporting phase will

be an upper bound of the maximization problem in (5.12). We first maximize the expression

in RHS with respect to the choice of preference lists submitted in the reporting phase.
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We claim that if worker i ranks the clients in the order of [αF (i, j)2g(j)−C(i, j)](emaxij )2

for all j, then it corresponds to the best choice of the preference list. We denote this

preference list as b∗i . This claim follows from Theorem 5 [Rot82], where it is shown that

the truthful reporting is a dominant strategy when the matching rule is worker optimal and

leads to stable outcomes.

Thus we can write

Ui({πk}Nk=1|m, p) =

ē2
iHi({bk}Nk=1,W

e) ≤ (emaximGS({bk}Nk=1,W
e)[i])

2Hi({bk}Nk=1,W
e)I

(
Hi({bk}Nk=1,W

e) ≥ 0

)
≤

(emaximGS({bk}Nk=1,k 6=i,b
∗
i ,W

e)[i])
2Hi(b

∗
i , {bk}Nk=1,k 6=i,W

e)I

(
Hi(b

∗
i , {bk}Nk=1,k 6=i,W

e) ≥ 0

)
(5.15)

Next, we will show that if the preference list is fixed for worker i to b∗i , then the choice of

effort level for task j in the assessment phase, which is denoted as eevalij , that maximizes the

RHS of the above expression (5.15) is emaxij . We do so by arguing that the long-run utility

of the worker increases in eevalij .

If the worker increases eevalij to eevalij +δ, then the ranking of the worker by task j can either

stay the same or increase. Since other parameters remain the same, the ranking of worker i

on other tasks does not change. In this case, there are three possibilities. Suppose that the

worker exerts effort levels {eevalik }Nk=1 in the assessment phase on different tasks and submits

the preference list b∗i in the reporting phase and is matched to task j1 in the operation phase.

We will analyze the behavior of the (5.15) when we vary the effort level of worker i on task

j eevalij . It is possible that rank of task j1 in the preference list b∗i is greater than task j or

equal or lesser. If the rank of j1 is greater than j, then the worker even after increasing effort

on task j will still be accepted by j1 as the ranking of the worker for j1 and ranking of j1

for all workers is not affected by eevalij . Therefore, in this case, increasing the effort eevalij will

not change the rank of the task that is assigned.

If the rank of j1 is equal to j, then by increasing the effort eevalij can only improve worker’s
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ranking for task j. The ranking of worker i on tasks ranked higher than task j is still the

same, thus worker i will be rejected by all those tasks. But since the ranking of worker i on

task j is the same or higher it means that the worker will be assigned to j.

If the ranking of task j1 is lesser than the rank of task j, then note that the ranking of

the worker on task j1 will not change and thus the worker will still be accepted by task j1

at least. However, since the worker increases effort on task j, the ranking of the worker can

improve on task j. This means that it is possible that the worker is accepted by a strictly

higher ranked task. Thus we know that increasing effort eevalij can lead to the worker being

matched to a task with higher or the same rank as before. A task with higher or the same

rank will imply a higher or the same value for the long-run utility of the worker. Hence, the

eevalij = emaxij is the optimal choice at which the upper bound in the RHS is maximized. This

holds for all the tasks that worker i is matched to for the first time in the assessment phase.

Observe that the proposed MTBB strategy achieves the value for the upper bound in the

RHS, thus it has to be the best response for a worker to every strategy of other workers.

The next part of the theorem follows easily from the fact that since all the workers use

their best response strategies the joint strategy has to be an equilibrium. �

5.6.3 Appendix C

Proof of Theorem 13. We first prove long-run pairwise stability. Before we give the proof

of Theorem 13, we first need to simplify and arrive at the expressions for the long-run utilities

for the workers and clients as given in Section 5.2.1. We only consider the matching rules

for which the limit of the matching exists across all the histories. Suppose the joint strategy

being used by the workers and the clients is π. Under this joint strategy the limit of the

matching rule is given as m∗π. The history that is induced by the joint strategy π is defined

as ht,π0 and the ht,πi for worker i. Note that the limt→∞m(ht,π0 ) = m∗π, where the limit is

defined using the standard Euclidean norm in the space RN as the distance metric. Next,

we will show that the above limit is attained after a finite number of time slots denoted as

Tlim. Note that the minimum distance between any two distinct matchings is finite and is
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given as dmin. From the definition of limit, it is clear that there exists a constant Tlim such

that if t ≥ Tlim, then the distance between m(ht,π0 ) and m∗π is less than dmin. Therefore, for

all t ≥ Tlim

m(ht,π0 ) = m∗π (5.16)

Based on the above simplification we can write the long-run utility of a worker i and

client x = m∗π[i] as follows.

Ui({πk}2N
k=1|m, p) = lim

T→∞

T∑
t=Tlim

1

T + 1
p(F (i, x)πi(h

t,π
i ), x)−C(i, x)πi(h

t,π
i )2

= lim
T→∞

T∑
t=0

1

T + 1
p(F (i, x)πi(h

t,π
i ), x)−C(i, x)πi(h

t,π
i )2

(5.17)

Similar justification applies for the clients’ long-run utilities as well.

We write the matching achieved in bang-bang equilibrium at the start of the operational

phase as mBBE. The long-run utility for worker i in bang-bang equilibrium

Ui({πMTBB
k }Nk=1|mF , pF )

is simplified below

[αF (i,mBBE[i])2g(mBBE[i])−C(i,mBBE[i])](emaximBBE [i])
2

I(αF (i,mBBE[i])2g(mBBE[i])−C(i,mBBE[i]) ≥ 0)
(5.18)

Define J : N × S → R and L : N × S → R as follows.

J(k, x) =
[
αF (k, x)2g(x)−C(k, x)

]
L(k, x) = I(αF (k, x)2g(x)−C(k, x) ≥ 0)

(5.19)

We can write (5.18) using (5.19) more succinctly as follows.

Ui({πMTBB
k }Nk=1|mF , pF ) = J(i,mBBE[i])L(i,mBBE[i])(emaximBBE [i])

2 (5.20)

The long-run utility for client mBBE[m], where m 6= i, in bang-bang equilibrium is given as

follows.

137



(1− αF (m,mBBE[m])emaxmmBBE [m])

I(αF (m,mBBE[m])2g(mBBE[m])−C(m,mBBE[m]) ≥ 0)F (m,mBBE[m])emaxmmBBE [m]

(5.21)

We can simplify (5.21) using (5.19) as follows.

(1− αF (m,mBBE[m])emaxmmBBE [m])L(m,mBBE[m])F (m,mBBE[m])emaxmmBBE [m]
(5.22)

Suppose worker i is matched to client mBBE[m] instead in the operational phase. Our

objective here is to show that it is not possible for both worker i and client mBBE[m] to

increase their long-run utilities by being matched to one another and this holds true for every

i 6= m.

If the utility for worker i strictly increases by being matched to mBBE[m], then it has

to hold true that
[
αF (i,mBBE[m])2g(mBBE[m]) − C(i,mBBE[m])

]
(emaximBBE [m])

2 has to be

strictly higher than
[
αF (i,mBBE[i])2g(mBBE[i]) − C(i,mBBE[i])

]
(emaximBBE [i])

2. This has

to hold true because otherwise the maximum utility that worker i can achieve by getting

matched to mBBE[m] will always be lesser than or equal to the long-run utility that the

worker can achieve by getting matched to task mBBE[i] in the operational phase of the

bang-bang equilibrium.

We can write the utility for worker i when it is matched to mBBE[m] (denoted as

Û
mBBE [m]
i (π

′
i|pF )) in the operational phase and when it follows strategy π

′
i as follows. As

explained in Section 5.2, that it is sufficient to consider the strategies π
′
i that only depend

on time.

Û
mBBE [m]
i (π

′

i|pF ) = J(i,mBBE[m])L(i,mBBE[m]) lim
T→∞

T∑
t=N+1

π
′
i(t)

2

T + 1
(5.23)

We write limT→∞
∑T

t=N+1
π
′
i(t)

2

T+1
= ē2

i , limT→∞
∑T

t=N+1
π
′
i(t)

T+1
= ēi and substitute in (5.23) to

obtain the following..

Û
mBBE [m]
i (π

′

i|pF ) = J(i,mBBE[m])L(i,mBBE[m])ē2
i (5.24)
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Also, the utility for client mBBE[m] in this case is derived as follows.

V̂ i
mBBE [m](π

′

i|pF )

= lim
T→∞

T∑
t=N+1

1

T + 1

[
1− αF (i,mBBE[m])π

′

i(t)
]
L(i,mBBE[m])F (i,mBBE[m])π

′

i(t)

=
[
F (i,mBBE[m])ēi − αF (i,mBBE[m])2ē2

i

]
L(i,mBBE[m])

≤
[
F (i,mBBE[m])ēi − αF (i,mBBE[m])2(ēi)

2
]
L(i,mBBE[m])

(5.25)

Based on the G-S algorithm and the fact that every worker uses MTBB strategy, we

know that the rank of worker m is higher than the rank of worker i for task mBBE[m].

F (m,mBBE[m])emaxmmBBE [m] > F (i,mBBE[m])emaximBBE [m] (5.26)

From the above (5.26), either the productivity or the maximum effort has to be strictly

higher. From Assumption 1, we know that if one of them is true, then the other is also true.

In addition, we can say the following:

F (m,mBBE[m]) ≥ F (i,mBBE[m]) =⇒ C(i,mBBE[m]) ≥ C(m,mBBE[m]) (5.27)

Based on the above (5.27), we can show the following.

J(m,mBBE[m]) ≥ J(i,mBBE[m]) (5.28)

L(m,mBBE[m]) ≥ L(i,mBBE[m]) (5.29)

Observe that the function (1 − αx)x is increasing in [0, 1
2α

]. We assumed that α ≤ 1
2Wmax .

Therefore, (1− αx)x is increasing is x ∈ [0,Wmax]. Note that

Wmax ≥ F (m,mBBE[m])emaxmmBBE [m] ≥ F (i,mBBE[m])emaximBBE [m] ≥ F (i,mBBE[m])π
′

i(t)

(5.30)
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We can use the above relations (5.27), (5.28), (5.29), (5.30) to derive the following con-

dition on the expression in (5.25).[
F (i,mBBE[m])ēi − αF (i,mBBE[m])2ēi

2
]
L(i,mBBE[m]) ≤[

F (i,mBBE[m])emaximBBE [m] − αF (i,mBBE[m])2(emaximBBE [m])
2
]
L(i,mBBE[m]) ≤[

F (m,mBBE[m])emaxmmBBE [m] − αF (m,mBBE[m])2(emaxmmBBE [m])
2
]
L(m,mBBE[m])

(5.31)

Therefore, from the above (5.31), we can see that the client mBBE[m] cannot have a

strict gain at the same time as worker i. Thus we can conclude that the proposed matching

rule has to be long-run pairwise-stable w.r.t bang-bang equilibrium strategy (joint MTBB

strategy). We now move on to long-run coalition-stability.

Let us assume that the BBE strategy is not long-run coalitionally stable. Therefore,

we know that there exists a subset S, which strictly benefits from deviating. We analyze

three possibilities for the deviating subset. Suppose that the deviating subset consists of

only workers. The joint strategy of the deviating subset and the equilibrium strategy of the

non-deviating set outperforms the BBE strategy. Therefore, for each worker i the following

condition is true

Ûi(π
′

i,π
′

−i,πSc) > Ui(π
BBE)

We know that πBBEi is a weakly dominant strategy. Therefore,

Ûi(π
′

i,π
′

−i,πSc) = Ui(π
BBE
i ,π

′

−i,πSc)

Firstly, we know that Ui(π
′
i,π

′
−i,πSc) > 0 otherwise it cannot be the case that

Ûi(π
′

i,π
′

−i,πSc) > Ui(π
BBE)

The minimum possible utility in the equilibrium is zero, i.e. Ui(pi
BBE) > 0.

Since we know that the utility that the worker i gets is non-zero and based on our

assumptions, we know that there are no ties in the preferences in BBE. Therefore, the

worker i is matched to the same task z as it was matched under Ui(π
′
i,π

′
−i,πSc).
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For a worker j 6= i that is in S, we calculate the impact when worker i switches from π
′
i

to πBBEi .

Suppose worker j was matched to task w under π
′
i,π

′
−i,πSc . When worker i switched to

the MTBB trategy from π
′
i there are two possibilities

• Task w was not above the task z under πBBEi in which case the change in strategy

does not impact worker j

• Task w was above task z in πBBEi . Worker i is rejected in favor of another worker.

Since the strategies of all the other workers remain fixed the worker j continues to be

ranked above all the workers that propose to task z. Hence, worker j is matched to

task w.

Ûj(π
′

i,π
′

−i,πSc) = Uj(π
BBE
i ,π

′

−i,πSc)

This holds true for all j 6= i. Hence, all the workers j 6= i continue to be matched to

the same task and derive the same utility when worker i switches. We can continue this

argument and get that

Ûi(π
′

i,π
′

−i,πSc) = Ui(π
BBE)

The above is a contradiction.

Suppose that the subset consists of only clients. Clients alone cannot gain from deviating

as no workers to match to.

Suppose that the subset consists of at least one worker and one client. In this case,

there will be at least one pair of a client and worker that are matched that gain. If this is

the case, then that violates pairwise-stability. Hence, in all the three cases we arrive at a

contradiction. This shows that it is not possible to have a profitable deviation by a coalition.

�
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5.6.4 Appendix D

Proof of Theorem 14. Before we provide the proof, it is important to be reminded of how

we define the uniqueness of the equilibrium. Each equilibrium strategy has a corresponding

equilibrium payoff. If for the repeated game that we analyze all the possible equilibrium

strategies lead to the same payoff, then we call the equilibrium payoff to be unique. In

this Theorem, we will assume that the Assumption 1 and 2 hold. We can combine the

Assumption 1 and 2 and interpret them together as follows.

From Assumption 1 and 2, we can see that the preference list for all the workers in the

MTBB strategy is the same and corresponds to the ranking of the tasks in order of their

qualities. Also, if the workers follow the MTBB strategy, then the ranking of the workers

as computed by the planner for every client is the same as well. Specifically, the ranking

of the workers is based on the outputs in the assessment phase, where the set of outputs in

assessment phase is given as {F (k)emaxk }Nk=1. Hence, from now on in this proof when we refer

to the ranking of the tasks, it is the same as the ranking done by every worker in the MTBB

strategy unless stated specifically otherwise. Similarly, when we refer to ranking of workers

it is the same as the ranking of the workers based on their maximum outputs computed by

the planner for every client.

First, we show that there does not exist another equilibrium in which at least one worker

i can achieve a higher utility than the utility achieved in bang-bang equilibrium (i.e. the

joint MTBB strategy). If all the workers play the MTBB strategy, then the matching that

is computed at the start of the operational phase after the execution of G-S algorithm is

denoted asmBBE, wheremBBE[i] is the index of the task assigned to worker i. Suppose that

there exists another equilibrium in which worker i can strictly gain. If worker i strictly gains

in this equilibrium in comparison to the utility achieved in the bang-bang equilibrium, then

it has to be matched to a task that is ranked higher than mBBE[i]. Let the task that worker

i is assigned to in the new equilibrium be denoted as mBBE[j]. In this new equilibrium, we

claim that at least one of the workers that were matched to a task ranked greater than or

equal to mBBE[j] in the bang-bang equilibrium will now be matched to a task that is ranked
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strictly less than its match in the bang-bang equilibrium. Next, we justify this claim.

Consider the set of the workers who were matched to tasks ranked greater than or equal

to mBBE[j] in the matching achieved in the operational phase in bang-bang equilibrium.

Let us denote this set by Z. Suppose that the number of workers in this set are N1. In the

new equilibrium in which i strictly gains, suppose that every worker in this set is matched

to a task that is ranked strictly higher than or equal to its match in bang-bang equilibrium.

First, note that if this supposition is not true, then the claim that there is atleast one worker

matched to a task ranked less than its match in the bang-bang equilibrium is already true.

Next, we assume that the supposition is true and proceed. Since the worker i is matched

to mBBE[j], the workers in Z have to be matched to tasks that are ranked strictly higher

than mBBE[j]. The total number of tasks that are ranked strictly higher than mBBE[j] are

N1 − 1. Therefore, if the supposition were true, then N1 workers have to be matched to at

most N1 − 1 tasks. Hence, it is not possible to assign each of these workers to a strictly

higher task (From Pigeonhole principle).

Consider the worker that has the highest ranking among all the workers that are assigned

to a task that is ranked lower than their corresponding match in the bang-bang equilibrium.

Let this worker be worker k and let the task assigned to k in the new equilibrium bemBBE[l].

In this new equilibrium, let the worker who is matched to mBBE[k] be worker r. Note that

the rank of worker r has to be lesser than the rank of worker k. Next, we argue that in this

new equilibrium, worker k must have used a strategy different than MTBB. More specifically,

worker k either does not exert maximum effort on at least one task ranked ahead of mBBE[l]

in the assessment phase or ranks mBBE[l] ahead of at least one task that was ranked higher

in the preference list used in the MTBB strategy. Suppose that this is not the case, which

means that worker k exerts maximum effort on all the tasks ahead of mBBE[l] and worker

k also ranks all the tasks that were ahead of mBBE[l] to be higher than mBBE[l].

Now since worker k exerts maximum effort on all the tasks ahead of mBBE[l], it will

be ranked ahead of r by mBBE[k] because it has a higher maximum output (rank of k is

higher than k in the bang-bang equilibrium). We also know that worker k ranks mBBE[k]

ahead of mBBE[l]. Therefore, the matching achieved is not stable w.r.t the preferences of
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the workers and the clients. This is a contradiction as the matching achieved must be stable

as we use the G-S algorithm. Hence, in the new equilibrium, it must be that the worker

must have either not exerted maximum effort on at least one task ranked ahead of mBBE[l]

in the assessment phase or the preference list that it submits must rank mBBE[l] ahead of

at least one task that was ranked higher in the preference list in the bang-bang equilibrium.

Next, we analyze what happens if worker k instead uses the MTBB strategy in this case.

In this case, worker k will approach all the tasks ranked higher than mBBE[l] before

mBBE[l]. We claim that the worker will be accepted by at least one task ranked higher

than or equal to mBBE[k]. Suppose that this is not the case, i.e. no task higher or equal to

mBBE[k] accepts k. Observe that in the matching achieved in the bang-bang equilibrium,

the number of tasks that are ranked higher or equal to mBBE[k] is the same as the number

of workers with output greater than or equal to F (k)emaxk . Based on this observation and

the supposition above, it has to be true that at least one of the tasks ranked higher or

equal to mBBE[k] accepts a worker with productivity lower than F (k)emaxk . Let this task

be denoted as mBBE[q]. We also know that mBBE[q] is also preferred more by worker k

than its current match. Therefore, the matching that is achieved is not stable. This is a

contradiction because the matching achieved by the G-S algorithm has to be stable. Hence,

it must be true that if worker k uses MTBB strategy, then it is accepted by a task that is

ranked at least as high as mBBE[k].

We assume that all the tasks are of distinct qualities. Therefore, αF (k)2g(mBBE[k]) −

C(k) > αF (k)2g(mBBE[l]) − C(k). If αF (k)2g(mBBE[k]) − C(k) > 0, then worker k will

exert maximum effort in the operational phase and thus deviating to the MTBB strategy will

lead to a profitable deviation. This is a contradiction as the new equilibrium does not satisfy

the incentive compatibility for all the workers. Therefore, αF (k)2g(mBBE[k]) − C(k) ≤ 0.

In this case, worker k will have no incentive to exert maximum effort. Thus the deviation

cannot be strictly profitable. However, since αF (k)2g(mBBE[k]) − C(k) ≤ 0 we can claim

in the new equilibrium, worker i will also exert no effort. If this claim is true, then it will

imply that worker i cannot strictly gain in the new equilibrium, which is a contradiction to

the original claim that we can find another equilibrium in which worker i strictly gains. We
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justify this claim next.

In the new equilibrium, worker i is matched to task mBBE[j]. We know that the rank of

mBBE[k] is greater than or equal to mBBE[j], which implies the following

g(mBBE[k]) > g(mBBE[j]) (5.32)

We also know that the rank of worker k is more than the rank of worker i because in

bang-bang equilibrium worker k is matched to a task that is ranked higher than the task

assigned to worker i. Therefore, F (k)emaxk ≥ F (i)emaxi . From Assumption 1, we can conclude

that

F (k)emaxk ≥ F (i)emaxi =⇒ F (k) ≥ F (i) =⇒ C(k) ≤ C(i) (5.33)

Based on (5.32) and (5.33), we have αF (i)2g(mBBE[j]) − C(i) ≤ 0, which implies that

the utility achieved by worker i is 0. This establishes the claim. Hence, there cannot be

another equilibrium in which a worker gains strictly in comparison to bang-bang equilibrium.

Next, we argue that there cannot be another equilibrium in which at least one worker

gets a strictly lower payoff than in bang-bang equilibrium. We develop the proof for this on

the same lines as the above. Note that for a worker to have strictly lower utility it has to be

that the worker is matched to a task that is ranked strictly lesser than the task the worker is

matched to in bang-bang equilibrium. Also, for the worker to have a strictly lower utility, it

has to be true that the worker gets a strictly positive utility from its match in the bang-bang

equilibrium. In this new equilibrium, we define the set of workers who are matched to tasks,

which are strictly less in ranking in comparison to their match in the bang-bang equilibrium.

From this set, we choose the worker with the highest rank. Let us denote this worker by

s. Since the worker s has a positive utility from its match in the bang-bang equilibrium it

has to be true that for s, αF (s)2g(mBBE[s]) − C(s) > 0. We can show that this worker s

must have used a strategy different than MTBB. The proof of this is exactly on the same

lines as the one for worker k given above. Based on the above proof for worker k it can

also be shown that if worker s instead uses the MTBB strategy, then it will be matched
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to a task that has at least the same rank as mBBE[s]. Since αF (s)2g(mBBE[s]) − C(s) >

this deviation has to be profitable for worker s. Thus in this new equilibrium, incentive

compatibility constraints are not satisfied that leads to a contradiction. Hence, there will

be no equilibrium in which at least one worker gets strictly lower payoff than the bang-bang

equilibrium. We can conclude that in every equilibrium each worker will have the same

payoff as in the bang-bang equilibrium.

Remark about Assumption 2. In the above proof, we require that every worker has

the same ranking over the tasks and vice-versa. Assumption 2 is a sufficient condition to

establish that the rankings are the same on both sides. Consider the case where Assumption

2 does not hold. However, if the rankings are still the same on both sides, then Theorem 14

continues to hold. �

5.6.5 Appendix E

Proof of Theorem 15. Consider a fixed payment rule with parameter α. We consider

matching rules in which each worker is finally matched to some client (in the limit) and

thereafter there is no change in the matching. Given the fixed payment rule, it is easy to

check that the only incentive compatible choice for worker i’s effort for task x is

emaxi I(αF (i)2g(x)− C(i)) (5.34)

Therefore, if worker i is matched to task x, then the long-run revenue generated by worker

i is F (i)emaxi I(αF (i)2g(x) − C(i))g(x). Based on this we can write the expression for the

maximum total long-run revenue that can be generated as follows.

max
m̃

N∑
i=1

F (i)emaxi I(αF (i)2g(m̃[i])− C(i))g(m̃[i]) (5.35)

Observe that the indicator function in the objective above (5.35) increases with α. There-

fore, the above maximum value (5.35) is an increasing function of α. Based on the constraint

that α ≤ 1
2Wmax , we can conclude the optimal value over all the payment rules in PF is given

as

146



max
m̃

N∑
i=1

F (i)emaxi I(
1

2Wmax
F (i)2g(m̃[i])− C(i))g(m̃[i]) (5.36)

Next, we simplify the above expression (5.36). We claim that (5.36) is simplified as

follows.

max
m̃

N∑
i=1

F (i)emaxi I(
1

2Wmax
F (i)2g(m̃[i])− C(i))g(m̃[i]) =

N∑
i=1

F (mi)e
max
mi

I(
1

2Wmax
F (mi)

2g(i)− C(mi))g(i)

(5.37)

In the above expression (5.37), {F (mi)e
max
mi
}Ni=1 corresponds to the set {F (i)emaxi }Ni=1

ordered in the increasing order. In the matching in RHS above (5.37), worker mi is matched

to client i. We denote this matching as m̂. For consistency, we state that m̂(mi) = i, ;∀i ∈

{1, .., N}. Also, note that the optimal value for α = α∗ = 1
2Wmax .

Next, we establish the above claim by deriving the RHS in (5.37).

First, we will establish a property that is a consequence of Assumption 2 and Assumption

3.

If worker i is matched to a task g(y) of quality greater than or equal to g(y) > gu, then

it will exert maximum effort. To prove this we need to show that the value of the indicator

function in (5.34) is always one when g(y) > gu.

I(
1

2Wmax
F (i)2g(y)− C(i)) ≥ I(

1

2Wmax
(fmin)2g(y)− cmax ≥ 0)

≥ I(
1

2Wmax
(fmin)2gu − cmax ≥ 0) = 1

(5.38)

If a worker is matched to a task g(x) of quality greater than or equal to g(x) < gl, then it

will exert no effort. To prove this we need to show that the value of the indicator function

in (5.34) is always zero when g(x) < gl.

I(
1

2Wmax
F (i)2g(x)− C(i)) ≤ I(

1

2Wmax
(fmax)2g(x)− cmin ≥ 0) ≤

I(
1

2Wmax
(fmax)2gl − cmin ≥ 0) = 0

(5.39)
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Let us assume that there is a m̃∗ different than m̂, which is optimal and leads to a

strictly higher value for the objective, i.e. the total long-run revenue. We need to consider

the following three cases:

Suppose that there exists at least one task that has a quality more than gu. Therefore,

we can find a task denoted as ĵ that satisfies the following condition: g(j) > gu, ∀j ≥ ĵ

and g(j) < gl, ∀j ≤ ĵ. For a given matching m̃, we partition the workers into two sets:

workers that are matched to tasks with quality greater than or equal to g(ĵ) and the tasks

with quality lesser than g(ĵ). Let the two sets for the matching m̂ be denoted as S1 and S2,

where S1 is the set of workers matched with tasks of quality greater than or equal to g(ĵ)

and S2 is the set of workers matched with tasks with quality lesser than g(ĵ). Similarly, the

two sets corresponding to the matching m̃∗ be R1 and R2.

Suppose that R1 is not equal to S1. Thus we can conclude that R1∩S2 and R2∩S1 is non-

empty. Consider a worker i1 from the set R1∩S2 and another worker i2 from the set R2∩S1.

From the definition of the matching m̂, we can conclude that F (i1)emaxi1
< F (i2)emaxi2

. In

the matching m̃∗, worker i1 is matched to task greater than or equal to g(ĵ) and worker i2

is matched to task less than g(ĵ). Suppose that we swap the worker i1 and worker i2 in the

matching m̃∗. The worker i2 will now exert maximum effort and worker i1 will now exert zero

effort (This is due to the property that we established above). Since F (i1)emaxi1
< F (i2)emaxi2

the total long-run revenue will increase, thus contradicting the fact that m̃∗ is optimal.

Therefore, the supposition that R1 is not equal to S1 cannot be true. So, we know that

R1 = S1 and R2 = S2. Next, we simplify the expressions for the total long-run revenues

under m̃∗ and m̂.

N∑
i=1

F (i)emaxi g(m̃∗[i]) =
∑
i∈R1

F (i)emaxi g(m̃∗[i]) (5.40)

N∑
i=1

F (i)emaxi g(m̂[i]) =
∑
i∈R1

F (i)emaxi g(m̂[i]) (5.41)

Since m̃∗ is strictly better than m̂, it has to be true that the matching m̃∗ of the workers

within the set R1 is different from m̂. Due to the claim that m̃∗ is strictly better than m̂,
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the following has to be true

∑
i∈R1

F (i)emaxi g(m̃∗[i]) >
∑
i∈R1

F (i)emaxi g(m̂[i]) =
N∑
j=ĵ

F (mj)e
max
mj

g(j) (5.42)

From rearrangement inequality, we know that

N∑
j=ĵ

F (mj)e
max
mj

g(j) ≥
∑
i∈R1

F (i)emaxi g(m̃∗[i]) (5.43)

The condition above (5.43) contradicts (5.42).

From the above we get that the set of workers in R1 have to be matched to the same

clients by both the matchings m̃∗ and m̂, which means m̃∗ cannot be strictly better than

m̂.

Observe that the output of our matching rule is the same as m̂ because all the workers

rank the clients in the order of their qualities and the all the clients rank the workers based

on their maximum outputs. This shows that the total long-run revenue achieved by the

proposed mechanism is the same as in (5.37). �

5.6.6 Appendix F

Upper Bound on Performance. We write the maximum outputs of workers sorted in

the increasing order as follows {F (m1)emaxm1
, ..., F (mN)emaxmN

}, where mx is the index of the

worker with the xth highest output.

Proposition 2 If Assumption 2 holds, then

• The maximum total long-run revenue generated when the workers are obedient and

their productivities are known is
∑N

x=1 F (mx)g(x)emaxmx .

• The total long-run revenue generated in the bang-bang equilibrium is∑N
x∈Smax F (mx)g(x)emaxmx

We write the set of outputs as follows {F (1)emax1 , ..., F (N)emaxN } and we write the outputs

sorted in the increasing order as follows {F (m1)emaxm1
, ..., F (mN)emaxmN

}. Let us first establish
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the upper bound on the output. First, we will compute an upper bound on the total revenue

that can be generated in one period. Clearly, the revenue generated is monotonic in the

effort exerted by any worker. Since we are computing the upper bound here we will assume

that each worker exerts maximum effort. Each worker i should exert maximum effort emaxi

otherwise the effort can always be increased to improve the output. Consider a general

matching m′ : N → S, where m′[i] is the task allocated to worker i.

We can write the total revenue for this matching m
′

as follows
∑N

i=1 F (i)emaxi g(m
′
[i]).

The inequality given below is a consequence of the rearrangement inequality.

N∑
i=1

F (i)emaxi g(m
′
[i]) ≤

N∑
i=1

F (mi)e
max
i g(i) ,∀m′

(5.44)

Therefore, we can also write the following for every matching rule m and joint strategy

π as defined in Section 5.2.

N∑
i=1

ri(h
t
0,h

t
i,πi|m) ≤

N∑
i=1

F (mi)e
max
mi

g(i)

The above holds true because

ri(h
t
0,h

t
i,πi|m) = F (i)g(m(ht0))πi(h

t
i) ≤ F (i)g(m(ht0)[i])emaxi

and m
′

= m(ht0). Note that the upper bound is same for each time slot, the same upper

bound continues to hold for the long-run average too. �

5.6.7 Appendix G

Example of a mechanism that only uses outputs and not the reports. In this sec-

tion, we show through an example that in some mechanisms (similar to existing mechanisms)

that only operate on the performance of the workers, the workers may not be willing to exert

maximum effort in the assessment phase and may instead try to manipulate the beliefs of

the planner.

The planner observes the workers performance in the assessment phase and then matches

the workers to the tasks as follows. We use the same notation W e as given in Section 5.2
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for the outputs observed by the planner, where W e(i, x) is the output generated by worker

i when matched to task x. The planner expects that the workers will continue to perform

at the same level in the operational phase as well. Based on this expectation, the planner

solves the following optimization to compute the best possible matching from the set of all

the possible matchings.

max
m̃

N∑
k=1

W e(k, m̃[k])g(m̃[k]) (5.45)

In the above, m̃ is a bijective mapping given as m̃ : N → S.

Suppose there are two workers and two tasks. The productivities and the costs of the

workers are given as F =

6 6

5 4

, C =

1 2

1 2

. The maximum effort for every worker on

each task is the same and is equal to 1. Suppose that task 1 pays more for than task 2, i.e.

p(w, 1) > p(w, 2) for the same amount of output w.

In the assessment phase, if worker 1 and worker 2 both exert maximum effort on both

task 1 and 2, then the mechanism will assign worker 1 to task 2 and worker 2 to task 1.

Observe that both workers prefer task 1 to task 2. Therefore, worker 1 should instead exert

no effort on task 2 and continue to exert maximum effort on task 1. In this case, worker

1 is assigned task 1 and worker 2 is assigned to task 2. Also, it is important to note that

for worker 1 to know whether to reduce its effort on task 2 or not, it needs much more

information about the other worker and its costs. The above example shows that how a

worker can manipulate the beliefs through its performance in order to be assigned the task

of its choice.

5.6.8 Appendix H

Details of the simulation setup in Section 5.3.

In the numerical simulation setup, we will consider the settings where the Assumption

2 to holds. Half of the workers’ productivities are independently drawn from a uniform

distribution U ∼ [0, w1] and the rest of the workers are drawn independently from a uniform
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distribution U ∼ [0, w2]. If worker i’s productivity is given as F (i), then the cost for exerting

effort is defined as C(i) = C1 − C2F (i). The task qualities are drawn independently from a

distribution t1 + t2 × U [0, 1]. The maximum effort for all the workers is the same and given

as emax. The linear payment rule is defined as: each client pays the worker a fraction of

the revenue generated β ∈ [0, 1] to the worker. The quadratic payment rule is defined as:

each client x pays the worker αw2g(x) for generating w output, where α ≤ 1
2 max{w1,w2}emax .

The number of workers are allowed to vary from 10 to 100. The other parameters are set as

follows w1 = 20, w2 = 14, C1 = 2, C2 = 0.05, t1 = 2, t2 = 10 and the number of draws are

set to 10000.

5.6.9 Appendix I

Examples when long-run stability is not achieved by other mechanisms.

In this section, our aim is to show that mechanisms that share some similarities with our

proposed mechanism need not be long-run stable. We describe one such mechanism next.

i) In the first N time slots, each workers works on one task exactly once (similar to the

assessment phase in our mechanism). Each worker’s average output is computed, where

the average is taken uniformly across the tasks that the worker performs. The workers are

finally matched to the tasks assortatively as follows. The worker with the highest average

output gets the task with the highest quality and so on. Note that if a worker’s productivity

does not vary across the tasks, then this mechanism can be shown to be the same as our

mechanism provided that it is combined with our proposed payment rule.

We will show that the above mechanism cannot always achieve long-run stability. Con-

sider the following case with two workers and two tasks. The productivity of the workers, the

cost of the workers and the maximum effort that can be exerted by the workers is given as

F =

6 2

5 4

, C =

1 2

1 2

 and, emax = 1 respectively. The productivity of the tasks is given

as g = [2 1]. The payment rules for tasks 1 and 2 are p(x, 1) and p(x, 2), where it is given

that p(x, 1) > p(x, 2). In this setting, for the mechanism described above, in the equilibrium
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the workers will exert maximum effort while being assessed. Finally, worker 1 is matched

to task 2 and worker 2 is matched to task 1, which is not a long-run stable matching with

respect to the equilibrium strategy. On the other hand, the proposed assessment-matching

rule will lead to the long-run stable matching of worker 1 with task 1 and worker 2 with task

2.

There can be other mechanisms that match workers based on the planner’s initial beliefs

about the worker’s types. Such mechanisms also lead to outcomes that are not long-run

stable. For instance, if the planner’s beliefs about two workers are very similar, then the

assignment for such workers is done randomly, thus leading to unstable outcomes.

5.6.10 Appendix J

Extensions

General payment and cost functions. Suppose the cost of exerting effort level e

for a worker i on a task x is C(i, x)c(e), where c is a convex increasing function of e.

Suppose that the payment for producing output w on task x is b(w)g(x), where b is an

increasing function of w. For this cost and payment functions, we continue to use the

proposed matching mechanism and we can show that most of the results that we presented

extend to this case. We describe the weakly dominant equilibrium strategy of the worker.

In the assessment phase, the worker exerts maximum effort on every task that it is assigned

to. In the operational phase, the worker decides the optimal effort level to exert in order to

maximize the utility. The main difference between the equilibrium strategy derived in the

main part of the chapter and here is that the effort exerted by the workers does not exhibit a

bang-bang structure. We can also show that the equilibrium strategy is coalitionally stable

(the proof follows the same steps as in Theorem 13).

Client selected payment rules. As mentioned earlier, for simplicity we assume that

the clients use a linear payment rule. A client with task of quality g(x) uses a payment

rule α(x)Wg(x), where α(x) is the fraction that is set by the client, W is the output. As

we described in the Section 5.3, the clients make the same payment to the workers, which

153



implies α(x)g(x) is the same value for all the clients. This means client with higher task

quality pays a lower fraction. Therefore, the client with lowest quality will pay the highest

fraction. Suppose the client with lowest quality say client x sets α(x) = ζ, where ζ < 1.

Based on this the payment rules of the other clients are determined. For instance, a client

y will pay α(y) = g(x)ζ
g(y)

. Note that α(y) < 1 since g(x) is lowest quality task. The expected

profit for client x is written as E[(1− ζ)F (mx))g(x)emaxmx I(F (mx)g(x)ζ −C(mx))] where the

expectation is computed using the joint distribution of C(mx), F (mx), e
max
mx .

Client x optimizes the above and obtains a ζ∗ as the optimal fraction. This determines

the payment rules for all the other clients as well, as described above. The client y will pay

α(y) = g(y)ζ∗

g(x)
.
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Matching with Matching with Matching with MH, AS

transfer strategic workers incomplete info.

[GS62] No No No No, No

[SS71] Yes No No No, No

[SS00], Yes Yes No No, No

[Bec73]

[Rot82], No Yes No No, No

[IM15]

[FIT16]

[Rot89] No Yes Yes (no learning) No, Yes

[RCI13], No No Yes (with learning) No, Yes

[LS09]

[Hop12] Yes Yes Yes (with learning) No, Yes

[TSR12] No No Yes (with learning) No, Yes

[HZV12] Yes Yes Yes (no learning) Yes, No

[LD17] No Yes Yes (with learning) No, Yes

[AKL15] No Yes Yes (with learning) No, Yes

[AJK14] Yes Yes Yes (with learning) No, Yes

[Koc14] No Yes Yes (with learning) No, Yes

[KOS14] Yes No Yes (with learning) No, Yes

[DNG15] Yes Yes Yes (no learning ) No, No

[Fis15] Yes Yes No Yes, No

[CTW03] Yes Yes No No, No

[XDS14] Yes Bounded rational Yes (learning

(one-step foresight) out of equilibrium) Yes, Yes

[SXZ16] Yes Yes Yes (no learning) Yes, Yes

This work Yes Yes Yes (with learning) Yes, Yes

Table 5.1: Comparison of the different works. AS: Adverse Selection, MH: Moral Hazard
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Client Worker Planner

T X X X

Matching rule X X X

Payment rule X X

Cost C(i, x)

Productivity F (i, x)

Task quality g(x)

Effort X

Output X X

Table 5.2: Summary of the knowledge structure.

156



CHAPTER 6

Dynamic Resource Allocation Planning

6.1 Introduction

In the previous chapters, we studied the problem of resource sharing among multiple agents.

In this chapter, we focus on a different resource allocation problem. We start with an agent

who is given limited resources to monitor a dynamic environment/subject. Our objective is

to develop plans for the agent to monitor the environment, i.e., how should the agent screen

the stochastic process to gather information in a timely manner about the path of the process.

The development of optimal screening plans is a computationally intractable task because

of the exponentially large number of possible ways in which a stochastic process can evolve.

In this chapter, we focus on developing a framework for this task, which is computationally

tractable and has provable performance guarantees. We focus on the application of breast

cancer screening framework. However, the framework is general and can be applied to other

screening settings such as sensor scheduling. This chapter is based on my work in [AZS17].

Screening plays an important role in the diagnosis and treatment of a wide variety of

diseases, including cancer, cardiovascular disease, HIV, diabetes and many others by leading

to early detection of disease [Siu16] [CHH13] [WJO68]. For some diseases (e.g., breast cancer,

pancreatic cancer), the benefit of early detection is enormous [JSX10] [RKV03]. Because

screening – especially screening that requires invasive procedures such as mammograms, CT

scans, biopsies, angiograms, etc. – imposes financial and health costs on the patient and

resource costs on society, good screening policies should trade off benefit and cost [PK14].

The best screening policies should take into account that the trade-off between benefit and

cost should be different for different diseases – but also for different patients – patients
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whose features suggest that they are at high risk should be screened more often; patients

whose features suggest that they are at low risk should be screened less often – and even

different for the same individual at different points in time, as the perceived risk for that

patient changes. Thus the best screening policies should account for the disease type and

be personalized to the features of the patient and to the history of the patient (including

the history of screening) [Lie07]. This chapter develops the first such personalized screening

policies in a very general setting.

A screening policy prescribes what tests should/should not be done and when. Develop-

ing personalized screening policies that optimally balance the frequency of testing against

the delay in the detection of the disease is extremely difficult for a number of reasons. (1)

The onset and progression of different diseases varies significantly across the diseases. For

instance, in [AAS12] the development of breast cancer is modeled as a stationary Markov pro-

cess, in [Riz11] the development of HIV is modeled using a non-stationary survival process.

The test outcomes observed over time may follow a non-stationary stochastic process that

depends on the disease process upto that time and the features of the patient [SA16] [Riz11].

Existing works on screening [AAS12] [EAS14] are restricted to Markov disease processes

and stationary Markov test outcome models, while this is not the case for many diseases

and their test outcomes [RTV15] [Riz11] [SA16] [MDC06]. (2) The cost of not screening is

the delay in detection of disease, which is not known. Hence the decision maker must act

on the basis of beliefs about future disease states in addition to beliefs about the current

disease state. (3) Patients can arrive at the scheduled time but may also arrive earlier on

the basis of external information so the decision maker’s beliefs must take this external in-

formation into account. For instance, external information can be the development of lumps

on breasts [BP01] [TGR02], or the development of a comorbidity [MWM92] [DCK11]. (4)

Given models of the progression of the disease and of the external information, solving for

that policy is computationally intractable in general.

This chapter addresses all of these problems. We provide a computationally effective

procedure that solves for an approximately optimal policy and we provide bounds for the

approximation error (loss in performance) that arises from using the approximately optimal
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policy rather than the exactly optimal policy. Our procedure is applicable to many disease

models such as dynamic survival models [Mil11] [Cro01] [LW06] [LW03] [Riz11] [MDC06],

first hitting time models [AAS12] [EAS14] [LW03] [Cox92] [SWH11] [LW06].

Evaluating a proposed personalized screening policy using observational data is chal-

lenging. Observational data does not contain the counterfactuals: we cannot know what

would have happened if a patient had been screened more often or an additional test had

been performed. Instead, we follow an alternative route that has become standard in the

literature [AAS12] [MIR08] [EAS14] [RTV15]: we learn the disease progression model from

the observational data and then evaluate the screening policy on the basis of the learned

model. We also account for the fact that the disease model may be incorrectly estimated.

We show that if the estimation error and the approximation error are small, then the policy

we construct is very close to the policy for the correctly estimated model.

In this chapter, a large breast cancer data set is used to illustrate the proposed person-

alized screening policy. We show that high risk patients are screened more often than low

risk patients (personalization to the features of the patient) and that patients with bad test

results are screened more often than patients with good test results (personalization to the

dynamic history of the patient). The effect of these personalizations is that, in comparison

with existing clinical policies, the policy we construct leads to large reductions (28-68%) in

screening while achieving the same expected delays in disease detection. To illustrate the

impact of the disease on the policy, we carry out a synthetic exercise across diseases, one for

which the delay cost is linear and one for which the delay cost is quadratic. We show that

the regime of operation (frequency of tests vs expected delay in detection) for the policies for

the two costs are significantly different, thus highlighting the importance of choice of costs.

6.2 Model and Problem Formulation

Time. Time is discrete and the time horizon is finite; we write T = {1, ..., T} for the set of

time slots.

Patient features. Patients are distinguished by a (fixed) feature x. We assume that
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the features of a patient (age, sex, family history, etc.) are observable and that the set X of

all patient features is finite.

Disease model. We model the disease in terms of the (true physiological) state, where

the state space is S. The disease follows a finite state stochastic process; ST is the space

of state trajectories. The probability distribution over trajectories depends on the patient’s

features; for ~s ∈ ST , x ∈ X we write Pr(~s |x) for the probability that the state trajectory

is ~s given that the patient’s features are x. We distinguish one state D ∈ S as the disease

state; the disease state D is absorbing.1 Hence Pr(s(t) = D, s(t′) 6= D) = 0 for every time t

and every time t′ > t. The true state is hidden/not observed.2

Our stochastic process model of disease encompasses many of the disease models in the

literature, including discrete time survival models. The (discrete time) Cox Proportional

Odds model [Cox92], for instance, is the particular case of our model in which there are two

states (Healthy H and Disease D) and the probability distribution over state trajectories is

determined from the hazard rates. To be precise: if ~s is the state trajectory for which the

disease state first occurs at time t0, so that s(t) = H for t < t0 and s(t) = D for t ≥ t0, λ(t|x)

is the hazard at time t conditional on x, then Pr(~s|x) = [1−λ(1|x)] · · · [1−λ(t0−1|x)][λ(t0|x)]

and Pr(~s|x) = 0 for all trajectories not having this form. Similar constructions show that

other dynamic survival models [LW03] [Cox92] [SWH11] [RTV15] [MDC06] also fit in the

rubric of the general model presented here.3

External information. The clinician performs tests that are informative about the

patient’s true state; in addition, external information may also arrive (for instance, patient

self-examines breasts for lumps, patient discovers comorbidities, etc.). The patient observes

an external information process modeled by a finite state stochastic process with state space

1The restriction to a single absorbing disease state is only for expositional convenience.

2For many diseases, it seems natural to identify states intermediate between Healthy and Disease. For
instance, because breast lumps [TGR02] or colon polyps [EAS14] that are found to be benign may become
malignant, it seems natural to distinguish at least one Risky state, intermediate between the Healthy and
Disease states.

3We can encompass the possibility of competing risks (e.g., different kinds of heart failure) [Cro01] simply
by allowing for multiple absorbing states.
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Y ; the information at time t is Y (t) ∈ Y (for instance, Y = {Lump,No Lump}). If the

patient visits clinician at time t, then this external information Y (t) arrives to the clinician.

Y (t) may be correlated with the patient’s state trajectory through time t and the patient’s

features; we write Pr(Y (t) = y|~s(t), x) for the probability that the external information at

time t is y ∈ Y , conditional on the state trajectory through time t and features x. We assume

that at each time t the external information Y (t) is independent of the past observations

conditional on the state trajectory through time t, ~s(t), and features x.

Arrival. The patient visits the clinician at time t if either (a) the information process

Y (t) exceeds some threshold ỹ or (b) t is the time for the next recommended screening (deter-

mined in the Screening Policies described below). The first visit of the patient to the hospital

depends on the screening policy and the patient’s features (See the description below). If the

patient visits the clinician at time t, the clinician performs a sequence of tests and observes

the results. For simplicity of exposition, we assume that the clinician performs only a single

test, with a finite set Z of outcomes. We write Pr(Z(t) = z|~s(t), x) as the probability that

test performed at time t yields the result z, conditional on the (unobserved) state trajectory

and the patient’s features. We assume that the current test result is independent of past test

results, conditional on the state trajectory and patient features. We also assume that cur-

rent test result is independent of the external information conditional on the state trajectory

through time t and the patient features. These assumptions are standard [AAS12] [Riz11].

We adopt the convention that z(t) = ∅ if the patient does not visit the clinician at time t so

that no test is performed. If the test outcome z ∈ Z+ ⊂ Z, then the patient is diagnosed to

have the disease. We assume that there are no false positives. If a patient is diagnosed to

be in the disease state, then screening ends and treatment begins.

Screening policies. The history of a patient through time t consists of the trajectories

of external information, test results and screening recommendations through time t. Write

H(t) for the set of histories through time t and H =
⋃T
t=0H(t) for the set of all histories. By

convention H(0) consists only of the empty history. A screening policy is a map π : X×H →

{1, . . . , T} ∪ {D} that specifies, for each feature x and history h either the next screening

time t+ or the decision that the patient is in the disease state D and so treatment should
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begin. A screening policy π begins at time 0, when the history is empty, so π(x, ∅) specifies

the first screening time for a patient with features x. (For riskier patients, screening should

begin earlier.) Write Π for the space of all screening policies.

Screening cost We normalize so that the cost of each screening is 1. (We can easily

generalize to the more general setting in which the clinician decides from multiple tests

[50], and different tests have different costs.) The cost of screening is a proxy for some

combination of the monetary cost, the resource cost and the health cost to the patient. We

discount screening costs over time so if Ts is the set of times at which the patient is screened

then the screening cost is
∑

t∈Ts δ
t, where δ ∈ (0, 1).

Delay cost. If disease first occurs at time tD (the incidence time) but is detected only

at time td > tD (the detection time) then the patient incurs a delay cost C(td − tD; tD). If

the disease is never detected the delay cost is C(T − tD; tD). We assume that the delay cost

function C : {1, . . . , T}×{1, . . . , T − 1} → (0,∞) is increasing in the first argument (the lag

in detection) and decreasing in the second argument (the incidence time). The cost of delay

is 0 if disease never occurs or occurs only at time t = T . Note that as soon as the disease is

detected screening ends and treatment begins; in particular, there is a single unique time of

incidence and a single unique time of detection. We allow for general delay costs because the

impact of early/late detection on the probability of survival/successful treatment is different

for different diseases.

Expected costs. If the patient features are x ∈ X then every screening policy π ∈ Π

induces a probability distribution Pr(·|x, π) on the space H(T ) of all histories through time

T and in particular induces probability distributions σ = Pr(·|x, π) on the families Ts ⊂

2{1,...,T−1} of screening times and β = Pr((·, ·)|x, π) on the pairs (tD, td) of incidence time

and detection time. The expected screening cost is Eσ

[∑
t∈Ts δ

t
]

and the expected delay cost

is Eβ

[
C(td− tD, tD)

]
. We provide a graphical model for the entire setup in the Appendix at

the end of this chapter.

Optimal screening policy. The objective of the screening policy is to minimize a

weighted sum of the screening cost and the delay cost; i.e. the optimal screening policy is
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defined by

argmin
π∈Π

{
(1− w)Eσ

[∑
t∈Ts

δt

]
+ wEβ[C(td − tD, tD)]

}
(6.1)

The weight w reflects social/medical policy; for instance, w might be chosen to minimize cost

subject to some accepted tolerance in delay (Further discussion on this is in the Experiments

Section).

Comment. The standard decision theory methods [PGT03] [KLK11] [Yu06] [Kri17]

used in screening [AAS12] [EAS14] cannot be used to solve the above problem. In stan-

dard partially observable Markov decision processes (POMDPs), the interval between two

decision epochs (in this case, screening times) is fixed exogenously; in standard partially

semi-Markov decision processes (POSMDPs), the time between two decision epochs is the

sojourn time for the underlying core-state process. In our setting, the time between two

decision epochs depends on the action (follow-up date), the external information process,

and the state trajectory. In standard POMDPs (POSMDPs) the cost incurred in a decision

epoch depend on the current state, while in the above problem the delay cost depends on

the state trajectory. Moreover, in our setting the disease state trajectory is not restricted to

a Markovian or Semi-Markovian process.

6.3 Proposed Approach

Beliefs. By a belief b we mean a probability distribution over the pairs consisting of state

trajectories and a label l for the diagnosis: l = 1 if the patient has been diagnosed with

the disease, l = 0 otherwise. By definition, a belief is a function b : ST × {0, 1} → [0, 1]

such that
∑

~s,l b(~s, l) = 1 but it is often convenient to view a belief as a vector. Beliefs

are updated using Bayesian updating every time there is a new observation (test outcomes,

patient arrival, external information). Knowledge of beliefs will be sufficient to solve the

optimization problem (6.1); see the Appendix at the end of this chapter. We write B for the

space of all beliefs.
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Bellman equations. To solve (6.1) we will formulate and solve the Bellman equations.

To this end, we begin by defining the various components of the Bellman equations. Fix

a time t. The cost C̃ incurred at time t depends on what happens at that time: i) if the

patient (with diagnosis status l = 0 before the test) is tested and found to have acquired the

disease, the cost is the sum of the cost of testing and the cost of delay, ii) if the patient has

the disease and is not detected, then the cost of delay is incurred in the time slot T , and

iii) if the patient does not have the disease, then the cost incurred in time slot t depends on

whether a test was done in time slot t or not. We write these cases below.

C̃(~s, t, z, l) =



wC(t− tD; tD) + (1− w)δtI(z 6= ∅) t ≤ T, l = 0, z ∈ Z+

wC(T − tD; tD) t = T, l = 0

(1− w)δtI(z 6= ∅) otherwise

(6.2)

A recommendation plan τ : Z → T maps the observation z at the end of time slot t to

the next scheduled follow-up time. Note that the recommendation plan is defined for a time

t and is different than the policy. Denote the probability distribution over the observations

(test outcome z, duration to the next arrival τ̃ , and the external information at the next

arrival time y) conditional on the current belief b and the current recommendation plan τ

by Pr(z, y, τ̃ |b, τ , x). The belief b is updated to b̂ in the next arrival time τ̃ based on the

observations, current recommended plan and the current beliefs using Bayesian updating as

b̂(~s, l) = Pr(~s, l|b, τ , y, z, τ̃ , x).

The optimal values for the objective in (2) starting from different initial beliefs can be

expressed in terms of a value function V : B × {1, ..., T + 1} → R. The value function at

time t when the patient is screened solves the Bellman equation:

V (b, t) = max
τ

[∑
~s,l,z

−b(~s, l)Pr(z|~s, x)
[
C̃(~s, t, z, l)

]
+
∑
z,τ̃ ,y

Pr(z, y, τ̃
∣∣∣b, τ , x)V

(
b̂, t+ τ̃

)]
(6.3)

We define V (b, T + 1) = 0 for all beliefs. Note that the computation of the first term in

the RHS of (6.3) has a worst case computation time of |S|T . Therefore, solving for exact

V (b, T ) that satisfies (6.3) is computationally intractable when T is large. Next, we derive
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a useful property of the value function. (The proof of this and all other results are in the

Appendix at the end of the chapter).

Lemma 3 For every t, the value function V (b, t) is the maximum of a finite family of

functions that are linear in the beliefs b. In particular, the value function is convex and

piecewise linear.

The above property was shown for POMDPs in [SS73], we use the same ideas to extend

it to our setup.

6.3.1 Constructing the Exactly Optimal Policy

Every linear function of beliefs is of the form α∗b for some vector α. (We view α, b as

column vectors and write α∗ for the transpose.) Hence Lemma 3 tells us that there is a

finite set of vectors Γ(t) such that V (b, t) = maxα∈Γ(t)α
∗b. We refer to Γ(t) as the set of

alpha vectors. In view of Lemma 3, to determine the value functions we need only determine

the sets of alpha vectors. If we substitute the expression V (b, t) = maxα∈Γ(t)α
∗b into (6.3),

then we obtain a recursive expression for Γ(t) in terms of Γ(t+ 1). By definition, the value

function at time T + 1 is identically 0 so Γ(T + 1) = {0}, where 0 is the |ST × {0, 1}|

dimensional zero vector, so we have an explicit starting point for this recursive procedure.

There is an optimal action associated with each alpha vector. The action corresponding to

the optimal alpha vector at a certain belief is the output of the optimal action given that

belief, and so constructing the sets of alpha vectors yields the optimal policy; the details

of the algorithm are in the Algorithm 4 in the Appendix. Unfortunately, the algorithm to

compute the sets of alpha vectors is computationally intractable (as expected). We therefore

propose an algorithm that is tractable to compute an approximately optimal policy.

6.3.2 Constructing the Approximately Optimal Policy

Point-Based Value Iteration (PBVI) approximation algorithms are known to work well for

standard POMDPs [PGT03]. These algorithms rely on choosing a finite set of belief vectors
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and constructing alpha vectors for these belief vectors and their success depends very much

on the efficient construction of the set of belief vectors. The standard approaches [PGT03]

for belief construction are not designed to cope with settings like ours when beliefs lie in a

very high dimensional space; in our setup belief has |ST × {0, 1}| dimensions. In Algorithm

1, 2, 3 (pseudo-code in the Appendix at the end of the chapter), we first construct a lower

dimensional belief space by sampling trajectories that are more likely to occur for the disease

and then sampling the set of beliefs in the lower dimensional space that are likely to occur

over the course of various screening policies. The key steps for our approach, which we refer

to as DPSCREEN (DPSCREEN is comprised of Algorithm 1, 2, 3) are

1. Sample typical physiological state trajectories. Sample a set S̃ ⊂ ST of K

physiological trajectories from the distribution Pr(~s|x).

2. Construct the set of reachable belief vectors. Say that a belief vector b2 is

reachable from the belief vector b1 if it can be derived by Bayesian updating on the basis

of some underlying screening policy. We construct the sets of belief vectors that can be

reached under different screening policies. For the first time slot, we start with a belief

vector that lies in the space S̃ × {0, 1} given as Pr(~s|x)/Pr(S̃|x), ∀~s ∈ S̃, l = 0. For

subsequent times, we select the beliefs that are encountered under random exploration of

the actions (recommendation of future test dates). In addition to using random exploration,

we can choose actions determined from a set of policies such as the clinical policies used in

practice [OFE15] [NTN09] [ZLK08] to construct the set of reachable belief vectors.

Denote the set of belief vectors constructed at time t by B̄[t] and the set of all such

beliefs as B̄ = {B̄[t], ∀t}. We carry out point-based value backups on these beliefs B̄ (see

Algorithm 2, 3 in the Appendix at the end of this chapter), to construct the alpha vectors

and thus the approximately optimal policy.

Computational complexity. The policy computation requires O
(
T (B)2T 2K|Y||Z|

)
steps, where B = maxt |B̄[t]| is the maximum over the number of points sampled by the

Algorithm 1 for any time slot t. The complexity can be reduced by restricting the space

of actions; e.g. by bounding the amount of time allowed between successive screenings.
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Moreover, the proposed algorithms can be easily parallelized (many operations carried inside

the iterations in Algorithm 2, 3 can be done parallel), thus significantly reducing computation

time.

Approximation error. Because we only sample a finite number of trajectories, the

policy we construct is not optimal but we can bound the loss of performance in comparison

to the exactly optimal policy and hence justify the term “approximately optimal policy.”

Define the approximation error to be the difference between the value achieved by the exact

optimal policy (solution to (6.1)) and the value achieved by the approximately optimal policy

(output from Algorithm 2, 3). As a measure of the density of sampling of the belief simplex

we set Ω(B̄) = ζ maxt∈T maxBminb∈B̄[t] ||b − b
′ ||1, where ζ is a constant that measures the

maximum expected loss that can occur in one time slot. We make a few assumptions for

the proposition to follow. The cost for delay is C(td − tD; tD) = c(td − tD)δtD , where c(d)

is a convex function of d. The test outcome is accurate, i.e. no false positives and no false

negatives. The maximum screening interval is bounded by W < T . The time horizon T is

sufficiently large. We show that the loss of performance is bounded by the sampling density.

Proposition 3 The approximation error is bounded above by Ω(B̄).

6.3.3 Robustness

Estimation error. To this point, it has been assumed that the model parameters are

known. In practice, the model parameters need to be estimated using the observational data.

In the next section, we will give a concrete example of how we estimate these parameters

using observational data for breast cancer. Here we discuss the effect of error in estimation.

Suppose that the model being estimated (true model) is m
′ ∈ M , where M is the space

of all the possible models (model parametrizations) under consideration. (We assume that

the probability distribution of the physiological state transition, the patient’s self-observation

outcomes, and the clinician’s observation outcomes are continuous onM .) Write L = M×B

for the joint space of models and beliefs. Let the estimate of the model be m̂. Let us assume

that for every model inM the solution to (6.1) is unique. Therefore, we can define a mapping
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Figure 6.1: Illustration of dynamic personalization.

τ ∗ : L×Z ×T → T |Z|, where τ ∗(l, z, t) is the optimal recommended screening time at l, at

time t following z. For a fixed model m, τ ∗((m, b), z, t) is the maximizer in (6.3).

Theorem 16 There is a closed lower dimensional set E ⊂ L such that the function τ ∗ is

locally constant on the complement of E.

Theorem 16 implies that, with probability 1, if the model estimate m̂ and the true model

m′ are sufficiently close, then the actions recommended by the exactly optimal policies for

both models are identical. Therefore, the impact of estimation error on the exactly optimal

policy is minimal. However, we construct approximately optimal policies. We can combine

these conditions with Proposition 3 to say that if the approximation error Ω(B̄) goes to zero,

then the approximately optimal policy (for m̂) will also converge to the exactly optimal

policy for true model m
′
.
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Personalization. Figure 6.1 provides a graphical representation of the way in which

DPSCREEN is personalized to the patients. We consider three Patients. The disease model

for each patient is given by the ex ante survival curve (the probability of not becoming

diseased by a given time). As shown in the graphs, the survival curves for Patients 1, 2 are

the same; the survival curve for Patient 3 begins below the survival curve for Patients 1, 2

but is flatter and so eventually crosses the survival curve for Patients 1, 2. All three patients

are screened at date 1; for all three the test outcome is z = Low. Hence the belief (risk

assessment) for all three patients decreases. As a result, Patients 1, 2 are scheduled for next

screening at date 4 but Patient 3, who has a lower ex ante survival probability, is scheduled

for next screening at date 3. Thus, the policy is personalized to the ex ante risk. However,

at date 2, all three patients experience an external information shock which causes them to

be screened early. The test outcome for Patient 1 is z = Medium so Patient 1 is assessed to

be at higher risk and is scheduled for next screening at date 3; the test outcome for Patient

2 is z = Low so Patient 2 is assessed to be at lower risk and is scheduled for next screening

at date 5. Thus the policy is personalized to the dynamic history. The test outcome for

Patient 3 is z = Low and Patient 3’s ex ante survival probability is higher so Patient 3’s

risk is assessed to be very low, and Patient 3 is scheduled for next screening at date 6. Thus

the policy adjusts to time-varying model parameters.

6.4 Illustrative Experiments

Here we demonstrate the effectiveness of our policy in a real setting: screening for breast

cancer.

Description of the dataset. We use a de-identified dataset of 45, 000 patients aged 60-

65 who underwent screening for breast cancer. For most individuals we have the following

associated features: age, the number of family members with breast cancer, weight, etc.

Each patient had at least one mammogram; some had several. (In total, there are 84,000

mammograms in the dataset.) The outcome of a mammogram is given in the form of a

BIRADS (Breast Imaging Report and Data System) score {1, 2, 3, 4, 4A, 4B, 4C, 5, 6}, The
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outcome was considered positive if the BIRADS scores is 4 or above, in which case a biopsy

was performed. 98% of patients had BIRADS scores below 4; of the 900 who had BIRADS

scores 4 or above, 426 patients were diagnosed with cancer.

Model description. We model the disease progression using a two-state Markov model:

S = {H,D} (H = Healthy, D = Disease/Cancer). Given patient features x, the initial

probability of cancer is pin(x) and the probability of transition from the H to D is ptr(x).

The external information Y is the size (perhaps 0) of a breast lump, based on the patient’s

own self-examination. In view of the universal growth law for tumor described in [23], we

model Y (t) = g(t) + ε(t), where g(t) = (1− e−ι(t−ts))I(t > ts) is the size of the tumor and ts

is the time at which patient actually develops cancer (the lump exists), ε(t) is a zero mean

white noise process with variance σ2 and I() is the indicator function. If the lump size Y

exceeds the threshold ỹ, then the patient visits the clinician, where tests are carried out.

The set of test outcomes is Z = {∅, 1, 2, 3}, where z = ∅ when no test is done, z = 1 when

the mammogram is negative and no biopsy is done, z = 2 when the mammogram is positive

and the biopsy is negative, z = 3 when both mammogram and biopsy is positive.

Model estimation. We use the specificity and sensitivity for the mammogram from

[AAS12]. Each patient has a different (initial) risk for developing cancer; we compute the risk

scores using the Gail model [GBB89], which we use as the feature x. We assumed pin(x) and

ptran(x) are logistic functions of x. We use standard Markov Chain Monte Carlo methods

to estimate these functions pin(x) and ptran(x). We use independent normal priors for the

parameters of the functions pin(x) and ptr(x). We compute the posterior (up to a constant)

of the parameters in terms of the likelihood of the observed data (described above). We

estimate the posterior distribution using the Metropolis Hastings method with a Gaussian

random walk as the proposal distribution.

We assume that each woman has one self-examination per month [BP01] [TGR02]. We

use the value ι = 0.9 as stated in [GDD03]. We estimate the parameters for the self-

examinations σ = 0.43 and ỹ = 1 on the basis of the values of sensitivity and specificity

for the self-examination from the literature [43]. In the comparisons to follow, we will also

analyze the setting when there are no self-examinations. We divide the population into two
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risk groups; the Low risk group consists of patients whose prior estimated risk of developing

cancer within five years is less than 5%; the High risk group consists of patients whose prior

estimated risk exceeds 5%.

Performance metrics, Objective and Benchmarks. Our objective is to minimize

the number of screenings subject to a constraint on expected delay cost. We assume the

delay cost is linear: C(td − tD, tD) = td − tD. To derive the solution to this constrained

problem from construction, which minimizes the weighted sum of screening cost and delay

cost, we solve the weighted problem for some weight w, and then tune w to select the policy

that minimizes the number of screenings subject to a constraint on expected delay cost.

For comparison purposes, we take the constraint on expected delay cost to be the expected

delay that arises from current clinical practice (annual screening in the US [OFE15] [NTN09],

biennial screening in some other countries [KBN07]). (Because our objective is to minimize

the number of screenings, we take the cost of each screening to be 1, whether or not a biopsy

is performed.)

Comment. At this point, we remind that existing frameworks [AAS12] [EAS14] [RTV15]

cannot be used to solve for the optimal screening policy in the above setup because: i) the

costs incurred (delay) depends on the state trajectory and not just the current state, and

ii) the lump growth model and the patient’s self-examination of the lump is not easy to

incorporate in these works.

Comparisons with clinical screening policies. We compare our constructed policies

(for the two groups), with and without self-examination, in terms of three metrics: i) E[N |R]:

the expected number of tests per year, conditional on the risk group; ii) E[∆|R]: the expected

delay, conditional on the risk group; iii) E[∆|R,D]: the expected delay, conditional on the

risk group and the patient actually developing cancer. Because E[∆|R] is the expected

unconditional delay, it accounts for patients who do not develop cancer as well as for patients

who do have cancer; because most patients do not develop cancer, E[∆|R] is small. We show

the comparisons with the annual policies in Table 6.1 and with biennial policies in Table 6.2.

In Table 6.1 we compare the performance of DPSCREEN (with and without self examina-
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Figure 6.2: Impact of the type of disease.

tion) for Low and High risk groups against the current clinical policy of annual screening. For

both risk groups, the proposed policy achieves approximately the same expected delay as the

benchmark policy while doing many fewer tests (in expectation). With self-examinations,

the expected reduction in number of screens is 57-68% (depending on risk group); even

without self-examinations, the expected reduction in number of screens is 28-45% percent

(depending on risk group).

In Table 6.2 we compare the performance of DPSCREEN (with and without self exami-

nation) for Low and High risk groups against the current clinical policy of biennial screening.

For both risk groups, the proposed policy achieves approximately the same expected delay as

the benchmark policy while doing many fewer tests (in expectation). With self-examinations,

the expected reduction in number of screens is 56-58% (depending on risk group); even with-

out self-detection, the expected reduction in number of screens is 16-24% percent (depending

on risk group).

In Table 6.3 we contrast the difference in DPSCREEN across the two risk groups. To

keep the comparison fair, we fix the tolerance in the delay to a fixed value. The proposed
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Table 6.1: Comparison of the proposed policy with annual screening for both high and low

risk group.

Risk Metrics DPSCREEN DPSCREEN Annual

Group with self-exam w/o self-exam

Low E[N |R] 0.32, 0.23, 9.2 0.55, 0.23, 9.2 1, 0.24, 9.6

E[∆|R], E[∆|R,D]

High E[N |R] 0.43, 0.50, 6.7 0.72, 0.52,7.07 1, 0.52, 7.07

E[∆|R], E[∆|R,D]

policy is personalized as it recommends significantly fewer tests to the low risk patients in

contrast to the high risk patients.

Impact of the type of disease. We have so far considered breast cancer as an example

and assumed linear delay costs. For some diseases (such as Pancreatic cancer [SFM99]

[RKV03]) the survival probability decreases very quickly with the delay in detection and

therefore it might be reasonable to assume a cost of delay that is strictly convex (such as

quadratic costs) in delay time for some disease. In Figure 6.2, we show that for a fixed risk

group and for the same weights the policy constructed using quadratic costs is much more

aggressive in testing. Moreover, the regime of operation of the policy (the points achieved by

the policy in the 2-D plane E[N |R,Cost] vs E[∆|R,Cost]) can vary a lot depending on the

choice of cost function even though the same weights are used. Therefore, the cost should

be chosen based on the disease.

6.5 Related Works

In Section 6.2, following the equation (6.1), we compared our methods with frameworks

to some general frameworks in decision theory [PGT03] [KLK11] [Yu06] [Kri17]. Next, we

compare with other relevant works.

Screening frameworks for different diseases in operations research: Many works
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Table 6.2: Comparison of the proposed policy with biennial policy.

Risk Metrics DPSCREEN DPSCREEN Biennial

Group with self-exam w/o self-exam

Low E[N |R] 0.21, 0.42, 0.29, 12.36 0.5, 0.29, 12.36

E[∆|R], E[∆|R,D] 0.29,12.36

High E[N |R], 0.22, 0.38, 0.90,12.13 0.5, 0.88,11.8

E[∆|R], E[∆|R,D] 0.90, 12.13

Table 6.3: Comparison of the proposed policies across different risk groups.

Risk DPSCREEN DPSCREEN

Group with self-exam w/o self-exam

E[N |R], E[∆|R], E[∆|R,D] E[N |R]E[∆|R],E[∆|R,D]

Low 0.12, 0.33, 13.7 0.32, 0.33, 13.7

High 0.80, 0.35, 4.73 1.09, 0.35, 4.73

have focused on optimizing population-based screening schedules, which are not personalized

(See [AAE10] and references therein). In [AAS12] [EAS14] the authors develop personalized

POMDP based screening models. The underlying disease evolution (breast and colon cancer)

is assumed to follow a Markov process. External information process such as self-exams and

the test outcomes over time are assumed to follow a stationary i.i.d process given the disease

process. In [RTV15] authors develop personalized screening models based on principles of

Bayesian design for maximizing information gain (based on [VK92]). The underlying disease

model (cardiac disease) is a dynamic (two-state) survival model and the cost of misdetection

is a constant and does not depend on the delay. The test outcomes are modeled using

generalized linear mixed effects models, and there is no external information process. To

summarize, all of the above methods rely on very specific models for their disease, test

outcomes, and external information, while our method imposes much less restrictions on the

same.
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Screening frameworks for different diseases in medical literature: The Medi-

cal research literature on screening (e.g., Cancer Intervention and Surveillance Modelling

Network, US preventive services task force, etc.) relies on stochastic simulation based

methods: fix a disease model and a set of screening policies to be compared; for each

policy in the set, simulate outcome paths from the model; compare across the set of poli-

cies [VFC14] [TKS16] [LBO99] [ZLK08] [FCF00]. The clinical guidelines for screening issued

by the US preventive services task force [ZLK08] [WLL08] for colon cancer cancers are cre-

ated based on the MISCAN-COLON [LBO99] model for colon cancer. Simulations were

carried out to compare different screening policies suggested by experts for that specific dis-

ease model- MISCAN-COLON. This approach allows more realistically complex models but

it only compares a fixed set of policies, all of which may be far from optimal.

Controlled Sensing: In controlled sensing [Kri16] [AV16] [Kri16] the problem of sensor

scheduling requires deciding which sensor to use and when; this problem is similar the

personalized screening problem studied here. In these works [Kri16] [AV16] [Kri16], the

main focus is to exploit (or derive) structural properties of the process being sensed and

the cost functions such that the exactly optimal sensing schedule is easy to characterize and

compute. The structural assumptions such as the process that is sampled is stationary and

Markov make these works less suited for personalized screening.

6.6 Discussion on Generality of the Proposed Framework

In the entire discussion so far, we focused on the application of screening for timely detection

of disease. The proposed framework is developed for general cost functions and a general

stochastic process. The proposed framework can be applied to other problems such as

controlled sensing, sensor scheduling and other stopping time problems, where one needs to

gather information from a stochastic process using limited resources.
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6.7 Conclusion

In this chapter, we develop a novel methodology for constructing personalized screening

policies that balance the cost of screening against the cost of delay in gathering important

information. In this work, we focus the application of disease screening such as breast

cancer screening. The disease is modeled as an arbitrary finite state stochastic process with

an absorbing disease state. Our method incorporates the possibility of external information,

such as self-examination or discovery of co-morbidities, that may trigger arrival of the patient

to the clinician in advance of a scheduled screening appointment. We use breast cancer data

to develop the disease model. In comparison with current clinical policies, our personalized

screening policies reduce the number of screenings performed while maintaining the same

delay in detection of disease.

6.8 Appendix

6.8.1 Appendix A

In this section, we define the belief update expressions that are required in Algorithm 1.

Compute the belief updates ∀~s, l ∈ S̃ × {0, 1}

Θ(b, z)[~s, l] =
Pr(~s, l, z|x)

Pr(z|x)
=

∑
l̃ Pr(~s, l, z, l̃|x)∑

~s

∑
l̃ Pr(~s, l, z, l̃|x)

=

∑
l̃ b(~s, l̃)Pr(z|~s)Pr(l|l̃, z, x)∑

~s∈S̃
∑

l̃ b(~s, l̃)Pr(z|~s, x)Pr(l|l̃, z, x)
(6.4)

Φ(b, y, τ̃ , τ, t)[~s, l] =
Pr(~s, l, y, τ̃ |τ, t, x)∑
~s,l Pr(~s, l, y, τ̃ |τ, t, x)

=
Pr(~s, l, y, τ̃ |τ, t, x)∑
~s,l Pr(~s, l, y, τ̃ |τ, t, x)

=
b(~s, l)Pr(y, τ̃ |~s, τ, t, x)∑
~s,l b(~s, l)Pr(y, τ̃ |~s, τ, t, x)

(6.5)

For all τ̃ ≤ τ we have

Pr(y, τ̃ |~s, τ, t, x) = Pr({Y (s) ≤ ỹ; ∀s ≤ t+ τ̃}, Y (t+ τ̃) = y|~s, τ, t, x) (6.6)

For all τ̃ > τ we have

Pr(y, τ̃ |~s, τ, t, x) = 0 (6.7)
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Algorithm 1 Constructing the Belief Sets

Initialization: r = 0T a T dimensional zero vector, B̄ is the array to store the belief

vectors that can be achieved at the T time instances

Sample K iid samples of the trajectory Pr(~s|x) to form the set S̃

for ~s ∈ S̃ do

B̄[1, 0](~s, l = 0) = Pr(~s)/Pr(S̃)

for ~s ∈ S̃ do

for t = 1 : T do

Sample a ∼ Bernoulli(p) (if the patient arrives in that time slot a = 1 or not a = 0)

Sample z ∼ Pr(z|~s, x, a), If a = 0 (patient does not arrive), then z = ∅

B̄[j, t] = Θ(B̄[j, t− 1], z, t) (See equation (6.4))

Sample τ ∼ Multi[1, ..., T − t− 1]

Sample y, τ̃ ∼ Pr(y, τ̃ |~s, t, τ, x) (See equation (6.6) and equation (6.7))

B̂ = Φ(B̄[j, t], y, τ̃ , τ, t) (See equation (6.5))

B̄[j +K + r(t+ τ̃), t+ τ̃ ] = B̂

r(t+ τ̃) = r(t+ τ̃) + 1

j = j + 1

Copy belief vectors at time t to the belief at t+ 1.
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Algorithm 2 Approximate Policy Computation Part

Function: TPBVI

Input: Sets Γ(q),∀q > t,

for τ ∈ {1, ..., T − t− 1} do

for z ∈ Z do

for (τ̃ , y) ∈ {t+ 1, .., t+ τ} × Y do

for α ∈ Γ(t+ τ̃) do

for ~s, l ∈ S̃ × {0, 1} do

θ[~s, l] =
∑

l̃α[~s, l]Pr(l̃|l, z)Pr(y, τ̃ |~s, τ, x)

θ[~s, l] = θ[~s, l]Pr(z| ~s, x)

Γ
(
t, z, τ, τ̃ , y

)
= Γ

(
t, z, τ, τ̃ , y

)
∪ {θ}

for b ∈ B̄[, t] do

for z ∈ Z do

for τ ∈ {1, ..., T − t− 1} do

ζ =
∑

y

∑
τ̃ arg maxα∈Γ(t,z,τ,τ̃ ,y)[α]

′
b

Γ(t, z, τ) = Γ(t, z, τ) ∪ ζ

for belief point b ∈ B̄[, t] do

for z ∈ Z do

{α′ , (τ)
′} = arg maxτ,α∈Γ(t,z,τ)

∑
~s,l

[
− C̃(~s, t, z, l) +α[~s, l])

]
b(~s, l)

Γ(t, z) = Γ(t, z) ∪α′

A(t, z) = A(t, z) ∪ (τ)
′

Γ(t) = Γ(t) + Γ(t, z)

Output: Γ(t), {Γ(t, z), ∀z}, {A(t, z),∀z}

Γ(t, z) is set of alpha vectors and each one of them is optimal for one of the beliefs in the

set B̄(, t), A(t, z) is the set of optimal actions corresponding to the alpha vectors in Γ(t, z)

For any belief b, z find the nearest point in B̄[, t] and use the corresponding alpha vector

in Γ(t, z) and the corresponding action A(t, z)
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Algorithm 3 Approximate Policy Computation Part Continued

Γ(T + 1) = {0}

for t = 0 to T − 1 do

Γ(T − t) = TPBVI({Γ(T − r)}−1≤r≤t−1)

Algorithm 4 Exact Policy Computation Part

NOTATION: ⊕ is the Cartesian sum

Function EVI

Input: Sets Γ(q),∀q > t,, Γ(T + 1) = {0},

for z ∈ Z do

for τ ∈ {1, ..., T − t− 1} do

for (τ̃ , y) ∈ {t+ 1, .., t+ τ} × Y do

for α ∈ Γ(t+ τ̃) do

for each ~s, l do

θ[~s, l] = −1
|Y||(τ−t)|C̃(~s, t, z, l) + δ

∑
l̃α[~s, l]Pr(l̃|l, z, x)Pr(y, τ̃ |~s, τ, x)

θ[~s, l] = θ[~s, l]Pr(z|~s, x)

Γ
(
t, z, τ, τ̃ , y

)
= Γ

(
t, z, τ, τ̃ , y

)
∪ {θ}

Γ(t, z, τ) = prune
(

Γ(t, z, τ)⊕ Γ
(
t, z, τ, τ̃ , y

))
Γ(t, z) = prune

(
Γ(t, z)⊕ Γ(t, z, τ)

)
Γ(t) = prune

(
Γ(t)⊕ Γ(t, z)

)
Output: Γ(t), {Γ(t, z),∀z ∈ Z},

For optimal action at belief b at time t following observation z choose the optimal alpha

vector from Γ(t, z) and choose the action corresponding to the alpha vector selected

Γ(T + 1) = {0}

for t = 0 to T − 1 do

Γ(T − t) = EVI({Γ(T − r)}−1≤r≤t−1)

In Algorithm 4, the prune function is taken from [Kri17].
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6.8.2 Appendix B

Graphical model.

We define a random variable V (t), where V (t) = 1 indicates that the patient visits the

clinician in time slot t and is zero otherwise. Write the realization of the visit trajectory as

~v = [v(1), ..., v(T )]. Let the screening policy be π. Next, we define the joint distribution of

all the random variables that appear in the model.

The joint distribution of the state trajectory ~s, the external information process trajectory

~y, the visit trajectory ~v, the test outcome trajectory ~z is given as

Pr
(
~s, ~y,~v, ~z

∣∣∣x) =

Pr
(
~s
∣∣∣x)Pr(~y ∣∣∣~s, x)Pr(~v, ~z ∣∣∣~s, ~y, x)

Pr
(
~s
∣∣∣x)ΠtPr

(
y(t)

∣∣∣~s(t), x)ΠtPr
(
v(t)

∣∣∣~v(t− 1), ~z(t− 1), ~y, ~s, π
)
Pr
(
z(t)

∣∣∣v(t), ~s
) (6.8)

We compute Pr
(
~y
∣∣∣~s) as Pr

(
~y
∣∣∣~s) = Π̄tPr

(
y(t)

∣∣∣~s, x), where Π̄ is the product op-

erator and Pr
(
y(t)

∣∣∣~s, x) is the probability of Y (t) = y(t) conditional on the entire state

trajectory. We assumed that the observations y(t) conditional on state trajectory through

~s(t) is independent of other random variables in the model. Therefore, Pr
(
y(t)

∣∣∣~s, x) =

Pr
(
y(t)

∣∣∣~s(t), x).

We compute Pr
(
~v, ~z

∣∣∣~s, ~y, x) as

Pr
(
~v, ~z

∣∣∣~s, ~y, x) = Π̄tPr
(
v(t)

∣∣∣~v(t− 1), ~z(t− 1), ~y, ~s, π
)
Pr
(
z(t)

∣∣∣v(t), ~s
)

where Pr
(
v(t)

∣∣∣~v(t−1), ~z(t−1), ~y, ~s, π
)

is the probability of visit in time t conditional on visit

indicator in time t− 1, the test outcomes through time t− 1, the entire external information

process trajectory, the state trajectory ~s and the policy π and Pr
(
z(t)

∣∣∣v(t), ~s(t)
)

is the

probability of test outcome conditional on visit and the state trajectory. Note that z(t)’s

value when there is a visit depends only on the state trajectory through time t. If there is no

visit, then z(t) = ∅. It is easy to simplify Pr
(
v(t)

∣∣∣~v(t−1), ~z(t−1), ~y, ~s, π
)

. Based on all the

observations until time t − 1 the policy π would have recommended a next screening time.
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Figure 6.3: Graphical model for the screening setting.

If the next screening time is not t, then Pr
(
v(t) = 1

∣∣∣~v(t− 1), ~z(t− 1), ~y, ~s, π
)

= Pr
(
Y (t) >

ỹ
∣∣∣~s, x). If the screening time is t, thenPr

(
v(t) = 1

∣∣∣~v(t− 1), ~z(t− 1), ~y, ~s, π
)

= 1

6.8.3 Appendix C

Sufficient statistic for the history. In this section, our aim is to show that instead of

considering the entire history the clinician can only use the belief that we constructed in

Appendix A.

The history through time t when the patient arrives can be written as

h(t) =

[
z(t), y(t), {y(r) ≤ ỹ}t−1

r=t−τ̃ , τ̃ , τ(t− τ̃), h(t− τ̃)

]

where z(t) is the test outcome at time t, y(t) is the external observation at time t, and

τ(t− τ̃) was the prescribed arrival time in the last arrival which occurred at time t− τ̃ .

Write the probability that the patient’s state trajectory is ~s, the diagnosis state l (the

diagnosis state corresponds to the state after the observation z(t) in time slot t), conditioned

on the history h(t) as Pr(~s, l|h(t)). Next, we describe how to compute Pr(~s, l|h(t)) in terms

of the probability distribution Pr(~s, l̃|h(t− τ̃)).
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Pr
(
~s, l, v

∣∣∣h(t)
)

=
Pr
(
~s, l, z(t), y(t), {y(r) ≤ ỹ}t−1

r=t−τ̃

∣∣∣τ(t− τ̃), h(t− τ̃)
)

Pr
(
z(t), y(t), {y(r) ≤ ỹ}t−1

r=t−τ̃

∣∣∣τ(t− τ̃), h(t− τ̃)
)

=

∑
l̃ Pr

(
~s, l̃, l, z(t), y(t), {y(r) ≤ ỹ}t−1

r=t−τ̃

∣∣∣τ(t− τ̃), h(t− τ̃)
)

Pr

(
z(t), y(t), {y(r) ≤ ỹ}t−1

r=t−τ̃

∣∣∣h(t− τ̃)
)

∑
l̃ Pr

(
~s, l̃
∣∣∣h(t− τ̃)

)
Pr
(
y(t), {y(r) ≤ ỹ}t−1

r=t−τ̃

∣∣∣~s, τ(t− τ̃)
)
Pr
(
z(t)|~s

)
Pr
(
l|l̃, z(t)

)
Pr
(
z(t), y(t)

∣∣∣h(t− τ̃)
)

(6.9)

In the above equation, Pr
(
l|l̃, z(t)

)
is the probability of the new diagnosis state con-

ditional on the existing diagnosis state. If the existing diagnosis state is 1, then the new

diagnosis state has to be 1. If the existing diagnosis state is 0, then the new diagnosis state

is 1 if z ∈ Z+ and 0 otherwise.

By definition the belief at time t is Pr(~s, l|h(t)), which we write as b̂ and we write

Pr(~s, l|h(t− τ̃)) as b.

b̂(~s, l) =

∑
l̃ b(~s, l)Pr

(
y(t), {y(r) ≤ ỹ}t−1

r=t−τ̃

∣∣∣~s, τ(t− τ̃)
)
Pr
(
z(t)

∣∣∣~s)Pr(l∣∣∣l̃, z(t))
Pr
(
z(t), y(t)

∣∣∣h(t− τ̃)
) (6.10)

From the above equation, we can conclude that keeping a track of beliefs is sufficient as

the previous belief can be used to compute the new belief (combined with the distributions

over the observations).

6.8.4 Appendix D

Proof of Lemma 3. We re-write the value function defined for time slot t, which is also

a decision epoch (the patient arrives in this slot and test is done) in equation (6.3) in the
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main text below.

V (b, t) = max
τ

[
−
∑
~s,l,z

b(~s, l)Pr(z|~s, x)
[
C̃(~s, t, z, l)

]
+
∑
z,τ̃ ,y

Pr(z, y, τ̃
∣∣∣b, τ , x)V

(
b̂, t+ τ̃

)]
(6.11)

where b̂(~s, l) = Pr
(
~s, l
∣∣∣b, τ , y, z, τ̃ , x) = Pr(~s,l,y,z,τ̃ |b,τ )

Pr(y,z,τ̃ |b,τ )
. Note that l in the above equation is

the diagnosis state before the test outcome z is observed.

Pr(~s, l, y, z, τ̃ |b, τ ) is the probability that the patient’s trajectory is ~s, the test outcome

in time slot t is z, the external information on patient’s next arrival, which occurs τ̃ time

slots later is y conditioned on the recommendation plan τ . We simplify Pr(~s, l, y, z, τ̃ |b, τ , t)

as

Pr
(
~s, l, y, z, τ̃

∣∣∣b, τ , t) =
∑
l̃

Pr
(
~s, l̃, l, y, z, τ̃

∣∣∣b, τ , t) =
∑
l̃

b(~s, l̃)Pr
(
l, y, z, τ̃

∣∣∣~s, l̃, τ , t)
We simplify Pr(l, y, z, τ̃ |~s, l̃, τ , t) as

Pr(l, y, z, τ̃ |~s, l̃, τ , t) = Pr(z|~s, l̃, τ , t)Pr(l|l̃, z, τ , t, ~s)Pr(y, τ̃ |z, ~s, τ , l, l̃, t)

= Pr(z|~s)Pr(l|l̃, z)Pr(y, τ̃ |z, ~s, τ , t)
(6.12)

where Pr(l|l̃, z) is the transition probability from current diagnosis label l̃ to the new label

l following the observation z. If the patient is diagnosed to be unhealthy, then the diagnosis

label continues to be one. If the patient is not diagnosed, then the label turns to one from

zero as soon as the patient is diagnosed. Formally stated, Pr(l = 0|l̃ = 0, z) = 0,∀z ∈ Z+,

Pr(l = 0|l̃ = 0, z) = 1,∀z ∈ [Z+]c, Pr(l = 0|l̃ = 1, z) = 0,∀z ∈ Z. In the above

equation (6.12), we wrote Pr(z|~s, l̃, τ , t) = Pr(z|~s); this is true because the test outcome

is independent of whether the patient has been diagnosed or not, the recommendation plan

and the time. We also state Pr(l|l̃, z, τ , t, ~s) = Pr(l|l̃, z) where we use the condition that

l is independent of τ , t, ~s conditional on l̃, z (this follows from the definition of l). Also, if

the state trajectory, the recommended time of next arrival, and the current time are known,

then the distribution of external information at next arrival time and next arrival time is

completely specified by Pr(y, τ̃ |z, ~s, τ , t) and whether the patient has been diagnosed or not
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does not enter the external information process Pr(y, τ̃ |z, ~s, τ , l, l̃, t) = Pr(y, τ̃ |z, ~s, τ , t) (this

follows from the definition of external information process).

For all τ̃ ≤ τ (z) we have

Pr(y, τ̃ |z, ~s, τ , t) = Pr
({
Y (s) ≤ ỹ; t < ∀s ≤ t+ τ̃

}
, Y (t+ τ̃) = y

∣∣∣~s) (6.13)

For τ̃ > τ (z)

Pr(y, τ̃ |z, ~s, τ , t) = 0 (6.14)

Thus we can write the updated belief as

b̂(~s, l̃) =
Pr(~s, l̃, y, z, τ̃ |b, τ )

Pr(y, z, τ̃ |b, τ )
=∑

l b(~s, l)Pr(l̃, y, z, τ̃ |~s, l, τ , t)
Pr(y, z, τ̃ |b, τ )

=

∑
l b(~s, l)Pr(z|~s)Pr(l̃|l, z)Pr(y, τ̃ |z, ~s, τ , t)

Pr(y, z, τ̃ |b, τ )

(6.15)

In this proof up until now we have computed the expression for b̂.

We will use the principle of induction to prove the above result. The claim in the Lemma

holds for the value function in time slot T + 1 as it is defined to be identically zero. Next,

we assume that the condition in the Lemma holds for all r > t. Therefore, we can write

V (b̂, t+ τ̃)

= max
α∈Γ(t+τ̃)

∑
~s,l̃

α[~s, l̃]b̂(~s, l̃)

= max
α∈Γ(t+τ̃)

∑
~s,l̃,l

α
[
~s, l̃
]b(~s, l)Pr(z|~s)Pr(l̃|l, z)Pr(y, τ̃ ∣∣∣z, ~s, τ , t+ τ̃

)
Pr
(
y, z, τ̃

∣∣∣b, τ)
(6.16)

Suppose that each α ∈ Γ(t + t̃) is indexed. Henceforth, we also write the index of α in

superscript as well, i.e. αk. Define a function k̃ : ∆× T × T × Y × T → Z as follows.

k̃(b, τ , τ̃ , y, t, z) = arg max
k

∑
~s,l,l̃

αk
[
~s, l̃
]
b
(
~s, l
)
Pr
(
z
∣∣∣~s)Pr(l̃∣∣∣l, z)Pr(y, τ̃ ∣∣∣z, ~s, τ , t+ τ̃

)
(6.17)
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Substituting (6.16) and (6.17) into (6.11) we obtain

V (b, t) =

max
τ

[∑
~s,l,z

b
(
~s, l
)
Pr
(
z
∣∣∣~s)[C̃(~s, t, z, l)]+

∑
z,τ̃ ,y

∑
~s,l,l̃

αk̃[~s, l]b
(
~s, l
)
Pr
(
z
∣∣∣~s)Pr(l̃∣∣∣l, z)Pr(y, τ̃ ∣∣∣z, ~s, τ , t+ τ̃

)]

max
τ

[∑
~s,l,z

b
(
~s, l
)
Pr
(
z
∣∣∣~s)[C̃(~s, t, z, l)+

∑
τ̃ ,y,l̃

αk̃
[
~s, l̃
]
Pr
(
l̃|l, z

)
Pr
(
y, τ̃
∣∣∣z, ~s, τ , t+ τ̃

)]]

max
τ

[ ∑
~s,l,z,τ̃ ,y,l̃

b
(
~s, l
)
Pr
(
z
∣∣∣~s)[C̃(~s, t, z, l) 1

ω
+αk̃

[
~s, l
]
Pr
(
l̃
∣∣∣l, z)Pr(y, τ̃ ∣∣∣z, ~s, τ , t+ τ̃

)]]

(6.18)

where ω is the total possible combinations of τ̃ , y and l̃. In the above (6.18), we only use k̃

instead of the entire function k̃(b, τ , τ̃ , y, t, z) for clearer notation.

Observe that the function k̃(b, τ , τ̃ , y, t, z) can take finitely many values. Therefore,

for a fixed combination of values z, τ̃ , y the space B is thus partitioned into regions where

k̃(b, τ , τ̃ , y, t, z) takes a fixed value. Hence, the term[
C̃
(
~s, t, z, l

) 1

ω
+αk̃

[
~s, l
]
Pr
(
l̃|l, z

)
Pr
(
y, τ̃
∣∣∣z, ~s, τ , t+ τ̃

)]

takes a fixed value in each partition as well and this is true of ∀~s, l. Finally, we can cre-

ate a common refinement of the partitions such that the
∑

z,τ̃ ,y Pr
(
z
∣∣∣~s)[C̃(~s, t, z, l) 1

ω
+

αk̃
[
~s, l
]
Pr
(
l̃|l, z

)
Pr
(
y, τ̃
∣∣∣z, ~s, τ , t + τ̃

)]
is fixed for each partition. Therefore, we have so

far shown that the term inside (6.18) is piecewise linear. The first term inside (6.18) is

convex (since it is linear). The second term inside (6.18) is convex because of the definition

of (6.17). Thus, the term inside the max operator (6.18) is piecewise linear and convex. The

maximum of piecewise linear and convex functions is also piecewise linear and convex. This

proves the result. �
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6.8.5 Appendix E

Proof of Proposition 3. We first re-write the expression for the cost incurred in a time

slot below

C̃(~s, t, z, l) =



wC(t− tD; tD) + (1− w)δtI(z 6= ∅) t ≤ T, l = 0, z ∈ Z+

wC(T − tD; tD) t = T, l = 0

(1− w)δtI(z 6= ∅) otherwise

(6.19)

We substitute C(t− tD; tD) = c(t− tD)δtD to obtain

C̃(~s, t, z, l) =



wc(t− tD)δtD + (1− w)δtI(z 6= ∅) t ≤ T, l = 0, z ∈ Z+

wc(t− tD)δtD t = T, l = 0

(1− w)δtI(z 6= ∅) otherwise

(6.20)

Define another function Ĉ as follows.

Ĉ(~s, t, z, l) =



wc(t− tD)δt + (1− w)δtI(z 6= ∅) t ≤ T, l = 0, z ∈ Z+

wc(t− tD)δt t = T, l = 0

(1− w)δtI(z 6= ∅) otherwise

(6.21)

Next, we derive an upper bound on time to detection td in terms of the time of incidence

tD. Disease starts at tD and the next screening has to occur at time at most tD +W . Since

there are no false positives and false negatives the patient is detected in the next screening.

Therefore, we have tD ≤ td ≤ tD +W .

We derive an upper bound on the difference between Ĉ and C̃ as

C̃(~s, t, z, l)− Ĉ(~s, t, z, l) ≤ (δTD − δtd)(c(td − tD))

≤ δTD(1− δW )(c(W ))

≤ (1− δW )(c(W ))

(6.22)
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We require that C̃(~s, t, z, l)− Ĉ(~s, t, z, l) ≤ κ. It is sufficient to bound (1− δW )(c(W )) ≤

κ =⇒ δ ≥ (1− κ
c(W )

)1/W . Henceforth, we assume that δ ≥ δ∗ = (1− κ
c(W )

)1/W . Therefore,

we have

Ĉ(~s, t, z, l) ≤ C̃(~s, t, z, l) ≤ Ĉ(~s, t, z, l) + κ (6.23)

∀~s, t, z, l. It can be shown that the solutions to (6.3) with Ĉ instead of C̃ only differ by

κ (at most). Let the optimal policy and the corresponding optimal value when cost is C̃ be

given as π1 and C1(π1) (C2(π2)). From (6.23) we have

C2(π1) ≤ C1(π1) ≤ C2(π1) + κ

C2(π2) ≤ C1(π2) ≤ C2(π2) + κ
(6.24)

From the definition of C1 and C2 the following can be derived

C2(π2) ≤ C1(π1) ≤ C2(π1) + κ ≤ C2(π2) + κ (6.25)

Next, we will use Ĉ instead of C̃. Define a function C̄(~s, t, z, s) = Ĉ(~s,t,z,l)
δt

.

We write the value function for the modified objective as

V̄ (b, t) = max
τ

[∑
~s,l,z

b(~s, l)Pr(z|~s)
[
C̄(~s, t, z, l)

]
+ δ

∑
z,τ̃ ,y

Pr(z, y, τ̃
∣∣∣b, τ )V̄

(
b̂, t+ τ̃

)]
(6.26)

If T is sufficiently large, then the difference between the value function of the finite

horizon and the infinite horizon version of the problem can be made as small as desired.

The maximum difference between the value function computed upto the infinite horizon

versus one that is truncated at time T is δT (1/(1− δ) + c(W )). Suppose we want to bound

the difference by η. If δT (1/(1 − δ) + c(W )) ≤ η =⇒ δT ≤ η(1 − δ) + c(W )η. If

T ≥ max{ log( η
2+η

)

log(δ)
,

log( η
2c(W )

)

log(δ)
}, then the difference is bounded by η. Let us consider the

infinite horizon for V̄ above. We will construct the proof for the infinite horizon version of

the problem and then use the above observation to extend the proof to finite horizon.

From equation (6.26), we can define an operator given as Φt defined as follows.
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Φt(V ) = max
τ

[∑
~s,l,z

b(~s, l)Pr(z|~s)
[
C̄(~s, t, z, l)

]
+ δ

∑
z,τ̃ ,y

Pr(z, y, τ̃
∣∣∣b, τ )V

(
γ(b, y, z, τ )

)]
(6.27)

where γ is the belief update operator that can be defined based on the equation (6.15) in

the proof of Lemma 3. Based on standard arguments used to show that a Bellman operator

is a contraction mapping [21], we can show that the above operator is a contraction mapping

as well with a contraction factor δ.

Similarly, we define an operator Φ̃t associated with our algorithm. Our algorithm takes

alpha vectors as input and generates a new set of alpha vectors. Since the set of alpha

vectors define the value function (see Lemma 3), we can view the proposed procedure to be

an operator that maps a value function to another value function. Define the error introduced

by one iteration of the approximate backup Φ̃tV
B(:, t) as ε = maxb∈∆ |Φ̃tV

B̄(b)−ΦtV
B̄(b)|.

Note that the backup at time t will use B̄[; t] as the input vector of beliefs. Define the density

δB̄[t] of a set of points B̄[t] to be the maximum distance from any belief in the simplex ∆ to

a belief in the set B̄[t].

δB̄[t] = max
b′∈∆

min
b∈B̄[t]

||b− b′||1 (6.28)

We now compute the maximum value ε. Let b
′ ∈ ∆ be the point where proposed

procedure makes the largest error and let b ∈ B̄[t] be the closest 1-norm sampled belief to

b
′
. Let α be the vector maximal at b (this vector is generated by the backup at b because

we assume that the value function in the future time slot computed b is known thus there is

no error at b) and let α
′

be the vector maximal at b
′
. Therefore,

ε ≤ [α
′
]∗b
′ − [α]∗b

′

= [α
′
]∗b
′ − [α]∗b

′
+ [α

′
]∗b− [α

′
]∗b

≤ [α
′
]∗b
′ − [α]∗b

′
+ [α]∗b− [α

′
]∗b

= [(α
′ −α)]∗(b− b′)

≤ ||[(α′ −α)]||∞||(b− b
′
)||1

In the last equation above, we use Holder’s inequality. Note that ||[(α′−α)]
′||∞ represents
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the maximum difference in the costs that are achieved starting from a certain state and is

given as ζ. Note that ζ < ∞ because the total number of time slots is finite and the costs

in each decision epoch are bounded. Thus we can write the above inequality as

ε ≤ ζδB̄[t] (6.29)

We now proceed to the overall error introduced by the Algorithm.

εt = ||V B̄[t]( , t)− V ( , t)||∞

= ||Φ̃tV
B̄[t+1]( , t+ 1)− ΦV ( , t)||∞

= ||Φ̃tV
B̄[t+1]( , t+ 1)− ΦtV

B̄[t+1]( , t+ 1) + ΦtV
B̄[t+1]( , t+ 1)− ΦV ( , t)||∞

≤ ||Φ̃tV
B̄[t+1]( , t+ 1)− ΦtV

B̄[t+1]( , t+ 1)||∞ + ||ΦtV
B̄[t+1]( , t+ 1)− ΦV ( , t)||∞

≤ ζδB̄[t] + δεt+1

= ζδB̄[t] + δζδB̄[t+1] + δ2εt+2

= ζΩ(B̄)
1

1− δ

The above result can be extended to the finite horizon case. If T is sufficiently large,

then the value function achieved by the proposed policy and the exact policy will be close to

V B̄[t](, t) and V (, t) respectively. If δB̄ is sufficiently small, then the proposed and the exact

optimal policy will achieve very similar value function.

If the approximation error goes to zero, then the value function of the proposed and the

exact optimal policy are the same. Suppose that there is a unique optimal solution to (6.3),

we can see that the proposed and the exact optimal policies will also be identical. �

6.8.6 Appendix F

Proof for Theorem 16. In Lemma 3 we showed that V (b, t) can be written as maxαα
∗b.

Since we are considering the space of models in this Theorem, we will define the value

function on the space L. Following Lemma 3 we can write

V ((b,m), t) = max
k
α(k,m)∗b (6.30)
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where (b,m) ∈ L and α(k,m) is the kth alpha vector for model m. We can assume that

the same indexing is used for the alpha vectors across all the models. (Also, based on

the definition of alpha vectors the total number of alpha vectors is the same across all the

models.)

Consider a fixed belief b and a fixed model m. a∗((b,m), t) is the unique maximizer

(except for a set of measure zero of models m; this is based on the assumption). Let

k∗(m, b) correspond to the index of the corresponding optimal alpha vector. (Here we have

assumed that the index k∗(m, b) is unique, but this assumption can be relaxed.) Based

on the assumption that for a fixed m b, a∗((b,m), t) is a unique maximizer (except for a

set of measure zero of models m), we can conclude that the α(k∗(m, b),m)∗b is strictly

better than other [α(k,m)∗b, ;∀k 6= k∗(m, b). Note that there may exist m, b for which the

maximizer k∗(m, b) is not unique. The measure of such a set is zero (as it will amount to

finding m, b such that α(k∗(m, b),m)∗b = α(k,m)∗b for some k 6= k∗(m, b)), thus we can

exclude these points.

If all the probability distributions defined in the model are continuous inm, then α(k,m)

is a continuous vector valued function of m for all k as well. Therefore, the condition

α(k,m)∗b has to be strictly better than α(k,m)∗b, ∀k 6= k∗(m, b) in a neighborhood of m.

In fact, due to the continuity of α(k,m)∗b in b, this has to hold true for a neighborhood in

the joint space L. This implies that the optimal action a∗ stays fixed in the neighborhood

as well. This proves the result. �
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CHAPTER 7

Optimal Piecewise Local-Linear Approximations

7.1 Introduction

From this chapter on, we move to the second part of the dissertation, where we focus on

developing optimization methods for machine learning applications. In recent years, data-

driven decision-making systems, for instance, screening decisions described in Chapter 6, are

increasingly becoming common in daily practice. These data-driven models that drive the

decision making are often “black-boxes” and hard to interpret. Therefore, explaining the de-

cisions made by such systems is hard. In this chapter, we build a framework to help interpret

such black-box systems. Our framework is based on approximating a black-box model with

a piecewise local-linear function. In general, computing an exactly optimal approximation of

the black-box function is computationally intractable because of the large number of possible

ways to partition the data. Our approach is approximate, computationally tractable, and

has provable performance guarantees. This chapter is based on my work in [AZS18].

Machine learning algorithms have proved hugely successful for a wide variety of super-

vised learning problems. However, in some domains, adoption of these algorithms has been

hindered because the “black-box” nature of these algorithms makes their predictions diffi-

cult for potential users to interpret. This issue is especially important in the medical domain

and security applications [CLG15]. The European Union’s Law on Data Regulation [GF16]

makes it mandatory for “black-box” models to explain how they arrive at the predictions

before implementing them in practice.

The problem of interpretation has received substantial attention in the literature re-

cently [RSG16] [SGK17] [BKB17] [CSW18]. These papers have approached the problem of
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interpreting the black-box model by approximating it with local models (e.g., linear models)

in a neighborhood of each data point (See the justification in [LL17]).1 These papers provide

instance-wise explanations of the predictions made by the model and they only explain the

local nature of the model. These papers do not provide insights into the global behavior of

the model. There are relatively fewer works [BKB17] that explain the global model behavior.

While linear models are common to use as local models, there are no global explanation

frameworks that partition the feature space into “homogeneous” regions and fit a local-linear

model to predict the black-box function behavior. In this chapter, we provide a framework

to build such piecewise local-linear approximations of the model.

7.1.1 Contributions

We are given a set of data points and the black-box function values computed for those data

points. Our goal is to construct a partition of the feature space into subsets and to assign a

simple local model to each subset. We propose a dynamic programming based approach to

find the partition of the dataset and the set of local models. We prove that the output of

our method, which we refer to as piecewise local-linear interpreter (PLLI), is approximately

optimal in several different cases, i.e., it probably approximately correct (PAC) learns the

black-box function. We use several real and synthetic datasets to establish the utility of the

proposed approach.

Our framework is very general and has different applications as described below.

• Region-wise feature importances: We broadly categorize the works on feature

importance scoring into two categories: a) Global feature importance scoring: Methods

such as importance scoring based on tree based models [AK08] fall in this category.

These methods identify the factors that the model finds important overall when making

the predictions across all the data points. b) Instancewise feature importance scoring:

Methods such as [CSW18] fall in this category. These methods identify the factors

that the model finds important when making predictions for a certain data instance.

1We define piecewise models later.
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Instancewise methods provide a more refined understanding of the model at an instance

level while the global methods give an aggregate understanding of the model. Using

an instance based approach across all the data points can be impractical thus it is

important to find a middle ground between the global and instance based approaches.

Our method helps achieve this task. We divide the feature space into regions and fit

local-linear models and assign importance scores to different features in the different

regions.

• Global explanations through instancewise explanations: Many works on in-

stancewise explanations try to provide global explanation to model behavior in terms

of the best K representative data instances and constructing explanations for them.

In [RSG16] authors proposed a method to identify such representative data instances.

Our framework divides the feature space into different regions and thus it naturally

provides a method to identify different examples of data points. We further elaborate

on the utility of our approach in comparison to [RSG16] in the Experiments Section.

• At the end, we leverage ideas from our framework to identify an algorithm that achieves

optimal clustering for one-dimensional data in polynomial time. To the best of our

knowledge, this is the first proof that a method can achieve optimal clustering for

one-dimensional data.

7.2 Related Works

The related works on model interpretation can be broadly categorized into two categories.

The first kind provide local explanations to a model near a given set of points; the second

kind provides a more global explanation. We give the most representative works in each

category but by no means this list is exhaustive.
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7.2.1 Local Frameworks

These frameworks [RSG16] [SGK17] [LL17] [KL17] produce a linear approximation of the

black-box model in some neighborhood of a given point. The coefficients of the linear ap-

proximation represent the importance associated with different features as predicted by the

black-box model in that neighborhood.

We provide more specific details for these different frameworks below.

7.2.1.1 LIME

In the LIME framework [RSG16], the linear approximation of the black-box at each input

data point is computed using weighted least squares, with weights coming from an exponen-

tial kernel. The authors also extend the framework to identify a set of points at which to

provide local-linear approximations; this helps with global model explanation. The points

that are identified are not guaranteed to be diverse enough (further explained in the Exper-

iments Section), i.e., they may all come from similar regions in the feature space and/or the

range space of the black-box function.

7.2.1.2 Relevance propagation

Layerwise relevance propagation (LRP) [BBM15] and DeepLIFT [SGK17] are relevance prop-

agation frameworks commonly used for interpretation of neural networks. In DeepLIFT, the

importance of a feature is determined by perturbing the feature of a data point from a

reference value and tracking the gradient/change in the outcome/prediction. DeepLIFT is

particularly designed to handle the problems that arise in neural networks such as gradient

saturation that are not handled by others [SDV16].

7.2.1.3 SHAP

The SHAP framework [LL17] shows that many of the existing frameworks can be understood

as variants of a common linear interpretive model. The authors argue that the coefficients
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of a good linear interpretive model should satisfy a particular set of axioms and show that

the coefficients derived from Shapley regression provide the unique solution to these axioms.

7.2.1.4 Influence functions

In [KL17], the authors used influence functions to understand the impact of training data

points on the predictions of the model. For each new test data point, it identifies the

training points that most influence the prediction of the model. This method is also used to

determine the importance assigned by a model to the different feature dimensions at a given

data point/neighborhood.

7.2.2 Global Frameworks

7.2.2.1 Tree based approximations

In [BKB17], the authors develop an approach to approximate the entire black-box function.

The objective of their work is to find the best tree that approximates the black-box model.

The authors show that their approach learns the exact greedy decision tree. In our exper-

iments, we show that the trees constructed in this greedy manner can provide very poor

approximations of the true black-box model.

7.2.2.2 Decision set based approximation

Decision sets (sets of if-then rules) based black-box approximations have been used in

[LKC17]. (The framework in [LKC17] is meant for classification problems only; the present

chapter focuses on regression problems but is easily adapted to classification problems.) The

framework in [LKC17] optimizes an objective that balances the ambiguity between the clas-

sifier and the decision rule against the interpretability of the decision set. The approach

of [LKC17] does not provide fidelity guarantees; our approach does.
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7.2.3 Relationship of Piecewise Linear and Piecewise Constant Models to Ex-

isting Works

Existing local frameworks described in the previous section construct a local model for each

data instance. In most cases, these local models are linear [LL17]. Since there is one model

per data instance these models qualify as piecewise linear models, where every different model

corresponds to a different piece. For a new data instance, we find the nearest data point

in the training set and use the corresponding local-linear model to find the interpretation

for the new data instance. In general, it is impractical to have a different model to explain

every instance and inspect each of those interpretations. It is more practical to have a

model that explains a group of data points instead of one data point thus keeping the total

number of pieces required to explain the model below a reasonable value. Existing global

frameworks [LKC17] [BKB17] use regression trees or decision sets. These models represent

piecewise constant models as there is a fixed value assigned by the model to each decision

set or a leaf in the tree.

7.3 Problem Formulation

7.3.1 Toy Example

In this section, we begin by describing a toy example to illustrate the input and the output

from the proposed algorithm. In Figure 7.1, we show the example of a one dimensional

black-box function f . We input the data D = {(xi, f(xi))}ni=1 to the proposed algorithm,

where (xi, f(xi)) ∈ V . Our goal is to partition the space V into homogeneous regions –

similar in terms of black-box function values and similar in terms of their features. We first

partition the function f ’s range into three intervals as shown in the figure (later we explain

the methodology used to decide the intervals).

Next we want to partition the inverse mapping of these intervals. Consider the interval

[a, b] and its inverse f−1[a, b] = {[α, β]} ∪ {[γ,∞)}. The inverse map f−1[a, b] is not a

connected set. Hence, it is natural to partition f−1[a, b] into two separate connected regions

196



[α, β] and [γ,∞] (a natural approach to partition the data in f−1[a, b] is to use k-means

clustering with k=2). For general functions, also f−1[a, b] will not be a connected set and

thus it is natural to use k-means clustering to separate the data in f−1[a, b]. The choice of

k depends on number of disconnected sets, which is not known apriori. Hence, a natural

approach is to select k using cross-validation as we discuss later. The Table in Figure 7.1

summarizes the partition in terms of the y interval and x interval and the coefficients for

local-linear models and the dotted line shows the piecewise local-linear approximation.

𝑦

𝑥

𝑎

𝑏

𝛼 𝛽 𝛾

Black-Box Model Piecewise Local Linear Model

𝛽(

𝛽)

𝛽*

𝛽+

𝑦 interval interval Linear model

[0, 𝑎] [0, 𝛼] 𝛽(
[𝑎, 𝑏] [𝛼, 𝛽] 𝛽)
[𝑎, 𝑏] [𝛾,∞] 𝛽+
[𝑏,∞] [𝛽, 𝛾] 𝛽*

𝑥

Figure 7.1: Comparison of the black-box model versus the piecewise approximation.

7.3.2 Interpretive models

We are given a space X of features and a space Y = [0, 1] of labels. We are given a predictive

model f : X → Y (say a random forest based model or a deep neural network model). The

data is distributed according to some true distribution D (typically unknown) on X . Our

objective is to interpret f in terms of interpretive models, which are defined below. We seek

to find a interpretive model g that approximates f .

The intepretive models we consider here represent the most commonly used models in

literature on model interpretation [RSG16] [LL17]. The interpretive models we consider are

defined by partitioning X into a finite number of disjoint sets and assigning a simple model
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𝑦

𝑥

𝑎
𝑏

𝛼 𝛽 𝛾

Black-Box Model Piecewise Local Linear Model

𝛽(

𝛽)

𝛽*
𝛽+

𝑦 interval interval Linear model

[0, 𝑎] [0, 𝛼] 𝛽(
[𝑎, 𝑏] [𝛼, 𝛽] 𝛽)
[𝑏, 𝑐] [𝛽, 𝛾] 𝛽*
[𝑐,∞] [𝛾,∞ ] 𝛽+

𝑥

𝑐

Figure 7.2: Comparison of the black-box model versus the piecewise approximation.

(linear or constant model) to each set of the partition.

To make this precise, recall that a (finite) partition of a subset A ⊂ X is a family

Z = {Z1, Z2, . . . , ZK} of subsets of X such that
⋃K
i=1 Zi = A and Zi ∩Zj = ∅ if i 6= j. Given

a partition Z of A and an instance a ∈ A we write Z(a) for the index of the unique element

of the partition Z to which a belongs. Write P(A) for the set of all (finite) partitions of A

and PK(A) for the set of partitions having K elements. We define M = {M1, ...,MK} a set

of local models, where model Mj corresponds to the local model for points in Zj. Each local

model Mj belongs to a set H of models, where H can be from the family of linear models

(Mj(x) = btx+c, where b ∈ R|X | and c ∈ R). Given a partition Z of X and the corresponding

set of local modelsM, we define a interpretive model gM,Z : X → Y by gM,Z(x) = MZ(x)(x).

We define the search space of our partitions next and note that we will closely follow the

type of partitions described in the Toy example in Section 7.3.1. Partition the the range of

function f into H intervals given as {ar}H−1
r=1 , where a1 < a2, ... < aH−1. Next we partition

the inverse mapping of these intervals, i.e., f−1[ar, ar+1] ∈ X , into Sr regions. There can be

many methods to partition the data into Sr regions such as k-means clustering, hierarchical

clustering etc.. The choice of the clustering algorithm is a hyperparameter and our method

allows us to choose any of these clustering algorithms. However, in this chapter, for ease of
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exposition, we would only use k-means clustering algorithms to partition the inverse images

of the intervals.

We characterize region i among these Sr regions by its centroid µri . All the points in

region i are closer to the centroid µri than to the centroids of the rest of the regions. A region

Zk of the partition Z is defined as Zk = {x, s.t. x ∈ f−1[ar, ar+1], ‖x−µri‖ ≤ ‖x−µrj‖, ∀j}.

We already showed a 1-D partition in Figure 7.1, we give another example in Figure 7.3 of

a 2-D partition to illustrate more complicated shapes of the regions in the partition. The

partition in Figure 7.3 has six regions.

To summarize, we follow the approach of dividing the range of the function f and then

further dividing the inverse image of the f into regions characterized by their centroids

and we fit a linear model to explain the predictions in each region. The partition Z is

characterized by the interval values {ar}H−1
r=1 , {{µri}Sri=1}H−1

r=1 . The total number of regions in

the partition is
∑H−1

r=1 Sr.

7.3.2.1 Why this type of partitions?

Our main purpose when constructing the partition is to find “homogeneous” regions, i.e.,

regions where the data features x are close to each other and the corresponding predictions

f(x) are also close to each other. To achieve the first task, i.e., the function values are close,

we first partition the range of function f . However, just partitioning the range of f does not

guarantee that the inverse image of the intervals consists of data instances that are also close

to each other. See f−1[a, b] in the Toy example in Figure 7.1, it consists of two disconnected

regions. This is the reason why we partition inverse image of each interval f−1[ar, ar+1] so

that any disconnected regions are separated into different regions.

7.3.2.2 Comment on choice of the number of intervals and number of regions

How many intervals H should we divide the function’s range into? How many regions should

we further subdivide those intervals into? In Figure 7.1 and Figure 7.2, we divide the feature

space X into four regions with different choices of H and {Sr}Hr=1. We compare and select
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between the two choices using cross-validation. In general, if we want to construct K regions

there can be many possible choices for H and {Sr}Hr=1, where
∑H

r=1 Sr = K. In this chapter,

we will carry out simulations assuming that Sr = St = W for any r 6= t. The more general

case when Sr 6= St will be a part of future work.

Before we describe the main algorithm, we fix some hyperparameters. We assume that

K is given (provided as input by the expert or a parameter that can be tuned using cross-

validation). Suppose that we want to have K regions in the partition. We assume that

we will divide the function’s range space into H intervals and each interval into W regions.

Therefore, H × W = K.2 Hence, the partition Z is characterized by the interval values

{ar}H−1
r=1 , {{µri}Wi=1}H−1

r=1 where each region Zk in Z is Zk = {x, s.t. x ∈ f−1[ar, ar+1], ‖x −

µri‖ ≤ ‖x− µrj‖, ∀j}. The set of all such partitions Z is PK(X )†.

𝑓 𝑥 < 𝑎 𝑎 ≤ 𝑓 𝑥 ≤ 𝑏 b < 𝑓 𝑥

𝜇)* 𝜇+* 𝜇)*, 𝜇+*,𝜇), 𝜇+,

𝑥+

𝑥)

𝜇),

𝜇+,

𝜇)*,

𝜇+*,𝜇)*

𝜇+*

𝑓 𝑥 = 𝑎 𝑓 𝑥 = 𝑏

𝑓 𝑥 = 𝑎

𝑓 𝑥 = 𝑏

Fit a local linear model

Figure 7.3: Example of a 2-D partition.

7.3.3 Loss functions

We measure the goodness of fit of a proposed interpretation g for f in terms of a given loss

function (for e.g., mean squared error). We assume ` : R+ → R+ is a continuous, strictly

increasing, strictly convex function such that `(0) = 0. We define the risk achieved by model

gM,Z as follows

R(f, gM,Z ;D) = ED[l(‖f(X)− gM,Z(X)‖s)] (7.1)

2The maximum number of choices for (H,W ) are K.
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where X is a feature from the distribution D, the expectation is taken over the distribution

D, and ‖.‖s is the s-norm.

7.3.4 Risk Minimization

Our objective is to find a partition Z and a map M : Z 7→ Y (where each local model

is drawn from H) to minimize the true risk subject to the constraint that the size of the

partition, i.e., |Z| = K .

(M∗,Z∗) = argmin
M∈HK ,Z∈PK(X )†

R(f, gM,Z ;D) (7.2)

gM∗,Z∗ is the best piecewise model that minimizes the above risk.

7.3.5 Empirical Risk Minimization

In practice, we do not know the true distribution D so we cannot minimize the true risk;

instead, we see only a finite dataset (training set) D = {(xi, f(xi))}Ni=1 drawn from the true

distribution. For given M,Z the empirical risk is

R̂(M,Z;D) =
1

n

∑
(xi,f(xi))∈D

[
l(‖f(xi)− gM,Z(xi)‖s)

]
(7.3)

The spirit of Probably Approximately Correct (PAC) learning [SB14] suggests that we

should minimize the empirical risk:

(M†,Z†) = argmin
M∈HK ,Z∈PK(X )†

R̂(M,Z;D) (7.4)

Later we will show that solving the above empirical risk minimization problem is PAC

solution to the actual risk minimization problem in (7.2). We cannot solve the above problem

using brute force search because it requires searching among O(|D|K) partitions, which

becomes intractable very quickly with increase in |D| and K. In the next section, we propose

an efficient Algorithm to solve the above problem.
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7.4 Piecewise Local-Linear Interpreter

In this section, we develop the Piecewise Local-Linear Interpreter (PLLI) to solve the problem

discussed above. Without loss of generality we assume that all the data points xi in D are

sorted in the increasing order of f(xi).

We give a summary of the working of the Algoirthm next. We give a detailed analysis

of the Algorithm later. There are two parts to the Algorithm (Algorithm 5 and 6). In

the first part, the Algorithm partitions the data D into subsets and finds an optimal local

model corresponding to each subset. The division of the dataset into these subsets relies on

dynamic programming. Suppose that the Algorithm wants to divide the first p points into

q intervals. Also, suppose that the Algorithm has already constructed a partition to divide

the first m points into k intervals for all m ≤ p− 1 and for all k ≤ q − 1. The risk achieved

by partition of m points where the size of the partition is k is defined as V (m, k). For each

xi, xj in the dataset, where i ≤ j, define a subset of the data as follows.

D(i, j) = {x : x ∈ D & f(xi) ≤ f(x) < f(xj)}

Note that the dataset D(i, j) can be distributed in different regions of the feature space as

shown in the Toy example in Section 7.3.1. Therefore, we divide the dataset D(i, j) into W

regions using k-means clustering 3 with k = W , where the regions are given as {Sij1 , ..., S
ij
W}.

We fit a linear model in each of these regions. We define the risk achieved over the dataset

D(i, j) by these W local models as in (7.5).

G(i, j) =
∑
u

min
h∈H

∑
xr∈Siju

[
l(‖f(xr)− h(xr)‖s)

]
(7.5)

The Algorithm constructs a partition to divide p points into q intervals as follows

V (p, q) = min
n′∈{1,..,p−1}

[
V (n

′
, q − 1) +G(n

′
+ 1, p)

]
Φ(p, q) = argmin

n′∈{1,.,p−1}

[
V (n

′
, q − 1) +G(n

′
+ 1, p)

]
3We can use other clustering methods as well instead.
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where Φ(p, q) is the index of the first data point in the qth subset. The subset q consists

of all the points indexed {Φ(p, q), ..p}. The data subset defined as D(Φ(p, q), p) and it is

partitioned into W subsets each fitted with its own local model.

Similarly, the next subset, i.e., the (q − 1)th subset can be computed recursively as

{Φ(Φ(p, q), q−1), ..,Φ(p, q)−1} and so on. In the first part of the Algorithm, we construct a

partition of D and the corresponding set of local models. In the second part of the Algorithm,

we extend this partition from the dataset D to the set X . We write the function that is

output by the Algorithm 6 as gM#,Z# .

Algorithm 5 Computing value and index functions

Input: Dataset D, Number of subsets K

Initialize: Define V
′
(1, k) = 0,∀k ∈ {1, ..., K}.

For each xi ∈ D, xj ∈ D such that i ≤ j, define D(i, j) = {x : x ∈ D and ‖f(xi)‖ ≤

‖f(x)‖ ≤ ‖f(xj)‖}

{Sij1 , .., S
ij
W} = Kmeans(D(hl, hu))

G(i, j) =
∑

u minh∈H
∑

xr∈Siju

[
l(‖f(xr)− h(xr)‖s)

]
M
′
(Siju ) = minh∈H

∑
xr∈Siju

[
l(‖f(xr)− h(xr)‖s)

]
for n ∈ {2, ..., |D|} do

for k ∈ {1, ..., K} do

V
′
(n, k) = min

n′∈{1,..,n−1}

[
V
′
(n
′
, k − 1) +G(n

′
+ 1, n)

]
(7.6)

Φ(n, k) = argmin
n′∈{1,..,n−1}

[
V
′
(n
′
, k − 1) +G(n

′
+ 1, n)

]
(7.7)

Output: Value function V
′
, Index function Φ
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Algorithm 6 Computing partitions using the index function

1: Input: Index function Φ, black-box predictive model f

2: Initialization: hu = |D|, r = 1

3: for k ∈ {1, ..., H} do

4: hl = Φ(hu, K − k + 1)

5: {µki }Wi=1 = Kmeans(D(hl, hu))

6:
∑

xr∈D(i,j),xr∈Ws

[
l(‖f(xr)− h(xr)‖s)

]
7: for u ∈ {1, ...,W} do

8: ZK−r+1 = {x : f(xhl) < f(x) ≤ f(xhu), ‖x− µkr‖ ≤ ‖x− µkj‖}

9: MK−r+1 = M
′
(Shlhuu )

10: hu = hl

11: r = r + 1

12:

13: Output: Z# = {Z1, ..., ZK},

14: M# = {M1, ...,MK}
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7.5 Main Results

Our goal in this section is to show that the output of the Algorithm PAC learns f . We

assume the special case when we only partition the range of f and do not further sub divide

the intervals, i.e., H = K and W = 1.

7.5.1 PAC learnability of Algorithms 1 and 2:

In this section, we discuss whether the outcome of Algorithm 5 and 6, i.e. gM#,Z# PAC

learns f . We consider the case when we only partition the function’s range into K intervals,

i.e., H = K and W = 1. In Figure 7.2, we show example of such a case with H = 4 and

W = 1.

To show PAC learnability, we will first show that the outcome of Algorithms 5 and 6

achieves the minimum empirical risk.

Proposition 4 The output of the Algorithm 5 and 6 achieves the minimum risk value equal

to minM∈HK ,Z∈PK(X )† R̂(M,Z;D).

The proofs to all the propositions and theorems are in the Appendix Section at the end of

the chapter. The proof of Proposition 4 is given in the Appendix Section. We give a brief

proof sketch next.

Theorem 17 ∀ε > 0, δ ∈ (0, 1), ∃ n∗(ε, δ) such that if D is drawn i.i.d. from D and |D| ≥

n∗(ε, δ) , then with probability at least 1− δ,

|R(f, gM#,Z# ;D)−R(f, gM∗,Z∗ ;D)| ≤ ε

The proof of Theorem 17 is in the Appendix Section at the end of the chapter.

7.6 Experiments

In this section, we describe the experiments conducted on synthetic and real datasets. We

will cover regression problems in this experiments section. The proposed method can also be
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applied to classification problems. All the simulations were conducted in Python in Google

Colab.

7.6.1 Metrics

We will use two metrics to measure the performance of the different methods. We denote

mean squared error as MSE. We use MSE to measure the performance of the model on the

labelled data (squared of the norm of the difference between the predictions and labels),

which is denoted as MSE-p. We also use MSE to measure the fidelity (squared of the norm

of the difference between the predictions and black-box function values), i.e., how close is the

model to the black-box model, which is denoted as MSE-f. We use R2, i.e., the coefficient of

determination, to measure the fit of the model.

7.6.2 Synthetic Dataset

We begin by describing a synthetic dataset that we use to illustrate the performance of the

method before going into more complicated real data setting. We assume that each data

point is of the form (x1, x2, y), where x1 and x2 are the features and y = (x1 + x2)2. We

assume that x1 and x2 are independent and are drawn from N (0, 1). We sample 1000 data

points.

7.6.2.1 Black-Box Model

We split the data randomly into 80 percent training and 20 percent testing. We fit a random

forest regressor to predict the target variable. In the Table 7.1, we compare the performance

of the RF regressor, which is a black-box method, with other more interpretable methods

such as regression tree and linear model. We observe that the RF regressor has a much

smaller mean squared error (MSE) in comparison to a linear model or a regression tree. We

do not report R2 for linear model and regression tree as the models are so poor fit that we

obtained a negative R2.
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7.6.2.2 Piecewise Local-Linear Interpreter

There are several possible configurations for the piecewise local-linear interpreter. We will fix

K = 4 (we fix a small value as the dataset is small). We have three parameter configurations

possible. (H = 4, W = 1), (H = 1, W = 4), (H = 2, W = 2). Instead of using

the dynamic programming procedure described in Algorithm 5, we can alternatively use a

simpler procedure to partition the function’s range. We first order the dataset in terms of

the black-box predictions and divide the dataset into H equal quantiles. We use k-means

clustering for data in each quantile to divide the data into W clusters and fit a local-linear

model to it. We refer to this procedure as EQ-PLLI, where EQ stands for equal quantile.

On the other hand, we refer to the procedure from Algorithm 5 and 6 as OP-PLLI, where

OP stands for optimal. In Table 7.2, we compare these configurations in terms of MSE-f

and MSE-p. Based on MSE-f and MSE-p we select the OP-PLLI (H = 2,W = 2). We also

compare with regression tree (with four leaves as K = 4) and linear model fitted to predict

the black-box model.

7.6.2.3 Model Summary

In Figures 7.4, 7.5, we show the partitions constructed under the different models shown in

Table 7.2. In Figure 7.4 a) and Figure 7.5 a), we show the different partitions from equal

quantile and optimal approach. We can observe that the regions in each partition in Figure

7.4 a) and Figure 7.5 a) are not contiguous. For instance, the orange region is located in

two separate regions of the 2-D feature space. In Figure 7.4 b) and c) the regions in each

partition are contiguous. In Table 7.3, we give the model summary constructed based on the

piecewise interpreter (W = 2, H = 2, OP). Each region characterized by the centroid and

the function range and the corresponding coefficients of x1 and x2 are shown in Table 7.3.

7.6.3 Interpret RF regression on Boston Housing Dataset

We use the Boston Housing Dataset from UCI repository. The dataset consists of information

about the house prices and other attributes about where the house is located. The attributes
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Figure 7.4: Comparison of PLLI for different hyperparameter configurations. Figures above

from left to right have the following parameter configurations a) (H = 4,W = 1) EQ, b)

(H = 2,W = 2), EQ c) (H = 2,W = 2), OP.
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Figure 7.5: Comparison of PLLI for different hyperparameter configurations. Figures above

from left to right have the following parameter configurations a) (H = 4,W = 1) OP , b)

(H = 1,W = 4) OP.

Table 7.1: Comparison of RF Regressor with other methods.

Model MSE-p R2

RF Regressor 0.11 0.97

Regression tree 6.30 0.00

Linear model 5.15 0.05

Constant model 5.43 –

with their abbreviations and descriptions are described below.

• CRIM per capita crime rate by town

• ZN proportion of residential land zoned for lots over 25,000 sq.ft.
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Table 7.2: Comparison of RF Regressor with other methods.

Model MSE-f MSE-p

EQ-PLLI (H = 4,W = 1) 1.19 1.52

OP-PLLI (H = 4,W = 1) 0.54 0.73

PLLI (H = 1,W = 4) 0.69 0.70

EQ-PLLI (H = 2,W = 2) 0.18 0.12

OP-PLLI (H = 2,W = 2) 0.18 0.11

Linear model 5.75 7.57

Regression tree 4.34 5.15

Table 7.3: Model Summary of RF regressor: Synthetic Data.

Region x1 x2

f < 1.2, [0.6,−0.6] 0.104 0.002

f < 1.2, [−0.6, 0.6] 0.070 0.004

f > 1.2, [−0.9,−1.0] 4.230 4.230

f > 1.2, [0.9, 1.0] 4.230 4.230

• INDUS proportion of non-retail business acres per town

• CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

• NOX nitric oxides concentration (parts per 10 million)

• RM average number of rooms per dwelling

• AGE proportion of owner-occupied units built prior to 1940

• DIS weighted distances to five Boston employment centres

• RAD index of accessibility to radial highways

• TAX full-value property-tax rate per 10, 000
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• PTRATIO pupil-teacher ratio by town

• B 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town

• LSTAT lower status of the population

The total number of instances in the dataset is 506.

7.6.3.1 Black-Box Model

We split the data randomly into 80 percent training and 20 percent testing. We fit a random

forest regressor to predict the target variable, i.e., the price of the house based on the

attributes described above. In Table 7.4, we compare the MSE-p of the random forest

method and compare it with other interpretable methods such as a linear model and a

regression tree model. We observe that the RF regressor has a much smaller mean squared

error (MSE) in comparison to a linear model or a regression tree. However, the improvement

in the performance comes at the cost that the new model is harder to interpret. In the next

section, we use the proposed procedure to get insights into the behavior of this random forest

regressor model.

Table 7.4: Comparison of RF Regressor with other methods.

Model MSE-p R2

RF Regressor 8.217 0.88

Regression tree 37.23 0.60

Linear model 21.78 0.78

Constant model 81.54 0.78

7.6.3.2 Piecewise Local-Linear Interpreter

There are several possible configurations to use for the piecewise interpreter. We fix K = 4

(as the dataset is small). We have three parameter configurations possible H = 4,W = 1,
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Table 7.5: Comparison of PI interpreter different hyperparameter configurations.

Model MSE-f MSE-p

EQ-PLLI (H = 4,W = 1) 5.76 15.10

OP-PLLI (H = 4,W = 1) 3.40 10.05

PLLI (H = 1,W = 4) 8.80 11.32

EQ-PLLI (H = 2,W = 2) 5.83 13.01

OP-PLLI (H = 2,W = 2) 6.40 12.40

Linear model 16.79 21.78

Regression tree 21.17 37.27

H = 1,W = 4, H = 2,W = 2. We compare the fidelity (how well does the piecewise model

represent the black-box) and MSE of these models (how well does the piecewise model

perform when making the predictions of the labels) in the Table 7.5. We select the model

based on the fidelity value. We select the OP-PLLI model with H = 4, W = 1.

7.6.3.3 Black-Box Model Summary

We present the model summary in Tables 7.6 and 7.7. The table’s different rows shows

the different regions in the partition and the importance associated with different features.

In Figure 7.6 and 7.7, we show the different regions in the partitions. We use the two

components of the PCA to represent the features. Based on the different parameters we

get different partitions. In Figure 7.6 and 7.7, the regions in the partitions are contiguous.

The partition in Figure 7.6 b) and Figure 7.7 b) offers the additional advantage that the

different data points in the partition do not overlap in the two dimensional space. If the

data points do not overlap in the two dimensional space, then that implies that each region

in the partition can be simply described in terms of the two PCA components only and does

not need to use black-box output f to define the region.
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Table 7.6: Comparison of RF Regressor with other methods.

Region CRIM ZN INDUS CHAS NOX RM AGE

f < 19.0, [2.0, 0.0] 0.63 0.79 0.68 0.41 1.37 0.14 0.05

19 < f < 26.0, [−0.8,−0.2] 0.40 0.17 0.11 0.22 0.08 1.38 0.61

26.0 < f < 35.0, [−2.0, 0.3] 0.0 0.62 1.39 0.10 0.16 0.95 0.57

f > 35.0, [−2.0, 0.3] 6.61 0.03 2.51 0.08 4.69 2.66 1.34

Table 7.7: Comparison of RF Regressor with other methods.

Region DIS RAD TAX PTR B LSTAT

f < 19.0, [2.0, 0.0] 0.31 0.73 1.46 1.04 0.18 1.59

19 < f < 26.0, [−0.8,−0.2] 0.63 0.94 0.72 0.58 0.28 1.43

26.0 < f < 35.0, [−2.0, 0.3] 0.94 2.75 1.57 0.99 0.0 2.27

f > 35.0, [−2.0, 0.3] 2.71 7.74 3.04 3.02 0.0 2.71

7.6.3.4 Submodular Pick

In [RSG16], the authors proposed a method to identify candidate data points to provide

local instance based explanations. The proposed method is called submodular pick. The

method tries to ensure that data points that are selected present a diverse set of feature

importances. However, the selected data points do not necessarily represent a diversity in

terms of the feature distribution or the predicted-value distribution. Another approach to

select the data points is to select them randomly.

Our method provides a natural way to select the candidate data points. The data points

selected by our method are the centroids of each region in the partition identified by the

PLLI. Suppose we want to identify K candidate data points. In this case, the size of partition

we use is K using PLLI.

We measure how well spread are the data points identified spread in the space as follows.

For each selected point compute the distance from the nearest neighbor. We define coverage

as the average minimum distance from the neighbors , i.e., 1
K

∑
i minj 6=i ‖xi − xj‖). We
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measure the coverage for the feature importances, the coverage for the feature vectors, and

the coverage for function values. We compare the proposed procedure (for K = 4) with

random method (averaged over 10 runs) and the submodular pick method. In Table 7.8, we

compare the various methods. We observe that the proposed method is better at giving a

larger coverage in terms of feature values, predicted values and importance values. In Figure

7.8 we show the different data points (predicted values, explanations and features) identified

by the proposed method.
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Figure 7.6: Comparison of PLLI for different hyperparameter configurations. Figures above

from left to right have the following parameter configurations a) (H = 2,W = 2) EQ, b)

(H = 2,W = 2), OP c) (H = 4,W = 1), EQ.
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Figure 7.7: Comparison of PLLI for different hyperparameter configurations. Figures above

from left to right have the following parameter configurations a) (H = 4,W = 1) OP, b=

(H = 1,W = 4) OP.

7.6.4 Large dataset

The computational complexity of the proposed approach is large (See Proposition 5). It

is easy to approximate the PLLI procedure to allow it to scale to large datasets (see the

description in the Appendix). In this section, we show that an approximate version of PLLI
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Table 7.8: Comparison of coverage of various selection methods.

Algorithm Coverage Coverage Coverage

importances predictions features

PI 0.68 8.69 3.80

Submodular pick 0.63 4.38 3.20

Random 0.60 3.87 3.75

Figure 7.8: Data points selected based on PLLI and corresponding explanations (for the top

five features.)

can scale well for large datasets as the experiments in the previous sections were done on

datasets that were moderately small (500-1000 datapoints). In this section, we use California

Housing Dataset from StatLib library below. It consists of 20,640 data points with 8 features.

The 8 features are described as

• MedInc median income in block
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• HouseAge median house age in block

• AveRooms average number of rooms

• AveBedrms average number of bedrooms

• Population block population

• AveOccup average house occupancy

• Latitude house block latitude

• Longitude house block longitude.

The target variable is the median house value for California districts.

We compare the performance of EQ PLLI (H = 4,W = 1) with approximate OP PLLI

(H = 4,W = 1). The goal is to show that with a reasonable computation time the proposed

approximation approach performs well. In Table 7.9, we compare the RF regressor with

more interpretable methods. In Table 7.10, we show the comparison of PLLI method. Note

that approximate OP-PLLI took 700 seconds to train, while the exact OP-PLLI would take

3 days to train.

Table 7.9: Comparison of RF Regressor with other methods.

Model MSE-p R2

RF Regressor 0.24 0.80

Regression tree 0.74 0.58

Linear model 0.53 0.60

7.7 Connection with K-means clustering

In this section, we begin by drawing a connection between the equation (7.4) and the general

problem of clustering.
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Table 7.10: Comparison of PLLI interpreter different hyperparameter configurations.

Model MSE-f MSE-p

EQ-PLLI (H = 4,W = 1) 0.084 0.33

Approximate-OP-PLLI (H = 4,W = 1) 0.076 0.26

7.7.1 Ordered Partitions

We say that the partition Z of A ⊂ X is ordered if for every Z,Z ′ ∈ Z with Z 6= Z ′, either

(i) for all z ∈ Z, z′ ∈ Z ′ we have f(z) < f(z′), or

(ii) for all z ∈ Z, z′ ∈ Z ′ we have f(z) > f(z′)

We consider the same setting as in the Section 7.5, where H = K and W = 1, i.e., we

only want to optimize how to divide the function’s range. Hence, we only search in the space

of {ar}H−1
r=1 , which characterize the different intervals that are possible. Recall that we define

the set of partitions that we search in as PK(X )†. Consider any two regions Zi = f−1[am, an]

and Zj = f−1[ap, aq] in partition Z ∈ PK(X )†. [am, an] and [ap, aq] are non-overlapping

intervals by construction. Hence, the two regions Zi and Zj are ordered. Therefore, PK(X )†

is the set of all the ordered partitions of size K.

Suppose we set all the coefficients in the linear model except for the intercept to zero,

then we get a constant model. We reformulate the problem (7.4). We expand the search

to the space of all the partitions of size K, PK(X ), instead of just ordered partitions and

restrict the search to local-constant models.

(M↑,Z↑) = argmin
M∈HK ,Z∈PK(X )

R̂(M,Z;D) (7.8)

We simplify the above problem. Suppose {Z1, .., ZK} are the regions in the partition and

{c1, ..., ck} are the corresponding locally constant model values. We write the loss as follows

R̂(M,Z;D) =
1

n

K∑
k=1

∑
xi∈Zk

[
l(‖f(xi)− ck‖s)

]
(7.9)
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Let f(xi) = yi. Suppose I = {I1, ..., IK} is a partition of {y1, ..., yn} in K regions. We

rewrite (7.9) as

R̂(M, I;D) =
1

n

K∑
k=1

∑
yi∈Ik

[
l(‖yi − ck‖s)

]
(7.10)

We formulate risk minimization with (7.10) as objective

(M↑, I↑) = argmin
M∈HK ,I∈PK(Y)

R̂(M, I;D) (7.11)

Observe that the two optimization problems (7.8) and (7.11) are equivalent. It is easy to

show this using contradiction.

Also, observe that the optimization problem (7.11) is a general clustering problem for

one-dimensional data {y1, ..., yn}. Next we prove that the output of Algorithm 5 and 6

achieves the optimal clustering in polynomial time. We first begin by getting worst case

complexity bounds for the Algorithm 5 and 6.

Proposition 5 If the loss function is mean squared error and the local model is from con-

stant model family, then the computational complexity of Algorithm 5 and 6 together is

O(|D|3Kd).

If we set l to be a squared function and the norm s = 2 in (7.3), we obtain a MSE

minimization problem. The classic k-means clustering method also tries to minimize the

same objective. In the next proposition, we state that the output of Algorithm 5 and 6

achieves the optimal clustering.

Proposition 6 If the loss function is mean squared error and the local model is from con-

stant model family, then the output of the Algorithm 5 and 6 achieves optimal clustering,

i.e., minM∈HK ,I∈PK(Y) R̂(M, I;D) = R̂(M#,Z#;D)

Note that we have established that the Algorithm 5 and 6 achieves optimal clustering in

polynomial time. Methods in the literature such as k-means clustering are not guaranteed

to achieve the optimal clustering even for the one-dimensional case that we described above.
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In the next propositon we discuss the general clustering problem, when we only require l to

be strictly convex and the norm can be any norm s ≥ 1.

Proposition 7 If the local model is from constant model family, then for every ε, δ > 0

and every K there is some m∗(ε, δ,K) such that if the training set D is drawn i.i.d. from

the distribution D and |D| ≥ m∗(ε, δ,K), then with probability at least 1 − δ we have∣∣∣minM∈HK ,I∈PK(Y) R̂(M, I;D)− R̂(M#,Z#;D)
∣∣∣ < ε

7.8 Conclusion

This chapter provides a novel way to construct piecewise approximations of a black-box

model. Our approach uses dynamic programming to partition the feature space into regions

and then assigns a simple local model within each region. We carry out experiments show

that the proposed approach achieves a smaller loss and better reflects the black-box model

compared to other approaches. We also prove that the proposed approach can also be applied

to the problem of clustering. We provide a first proof that the proposed approach achieves

optimal clustering in polynomial time when the data is one-dimensional.

7.9 Appendix

7.9.1 Appendix A

Proof of Proposition 4. Throughout this Appendix, we will assume that the partitions are

purely constructed based on the division of the range of f in intervals (Recall the assumption

H = K and W = 1).

Bellman Principle Let Z be an ordered partition of X and assume that R(Z, D)

minimizes the risk among all ordered partitions of X with at most |Z| elements. If Z ′,Z ′′ ⊂ Z

is a partition of Z, then R(Z ′, D) minimizes the risk among all ordered partitions of A′ with

at most |Z ′| elements. (If this were not true then we could find another ordered partition

Z∗ of A′ with lower risk. But then Z∗ ∪ Z ′′ would be an ordered partition of X with lower

218



risk than Z, which would be a contradiction.)

Suppose that the first n points are to be divided into k regions. The minimum risk

achieved by the optimal partition of first n points into k regions satisfies the Bellman equation

given as.

V (n+ 1, k) = min
n′∈{1,..,n}

{V (n
′
, k − 1) +G(n

′
+ 1, n)}

Note that V (1, k) = 0 for all 1 ≤ k ≤ K (the model M ’s output is equal to the one data

point itself)

To prove this proposition, we first state a lemma in the next subsection.

7.9.1.1 Appendix B

Lemma 4 The value function output by the Algorithm 5 V
′

is the same as the true value

function V , i.e., V
′
= V thus V ′(n,K) = minM∈HK ,Z∈PK(X )† R̂(M,Z;D)

Proof of Lemma 4. We use induction in the number of data points n.

We start with the base case n = 1. For n = 1 and 1 ≤ k ≤ K, we know that the

V
′
(1, k) = 0 (from the initialization of the Algorithm). We also know that V

′
(1, k) = 0 for

all 1 ≤ k ≤ K (the model M ’s output is equal to the one data point itself). Hence, the claim

is true for n = 1 and for all 1 ≤ k ≤ K.

Suppose that the Algorithm outputs optimal value functions for all s ≤ n and for all

k ≤ K.

Consider the data point n+ 1 and the constraint on the number of partitions is k. From

the Algorithm 5 we know that

V
′
(n+ 1, k) = min

n′∈{1,..,n}
{V ′(n′ , k − 1) +G(n

′
+ 1, n)}

Let us assume that V
′
(n+ 1, k) is not optimal, i.e.,

V
′
(n+ 1, k) > V (n+ 1, k)
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We use the Bellman principle to write the value function V as follows

V (n+ 1, k) = V (n∗, k − 1) +G(n∗ + 1, n)

We use the above two equations to write

V
′
(n+ 1, k) > V (n∗, k − 1) +G(n∗ + 1, n)

We also know that

V
′
(n+ 1, k) < V

′
(n∗, k − 1) +G(n∗ + 1, n)

Therefore, we can write

V
′
(n∗, k − 1) +G(n∗ + 1, n) > V (n∗, k − 1) +G(n∗ + 1, n)

=⇒ V
′
(n∗, k − 1) > V (n∗, k − 1)

This contradicts the assumption that V (n∗, k−1) = V
′
(n∗, k−1). Hence, the assumption

V
′
(n + 1, k) > V (n + 1, k) cannot be true, which implies V

′
(n + 1, k) ≤ V (n + 1, k). Thus

we can say that V
′
(n+ 1, k) = V (n+ 1, k) (V

′
(n+ 1, k) < V (n+ 1, k) can’t be true since V

is optimal value function). �

In Lemma 4, we showed that V
′

= V . To complete the proof of Proposition 4, we need

to show that the partition output by the Algorithm 6 achieves V .

Recall the computation of value function from Algorithm 5

V
′
(n+ 1, k) = min

n′∈{1,..,n}
{V ′(n′ , k − 1) +G(n

′
+ 1, n)}

From Algorithm 5, we also know that

Φ(n+ 1, k) = argmin
n′∈{1,..,n}

{V ′(n′ , k − 1) +G(n
′
+ 1, n)}

We can write

V
′
(n+ 1, k) = V

′
(Φ(n, k), k − 1) +G(Φ(n, k) + 1, n)
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The subset of the data upto data point n is written as Dn. The optimal partition with

n + 1 points and at most k regions induces a partition of the dataset Dn+1. We write the

last region of the induced partition on Dn+1 as Sk. We know that Sk = {Φ(n, k) + 1, .., n}.

We can repeat this procedure recursively and define Sk−1 and so on. The set of points

Sk−1 = {Φ(Φ(n, k), k − 1), ...,Φ(n, k)} is the set of points that belong to the region k − 1

and so on. This induced partition achieves the risk value of V
′
(n+ 1, k)

We require that the partition constructed in Algorithm 6 also divides the points in the

dataset in the exact same manner as described above.

Consider the region ZK output by the Algorithm 6.

ZK = {x : f(xΦ(|D|,K)) < f(x) ≤ f(x|D|)}

The points {Φ(|D|, K) + 1, .., |D|} are ordered and thus all of these belong to ZK . The

same argument applies to the set ZK−1 (given below) and the set of points {Φ(Φ(|D|, K), K−

1) + 1, ..,Φ(|D|, K)} and so on.

ZK−1 = {x : ||f(xΦ(Φ(|D|,K),K−1))|| < ||f(x)|| ≤ ||f(xΦ(|D|,K))||}

Observe that the division of the points is the same as prescribed by the value function V
′
.

Hence, the output of Algorithm 6 achieves V
′

and from Lemma 4 we know it is equal to the

minimum risk. �

7.9.2 Appendix C

Proof of Theorem 17. From Proposition 4, we know that Algorithm 5 and 6 combined

solve the empirical risk minimization problem. In this theorem, we claim that the empirical

risk minimization (ERM) actually leads to succesful agnostic PAC learning.

Consider the MSE loss. The feature space is X and the label space is Y . We consider a

discretization of the label space Yd. This discretization trick is fairly common see [SB14].

If Y = [0, 1], then a quantization of Y into steps of length ∆ is Yd = {0,∆, 2∆....1}. We
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write the MSE loss for the continuous labels/black-box predicted values as

MSEc =
1

|D|

K∑
k=1

∑
x∈Zk

(y − M̄(Zk))
2

where y = f(x). We write the MSE loss for the discretized labels/black-box predicted values

yd and sample means of discretized values M̄d(Z) as

MSEd =
1

|D|

K∑
k=1

∑
x∈Zk

(yd − M̄d(Z))2

The difference between the MSEs is given as follows.

|MSEc −MSEd| =

1

|D|

K∑
k=1

∑
x∈Zk

|(y + yd − M̄(Z)− M̄d(Z))||(y − yd +M(Z))− M̄d(Z)| ≤ 8∆
(7.12)

If the discretization level ∆ is sufficiently small, minimizer in the discrete space is almost

as good as the minimization in the continuous space. From the above inequality (7.12), it

also follows that the minimization in terms of the true expected loss using discretized labels

is not very different from the optimization of continuous labels/black-box predicted values.

For the rest of the proof, we assume that the labels are discretized as well. We state the

ERM in terms of the continuous space and the discrete space below.

min
M∈HK ,Z∈PdK(X )†

R̂(M,Z;D)

where PdK(X )† is the set of partitions that need to be searched upon discretization. We

know that the hypothesis class for the above problem is finite and has size equal to the

number of discrete partitions. We use Corollary 4.6 in [SB14] to arrive at the conclusion

that ERM leads to succesful PAC learning of the hypothesis class of all the discrete partitions.

It is easy to extend the above proof to other norms. �

222



7.9.3 Appendix D

Proof of Proposition 5. For this proposition, we assume that the loss function is MSE

and interpretive model belong to piecewise constant class. In this proposition, we need to

show that the complexity of the Algorithm 5 and 6 is O(|D|3Kd).

From Algorithm 5 we know that the main step that is executed inside the for loops is

V
′
(n+ 1, k) = min

n′∈{1,..,n−1}
{V ′(n′ , k − 1) +G(n

′
+ 1, n)}

Let us compute the complexity of the above step. Note that the terms inside the above

expression depends on V
′
(n
′
, k − 1) and G(n

′
+ 1, n). V

′
(n
′
, k − 1) is stored already from

the previous n iterations. The computation of G(n
′
+ 1, n) takes O(nd) steps at most if the

loss is MSE. We need to compare n of these values. Therefore, the total time for this step is

O(n2d) steps. For a fixed n the inner for loop will take O(n2Kd) steps.

We can bound the steps for the outer for loop as C
∑|D|

n=1 n
2Kd steps, which grows as

O(|D|3Kd) steps. The complexity of Algorithm 6 is O(K) (as there are K calls to the

function Φ). �

7.9.4 Appendix E

Proof of Proposition 6. We already showed that the optimization problems in equations

(7.8) and (7.11) are equivalent.

Next we will show that

min
M∈HK ,Z∈PK(X )

R̂(M,Z;D) = min
M∈HK ,Z∈PK(X )†

R̂(M,Z;D)

We now state a property that is used to construct the optimal ordered partition that is

as good as the optimal partition.

Ordering Property: Consider a partition Z of the feature space. Consider any two

regions of the partition say A and B. We refer to the sets of points in the dataset that belong

to A as Ã and B as B̃. Define f(Ã) = {f(a), ∀a ∈ Ã}. The set of predictions for sets Ã

and B̃ are f(Ã) and f(B̃). The sample means for the predictions at the points in Ã and B̃
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are M̄(Ã) and M̄(B̃) respectively. Without loss of generality assume that M̄(Ã) < M̄(B̃).

The property states that for all the points in Ã their corresponding black-box predictions

f(x) < M̄(Ã)+M̄(B̃)
2

and for all the points in B̃ their corresponding black-box predictions

f(x) > M̄(Ã)+M̄(B̃)
2

. If this property holds for every pair of regions in the partition, then it

automatically implies that the partition is ordered.

Idea. We will show that if a partition does not satisfy the ordering property then it can

always be modified to construct a partition that is ordered and is at least as good as the

partition that we start with.

We start with the partition Z (we are interested in partitions with atleast two regions in

them.) that is optimal. Suppose that Z does not satisfy the ordering property.

If the ordering property is not satisfied, then there are two possibilities:

1. For some two regions A and B in the partition (and corresponding induced sets Ã and

B̃) there exists a point xs ∈ Ã such that f(xs) >
M̄(Ã)+M̄(B̃)

2

2. For some two regions A and B in the partition (and corresponding induced sets Ã and

B̃) there exists a point xs ∈ B̃ such that f(xs) <
M̄(Ã)+M̄(B̃)

2

For the rest of the proof we will assume that the first case is true. The analysis for the

second case would be similar as well. We will show that we can modify the partition Z to

Z ′ in a simple way such that the MSE for Z ′ is infact less than or equal to the MSE of Z.

We modify the set B̃ by adding xs to it from the region Ã. We call these new regions as

B̃
′
and Ã

′
respectively. We express the difference between the losses before and after moving

the xs below. Let ys = f(xs).

Ldiff =
∑
y∈f(Ã)

[
y − M̄(Ã)

]2

+
∑

y∈f(B̃)

[
y − M̄(B̃)

]2

−
∑

y∈f(Ã′ )

[
y − M̄(Ã

′
)
]2

−
∑

y∈f(B̃′ )

[
y − M̄(B̃

′
)
]2

=
(
|Ã| − 1

)
M̄2(Ã

′
) +

(
|B̃|+ 1

)
M̄2(B̃

′
)− |Ã|M̄2(Ã)− |B̃|M̄2(B̃)

(7.13)

Our objective is to show that Ldiff ≥ 0.
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We express M̄(Ã
′
) and M̄(B̃

′
) in terms of M̄(Ã) and M̄(B̃) respectively as follows.

M̄(Ã
′
) =

M̄(Ã)|Ã| − ys
|Ã| − 1

M̄(B̃
′
) =

M̄(B̃)|B̃|+ ys

|B̃|+ 1

(7.14)

M̄(Ã
′
)2 =

(M̄(Ã)|Ã| − ys
|Ã| − 1

)2

=
M̄(Ã)2|Ã|2 + y2

s − 2ysM̄(Ã)

(|Ã| − 1)2
(7.15)

M̄(B̃
′
)2 =

(M̄(B̃)|B̃|+ ys

|B̃|+ 1

)2

=
M̄(B̃)2|B̃|2 + y2

s + 2ysM̄(B̃)

(|B̃|+ 1)2
(7.16)

We substitute (7.15) and (7.16) into (7.13) to obtain the following.

Ldiff =
M̄2(Ã)|Ã|+ y2

s − 2ysM̄(Ã)|Ã|
(|Ã| − 1)

+
−M̄2(B̃)|B̃|+ y2

s + 2ysM̄(B̃)|B̃|
(|B̃|+ 1)

(7.17)

The expression in the above equation (7.17) is a quadratic function of ys. We call it

Ldiff (ys). We want to analyze the behavior of the above function in the region ys >

M̄(Ã)+M̄(B̃)
2

. Our objective is to show that the above function is greater than zero when

ys >
M̄(Ã)+M̄(B̃)

2
. We compute the gradient of the above function at ys = M̄(Ã)+M̄(B̃)

2
as

(7.18).
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dLdiff (ys)

dys
|
ys=

M̄(Ã)+M̄(B̃)
2

=

[
2ys

|Ã| − 1
+

2ys

|B̃|+ 1
− 2M̄(Ã)

|Ã|
|Ã| − 1

+ 2M̄(B̃)
|B̃|
|B̃|+ 1

]
ys=

M̄(Ã)+M̄(B̃)
2

=

[
2ys(|Ã|+ |B̃|)

1

(|Ã| − 1)(|B̃|+ 1)
− 2M̄(Ã)

|Ã|
|Ã| − 1

+ 2M̄(B̃)
|B̃|
|B̃|+ 1

]
ys=

M̄(Ã)+M̄(B̃)
2

=

[
2ys(|Ã|+ |B̃|) + 2|Ã||B̃|(M̄(B̃)− M̄(Ã))− 2M̄(Ã)|Ã| − 2M̄(B̃)|B̃|

(|Ã| − 1)(|B̃|+ 1)

]
ys=

M̄(Ã)+M̄(B̃)
2

= M̄(Ã)(|B̃| − |Ã|) + M̄(B̃)(|Ã| − |B̃|) + 2|Ã||B̃|(M̄(B̃)− M̄(Ã))

= (|Ã| − |B̃|)(M̄(B̃)− M̄(Ã)) + 2|Ã||B̃|(M̄(B̃)− M̄(Ã))

= (M̄(B̃)− M̄(Ã))(|Ã| − |B̃|+ 2|Ã||B̃|)

= (M̄(B̃)− M̄(Ã))(|Ã|+ |B̃|(2|Ã| − 1))

(7.18)

Since M̄(B̃) ≥ M̄(Ã) and |Ã| ≥ 1 the expression in (7.18) is greater than zero. Note that

d2Ldiff (ys)

dy2
s

=
2

|Ã| − 1
+

2

|B̃|+ 1
≥ 0

Therefore, the gradient of the above expression in (7.18) will be greater than zero at all the

points greater than M̄(Ã)+M̄(B̃)
2

. Hence, we get

min
ys∈[

M̄(Ã)+M̄(B̃)
2

,∞)

Ldiff (ys) = Ldiff (
M̄(Ã) + M̄(B̃)

2
)

Next, we compute Ldiff (
M̄(Ã)+M̄(B̃)

2
) in (7.19) and we see that the expression is always greater

than or equal to zero.
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Ldiff (
M̄(Ã) + M̄(B̃)

2
) =[

M̄(Ã)2|Ã|+ y2
s − 2ysM̄(Ã)|Ã|

(|Ã| − 1)
+
−M̄(B̃)2|B̃|+ y2

s + 2ysM̄(B̃)|B̃|
(|B̃|+ 1)

]
ys=

M̄(Ã)+M̄(B̃)
2

=
M̄2(Ã)|Ã|+ [M̄(Ã)+M̄(B̃)

2
]2 − [M̄(Ã) + M̄(B̃)]M̄(Ã)|Ã|

(|Ã| − 1)
+

−M̄(B̃)2|B̃|+ [M̄(Ã)+M̄(B̃)
2

]2 + [M̄(Ã) + M̄(B̃)]M̄(B̃)|B̃|
(|B̃|+ 1)

=
[M̄(Ã)+M̄(B̃)

2
]2 − M̄(B̃)M̄(Ã)|Ã|
(|Ã| − 1)

+
[M̄(Ã)+M̄(B̃)

2
]2 + M̄(Ã)M̄(B̃)|B̃|
(|B̃|+ 1)

=
[M̄(Ã) + M̄(B̃)]2

4

|B̃|+ |Ã|
(|Ã| − 1)(|B̃|+ 1)

− M̄(Ã)M̄(B̃)
|Ã|+ |B̃|

(|Ã| − 1)(|B̃|+ 1)

=
|B̃|+ |Ã|

(|Ã| − 1)(|B̃|+ 1)
[
[M̄(Ã) + M̄(B̃)]2

4
− M̄(Ã)M̄(B̃)]

=
|B̃|+ |Ã|

(|Ã| − 1)(|B̃|+ 1)
[M̄(B̃)− M̄(Ã)]2/4

(7.19)

If M̄(B̃) > M̄(Ã), then this contradicts the optimality of the partition Z. If M̄(B̃) =

M̄(Ã), then the partition Z ′ is as good as Z. The partition Z ′ may not be ordered. We

can repeat the above argument starting with Z ′ until we have an ordered partition that has

at least the same loss as Z. Note that Ã has to have at least two points for the setup to

make sense. If Ã only had one point then shifting the point would reduce the number of

regions in the partition. In the case when |Ã| = 1, we do not shift the point from Ã to B̃

but instead we swap the point ys with a point from B̃ which has a lower value than ys. The

same conclusion follows for this case as well. �

7.9.5 Appendix F

Proof of Proposition 7. We need to show that

| min
M∈HK ,Z∈PK(X )

R̂(M,Z;D)− min
M∈HK ,Z∈PK(X )†

R̂(M,Z;D)| ≤ ε

We denote l(‖x − y‖s) as L(x, y). The optimal value of the constant cluster mapping only

depends on the data points in that cluster/region in the partition and it is computed as
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follows. For cluster Z we write the local optimal value as y∗Z .

Dense Partitions: We first show that it is sufficient to consider a certain type of

partitions to guarantee approximate optimality, which we call dense partitions. The idea

behind a dense partition is described as follows. As the dataset becomes large, each set in

the induced partition should also become large. For ease of explanation, we will use the

induced partitions on the dataset only.

Suppose the total number of data points is n = |D|.

Definition. Consider a partition Z = {Z1, ..., ZK}. The set of points that belong to Zj

are given as Z̃j and let nj = |Z̃j|. We refer to Z as dense if the data size grows to infinity,

then the size of each induced region should also increase to infinity, i.e., as n → ∞ =⇒

nj →∞, ∀j ∈ {1, ..., K}.

Let PdK(X ) be the set of all the dense partitions of X . We argue that it is sufficient to

search in the space of dense partitions provided the dataset is large enough. Suppose that

there is a partition Z ∈ PdK(X )c, which is not dense. If a partition is not dense, then it can

be argued that there exists a certain region Zk such that nk ≤ Nk, where Nk is the upper

bound on the size of Zk. We construct a new partition from Z. We transfer the points in Zk

to one of the remaining regions. The maximum change in the loss can be bounded by cNk
n

for some c > 0. If the data size is large enough, then the change in loss can be bounded less

than ε/K. We can repeat this argument for all the regions that have a bounded number of

points. The final partition we get as a result will be a dense partition and its loss will be

close to the original partition. Therefore, for the rest of the proof we restrict our attention

to dense partitions.

Ordering property for general loss function: We now state a property that is very

similar to the property (basically a generalization) we stated for MSE, used to construct the

optimal ordered partition. Consider a partition Z. Consider any two regions of the partition

say A and B (with induced sets on the data given as Ã and B̃) and the corresponding

optimal predicted values assigned by the model M are y∗
Ã

and y∗
B̃

respectively. Without

loss of generality assume that y∗
Ã
< y∗

B̃
. The property states that for all the points in
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Ã their corresponding black-box predictions f(x) <
y∗
Ã

+y∗
B̃

2
and for all the points in B̃ their

corresponding black-box predictions f(x) >
y∗
Ã

+y∗
B̃

2
. Note that if this property holds for every

pair of regions in the partition, then it automatically implies that the partition is ordered.

We start with the partition Z (we are interested in partitions with at least two regions

in them) that is optimal and does not satisfy the ordering property.

There are two possibilities:

1. For some two regions Ã and B̃ in the partition there exists a point xs ∈ Ã such that

f(xs) >
y∗
Ã

+y∗
B̃

2

2. For some two regions Ã and B̃ in the partition there exists a point xs ∈ B̃ such that

f(xs) <
y∗
Ã

+y∗
B̃

2

For the rest of the proof we will assume that the first case is true. The analysis for the

second case would be similar as well.

Idea.1 We will show that we can modify the partition Z to Z ′ in a simple way such that

the loss for Z ′ is infact lower than the loss of Z. We modify the region B̃ of by adding xs

to it from the region Ã. We call these new regions as B̃
′

and Ã
′

respectively.

Idea 2. In this case since we deal with general loss functions the optimal value y∗
Ã

does

not have a closed form unlike the case of MSE. This makes it difficult to track the change in

y∗
Ã

when we construct the new regions Ã
′
. However, we can track the changes using influence

functions [CW82] provided the number of data points is sufficiently large.

We express the difference between the losses before and after moving the xs. Let ys =

f(xs) Since ys >
y∗
Ã

+y∗
B̃

2
we get L(ys, y

∗
Ã

) > L(ys, y
∗
B̃

).

We define the loss for the sets Ã and B̃ as

Ltotal(Ã) =
∑

y∈Ã L(y, y∗
Ã

)

Ltotal(B̃) =
∑

y∈B̃ L(y, y∗
B̃

)

We write the change in the loss function for the two sets A and B as follows.
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Ltotal(Ã)− Ltotal(Ã′) =
∑

y∈Ã,y 6=ys

L(y, y∗
Ã

)−
∑

y∈Ã,y 6=ys

L(y, y∗
Ã′

) + L(ys, y
∗
Ã

) (7.20)

Ltotal(B̃)− Ltotal(B̃′) =
∑

y∈B̃,y 6=ys

L(y, y∗
B̃

)−
∑

y∈B̃,y 6=ys

L(y, y∗
B̃′

)− L(ys, y
∗
B̃′

) (7.21)

We track the change in y∗
Ã

to y∗
Ã′

and y∗
B̃

to y∗
B̃′

using influence functions [CW82].

We can express the difference y∗
Ã′
− y∗

Ã
using [CW82].

y∗
Ã′
− y∗

Ã
≈

[
∂L(y, c)

∂c
|c=y∗

Ã

]
1∑

y∈Ã
∂2L(y,c)
∂c2
|c=y∗

Ã

1

|Ã|

L(y, y∗
Ã

)− L(y, y∗
Ã′

) ≈ ∂L(y, c)

∂c
|c=y∗

Ã
(y∗
Ã
− y∗

Ã′
) (7.22)

We substitute y∗
Ã′
− y∗

Ã
from above in (7.22).

L(y, y∗
Ã

)− L(y, y∗
Ã′

) ≈ −

[
∂L(y, c)

∂c
|c=y∗

Ã

]2
1∑

y∈Ã
∂2L(y,c)
∂c2
|c=y∗

Ã

1

|Ã|
(7.23)

We track the change in y∗
B̃

to y∗
B̃′

. The final expressions for the change are given as

follows.

L(y, y∗
Ã

)− L(y, y∗
Ã′

) ≈ −

[
∂L(y, c)

∂c
|c=y∗

Ã

]2
1∑

y∈Ã
∂2L(y,c)
∂c2
|c=y∗

Ã

1

|Ã|
(7.24)

L(y, y∗
B̃

)− L(y, y∗
B̃′

) ≈

[
∂L(y, c)

∂c
|c=y∗

B̃

]2
1∑

y∈B̃
∂2L(y,c)
∂c2
|c=y∗

B̃

1

|B̃|
(7.25)

The function ∂L(y,c)
∂c

is continuous almost everywhere. The set Y is an interval. Hence,

the above function ∂L(y,c)
∂c

on the interval Y is bounded.
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Consider
∑

y∈B̃
∂2L(y,c)
∂c2
|c=y∗

B̃
. We claim that if |B̃| is sufficiently large, then

∑
y∈B̃

∂2L(y, c)

∂c2
|c=y∗

B̃
= Ω(|B̃|) with a high probability,

i.e. there exists a k and n0 such that ∀ |B̃| > n0,
∑

y∈B̃
∂2L(y,c)
∂c2
|c=y∗

B̃
≥ k|B̃| with a high

probability. We know that L is strictly convex. The term 1
|B̃|

∑
y∈B̃

∂2L(y,c)
∂c2
|c=y∗

B̃
will take a

fixed positive value in limit as B̃ grows large (from strong law of large numbers). We can

set k to be anything smaller than the limit of this term to establish the claim. Note that

since we are using dense partitions it is safe to assume that as the data will grow large so

will the size of the regions. Similarly
∑

y∈Ã
∂2L(y,c)
∂c2
|c=y∗

Ã
= Ω(|Ã|).

Therefore, we can substitute the lower bounds on
∑

y∈B̃
∂2L(y,c)
∂c2
|c=y∗

B̃
and

∑
y∈Ã

∂2L(y,c)
∂c2
|c=y∗

Ã

in (7.24) and (7.25) to obtain

|L(y, y∗
Ã

)− L(y, y∗
Ã′

)| ≤ LÃ
|Ã|2

(7.26)

|L(y, y∗
B̃

)− L(y, y∗
B̃′

)| ≤ LB̃
|B̃|2

(7.27)

We add (7.20) and (7.21) to obtain Ldiff given as follows. In the simplification below we

use (7.24) and (7.25).

Ldiff = Ltotal(Ã)− Ltotal(Ã′) + Ltotal(B̃)− Ltotal(B̃′) =
∑

y∈Ã,y 6=ys

L(y, y∗
Ã

)−
∑

y∈Ã,y 6=ys

L(y, y∗
Ã′

)

+ L(ys, y
∗
Ã

) +
∑

y∈B̃,y 6=ys

L(y, y∗
B̃

)−
∑

y∈B̃,y 6=ys

L(y, y∗
B̃′

)− L(ys, y
∗
B̃′

)

≈

[
L(ys, y

∗
A)− L(ys, y

∗
B)

]
−

∑
y∈Ã,y 6=ys

[
∂L(y, c)

∂c
|c=y∗

Ã

]2
1∑

y∈Ã
∂2L(y,c)
∂c2
|c=y∗A

1

|Ã|

+
∑

y∈B̃,y 6=ys

[
∂L(y, c)

∂c
|c=y∗

B̃

]2
1∑

y∈B̃
∂2L(y,c)
∂c2
|c=y∗

B̃

1

|B̃|

(7.28)

The first term in the above expression, i.e.,

[
L(ys, y

∗
Ã

) − L(ys, y
∗
B̃

)

]
> 0. Therefore,
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∃ ε′ > 0 such that [
L(ys, y

∗
Ã

)− L(ys, y
∗
B̃

)

]
≥ ε

′
(7.29)

The rest of the terms in the above expression are bounded as well. We use the expressions

in (7.26) and (7.27) to arrive at a lower bound on Ldiff given as

Ldiff ≥

[
L(ys, y

∗
Ã

)− L(ys, y
∗
B̃

)

]
− LÃ
|Ã|
− LB

|B̃|
(7.30)

Suppose
LÃ
|Ã| >

LB̃
|B̃| without loss of generality.

Ldiff ≥

[
L(ys, y

∗
Ã

)− L(ys, y
∗
B̃

)

]
− 2

LÃ
|Ã|

(7.31)

Also, from (7.29) we have

Ldiff ≥ ε
′ − 2

LÃ
|Ã|

(7.32)

Suppose |Ã| ≥ 4 1
ε′
LÃ. Then Ldiff ≥ ε

′

2
. (Note that we are only considering dense partitions.

If the data set is large enough the size of Ã will satisfy the required assumption.)

Therefore, Ldiff > 0, which means that the loss improves by shifting the data points.

This contradicts the optimality of the partition among the dense partitions. �

7.9.6 Appendix G
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Algorithm 7 Approximate computation value and index functions

1: Input: Dataset D, Number of intervals H and number of regions to divide each interval

W , δ is an integer, larger the value of δ the higher the approximation factor

2: Initialize: Define V
′
(1, k) = 0,∀k ∈ {1, ..., K}.

3: For each xi ∈ D, xj ∈ D such that i ≤ j, define D(i, j) = {x : x ∈ D and ‖f(xi)‖ ≤

‖f(x)‖ ≤ ‖f(xj)‖}

4: {Sij1 , .., S
ij
W} = Kmeans(D(hl, hu))

5: G(i, j) =
∑

u minh∈H
∑

xr∈Siju l(|f(xr)− h(xr)|)

6: M(Siju ) = arg minh∈H
∑

xr∈Siju l(|f(xr)− h(xr)|)

7: for n ∈ {2, ..., |D|} do

8: for k ∈ {1, ..., K} do

9:

V
′
(n, k) = min

n′∈{1,δ+1,2δ+1,..,bn−1
δ cδ}

[
V
′
(n
′
, k − 1) +G(n

′
+ 1, n)

]
(7.33)

10:

Φ(n, k) = argmin
n′∈{1,δ+1,2δ+1,..,bn−1

δ cδ

[
V
′
(n
′
, k − 1) +G(n

′
+ 1, n)

]
(7.34)

11: Output: Value function V
′
, Index function Φ
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CHAPTER 8

Optimization Based Approach to Estimating

Kullback-Leibler Divergence

8.1 Introduction

Kullback-Leibler (KL) divergence is one of the fundamental quantities in statistics and ma-

chine learning. It is used to measure the distance between two probability distributions.

Mutual information, which is another fundamental quantity, is a special case of KL diver-

gence. It measures the information shared between two random variables and is equal to

the KL divergence between the joint and product distributions of the two random variables.

It is used in several applications such as feature selection [PLD05], clustering [RBN14], and

representation learning [CDH16]. Estimation of KL divergence and mutual information is a

challenging task and developing estimators for these quantities continue to be an active area

of research.

Recently a method called Mutual Information Neural Estimation (MINE) [BRB18] has

been proposed to estimate the KL divergence between two distributions. The key ideas in

MINE are explained as follows:

• Use the Donkser-Varadhan (DV) [DV83] representation to express the KL divergence.

• Use a family of functions characterized by neural networks in the DV representation

to build the estimator.

The authors in [BRB18] used MINE to estimate the mutual information and showed that

their estimator is better than the estimators in the literature [KSG04] [Per08] in terms of the
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bias in many cases. MINE is a general purpose estimator as it estimates the KL divergence

and not just mutual information. However, the estimator constructed in [BRB18] using

the main algorithm is not guaranteed to be consistent (explained later). In this work, we

propose a new estimator of KL divergence to address this issue. We also rely on the Donsker-

Varadhan representation to build our estimator. If we estimate the KL divergence using the

DV representation, then we do not need to estimate the probability distributions directly

unlike the standard estimators [KSG04]. Instead of searching in the space of neural network

families (as in [BRB18]) we set the search space as a Reproducing Kernel Hilbert Space

(RKHS) and hence we name the estimator as the Kernel KL divergence estimator (KKLE).

We are able to show that the search in RKHS reduces to solving a convex learning problem.

This enables us to prove that the estimator we derive is consistent.

In the experiments section, we compare the proposed KKLE with MINE estimator. We

carry out simulations over large datasets to show that the performances of both MINE and

KKLE are comparable. We also compare the two estimators for small datasets and we find

that the KKLE estimator is better than the MINE estimator. We also provide insights to

explain why KKLE is expected to perform well.

8.2 Problem Formulation and Approach

We first give a brief background. KL divergence is a quantity that is used to measure the

distance between two probability distributions P and Q. It is defined as

KL(P || Q) := EP[log
dP
dQ

]

where dP
dQ is the Radon-Nikodym derivative of P with respect to Q. . The Shannon entropy

of a random variable is the amount of information contained in X and is defined as H(X) :=

EPX [− log dPX ], where PX is the distribution of X. Mutual information between two random

variables X, Y is defined as

I(X;Y ) := H(X)−H(X | Y )
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where H(X) is the Shannon entropy of X, H(X | Y ) is the Shannon entropy of X conditional

on Y Let the joint probability distribution of X and Y be PXY and the product of the

marginal distributions be PX ⊗ PY . The mutual information between two random variables

can also be expressed in terms of the KL divergence as follows. I(X;Y ) = KL(PXY || PX ⊗

PY ), where KL is the KL divergence between the two input distributions. We describe the

Donsker-Varadhan representation for KL divergence next.

8.2.1 The Donsker-Varadhan Representation

The Donsker Varadhan (DV) representation [DV83] for KL divergence between two distri-

butions P and Q is given as follows. The sample space for the distributions P and Q is the

same set Ω. For simplicity, we assume that Ω is a compact subset of R. Suppose T is a

mapping from the sample space Ω to R, i.e., T : Ω→ R.

KL(P || Q) = sup
T∈M

[
EP

[
T
]
− log

(
EQ

[
eT
])]

(8.1)

where M is the space of mappings where both the expectations EP

[
T
]

and log
(
EQ

[
eT
])

are finite. Recall that if P = PXY and Q = PX ⊗PY , then we obtain the mutual information

I(X;Y ). Since our work is closely related to MINE [BRB18] we explain the approach briefly

in the next section.

8.2.2 MINE

We are given a set of parameters Θ that define the family of neural networks. Each member

θ of the family characterizes a function Tθ and the set of all the functions is defined as

F = {Tθ; θ ∈ Θ}. The neural measure of KL divergence is defined as

KLΘ(P || Q) = sup
θ∈Θ

[
EP

[
Tθ

]
− log

(
EQ

[
eTθ
])]

(8.2)

From (8.1) and (8.2), we can see that

KL(P || Q) ≥ KLΘ(P || Q)
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Define P̂n and Q̂m as the empirical distribution of P and Q respectively with n and m i.i.d.

samples given as X = {xi}ni=1 and Y = {yj}mj=1 respectively. Let Z = X ∪ Y . We write

Z = {zk,∀k ∈ {1, .., n+m}}, where zk = xk, ∀k ∈ {1, ..., n} and zn+k = yk, ∀k ∈ {1, ...,m}..

The MINE estimator for KL divergence is given as

K̂LΘ(P̂n || Q̂m) = sup
θ∈Θ

[
EP̂n

[
Tθ

]
− log

(
EQ̂m

[
eTθ
])]

(8.3)

8.2.2.1 Limitations of MINE

In [BRB18], it was shown that K̂LΘ(P̂n || Q̂m) is a consistent estimator of the KL divergence.

The algorithm in [BRB18] tries to maximize the loss function EP̂n

[
Tθ

]
− log

(
EQ̂m

[
eTθ
])

to

get as close as possible to (8.3). Stochastic gradient descent (SGD) is used to search for the

optimal neural network parameters θ in Θ. For the estimator in (8.3) to be consistent the

family of neural networks has to consist of at least one hidden layer [BRB18] [Hor91]. As

a result, the loss function that the algorithm tries to optimize is non-convex (the intuitive

justification is that with one hidden layer a neural network can approximate all smooth

functions including non-convex functions [Hor91]). Since the loss is non-convex it is not

guaranteed to converge to the MINE estimator defined in equation (8.3). Also, since the

loss function is non-convex the optimization can lead to poor local minima, which are worse

than the other minima or have poor generalization properties.

8.2.3 KKLE: Kernel Based KL Divergence Estimation

In this section, we build an approach that overcomes the limitations that were highlighted

in the previous section. Consider a RKHS H over R with a kernel k : R × R → R. We

assume that the kernel is a continuously differentiable function. The norm of a function

T in H is given as ‖T‖2
H = 〈T, T 〉H, where 〈〉H is the inner product defined in the Hilbert

Space. In [BRB18], it was assumed that the function Tθ is bounded. We also limit our

search over the space of bounded functions, i.e., we assume that the ‖T‖H ≤ M . This is a

reasonable assumption to make because (8.1) assumes the two expectation terms are finite,
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which is only possible if T is bounded almost everywhere. We define the kernel measure of

KL divergence as follows

KLH(P ||Q) = sup
T∈H,‖T‖H≤M

EP

[
T
]
− log

(
EQ

[
eT
])

(8.4)

From (8.4) and (8.1), we can also deduce that

KL(P || Q) ≥ KLH(P || Q)

We define the empirical estimator of the kernel measure below.

K̂LH(P̂n || Q̂m) = sup
T∈H,‖T‖H≤M

[
EP̂n

[
T
]
− log

(
EQ̂m

[
eT
])]

(8.5)

We define a matrix K, which we call the kernel matrix, such that for every zi ∈ Z,

zj ∈ Z, K[zi, zj] = k(zi, zj). For the rest of the discussion, we assume that the maximum

exists and hence, the supremum and maximum are interchangeable. Let

g(α) = log(
1

m

∑
yj∈Y

eα
tK[yj ,:])− 1

n

∑
xi∈X

αtK[xi, :]

where α ∈ Rm+n and α = [α1, ...., αm+n]. In the next proposition, we show that we can

compute K̂LH(P̂n || Q̂m) by minimizing g(α).

Proposition 8 For any ε > 0, ∃ t > 0 such that the optimal T that solves (8.5) is T ∗(z) =∑n+m
i=1 α∗i k(zi, z), where α∗ is

α∗ = arg min
α,αtKα≤M2

g(α) +
1

t
αtKα (8.6)

and

|K̂LH(P̂n || Q̂m) + g(α∗)| ≤ ε

Proof. We rewrite the objective in (8.5) as a penalized objective as follows.

log
(
EQ̂m

[
eT
])
− EP̂n

[
T
]

+
1

t
‖T‖2

H (8.7)
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Suppose that t is large enough, i.e., t ≥M2/ε. Therefore, the penalty term is bounded by a

small value ε. In such a case, the negative of the penalized objective in (8.7) is very close to

the objective in (8.5). Therefore, solving the problem below should give an ε approximate

solution to (8.5).

min
T,‖T‖H≤M

log
(
EQ̂m

[
eT
])
− EP̂n

[
T
]

+
1

t
‖T‖2

H (8.8)

We use Representer Theorem (See [SS01]) to infer that the optimal T for (8.8) that

achieves the minimum above can be written as a linear combination

T ∗(.) =
n+m∑
i=1

αik(zi, .) (8.9)

where zi = xi, ∀i ∈ {1, ..., n} and zn+j = yj, ∀j ∈ {1, ...,m}. We substitute the above

expressions from (8.9) in (8.8) to obtain the following equivalent optimization problem.

min
α,αtKα≤M2

log(
1

m

∑
yj∈Y

eα
tK[yj ,:])− 1

n

∑
xi∈X

αtK[xi, :] +
1

t
αtKα (8.10)

Hence, (8.10) is equivalent to (8.8), which gives the ε approximate optimal solution to (8.5).

This completes the proof. �

In Proposition 8, we showed that , i.e., K̂LH(P̂n || Q̂m) ≈ −g(α∗). Next we discuss how

to solve for K̂LH(P̂n || Q̂m) efficiently. We solve (8.6) using SGD. See Algorithm 8 for a

detailed description.

Proposition 9 • The optimization problem in (8.6) is a convex optimization problem.

• Algorithm 8 converges to the optimal solution of (8.6).

Proof. The first term in the objective in (8.6) is log of sum of exponentials, which is a

convex function (See [BV04]). The second term in (8.6) is linear. Therefore, the objective

in (8.6) is a convex function. The matrix K is positive definite (See [SS01]). Hence, the

function αtKα is convex. Therefore, the set of α to be searched, i.e., αtKα ≤ M2 is a

convex set. This establishes that (8.6) is a convex optimization problem.
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Algorithm 8 KKLE algorithm to estimate KL divergence

Input: X = {xi}ni=1 ∼ P and Y = {yj}mj=1 ∼ Q, γ (distance from minimum), maxiter

(maximum number of steps), η (step size), k (minibatch size)

Output: KL divergence estimate

1: Initialization: Initialize α randomly, niter = 0, Convergence = False

2: While (niter ≤ maxiter and Convergence == False)

3: Minibatch sampling: Sample k samples from X and k samples from Y

4:

K̂L(α)p = − log(
1

m

∑
yj∈Y

eα
tK[yj ,:]) +

1

n

∑
xi∈X

αtK[xi, :] +
1

t
αtKα

5: α = α + η∇K̂L(α)p

6:

K̂L(α)c = − log(
1

m

∑
yj∈Y

eα
tK[yj ,:]) +

1

n

∑
xi∈X

αtK[xi, :] +
1

t
αtKα

7: If |K̂L(α)c − K̂L(α)p| ≤ γ

8: Convergence = True

9: niter = niter + 1 return K̂L(α)c

If the objective function (8.6) is Lipschitz continuous and convex and bounded, then the

stochastic gradient descent based procedure would converge to the minimum (See Chapter

14 in [SB14]). We want to show that g(α) = log( 1
m

∑
yj∈Y e

αtK[yj ,:])− 1
n

∑
xi∈X α

tK[xi, :] is

Lipschitz continuous in α. It is sufficient to show that the gradient of the function g w.r.t α

is bounded. Define a function

h(t) = g(x+ t(y − x))

and h
′
(t) = dh(t)/dt. Observe that h(0) = g(x) and h(1) = g(y). Using chain rule we can

write h
′
(t) = ∇zg(z)t|z=x+t(y−x)(y − x)

g(y)− g(x) =

∫ 1

0

h
′
(t)dt

=

∫ 1

0

∇zg(z)t|z=x+t(y−x)(y − x)dt ≤ ‖∇zg(z)‖‖y − x‖
(8.11)

We write the partial derivative of g w.r.t. each component of α as follows ∂g(α)
αj

=
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∑n+m
i=1 eαjK[zi,zj ]K[zi,zj ]∑n+m

i=1 eα
tK[zi,:]

. We want to derive a loose upper bound on ‖∇g‖1. To do that we first

make the following observation about the matrix K. We assumed that the samples xi and yj

that are drawn from the distributions P and Q come from a set Ω, which is a compact subset

of R. Since the kernel k is a continuously differentiable function and Ω is a compact subset

we can infer that all the elements in K are bounded. For simplicity, we assume that K is

bounded above by 1 and bounded below by zero. Since all the terms in ∂g(α)
αj

are positive we

can say the following

‖∇g‖1 =

∑n+m
j=1

∑n+m
i=1 eαjK[zi,zj ]K[zi, zj]∑n
i=1 e

αtK[zi,:]
≤∑n

j=1

∑n
i=1 e

αjK[zi,zj ]K[zi, zj]

n
≤
∑n

j=1

∑n
i=1 e

αj

n
≤ max
α,αtKα≤M

n∑
j=1

eαj
(8.12)

Since
∑n

j=1 e
αj is bounded above in the search space. Therefore, the maximum in (8.12)

has to be finite. Since ‖∇g‖2 ≤ ‖∇g‖1. Hence ‖∇g‖2 is bounded above and from (8.11)

we can see that the function g is Lipschitz continuous in α. Lastly, it is easy to see that g

itself is bounded because K is bounded and α also takes value in a compact set. We also

need to show that the second term in (8.6) is also Lipschitz continuous. The gradient of

the second term is 2Kα. Let us try to bound the norm of the gradient. Before that since

we know that K is positive definite and symmetric, we can write the eigendecomposition of

K as K = UΛU t, where U is an orthonomal matrix comprised of the eigenvectors of K,

Λ = diag[λ1, ..., λm+n] is the diagonal matrix of the set of eigenvalues {λi}m+n
i=1 .

‖Kα‖2 = αtKtKα = αtU tΛ2Uα = vtΛ2v ≤
∑
i

λ2
i ‖v‖2 =

∑
i

λ2
i ‖α‖2 (8.13)

In the last simplification on RHS in the above we use the following. v = Uα and

‖Uα‖ = ‖α‖ (U is an orthonormal matrix). αtKα is bounded =⇒ ‖α‖ is also bounded.

Hence, ‖Kα‖2 is also bounded. We have now shown that the objective in (8.6) is Lipschitz

continuous. From Corollary 14.2 in [SB14], we know that the procedure in Algorithm 8 1

converges to the minimum of the problem (8.6). �

1For the proof we are assuming that we use the entire data in one minibatch and follow gradient descent.
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8.2.4 Analyzing the Consistency of KKLE

Definition 14 Strong Consistency: For all η > 0, if there exists a kernel k and an N such

that ∀n ≥ N,m ≥ Nsuch that |K̂LH(P̂n || Q̂m) − KL(P || Q)| ≤ η then K̂LH(P̂n || Q̂m) is a

strongly consistent estimator of KL(P || Q)

Theorem 18 K̂LH(P̂n || Q̂m) is a strongly consistent estimator of KL(P || Q)

Proof. The proof of this theorem follows the same steps as the Proof in [BRB18]. Since

we are in a setting where the consistency depends on the expressiveness of the Hilbert Space,

which is different from the setting in [BRB18], we have to redo the proof for this case. We

divide the proof into two parts.

For simplicity, we assume that the Hilbert space H has a finite dimensional basis Φ.

Hence, every function in H can be written as T (z) = βtΦ(z). We substitute this form of

function in (8.5) to obtain

K̂LH(P̂n || Q̂m) = − min
β,‖β‖≤M

[
log(

1

m

∑
yj∈Y

eβ
tΦ(yj))− 1

n

∑
xi∈X

βtΦ(xi)

]
(8.14)

Note that the assumption will not limit us from extending the proof to infinite basis (We

can approximate an infinite radial basis function kernel with a finite radial basis [RR08]).

Next we show that the estimator from (8.14) is a consistent estimator of (8.4).

We use the triangle inequality to arrive at the following.

|K̂LH(P̂n || Q̂m)− KLH(P || Q)| ≤ max
β,‖β‖≤M

(
| 1
n

[ ∑
xi∈X

βtΦ(xi)
]
− E

[
βtΦ(xi)

]
|

)

+ max
β,‖β‖≤M

| log(
1

m

∑
yj∈Y

eβ
tΦ(yj))− log(E

[
eβ

tΦ(yj)
]
)|

(8.15)

Φ is a continuous function and since the outcomes are drawn from Ω, a compact subset in

R, Φ is bounded. βtΦ is bounded over the set ‖β‖ ≤ M . The space of parameters β is

compact because the norm of ‖β‖ is bounded. These observations allow us to use [GG00]

to show the following for a sufficiently large N and n ≥ N

max
β,‖β‖≤M

(
| 1
n

[ ∑
xi∈X

βtΦ(xi)
]
− E

[
βtΦ(xi)

]
|

)
≤ η/2
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Similarly log(E
[
eβ

tΦi

]
) is also bounded in ‖β‖ ≤M .

Similarly, for a sufficiently large N and m ≥ N we have

max
β,‖β‖≤M

| log(
1

m

∑
yj∈Y

eβ
tΦ(yj))− log(E

[
eβ

tΦ(yj)
]
)| ≤ η/2

The next question we are interested in is if there exists a finite basis that is good enough.

We use radial basis functions (Gaussian radial basis in particular) with finite number of

centers [WWZ12]. Suppose we use a weighted sum of the radial basis functions to learn

the mutual information. In [Buh03] [PS91] [WWZ12], it is shown that finite radial basis

functions can approximate arbitrary functions. We assume that the function that achieves

optimal for (8.1) is smooth (This assumption is also made in [Hor91] and [BRB18]).

Let T ∗ = log dP
dQ . By construction T ∗ satisfies

EP[T ∗] = KL(P || Q) and EQ[eT
∗
] = 1. Suppose we allow for η tolerance on the error on

the function we want to approximate. For a fixed η, we can derive a finite basis which can

approximate any smooth function as shown in [PS91]. Suppose a finite radial basis function

spans the RKHS and let T be the function that achieves the maximizer for (8.5). For a

function T we can write the gap between the KL divergence and KL divergence achieved by

T as follows.

KL(P || Q)− KLH(P || Q) = EP[T ∗ − T ] + EQ[eT
∗ − eT ]

We can select a large enough radial basis (Theorem 1 in [PS91]) such that

EP[T ∗ − T ] ≤ η/2

EQ[eT
∗ − eT ] ≤ η/2

Both the above conditions hold simultaneously because ex is Lipschitz continuous and T is

bounded ‖T‖H ≤M . �

We established that the proposed estimator is strongly consistent. In the next section,

we analyze the complexity and convergence properties of KKLE.
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8.2.5 Convergence and Complexity

The approach in Algorithm 8 optimizes the objective in (8.6). The number of steps before

which the algorithm is guaranteed to converge is computed using [SB14]. The number steps

grow as O(ρ
2

ε2
), where ρ is the Lipschitz constant for the loss function and γ is the tolerance

in maximum distance from the minimum value of the loss (also defined in Algorithm 8).

The dimension of α vector is n + m and the dimension of the kernel matrix K is m +

n ×m + n. Computing and storing this matrix can be a problem if the data is too large.

The time complexity of the algorithm is given as O(maxiter(m + n)2), where maxiter is the

maximum number of steps in the Algorithm 8 and (m + n)2 is the computational cost per

step.

If the size of the data is large, then solving the above problem can be slow. We use [RR08]

to improve the computational speed. In [RR08], the authors derive an approximation in

terms of a lower d dimensional mapping φ to approximately reproduce the kernel k. The

complexity with this approximation drops to O(maxiter(m+n)d). In the experiments section,

we use this trick to improve the complexity.

Before going to experiments, we conclude this section with an illustrative comparison of

KKLE with MINE. In Figure 8.1, we compare the two estimators (KKLE and MINE) for

the case when RKHS is finite dimensional. For MINE all the layers of the neural network

are trained to optimize the objective (8.3). For KKLE, the first layer projects the data into

a higher dimensional basis of RKHS. The second and the final layer is trained to optimize

(8.5).
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8.3 Experiments

8.3.1 Comparisons

8.3.1.1 Setup

We use the same setting as in [POO18] [BRB18]. We compare MINE estimator with KKLE

estimator on the task of estimating mutual information, which as described earlier can also

be represented in terms of the KL divergence. There are two random vectors X ∈ RD and

Y ∈ RD, where Xk and Yk are the kth components of X and Y respectively. (Xk, Yk) is

drawn from a 2-dimensional Gaussian distribution with 0 mean and ρ correlation. The true

mutual information in this case can be analytically computed and is given as −D
2

log(1−ρ2).

We are given a dataset with N i.i.d. samples from the distribution of (X,Y ). In the

next section, we compare the performance of the proposed KKLE estimator with MINE

estimator in terms of the following metrics: Bias of the estimator, root mean squared error

in the estimation (RMSE), variance in the estimator values, and the run time complexity.

All the simulations were done on a 2.2GHz Intel Core i7 processor, with 16 GB memory using

Tensorflow in Python. We use [RR08] to map the features and reduce the computational

costs. The comparisons are done for two scenarios, when the dataset is very large, and when

the dataset is small.

8.3.1.2 Comparisons for large data

In this section, our goal is to compare the two estimators for a sufficiently large dataset

(N = 105) to show both the estimators are consistent. We sample N = 105 (X,Y ) from

the distribution described above for D = 1 and D = 5. We compare the bias, RMSE, and

variance of the proposed KKLE estimator with the MINE estimator. The minibatch size

for the gradient descent is 5000. In each step a minibatch is sampled and a gradient step

is taken. The total number of steps is 1000. In Table 8.1, we provide the comparisons for

D = 1 and D = 5. The results in the Table 8.1 are averaged over 100 trials. We observe that

the performance of both the estimators are similar. Note that both the estimators degrade
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Table 8.1: KKLE vs MINE estimator for large data.

Estimator D Bias RMSE Variance Correlation Mutual Information

MINE 1 -0.009442 0.011378 0.000040 0.2 0.020411

MINE 1 -0.025266 0.030608 0.000299 0.5 0.143841

MINE 1 -0.060696 0.075414 0.002003 0.9 0.830366

KKLE 1 -0.009221 0.010990 0.000036 0.2 0.020411

KKLE 1 -0.025688 0.030982 0.000300 0.5 0.143841

KKLE 1 -0.065784 0.079743 0.002031 0.9 0.830366

MINE 5 -0.020874 0.024841 0.000181 0.2 0.102055

MINE 5 -0.072369 0.09106 0.003055 0.5 0.719205

MINE 5 -0.415350 0.758026 0.402088 0.9 4.151828

KKLE 5 -0.006116 0.038716 0.00146 0.2 0.102055

KKLE 5 -0.046382 0.116801 0.011491 0.5 0.719205

KKLE 5 -0.622219 0.979745 0.572215 0.9 4.151828

in the setting when dimensionality of the data becomes large and the variables are very

correlated.

8.3.1.3 Comparison for small data

In this section, our goal is to compare the two estimators for a small dataset (N = 100). We

compare the bias, RMSE, and the variance of the KKLE estimator with the MINE estimator.

Since the size of the data is small using minibatches did not help. Hence, we use the whole

data and run the simulation for 100 gradient steps. We average the results for 100 trials

and report the comparisons in Table 8.2. We compare the estimators for D = 1 scenario.

We find that the KKLE estimator has a much lower bias, variance, and RMSE value. For

D = 5 scenario both the estimators are not reliable for the small dataset setting. Hence, the

comparisons in this setting did not provide any insights and are not reported.
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Figure 8.1: Compare KKLE vs MINE when using a finite basis for Hilbert Space.

Table 8.2: KKLE vs MINE estimator for small data.

Estimator Bias RMSE Variance Correlation Mutual Information

MINE 0.0939 0.1044 0.0021 0.2 0.0204

MINE 0.0681 0.1128 0.0081 0.5 0.1438

MINE -0.2910 0.5123 0.1777 0.9 0.8303

KKLE 0.04999 0.0733 0.000288 0.2 0.0204

KKLE 0.06152 0.1254 0.01195 0.5 0.1438

KKLE 0.00855 0.1833 0.03357 0.9 0.8303

247



8.3.2 Explaining KKLE’s performance

We conclude that for smaller datasets and smaller dimensions the KKLE estimator performs

better than the MINE estimator. When the datasets are very large both MINE and KKLE

estimator perform well.

• The loss surface for MINE is non-convex in the parameters and thus different trials

lead to different minima being achieved thus leading to a higher variance than KKLE,

which searches over a convex loss surface.

• Hypothetically assume that the search space for KKLE is the same as MINE. In such a

case, the optimizer for KKLE is likely to have a lower bias and RMSE as it will always

find the best minima, which is not true for MINE.

8.3.3 Application to Metrics for Fairness

There are many applications for mutual information. In this section, we propose another

application that can directly benefit from the proposed estimator. Machine learning methods

are used in many daily life applications. In many of these applications such as deciding

whether to give a loan, hiring decisions, it is very important that the algorithm be fair.

There are many definitions of fairness that have been proposed in the literature [SHG18].

We discuss the three most commonly used definitions of fairness here.

• Demographic Parity. A predictor is said to satisfy demographic parity if the pre-

dictor is independent of the protected attribute (for instance, race, gender, etc.).

• Equality of Odds. A predictor satisfies equality of odds if the predictor and the

protected attribute are independent conditional on the outcomes.

• Equality of Opportunity A predictor satisfies equality of opportunity with respect to

a certain class if the predictor and the protected attribute are independent conditional

on the class.
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These definitions provide a condition to measure fairness. These conditions serve as a hard

constraint and may not be satisfied by any algorithm. Hence, it is important to provide

metrics that measure the extent to which these conditions are satisfied. Current works

[BDH18] mainly implement these metrics for fairness when the protected attribute is a

categorical variable. Extending these metrics to settings when the protected attribute is

continuous (for instance, income level, etc.) is not obvious (See the future works mentioned

in [DOB18]).

We propose to express these fairness criteria in terms of mutual information. Expressing

it in terms of mutual information has two advantages: a) We can understand the extent to

which the criterion is satisfied as the new definition won’t be a mere hard constraint, and b)

Dealing with protected attributes that are continuous (for e.g., income level) becomes more

natural.

We give the mathematical formulation next. Suppose that the predictor random variable

is given as Y p (for instance, the prediction that the individual would default on the loan),

the ground truth is Y (for instance, if the person actually defaults on the loan), and the

protected attribute is given as A (for instance, race, income level etc.).

• Demographic Parity Y p ⊥ A⇔ I(Y p;A) = 0

• Equality of Odds Y p ⊥ A | Y ⇔ I(Y p;A | Y ) = 0

• Equality of Opportunity Y p ⊥ A | Y = 1⇔ I(Y p;A | Y = 1) = 0

Therefore, for each of the above definitions, we require the appropriate value of mutual

information to be low. Hence, we can compare the extent of fairness for different machine

learning models in terms of the mutual information estimate. In each of the above definitions,

we are only required to estimate the mutual information between two random variables, which

is good as we know that mutual information estimation is reliable in lower dimensions. It

would be interesting to investigate mutual information based fairness constraints. Further

investigation of mutual information based metrics for fairness in machine learning is an

interesting future work.
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8.4 Conclusion

We propose a new estimator for KL divergence based on kernel machines. We prove that

the proposed estimator is consistent. Empirically, we find that the proposed estimator can

be more reliable than the existing estimator MINE in different settings. We also provide

insights into when KKLE is expected to do better than MINE.
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CHAPTER 9

Conclusions and Future Work

In this dissertation, we developed approximate optimization methods for intractable opti-

mization problems that have provable performance guarantees achievable with reasonable

computational resources. We focused on two different areas where we often find such prob-

lems: a) resource allocation, and b) machine learning.

In the first part of this dissertation, we developed optimization methods for resource

allocation problems. In Chapters 3 and 4, we developed methods for multi-agent resource

sharing. The methods that we presented were applied to the problem of interference man-

agement in wireless networks and were shown to help tremendously in comparison to the

state-of-the-art methods. Moreover, we proved that our distributed approach achieves a

constant approximation ratio w.r.t to the best possible solution computed in a centralized

manner. These methods can also be applied to many other resource allocation problems

such as task scheduling. These provable efficiency guarantees also extend to more general

cases. It would be interesting to explore the application of our framework to other resource

allocation problems. In our current work, we only provided provable guarantees for static

environments with a fixed number of users and fixed environment conditions. It would be

useful to extend these results to more dynamic scenarios with changing users and changing

environments.

Next, we studied a particular type of resource allocation problem with strategic agents.

We studied the problem of matching with strategic agents. We developed a dynamic match-

ing mechanism that allows the two sides to be matched for instance, the clients and workers

to interact and learn about each other and then arrive at final matchings. The proposed

mechanism has several nice properties: the equilibrium strategy for the workers and clients is
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simple, coalitionally stable and guarantees truthful revelation. The mechanism under certain

settings is also guaranteed to lead to the maximum possible revenue possible among all the

mechanisms.

In Chapter 6, we studied the problem of screening. The problem of screening can be

abstracted as follows. An agent has limited resources to monitor a stochastic process. The

agent’s objective is to use the resources to its avail in the best possible manner to best track

the evolution of the stochastic process. We proposed a general framework to solve the above

problem and applied it to the problem of breast cancer screening to establish its utility. We

provided performance guarantees that are achievable in polynomial-time. The framework

can be potentially applied to sensor scheduling and stopping time problems. It would be

interesting to adapt and apply this framework to other applications in the future.

In the second part of our dissertation, we turned our attention to developing optimiza-

tion methods for machine learning applications. In Chapter 7, we developed a method to

interpret “black-box” models. Our method can be used to construct piecewise local-linear

approximations of machine learning models. By constructing such approximations it be-

comes easier for expert auditing of the model as linear models are easier to understand. We

established the utility of our approach through various experiments on real datasets. We

applied our approach to regression problems on datasets with a moderate number of dimen-

sions. Extending the proposed approach to high dimensional datasets and applying it on

image datasets is a very interesting future work. We also applied the proposed approach

to the problem of clustering. We gave a first proof that the proposed algorithm leads to a

polynomial time solution to the problem of clustering one-dimensional data.

At the end in Chapter 8, we developed an optimization-based approach to estimate the

KL divergence. The approach is inspired from recent methods that use optimization based

on neural networks to estimate the KL divergence. We showed the utility of our proposed

approach and established that it can be more useful than the recently proposed approach in

certain scenarios. We proved that the proposed estimator is consistent unlike the recently

proposed estimator.
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