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Today innumerable devices use the wireless spectrum for communication, including cell-

phones, WiFi devices, military radios, public safety radios, satellite phones etc. This crowd-

ing is limiting the experience of each device either through interference or by waiting for

their turn to communicate. So, how do we allow a limited spectral resource to reliably scale

to many more devices? This is possible through concurrent communication where multiple

links share the spectrum and communicate simultaneously using multi-antenna techniques.

One promising technique is Interference Alignment (IA), that has been shown to be Degrees-

of-Freedom optimal under some conditions. Still, IA requires accurate channel knowledge to

be effective and its ability to achieve high throughput under time varying wireless conditions

is yet unproven. We make progress towards understanding these limitations and provide

viable solutions.

We study an IA system under different models of the time varying channel and derive

expressions for the achieved rate over time and the system throughput. Using these, we can

arrive at the optimal duration of the data phase that maximizes throughput. We propose
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two strategies that help to counter the effects of a time varying channel. First, data aided

receiver beam-tracking along with link adaptation provides a sizable improvement in the

received signal to interference and noise ratio. Second, updating the transmit beams during

data transmission using short feedback pilots improves alignment at the receivers. In faster

varying channels, we get a more stable achieved rate whereas in slower varying channels, we

see additional throughput gains. The conclusion from this work is that an IA system must

be trained more frequently than the channel coherence time to ensure high throughput and

beam adaptation during the data phase gives significant robustness to the system.

Lastly, we present an IA based medium access control (MAC) protocol that outperforms

traditional protocols. Our concurrent carrier sense multiple access (CSMA) protocol based

on beam-nulling is compatible with CSMA and increases the sum throughput by 2 to 3x.

We also show that IA outperforms optimal time division multiple access under time varying

conditions. Hence a well-designed IA system can enable reliable concurrent communications

in a wireless network.
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Chapter 1

Introduction

1.1 Background on Wireless Networks

A wireless network is one where two or more users are communicating wirelessly. A com-

municating link always requires a transmitter and a receiver and in a wireless network,

multiple such links may be active in the vicinity of each other. Ad-hoc wireless networks

are infrastructure-less and non-hierarchical communication networks where any set of nodes

can communicate with another set of nodes and there is no a priori fixed node that deter-

mines the parameters of communication. Cellular networks on the other hand, have a fixed

base station moderates a communication between two nodes. When the nodes in an ad-hoc

network are mobile, it is called a mobile ad-hoc network (MANET) such that neighboring

nodes as well as the physical medium of communication keeps changing with time.

Applications of cellular networks include voice, video, and data for personal communica-

tion, industrial communication, and other commercial uses. Applications of MANETs are

many such as communication networks for the military in tactical environments, reliable air-

borne and ground mesh networks to assist firefighting operations in the absence of cellular

networks, augmenting satellite connected networks in emergency situations, video streaming

from autonomous agents and drones. Nonetheless, both networks have to manage the users

1



such that their communications don’t interfere and disrupt other users’s communications.

In MANETs the links are between mobile nodes, while in cellular networks, these links are

between a cellphone and a base station. Further, the networks are becoming more dense

as more devices are coming online, cell sizes are shrinking, and the quality of service (QoS)

requirements of each device is becoming higher. Truly, wireless networks are facing a crunch!

1.2 Increasing interference and Spectrum Scarcity

The reality today is that the density of communicating devices is increasing dramatically

while additional bandwidth is hard to come by, especially in the low frequency (sub 6 GHz)

bands where most communication today takes place, because it is being heavily used by

different licensed and unlicensed users such as cellular companies, radio navigation, satellite

communication, broadcasting, WiFi etc. Random access protocols like carrier sense multiple

access (CSMA) allow multiple user pairs to contend and share the spectrum. But under a

limited bandwidth, the peak throughput of a network using CSMA remains fixed, meaning

that per link throughput is inversely proportional to the number of links in the network. As

the network densifies, each user’s QoS degrades leading to a worsening experience for every

user. To clarify, this is not a limitation of CSMA, but an inherent outcome of the basic

paradigm in wireless communication that successful communication depends on avoiding

interference and ensuring that each distinct signal is allocated its own resource block (time,

frequency, or code) without sharing. Naturally the problem of diminishing throughput per

user persists even with other multiple access schemes namely time division multiple access

(TDMA) and frequency division multiple access (FDMA), which are centralized resource

allocation schemes.

Overcoming this spectrum scarcity requires us to rethink how multiple communication

links are sustained in a network. The usual way to avoid interference between simultaneous

transmissions has been to separate them into orthogonal frequency, time, or code slots. But
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Figure 1.1: A comparison between the state of current Mobile Ad-Hoc Networks and the
envisaged future of concurrent communication.

this strategy is unsustainable in the face of growing demand for communication services

and we must utilize the available spectrum as efficiently as possible, as we explore higher

frequencies to get more bandwidth. By using multiple antennas, it is known that multiple

information streams can co-exist without interference. We wish to evaluate the limits of

multi-antenna techniques in interference management in wireless networks.

The goal of this thesis is to provide ways to transition from avoiding interference to

accepting and designing the interference in wireless networks in real world settings. Such

techniques will be applicable to both MANETs and cellular network as both face similar

multi-user interference problems. We envision a future where multiple radios co-exist using

intelligent multi-antenna techniques at both transmitters and receivers such that all links can

attain a high throughput. This future is shown in fig. 1.1. We call this future concurrent

communication, where multiple links are operating simultaneously in the same frequency

and time resource, with minimum interference to each other. To realize this future we must

utilize the power of multiple antennas to the fullest.

3



1.3 Enabling Concurrent Communication

In the past two decades, multiple antennas have become a norm on all radio devices, be it

cellphones, laptops, cellular base stations, WiFi access points, military radios and software-

defined radios (radio kits including baseband and Radio Frequency components whose pa-

rameters like frequency, waveform, processing can be easily configured through software).

From omni-directional transmission where everyone in the vicinity is equally affected by the

signal, it is possible to now have directional beams that focus energy in a desired direction

or avoid an undesired direction. This is called beamforming and beamnulling respectively.

Multiple antennas also give us the possibility of sending and receiving more than one stream

of information, called a spatial stream, at the same time from a radio. This helps increase the

data throughput over a link because we now have two independent streams of information

being sent over the air in the same bandwidth. Alternatively, one spatial stream can benefit

from increased reliability in noise and/or random drops in signal energy called fading. Both

these and all other multi-antenna techniques fall under the class of Multiple Input Multiple

Output (MIMO) techniques.

Applying MIMO techniques to multi-user communication has opened up new avenues

to increase the system throughput and reliability. Multiple user pairs can now potentially

talk in the same time and frequency slot, dramatically increasing spectral efficiency. Some

applications are wireless sensor networks, military communication between platoons, and

inter-cell coordination in cellular networks. While there is no one MIMO technique that is

known to maximize sum capacity in a multi-user interference network, one recently discovered

technique that is close to optimal at high signal to noise ratio (SNR) is called Interference

Alignment (IA).

Interference Alignment works by designing the MIMO beams at the transmitter and

receiver so that interference aligns into a small enough subspace, leaving sufficient dimensions

for the desired signal. With correct channel knowledge, IA can allow the maximum number

of links to be simultaneously active, more than any other known technique. While this makes

4



IA a promising candidate for concurrent communication, it is still untested how it holds up

to practical challenges like inaccurate channel estimates, moving users, and more users in

the network. Answering some of these questions will help us design the implementation of

Interference Alignment and similar strategies to be both robust to common problems and

efficient. It will also provide insight into the behavior and challenges of a system of interfering

users over time, which will be applicable to not just IA, but to any other MIMO strategy

that deals with interference that is time varying.

1.4 Aims of the thesis

The aim of this thesis is to investigate the different algorithms used to achieve Interference

Alignment under multiple practical real-world challenges such as time variation of the channel

and estimation inaccuracies. The broad aims of this thesis are as follows.

• First, we aim to analytically model the effect of time variation in the channel on

the throughput of a multi-user interference aligned system and gain insight into what

factors determine its sensitivity or robustness.

• Second, we aim to optimize the interference alignment system parameters and propose

techniques to improve system performance under a time varying channel. The goal is

to make alignment robust and achieve a high sum throughput.

• Third, we aim to show that multi-antenna interference management techniques can do

better at multi-user concurrent communication than existing approaches like TDMA

and CSMA, and they can also co-exist with them.

1.5 Organization of the thesis

Chapter 2 gives a background on Interference Alignment, its history, important works, and

algorithms to achieve alignment. It also discusses different practical challenges that such a

5



system must face in order to work well in practice. Chapter 3 gives analysis of the perfor-

mance of an IA system under different time varying channel models and also presents results

on optimization of protocol parameters to maximize throughput. Chapter 4 discusses practi-

cal techniques that can be used to further improve system performance under a time varying

channel. It discusses the benefits of receiver beam-tracking and short re-training in the

middle to let the transmitter and receiver update their beams to ensure good alignment.

Chapter 5 presents a beamnulling based medium access control (MAC) protocol that al-

lows concurrent communication and is backward compatible with CSMA. It also presents

a throughput comparison between an IA and a TDMA system in a many user scenario.

Finally, conclusions from this work are presented and references are given.
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Chapter 2

Concurrent Communication

Techniques for Mobile Ad-Hoc

Networks

2.1 Background on Interference Alignment

MIMO techniques can allow more than one link to be active in the same time and frequency

slot, by using beamforming and beamnulling. It is relatively simple to design the beams when

only two links are transmitting. The receiver tries to beamnull the interfering transmitter,

while the transmitter tries to beamform towards its desired receiver. But as soon as we

move to 3 or more MIMO links, we are at a loss for a simple solution to allow interference

free operation of links. A single concurrent communication technique that maximizes the

sum capacity in a general interference network is still unknown. But information theory has

recently discovered a technique that comes close to being optimal in some sense, and it offers

us a real possibility of designing concurrent communication networks with many active links

and large network spectral efficiency. This is the technique of Interference Alignment (IA).

IA is a technique of concurrent communication, where multiple transmitters transmit in
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Figure 2.1: A system with 3 users and 2 antennas per user depicting how Interference
Alignment is achieved.
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such a way that the interference at any receiver aligns and spans a space with less dimensions

than the number of interferers, leaving enough dimensions for the signal to be received

interference free. A graphical depiction of IA is shown in fig. 2.1. It is obvious from the

figure that Interference Alignment can achieve 3 interference free streams which is more

than what simply receiver zero-forcing can achieve. Each interference free stream is called

a degree-of-freedom (dof). IA was discovered by Cadambe and Jafar in [1] as a technique

that allows a user to use half its signalling dimensions interference free irrespective of the

number of interfering users. To give an analogy, imagine that the spectrum is a cake and it

is being shared by K users, then instead of each user getting 1/K of the cake, every user

gets 1/2 the cake, irrespective of how large K is. This is astonishing at first sight but it

has surprising mathematics behind it[2]. In fact, IA has been shown to achieve the optimal

(maximum) sum dof of the system in many kinds of interference channels [1] [3]. Thus IA

is a promising technique to enable concurrent communications in wireless networks. In fact

IA has inspired many other joint transmitter (TX)- receiver (RX) beamforming techniques

that can provide higher sum capacity than IA at low to moderate SNRs. In this thesis, we

will include them all under the umbrella of Interference Alignment since all these techniques

are sum capacity maximizing approaches and achieve the same dof.

In general, alignment may be performed over time, frequency, antennas, or even signal

levels. For many systems, achieving Interference Alignment may necessarily require coding

over many time slots while for others it can be achieved simply in a single slot using multiple

antennas [4]. Restricting the achievability to a single time slot, definitely limits the number

of systems where IA achieves optimality. But aligning over time requires exponentially many

independent realizations, which quickly goes beyond the finite decoding delay requirement of

most applications even with few (3 or more) users. Hence in this thesis we focus on alignment

achievable using multiple antennas and over a single coherence interval only, which still offers

a sizable gain in dof.

In this thesis, we will say K users to mean K pairs of radios, each pair having one trans-
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mitter wanting to talk to one receiver. Hence unless stated otherwise, K user interference

channel means K TX and K RX nodes as per convention. Using IA over multiple antennas

it has been shown that ([4] Thm. 6) that a K user system, K ≥ 3, with M antennas at each

transmitter and receiver, can achieve a symmetric dof d per user, if and only if

(K + 1)d ≤ 2M (2.1)

A corollary of the above result is that the symmetric (or common) dof per user is limited

to d ≤ b 2M
K+1
c. For example a K = 2 user interference channel with M = 22 antennas per

node can achieve d = 1 dof per user. We know that receiver zero forcing can achieve this by

canceling out the interfering user stream. But by the above corollary, a K = 3 user system

with M = 2 antennas per node can also achieve 1 dof per user which is not achievable by

simple zero forcing. Achieving the strictly larger sum dof of 3 than 2 relies on performing

Interference Alignment between the TX and RX nodes.

2.1.1 Interference Alignment Techniques

Two flavors of Interference Alignment techniques have been discussed in the literature cor-

responding to two ways of obtaining the desired antenna beams to achieve alignment. First

is feedback based or centralized IA. The second is over-the-air iterative or distributed IA.

Both techniques can lead to alignment but they impose different overheads and have their

own strengths and weaknesses. A comparison is presented below.

Centralized vs Distributed IA

In centralized IA, one must collect all forward and reverse channel estimates at a centralized

node. This requires that both TX and RX must perform MIMO channel estimation and the

receivers must send the forward channel estimates as feedback to the transmitters. These

processes take up precious air-time. Different optimized ways of sending channel state feed-
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back have been explored including limited feedback and analog feedback [5][6]. Centralized

IA does not need the channel to be reciprocal and this makes it simpler and many times the

goto choice for achieving IA.

In distributed IA, over-the-air iterative optimization is done to arrive at the optimum

antenna beams. Channel reciprocity is very necessary here and must be established through

tight calibration. Although this method skips MIMO channel estimation, it may take many

iterations to converge which again increases overhead. On the other hand, this method is

robust to changes in the channel, interference, errors in channel estimation, and node failure

as those can get reflected in the iterative process.

Multiple algorithms have been proposed in the literature that either achieve Interference

Alignment in a system or are inspired by it with the objective of maximizing the sum capacity

of the network. We explain some of the major ones below.

Concurrent Communication Algorithms

Closed form Alignment Solution for K = 3 The closed form solution for IA was

derived only for K = 3 users and M = 2 antennas per node by Cadambe and Jafar [1]. The

conditions on alignment are stated as,

H13p3 = H12p2, At rx 1

H21p1 = H23p3, At rx 2

H32p2 = H31p1, At rx 3 (2.2)

where Hij is the channel between receiver i and transmitter j and pj is the transmit beam

of j-th transmitter. Eqs. (2.2) lead to

11



H21H
−1
31 H32p2 = H23H

−1
13 H12p2,

=⇒ p2 = H−1
32 H31H

−1
21 H23H

−1
13 H12p2. (2.3)

Thus p2 is an eigenvector of a big matrix. Choosing p2, both p1 and p3 can be fixed.

The receive beam w1 is chosen to be orthogonal to the sole interference direction H13p3.

Similarily w2 and w3 are chosen to be orthogonal to the received interference vectors.

Minimum Interference Leakage Alignment In this technique, the transmit and receive

beams are chosen to minimize received interference. The iterations proceed as [7]

wj = min eigvec(Qj) at rx j,

pi = min eigvec(Qrev
i ) at tx i, (2.4)

where again wj is the receive beam for the j-th receiver and pi is the transmit beam for the

i-th transmitter. Qj is the covariance matrix of received interference at the j-th receiver,

either measured or constructed from channel estimates. Qrev
j is the covariance matrix of

received interference in the reverse channel (i.e. RX to TX). Iteratively doing these steps

leads to the alignment solution, if it exists (e.g. if eq. (2.1) is satisfied).

Maximum SINR Alignment In this technique, instead of minimizing interference re-

ceived, beams are chosen to maximize signal to interference and noise ratio (SINR) at each
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step. The steps are as follows [7],

wj = (Qj + σ2
nI)−1Hjjpj at rx j,

wj =
wj
||wj||

at rx j,

pi = (Qrev
i + σ2

nI)−1HH
iiwi at tx i,

pi =
pi
||pi||

at tx i,

where Hjj is the channel from j-th receiver to j-th transmitter, σ2
n is the noise variance,

and I the identity matrix of appropriate size.

Other approaches Other approaches have also been suggested. Interference Alignment

has been formulated as a rank constrained rank minimization by Papailiopoulos and Dimakis

[8] with better results than traditional IA. Another alternating minimization algorithm was

proposed by Peters and Heath in [9]. Santamaria et al. proposed a maximum sum rate IA

algorithm in [10]. Sridharan and Yu proposed a rank minimization based approach on the

interference matrix in [11].

2.1.2 Challenges in Obtaining Alignment

All the above IA algorithms depend critically on having accurate, timely channel estimates.

Interference Alignment, and generally, any interference cancellation technique, is very sensi-

tive to the following inaccuracies, which may lead to increased symbol errors.

Accurate Channel Estimation

Achieving optimal dof with IA depends critically on having accurate channel estimates and

this achievability is lost as soon as the estimates are imperfect [12][13]. Channel estima-

tion for each link can be done either sequentially or concurrently. Concurrent estimation

requires use of orthogonal codes like Zadoff-Chu (ZC) sequences that are circularly shifted
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[14]. Concurrent channel estimation places harder requirements on hardware and may fail

to live up to its promise due to non-idealities such as carrier frequency offset (CFO), timing

offset, automatic gain control (AGC) firing errors, non-integer sample delays causing loss of

orthogonality, RF front end saturation or non-linear mixing of signals. Sequential channel

estimation takes more time but is only noise limited and hence gives better channel estimates

with the same length pilots. One must decide based on one’s hardware, required accuracy,

and acceptable training overhead, which scheme is more suitable. Hardware implementations

of IA have been done that have dealt with channel estimation and offset problems such as

[15], [16].

Carrier Frequency Offset and Timing Estimation

CFO must be estimated well otherwise it can corrupt channel estimates. Jiang et al [14] has

suggested using a pair of ZC sequences to estimate CFO and timing offset jointly. Timing

synchronization can be achieved either using a GPS oscillator or a beacon node. For our

work, we assume a beacon node is available that can be heard by every node and which

signals them when to start transmission and reception. Experimental setup in the Wireless

Integrated Systems Research Lab (WISR) at UCLA has succesfully demonstrated operation

of a 3 user interference system with a beacon node in the lab and small areas like a parking

lot.

AGC Issues

The AGC must remain locked while capturing the signal during channel estimation and also

during signal transmission or reception. Inadvertant firing of the AGC can cause sudden

changes in the signal amplitude that would add error to the estimate of channel or data

symbol.
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Time Variation of the Channel

A packet cannot be arbitrarily long because the channel changes over time. If the channel

changes after the alignment beams have been computed, the beams will be inaccurate and

unable to cancel all the interference during the data transmission. This would lead to de-

creased SINR and increased probability of error. Time variation in a channel is an outcome of

either user motion or motion of the scatterers and hence cannot be avoided through improved

hardware calibration or trying to ensure orthogonality through staggering transmissions in

time. A well designed system must take into account this channel variation and resultant

mis-alignment over the data phase and design the beam training protocol to maximize the

data throughput while ensuring good estimates of the channel are still obtained. This prob-

lem is dealt with in detail in the next two chapters. Channel variation also affects computer

in the loop hardware prototype demonstrations where software such as MATLAB is used

to compute beams and the hardware’s job is to pass on the acquired data to the software.

Since data transfer and computation on a PC can take a significant fraction of a channel

coherence time, such prototypes usually have short data phases as the beams computed may

become inaccurate quite soon.

Reciprocity Calibration

Distributed algorithms for IA require the channel to be reciprocal. Establishing reciprocity

requires calibrating the radio front ends such that the TX-RX forward chain and the RX-

TX reverse chain have the same gain and phases. This is usually not the case due to

independent phase locks of the transmit and receive chains on a radio. Thus calibration

and compensation needs to be done. Calibration can be done using a reference antenna to

estimate diagonal phase compensation matrices. Mutual coupling may cause problems in

getting accurate reciprocity and must be accounted for if we need highly accurate estimates

such as for interference alignment as demonstrated recently in [17].
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2.2 Summary

This chapter presents the background on the technique of Interference Alignment as an

umbrella of joint TX-RX beamforming techniques that can achieve higher degrees of freedom

than simple receiver zero forcing in some networks. IA provides a way to enable concurrent

communications in a wireless network but it also faces significant challenges due to its heavy

dependence on accurate channel estimates.
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Chapter 3

Interference Alignment in a Time

Varying Channel

A wireless channel is dynamic and can change if the transmitter, receiver or the intermediary

components like scattering objects change position or configuration. The rate of change of the

channel is then dependent on the speed of motion of its constituents which also incidentally

defines the Doppler spread (shift) of a communication channel. It is no wonder then that

these two quantities are related. As we know, the absolute Doppler spread for a signal of

center frequency fc, with a transmitter/receiver moving at speed v is given we fd = vfc/c.

The coherence time Tc of the channel, which is the time for which the channel remains almost

unchanged, can be defined as

Tc =
0.1

fd
, (3.1)

where the constant 0.1 is sometimes chosen as 0.25 or 0.4 depending on how much variation

in the channel can be taken in a coherence period.

Time variation in the channel has a significant effect on Interference Alignment because

IA relies heavily on beam-alignment and interference cancellation. As the channel changes,

beams from interfering sources that were aligned before become misaligned and as a result

some interference leaks into the signal subspace. Thus the receiver starts to see higher
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Figure 3.1: Sum capacity scaling of a system with 3 user-pairs and 2 antennas per user for
increasing Doppler spreads.

interference and low SINR. The more tha channel changes, the lower the receiver SINR and

it drops quite fast. Fig. 3.1 shows a graph of how capacity vs SNR plot becomes flatter as

Doppler increases denoting the lost degrees of freedom.

3.1 Models of the Time Varying Channel

Different models have been proposed to model the variation of the wireless channel over

time. A channel model helps us quantify the performance of a signaling strategy over time

and hence is useful, even though it may be simplistic with respect to all the time variation

effects.

One popular model used since many years is the block fading model, where the channel
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is assumed to remain constant for a block of symbols, following which it changes to a new

independent value. This helps us take expectations over many coherence intervals and talk

about average capacity. A variation of the block fading model with independent realizations

per block is the block fading model with correlated realizations. Here successive blocks have

correlated fading channels.

The correlation profile of the channel across time can be modeled by considering 2D or

3D scattering, either uniformly or in a certain angle profile. The simplest and most used

correlation profile, which assumes uniform scattering, is Jake’s channel model. Jake’s model

specifies the correlation of the channel at time τ in a Doppler spread of fd Hz is [31]

rh(τ) = J0(2πfdτ), (3.2)

where J0(.) is the Bessel function of zeroth order. The block fading model may be

designed such that correlation between successive block channels is rh(TB) where TB is the

chosen block size. This allows an approximation of the continuous time varying channel.

While this model works well in many cases like point to point communications, it fails

badly in modeling the performance of interference cancellation systems such as IA. This is

because sharp nulls are highly sensitive to change in the channel and small variations lead to

large drops in the SINR, a phenomenon that is not visible in the block fading model. Thus, we

need a continuously time varying channel model if we are to precisely model the performance

of interference nulling systems like IA and ensure their robustness and practicality in the

real world.

3.2 Continuous Time Varying Channel Models

Multiple models for the continuously time varying channel have been proposed such as

the Basis Exponential Model (BEM) [18] and Autoregressive Model. While the BEM can

be made quite accurate through proper choice of basis, such as Fourier basis or Slepian-
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Wolf functions [19], it also increases complexity of the modeling process and produces less

insightful conclusions. A simpler model may lead to closed form expressions that provide a

valuable insight into the dynamic response to the channel.

Autoregressive (AR) models are much simpler models that predict the channel’s present

state as a linear combination of its past states. AR models can be chosen of any order,

i.e. the number of past values that the present channel depends upon, but it has been seen

that even with an order 1, an AR model closely matches the ideal Jakes’ correlation initially

when the channel is still highly correlated. This match is sufficient for us because interference

cancellation systems are highly sensitive to channel change and are rendered ineffective by

a small change in the channel. Hence the system must re-train with up to date channel

information to null the interference. We will introduce the Autoregressive model of order 1

or the AR(1) model below and use it to derive the performance of an Interference Alignment

system. As we will see, the AR(1) model provides useful insights about how long the data

packet should be between re-trainings and it retains its accuracy as well.

3.2.1 Autoregressive Model of the Channel

A wireless MIMO channel with N transmit and M receive antennas is denoted by a M ×N

matrix H. Let t denote the discrete time when the channel is sampled. The channel matrix

varies with time as follows:

H(t) = βH(t− 1) +
√

1− β2E(t), (3.3)

where β < 1 but close to 1 is a fixed correlation constant that decides how fast the channel

varies per sample. E(t) is a matrix that constitutes the innovation or error terms added to

the channel. All entries of E(t) are indepedent and identically distributed (i.i.d.) as zero

mean complex Gaussian (ZMCG) elements with a unit variance.
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3.3 Combating Time Variation in the Channel

As discussed before, a time varying channel specially impacts interference cancellation sys-

tems like IA as their nulls are very sensitive to changes in the channel. There are multiple

options on how a TX & RX beamforming system can adapt to changes in the channel.

1. Receiver Tracking: In this technique, no feedback is sent to the TX but the receiver

constantly updates its beams to optimize its desired criterion. The transmitter has

its beams frozen because it cannot get up-to-date information about the channel in

the absence of feedback. The receiver may either use data-aided tracking i.e. use the

decoded symbol to adapt the receive beam using adaptive algorithms like least mean

squares (LMS), recursive least square (RLS), Kalman filter etc. This strategy adds no

to minimum additional signaling overhead.

2. RX-TX Update in the Middle: In this scheme, a few pilot symbols are sent

during data transmission from RX to TX allowing the TXs to re-position their beams.

Following this, pilot symbols are sent from TX to RX to help re-calibrate the RX

beams. This process may be repeated a few times back and forth to achieve good

beam positioning. Importantly, no new channel estimates are shared among the nodes.

This strategy is essentially the same as doing a few ping-pongs of the distributed IA

protocol. It adds a medium signaling overhead.

3. Full Beam Re-Training: Old beams are discarded at both TX and RX and new

beams are computed after every data packet. The designer can play with the frequency

of this re-estimation to suit the channel conditions. Pilot symbols are exchanged bidi-

rectionally and are used to compute a new channel or beam estimate. The beam

estimate may be refined multiple times in distributed IA while in centralized IA, all

the channel estimates are shared with a central node. This strategy incurs the highest

overhead compared with both previous strategies.
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We want to find out how much each strategy helps a system to operate well in a time

varying environment. The no feedback receiver tracking strategy gives improved SINR at no

or low cost and hence should be used along with strategy 3. But it is difficult to analytically

quantify the performance improvement with strategy 1 because it uses stochastic algorithms

and symbol decisions. Similarly strategy 2 is promising as it allows one to perturb the current

beam to reflect the changed channel by adding a small overhead. But its iterative nature

creates difficulty in characterizing its performance analytically. Strategy 3 where we do full

beam re-estimation after every data phase and can only alter the packet length is amenable

to analytical exploration.

We will demonstrate the effectiveness of all three strategies for IA in simulation but, in

the next section, we present an analysis of strategy 3 i.e. optimizing the length of the data

phase while doing full beam re-estimation.

3.4 Choosing Optimal Data Packet Duration Per Fad-

ing Realization 1

As alignment of interference requires tight coupling to estimates of the channel, time varia-

tions in the channel lead to loss of capacity. Thus, the length of the data and training phase

should be appropriately chosen so as to maximize the average capacity. In this section we

present a way to model the sum capacity achieved by interference alignment in a time vary-

ing wireless channel and show that in slowly changing channels, it is possible to maximise

the average capacity using just the knowledge of the maximum Doppler frequency of the

interferers.

For a given training duration, we select a new data phase duration per channel fading

instance and show that our predicted average capacity strongly tracks the true average

capacity using the optimized data phase duration. In high Doppler scenarios, we do not

1This section is reproduced from [20] c©2016 IEEE.
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see a benefit from our scheme because the channel capacity has high variance and a first

order description is no longer sufficient. We further propose that the receiver can adapt its

beamweights using a least-squares technique and approach the instantaneous sum capacity

of interference alignment.

3.4.1 Capacity of the Time Varying Channel

Let Hkl denote the channel from the transmitter of the l−th user to the receiver of k−th

user. Assume that the direct channel at time 0, Hkk(0), and the interference channels at time

0, Hkl(0) are estimated perfectly at the k−th receiver, through a channel training algorithm

that finishes at time t=Tr. For the sake of simplicity, we assume that the channel does not

change in this period, hence Hkl(0) = Hkl(Tr), though this assumption is easy to shed. We

normalize the noise power to unity. Let C(t) denote the sum capacity of the IA system at

time t.

C(t) =
L∑
k=1

log

( ∑L
l=1 |w∗kHklpl|2 + ||wk||2∑L

l=1,l 6=k |w∗kHklpl|2 + ||wk||2

)
, (3.4)

where pk and wk are the transmit and receive beamvectors respectively. For now, let us

neglect the contribution of noise in this equation in both the numerator and denominator.

Later, we will revisit this equation to include the effect of noise. With this understanding,

we will call the new expression the interference limited capacity CIL(t).

CIL(t) =
L∑
k=1

log

( ∑L
l=1 |w∗kHklpl|2∑L

l=1,l 6=k |w∗kHklpl|2

)
. (3.5)

Even though CIL(0) is a known quantity, CIL(t) is a random variable (due to the un-

predictability of the channel at time t). Our aim is to find information about the pdf of

CIL(t) (such as its moments) to be able to predict the expected capacity at time t. This can

enable us to make better decisions on questions such as when to retrain. We note here that

to achieve the sum capacity in eq. 3.4, we need feedback from the receiver about instanta-

neous SINR so that the transmitter can adjust its modulation and coding accordingly. For
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simplicity, we assume that a low rate feedback is periodically available to the transmitter

for this purpose. Let pl be the beamforming vector used at the l−th transmitter and wk

be the receive beamformer used at the k−th receiver. Define the beamformed channel at

time t as xkl(t) = Hkl(t)pl, ∀k, l. We assume that xkl(t) and xkl(0) are jointly Gaussian and

that the elements hij of a channel matrix are independent and identically distributed (i.i.d.)

complex Gaussian random variables and are correlated in time as E[hij(t)h
∗
ij(0)] = ρ(t). For

example, according to the Jake’s model of channel correlation, ρ(t) = J0(2πfdt), where J0()

is the zero-order Bessel function of the first kind and fd = vf0/c is the maximum Doppler

frequency, where v is the vehicle speed, f0 is the carrier frequency and c is the speed of light.

Lemma 1. The pdf of xkl(t) conditioned on xkl(0) is given by fxkl(t)|xkl(0) = CN (ρtxkl(0), ||pl||2(1−

ρ2
t )IM).

Proof. See Appendix A.

It is logical to condition on xkl(0) because we have estimated xkl(0) during channel estima-

tion. Thus, the conditional pdf of w∗kxkl(t) is given by w∗kxkl(t)|{xkl(0)}Ll=1 ∼ CN (mkl(t), σ
2
kl(t))

where mkl(t) = ρtw
∗
kxkl(0) and σ2

kl(t) = ||pl||2||wk||2(1−ρ2
t ). As we will show later, ||pk||2 = 1

and ||wk||2 = 1, ∀k due to the way the beamforming vectors are chosen by the interference

alignment algorithm. Hence σ2
kl(t) = σ2(t) = (1 − ρ2

t ). Thus, the conditional density of the

numerator of the k−th log term in eq. (3.5), given {xkl(0)}Ll=1, is non central chi-square with

2L degrees of freedom, with non centrality parameter λk,num =
∑L

l=1(mkl(t))
2 and variance

of each Gaussian equal to σ2
r(t) = σ2(t)/2 [21].

We can view a non central chi square distribution with parameters λ and σ2
r , as a Poisson

mixture of central chi square random variables with parameter σ2
r [22], i.e.

fχ′22L(z) =
∞∑
j=0

e−
λ
2

(λ/2)j

j!
fχ2

2L+2j
(z) (3.6)

If Y is the log of the above non central chi-square random variable, then its pdf is given by

fY (y) = eyfχ′22L(ey). As a result, we can write the moments of the log non central chi-square
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distribution in terms of moments of the log central chi-square distribution, viz.

E[Y r] =
∞∑
j=0

e−
λ
2

(λ/2)j

j!

∫ ∞
z=0

ezfχ2
2L+2j

(ez) zr dz (3.7)

Moments of the log central chi square distribution can be easily found as described in [22]

which we summarize here for completeness. If p ∼ χ2
ν with parameter σ2 and q = log p, then

the cumulant generating function of q is

K(t) = log E[eqt] = log E[pt]. (3.8)

The moments of p are easily found from its pdf, yielding the expression

K(t) = t log 2σ2 + log Γ(
ν

2
+ t)− log Γ(

ν

2
). (3.9)

Hence, the j−th cumulant is given by κj = log 2σ2 + ψ(ν/2) for j = 1 and κj = ψ(j−1)(ν/2)

for j > 1, where ψ(.) is the digamma function and ψj(.) is the polygamma function. The

raw moments µn = E[qn] can then be computed via the formula

µn = κn +
n−1∑
m=1

(
n− 1

m− 1

)
κmµn−m (3.10)

Importantly, the first moment is µ1 = log 2σ2 + ψ(ν/2).

Using the eq. (3.4) through (3.10), we can calculate the conditional expected capacity at

time t, conditioned on the initial channel information, i.e.

E
[
CIL(t)|{xkl(0)}Ll=0

]
=

L∑
k=1

E

[
log

L∑
l=1

|w∗kHklpl|2
]

−
L∑
k=1

E

[
log

L∑
l=1,l 6=k

|w∗kHklpl|2
]

(3.11)

The intuition behind finding conditional expectation is to be able to predict the capacity
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curve for every channel realization and not just average statistics. We will later present

results of the performance of this capacity metric, averaged over the channel, which will

justify its use. Calculation of the expectations in eq. (3.11) is feasible because the arguments

of log are non central chi-square distributed random variables, for which we have already

described a method for computing its moments.

Noise Limited versus Interference Limited System

To obtain eq. (3.5) from eq. (3.4), we neglected the contribution of noise power to the

capacity, assuming that the system is inherently interference limited. This allowed us, for

instance, to easily compute the expectations in eq. (3.11). Neglecting the noise term is

justified for the numerator of the log term in eq. (3.4) because we assume the SINR is high,

but for the denominator, we require the interference power to be more than the noise power.

The latter assumption is frequently not true at t << Tc, where Tc is the coherence time,

because IA essentially converts an interference limited system into a noise limited system. At

small t, the power leakage from interference into the signal subspace may be very low. This

leakage increases with time due to the changes in the channel and becomes significant enough

to justify neglecting the noise term, when t is on the order of Tc. Without neglecting the noise

term, the numerator and denominator of eq. (3.4) are no more non central chi-square, which

leads to further complications in modeling the capacity. To avoid this, we simply assume

that the system is noise limited when noise power is more than the interference power and

replace the interference term in the denominator of (3.4) by a constant value equal to its

mean and call the resulting expression the noise limited capacity.

CNL(t) =
L∑
k=1

log

(∑L
l=1 |w∗kHkl(t)pl|2

λk,den + ||w2
k||

)
, (3.12)

where λk,den = E
[∑L

l=1,l 6=k |w∗kHkl(t)pl|2|{xkl(0)}Ll=0

]
. Defining the interference leakage at

the k−th receiver as Ik =
∑L

l=1,l 6=k |w∗kHkl(t)pl|2, we can write our proposed capacity model
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Figure 3.2: Plot of CH,av(Td;Tr) against Td with fixed Tr = 1270 symbols and fd = 10 Hz,
showing the concave nature of the curve.

concisely as,

C(t) =
L∑
k=1

1(Ik < 1)CNL(t) + 1(Ik ≥ 1)CIL(t), (3.13)

where 1(.) is the indicator function.

3.4.2 Optimising the Data Phase Duration

The duration after which an IA system must retrain itself can be optimized to maximize the

average sum capacity. The average capacity for a specific channel realization can be stated

as

CH,av(Td;Tr) =

∫ Td+Tr

Tr
C(t)

Td + Tr
(3.14)
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Figure 3.3: A plot of the true average capacity and predicted average capacity calculated
using the optimized data phase length for fd = 10 Hz.

where Td is the length of the data phase and Tr is the length of the training phase. We can

use our estimated conditional expected capacity from eq. (3.13) in eq. (3.14) and find the

Td that maximizes CH,av. Here, we do this optimization numerically.

3.4.3 Simulations and Results

We simulate a L = 3 user scenario where each user consists of a transmitter and receiver

separated by some distance d so that the receive SNR is 20dB. All the transmitters are

equidistant from all the receivers. Each transmitter and receiver has M = 2 antennas. The

users follow the distributed MAX-SINR Interference Alignment algorithm proposed in [7]

to iteratively find the transmit and receive beamvectors. The IA algorithm also provides
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an estimate of the beamformed channels xkl(0) = Hkl(0)pl to the k−th receiver. Using eq.

(3.13), we can find the conditional expected capacity at time t, given {xkl(0)}Ll=1. We choose

the Jake’s model for channel correlation with three values of Doppler frequency, fd = 1 Hz,

10 Hz and 100 Hz. Channel estimation is performed using a Zadoff-Chu sequence of length

127. The IA algorithm is run for 5 iterations in a ping-pong fashion. The symbol time is

ts = 10−6 sec/symbol, hence coherence time Tc = 0.1
fd

sec. For example, for fd = 10 Hz,

Tc = 104 ts sec, which means 104 symbols can be transmitted in one coherence period.

Fig. 3.2 shows the ensemble mean of average capacity CH,av(Td;Tr), and ±2σ curves

for fd = 10 Hz, versus Td, depicting the concave nature of the curve. We choose Td equal

to the abscissa that maximizes this curve. Fig. 3.3 shows that when using this optimized

Td, a strong linear relationship exists between our predicted average capacity and the true

average capacity with the true optimized Td. Thus, the prediction can be used to set the

time between retraining epochs in order to maximize system throughput.

We have computed the expected capacity as a function of time assuming a fixed training

period, and optimized the data interval according to the predicted capacity. We compare

this to simply assuming that the coherence time is the correct data interval. Fig. 3.4 shows

that for fd = 10 Hz, the gain from optimization varies from −5% to +20% in throughput

compared to using the coherence time. The negative results occur because of the error in

predicting Td due to channel variations. The relatively modest gains for the better predictions

are a consequence of the flatness of the average capacity curve beyond its maxima as seen

in fig. 3.2. A pessimistic interpretation of these results is that all the trouble involved in

making a good capacity prediction yields little. A more optimistic view is that it is sufficient

from an information theoretic point of view to use an easily measured quantity such as the

Doppler to optimize the training duty cycle.

For fd = 1 Hz similar but better results are obtained. Fig. 3.5 shows that the predicted

and true average capacity are strongly correlated when using the optimized Td. Fig. 3.6

shows that the gain from optimization varies in throughput from −6% to 60% with respect
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Figure 3.4: Cumulative distribution function of the percentage gain in average capacity by
using optimized Td against Td = Tcoherence for fd = 10 Hz.
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to simply using the coherence time for the data interval. The gain is noticeably higher for this

slower varying channel than at fd = 10 Hz. However, for high Doppler, the chosen training

interval is a large proportion of the coherence time which means the channel estimates are

not good. Hence, we see no no net gain from predicting capacity in this fast varying channel.

This suggests that a much more complex optimization is required in such conditions. We

defer discussion of possible fixes and characterization of the capacity cost of high Doppler

to future work.

We now propose a simple method to approaching the promised predicted capacity for

slowly changing channels. In the data transmission epoch the receivers can track the SINR

and also adaptively adjust receiver weights to maximize it using least squares techniques.

Periodic short messages to the transmitter can inform it when the number of bits per symbol

in the constellation needs to be reduced. In this way, the transmitter will always send the

largest number of bits the channel can support. It is also possible by this means to adaptively

change the balance between training and data transmission by triggering retraining when

the measured SINR indicates the data rate will soon fall below some programmable but fixed

fraction of the maximum.

Our simulations have so far considered only the case of a common Doppler, with both

interference sources having similar strength. In practice it is rare to have two interferers

with similar strength for any protracted period of time. It is much more likely that one

interferer will dominate. This suggests that we should base retraining on the maximum of

the Doppler for the desired link and strongest interferer. Nonetheless, since a high degree

of suppression can be achieved for the dominant interferer, it is possible that the rate of

change of the interference from the second strongest interferer cannot be entirely neglected.

Given interference coupling across the network, this could result in many links being forced

to have high training duty cycles. One solution is to consider Doppler as well as SINR in

making dynamic channel assignments so that global estimated capacity can be maximized,

accounting for the loss in achievable capacity due to high Doppler. This is a fruitful area for
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Figure 3.5: A plot of the true average capacity versus the predicted average capacity using
the optimized data phase duration for fd = 1 Hz.
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Figure 3.6: Cumulative distribution function of the percentage gain in average capacity by
using optimized Td against Td = Tcoherence for fd = 1 Hz.
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future investigation.

3.5 IA Under a Gauss Markov Channel2

The objective of this section is to present analysis of the performance of an IA system

under a Gauss-Markov or AR(1) channel and to optimally decide the data phase length

that maximizes throughput on average (instead of per channel realization in the previous

section). This data phase length can be used as a protocol parameter that is shared among

all nodes. It depends only the large scale pathloss conditions and is independent of the small

scale fading condition (assuming Rayleigh fading).

There can be multiple models of the fading channel under which the performance of IA

can be studied. A block fading channel is simpler to analyze. Authors in [24] have analyzed

the overhead of achieving alignment along with feedback under a block fading channel. A

continuously fading channel model, on the other hand, is more tedious to analyze than a block

fading model but also more insightful because as the channel changes over time, increasingly

misaligned interference will affect the SINR, rate and error performance. Works [25] and [26]

present simulation results of IA in this setting and tune the data phase duration or adapt the

receiver or transmitter beams (which requires much more feedback) to maximize throughput.

In [27] authors present theoretical results on the optimum data and pilot duration under a

time varying channel with the assumptions of equal power links and a limiting high SNR.

But the question, how does a generic IA system perform under a continuously time

varying channel is unanswered. We provide results that answer this question and provide

critical insights about the performance of IA. We choose a continuously time varying channel

model called the Gauss-Markov channel which has been used extensively previously [28], [29],

[30], ([31], pg. 45).

The contribution of this section is to present a closed form expression for the comple-

mentary cumulative distribution function (CCDF) of the SINR over time of a link in a K

2This section is reproduced from [23] c©2018 IEEE.
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link IA system in a Gauss-Markov channel3. We assume that the node designing the IA

beam vectors knows the long-term path gains for each link. We use the SINR CCDF to

compute the time varying expected rate achieved per link and then integrate it to get the

link throughput. Thus we obtain an expression for the system throughput in terms of the

data phase duration Td and the training overhead Tr which enables optimizing the data

phase duration to maximize network throughput in the current interference conditions. We

also present a simplified expression for the SINR CCDF that is much easier to work with

but still quite accurate.

Closest to our work is [27] where they present the average SINR and throughput expres-

sions assuming that the misalignment over time simply increases the effective noise power

whereas we model the additional interference as Gaussian random variables. Further, we can

simplify our rate expression so we don’t need the high SNR assumption for integration since

like practical systems we assume fixed modulation and coding Schemes (MCS). Other works

such as [29] obtain outer bounds on the decrease in expected rate over time using Jensen’s

inequality but not a expression for the expected rate over time.

The section is as organized as follows. First we present the system and explain the time

varying channel model. Then we give the expressions for the SINR CCDF (both accurate

and simplified) and the system throughput followed by simulation results to validate the

theory. We also give results showing how the right balance between data and training can

be achieved. A word on notations: Upper case letters like H denote matrices, lower case

letters x denote vectors or scalars, (.)H denotes conjugate transpose operation and CN (µ, σ2)

denotes a complex Gaussian distribution with mean µ and variance σ2.

3.5.1 System and Channel Model

We consider a set of 2K users or radios where K users(transmitters) wish to communicate

with the other K users(receivers) in a one-to-one fashion. Each receiver can hear all the

3Complementary CDF = 1- CDF
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transmitters and all use the same frequency band. Each node is equipped with M antennas.

Transmitter j transmits an information symbol xj(t) at time t multiplied by a M × 1 beam-

vector pj. Receiver i uses a M × 1 receive beam-vector wi. These beams are computed

after a training (channel estimation) phase of length Tr and kept unchanged during the data

phase of length Td. The wireless channel between the transmitter j and receiver i is denoted

by Gij = Hij

√
Pij and is a matrix of dimension M × M . Hij is the short term fading

component of the j → i link and Pij includes the transmit power of the j-th (transmit)

user and the path gain. Additive white Gaussian noise (AWGN) of constant variance σ2
n

is present independently at each receiver antenna. For a stationary channel, the received

vector at user i can be written as

yi(t) = Hii

√
Piipixi(t) +

k=K∑
k=1
k 6=i

Hij

√
Pijpjxj(t) + ni(t). (3.15)

3.5.2 Time Varying Channel Model

In the previous section we considered a block constant channel. Now we relax the channel to

be continuously time varying. Our MIMO channel Hij has i.i.d. Rayleigh fading entries with

unit power. The MIMO channel itself is varying every symbol in a Gauss-Markov model as

follows,

Hij(t) = βijHij(t− 1) +
√

1− β2
ijEij(t), (3.16)

where 0 < βij < 1 is a fixed correlation constant depending on the Doppler rate of link

j → i and Eij(t) is a error matrix with i.i.d. Zero Mean Complex Gaussian (ZMCG) unit

variance elements. Here t denotes the symbol number. The value of βij can be chosen

to match a known channel correlation at some specific time. For instance, if the channel

coherence time Tc is selected according to the Jakes model to give a correlation value of 0.9,

then approximately Tc = 0.1/fd where fd = vfc/c is the Doppler frequency. We choose βij
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through the equation βTcij = 0.9. To see why βij is chosen this way, we recursively unroll

(3.16) to get,

Hij(t) = βtijHij(0) +
√

1− β2t
ij Ēij(t), (3.17)

where again, Ēij(t) is a matrix with i.i.d. ZMCG unit variance entries. The channel corre-

lation from this model at time t is βtij.

3.5.3 Interference Alignment in Gauss-Markov Channel

The transmit and receive beams wi and pi are unit norm vectors chosen through the procedure

of Interference Alignment [7]. The time variation of channel is as derived in (3.17). Then

the SINR of link i at time t can be written as

SINRi(t) =
|wH

i Hii(t)pi|2Pii∑j=K
j=1
j 6=i
|wH

i Hij(t)pj|2Pij + σ2
n

, (3.18)

where we model the noise contribution as a constant σ2
n (and not as a Gaussian) to avoid

a situation where the SINR distribution does not have defined moments. The beam vectors

wi and pi are found based on channel estimates obtained in the training phase. We assume

that our system always has K ≤ 2M − 1 which allows perfect interference alignment to be

achievable [4]. Let Hij = Hij

√
Pij. Channel estimates are obtained during the training

phase using minimum mean-squared error (MMSE) and contain error with known variance

σ2
Eij . Hence Ĥij = Hij + Eij where Eij ∼ CN (0, σ2

Eij). IA designs the beams so that the

observed interference wH
i Ĥij(0)pj = 0 (or a negligible value) for j 6= i [7]. Hence for the true

channel we have, wH
i Hij(0)pj = −wH

i Eijpj = φij where φij ∼ CN (0, σ2
φij

). It is easy to see
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that σ2
φij

= σ2
Eij . Using (3.17), the residual interference term in the j → i link at time t is

wH
i Hij(t)pj = βtijφij +

√
(1− β2t

ij )Pij w
H
i Ēij(t)pj︸ ︷︷ ︸

ēij

. (3.19)

Since wi and pj are unit norm vectors independent of Ēij, ēij ∼ CN (0, 1). The signal part

si = wH
i Hii(t)pi in (3.29) is also distributed as CN (0, 1). Using the true signal si instead

of the receiver’s estimated signal is a minor assumption because SINR is affected highly by

misaligned interference while the signal variation has un-noticeable effect. Also wi and pi

are chosen independent of Hii. Thus from (3.29),

SINRi(t) =
|si|2Pii∑K

j=1
j 6=i
| βtijφij +

√
(1− β2t

ij )Pij ēij︸ ︷︷ ︸
∼CN (0, 1

λij
)

|2 + σ2
n

(3.20)

where 1
λij

= β2t
ij σ

2
φij

+ (1− β2t
ij )Pij. Next we present two useful lemmas. Lemma 2, restated

from the literature, gives the probability density function of the interference term in (3.20).

Lemma 3 uses lemma 2 to give us the complementary CDF of SINRi(t) and corollary 1

derives the expected SINR at time t. The proofs of lemmas are given in the appendices.

Lemma 2. Let Y be a sum of L independent exponential random variables with parameters

λ1, λ2, · · · , λL. Then the probability density function (pdf) of Y is given by

fY (y) =

[
L∏
i=1

λi

]
L∑
j=1

e−λjy∏L
k=1
k 6=j

(λk − λj)
u(y). (3.21)

where u(y) is the unit step function.

The proof of lemma 2 is given in [32].

Lemma 3. Consider a random variable S = X
Y+σ2

n
where X is a exponential random variable

with parameter λ0, Y is a sum of L independent exponential random variables with parame-

ters λ1, λ2, · · · , λL, X and Y are independent, and σ2
n > 0. Then the Complementary CDF
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of S is given by

1− FS(s) =
L∑
j=1

[∏L
i=1 λi

]
e−λ0sσ

2
n∏L

k=1
k 6=j

(λk − λj)(λj + λ0s)
u(s). (3.22)

The proof is given in Appendix B.

Corollary 1. The Expected value of S is given by

E [S] =

[
L∏
i=1

λi

]
L∑
j=1

eλjσ
2
nE1(λjσ

2
n)∏L

k=1
k 6=j

(λk − λj)λ0

(3.23)

The proof is given in Appendix B.

The CDF of SINRr(t) of the r-th link is given by lemma 3 and the expected value of

SINR is given by corollary 1 where the number of interferers L = K − 1, λ0 = 1/Prr and

λi is the contribution of the i-th interferer which counting from user 1 onwards would mean

the i-th user if i < r or i+1-th user if i > r. With this mapping, the i-th user contributes

λi = 1
Pri(1−β2t

ri )+β
2t
riσ

2
φri

for i = 1, 2, · · · , r − 1, r + 1, · · · , K.

3.5.4 Expected Rate and Throughput

We focus on the achieved link rate and not link capacity for calculating throughput. The

system supports one of C discrete modulation and coding schemes with SINR requirements

of γ1 < γ2 < · · · < γC and corresponding rates r1 < r2 < · · · < rC to support a fixed bit

error rate threshold. If SINR(t) < γ1 then zero rate is supported. We assume the ability to

constantly perform link adaptation with the help of a negligible amount of feedback. Let Si

denote SINRi(t) for brevity. Then the expected achieved rate on link i at time t is simply

the sum over the MCS of the probability of Si lying in the right range, multiplied by the
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corresponding MCS rate.

R̄i(t) = (FSi(γ2)− FSi(γ1))r1 + . . .

. . .+ (FSi(γC)− FSi(γC−1))rC−1 + (1− FSi(γC))rC. (3.24)

Here FSi(t)(γc) can be evaluated precisely using lemma 3. Since the expected rate is time

dependent, the sum throughput for a data phase of length Td is approximated by integrating

the rate over time

TH(Td) =
1

Td + Tr

K∑
i=1

∫ Td

t=1

R̄i(t). (3.25)

To calculate the integral of the terms in (3.24) we make the following assumptions and

approximations: A1) All links have equal Doppler rate β. A2) All links have equal initial

CSI error variance σ2
E . A3) β = 1 − 1/α with α >> 1 and hence 1 − β2t = 2t/α. A1 is

justified because links with very different Doppler will not align well and must be on separate

channels. A3 will be justified through simulation in the next section. The equal CSI error

variance σ2
E assumption in A2 is justified when the interferers are above signal level and all

users use the same length and type of pilots. More will be said on this in Remark 1.

With the above three assumptions, to perform the integration over time in (3.25) we put

the values of λi into (3.22) and write the resulting CCDF of the SINR of link m at time t.

1− FSm(t)(γc) =

K∑
j=1
j 6=m

e−λ0γcσ
2
n(Pmj − σ2

φm
)K−3

λ0γc
∏K

k=1
k 6=j,m

(Pmj − Pmk)
(2t
α

+ θ0)K−2

(2t
α

)K−2(2t
α

+ θ1)︸ ︷︷ ︸
time dependent term

, (3.26)

where θ0 =
σ2
φm

Pmj−σ2
φm

and θ1 =
1+λ0γcσ2

φm

λ0γc(Pmj−σ2
φm

)
. Now we present a lemma that gives a general

formula for integrating the time dependent term in (3.26).
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Lemma 4. The integral I1(a, b) =
∫ b
a

(x+θ0)K−2

(x+θ1)xK−2 dx has a solution

I1(a, b) =
K−3∑
p=1

(
1−

(
1− θ0

θ1

)p) ∣∣∣ xK−2−p

K − 2− p

∣∣∣u
l

+ . . .∣∣∣∣∣log(x− 1)−
(

1− θ0

θ1

)K−2

log

(
x− 1 +

θ0

θ1

)∣∣∣∣∣
u

l

(3.27)

where l = b+θ0
b

and u = a+θ0
a

and |f(x)|ul = f(u)− f(l).

The proof is given in Appendix B. Using lemma 4 the integral of the time dependent term

from t = 1 to Td in (3.26) can be written as α
2
I1

(
2
α
, 2Td
α

)
. Now our analysis is complete and

we are able to compute every term in (3.25) and (3.24) to calculate the throughput achieved

for each Td. The final step is to find T opt
d = arg max TH(Td) and we will do this numerically

because even though TH(Td) is a concave function (see simulation), setting the derivative

to zero makes the expression unmanageable. We do not optimize over Tr due to two reasons

a) initial CSI error σ2
E depends on other factors besides Tr such as the cross correlation of

the pilots used b) choice of Tr may be dictated by the other requirements such as initial

frequency and phase offset correction.

Remark 1. σ2
Eij depends on the power Pij by MMSE estimation (e.g. for a scalar channel

estimation at SNR Pij/σ
2
n, σ2

Eij =
Pijσ

2
n

Pij+σ2
n

). When some interferers have power below the noise

floor, assumption A2 is invalid and we cannot use (3.26) or (3.27). Nonetheless, (3.24) and

(3.22) still hold true so we do numerical integration in (3.25). However, for one hop systems,

interference is expected to dominate noise.

3.5.5 Simplified expression for CCDF of SINR

We can also find a simplified expression for the CCDF of SINR by considering the total

interference, which is a sum of independent non-identically distributed (i.n.i.d.) exponential

random variables, as a Gamma random variable [33]. This expression has far less terms and

is much cleaner. It can be used in a similar manner to find a approximate expected rate
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Figure 3.7: K = 7, M = 4, σ2
E = 0, β1875 = 0.9. CDF of SINR of a link at

t = 10, 100, and 1000. The slight offset at t = 10 is because in simulation interference is
not completely cancelled out in 50 iterations of IA.

R̄i(t) and TH(Td). But we do not have a closed form integral of its terms with respect to t.

We numerically evaluate the integral and show that the approximation is quite accurate.

Lemma 5. A simplified expression for the CCDF of SINR of m-th link at time t is

Pr(SINRm(t) > s) =
e−λ0σ

2
ns

(1 + λ0θs)
k

(3.28)

where k =

∑K
i=1
i 6=m

1/λi

2

∑K
i=1
i 6=m

1/λ2i
, θ =

∑K
i=1
i 6=m

1/λ2i∑K
i=1
i 6=m

1/λi
, and

λi = 1
Pmi(1−β2t

mi)+β
2t
miσ

2
φmi

for i = {1, . . . , K} \m.
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The proof is given in Appendix B.

3.5.6 Simulations and Results

We present simulation results for a K = 7 user system with M = 4 antennas for different

values of channel estimation error σ2
E and Doppler β. First we consider perfect channel

estimation i.e. σ2
E = 0. The transmit and receive beams pi and wi are formed by running

the IA algorithm given in [7] for 50 iterations. SNR for all links is set to 30 dB. The received

powers are distributed in an orderly fashion such that each receiver sees K − 1 interferers

with interference γd, 2γd, . . . , (K − 1)γd dB down respectively from the power in its direct

link. We choose γd = 3 dB for our first simulation. We choose carrier frequency fc = 2 GHz
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and velocity v = 36 km/hr giving a doppler frequency fd = vfc/c = 200/3 Hz. We use a

bandwidth of 1/Ts = 1.25 MHz. Using Jake’s model for 90% correlation the coherence time is

Tcoh = 0.1/fdTs = 1875 symbols. Thus we choose β1875 = 0.90 giving us β = 0.9999438 (see

section II. A). Since all links are equivalent according to our topology, the CDF of SINR for

one of the links at time t = 10, 100, and 1000 is shown in fig. 3.7 from simulation and theory,

using (3.22) and the simplified CDF from (3.28). We also see that gamma approximation in

(3.28) is quite accurate.

Now, we consider a system with σ2
E = 10σ2

n i.e. ten times the noise variance where

σ2
n = −30 dB. Our system supports one of 8 M-QAM modulation schemes with rates of

1, 2, 3, . . . , 8 bits/symbol with corresponding SINR requirements of 9.5860, 12.5963, 17.2812,

19.4506, 23.5397, 25.5715, 29.5310, and 31.5309 dB respectively (based on an uncoded BER

of 10−5). Based on these MCS, the expected bit rate achieved per link is shown in fig. 3.8

for both the perfect and imperfect CSI cases. The theoretical curves come by combining

(3.24) and (3.22) and optionally approximation A3. Approximation A2 is not needed here.

The overlapping curves show that A3 is appropriate. We also see that presence of CSI error

significantly degrades the bit rate.

Next we show how the optimal data phase duration can be selected using the derived

expressions. The throughput TH(Td) for different choices of data phase length is plotted

in fig. 3.9 for a training phase of length 100 symbols. For both perfect and imperfect

CSI, simulation matches with the expression obtained in (3.27) and also with the numerical

integration of the simplified SINR CDF in (3.28). The maximum sum throughput is smaller

with imperfect CSI but T opt
d is larger. The reason is that with a small initial channel

estimation error there is an incentive to retrain more frequently and revert to higher SINR

which is absent when a system always starts off with bad channel estimates.
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3.5.7 Effect of Interference environment, Doppler and Channel

Estimation Error on T opt
d and Maximum Throughput

In this subsection we study how the topology of the interference environment, and other

factors, affect the maximum throughput and the choice of data phase length. We consider

three kinds of topologies for a 7 user network: 1) each receiver sees 6 interferers at 10 dB, 20

dB, . . ., 60 dB signal to interference ratio (SIR) respectively, 2) each receiver sees 6 interferers

at 3 dB, 6 dB, . . ., 18 dB SIR respectively, and 3) each receiver sees all 6 interferers at 0 dB

SIR. Doppler is fixed at 200/3 Hz and channel estimation error variance is increased from

0 to 10σ2
n. T opt

d and TH(T opt
d ) are found using the exact expression in lemma 4, except in
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Table 3.1: T opt
d and TH(T opt

d ) versus K. γd = 3 dB, fd = 200
3

Hz and σ2
E = σ2

n.

Number of users (K)

2 3 4 5 6 7

T opt
d 334 272 252 256 256 264

TH(T opt
d ) b/s/Hz 5.262 6.376 7.622 8.891 10.14 11.37

γd = 10 case where we use lemma 5 and numerical integration. The results in the left half of

fig. 3.10 tell us that as expected, as the CSI error increases, sum throughput drops and the

optimum data phase duration increases. The latter is because retraining must be done when

the channel changes enough to match the initial CSI error. On the right half of fig. 3.10 effect

of Doppler is shown and fd = 50/3 Hz, 200/3 Hz, and 800/3 Hz are simulated corresponding

to a velocity of 9 km/hr, 36 km/hr and 144 km/hr. We see that while all systems become

worse at high Doppler, weaker interference environments are still operable by increasing the

duty cycle because the channel misalignment is small. Under strong interference however,

IA achieves much smaller throughputs and requires more frequent training, especially in

high Doppler. This means that IA may not be the right candidate for such conditions. An

interesting fact shown in table (3.1) is that as more users are added to an IA system the

sum throughput increases but the optimum data phase duration decreases. This is unlike a

block-fading channel where the data phase length is independent of the number of users and

is dictated by the channel coherence time.

3.6 IA Under a Jakes Model Channel

Similar to the analysis of Gauss-Markov Channel, we can analyze the optimal data phase

duration for the more complex Jakes model which denotes a more realistic channel model.

The analysis closely follows the previous section, hence many details are omitted as they can

be simply carried over.
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Figure 3.10: A plot of TH(T opt
d ) and T opt

d versus CSI error variance σ2
E and Doppler fd.

Circles denotes a topology with γd = 10 dB, triangles a γd = 3 dB, and squares a γd = 0 dB.
Smaller the γd, harsher the interference environment.

3.6.1 SINR and Throughput CDF across time

Following along from 3.29, we write

SINRi(t) =
|wH

i Hii(t)pi|2Pii∑j=K
j=1
j 6=i
|wH

i Hij(t)pj|2Pij + σ2
n

. (3.29)

The Jake’s model of the channel states that the channel now varies as

Hij(t) = βij(t)Hij(0) +
√

1− βij(t)2Eij(t). (3.30)

Here βij(t) is the Jake’s correlation equal to J0(2πfdit) with fdi being the Doppler shift
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of the i-th link. Let Hij = Hij

√
Pij. Channel estimates are obtained during the training

phase using MMSE and contain error with known variance σ2
Eij . Hence Ĥij = Hij+Eij where

Eij ∼ CN (0, σ2
Eij). IA designs the beams so that the observed interference wH

i Ĥij(0)pj = 0

(or a negligible value) for j 6= i [7]. Hence for the true channel we have, wH
i Hij(0)pj =

−wH
i Eijpj = φij where φij ∼ CN (0, σ2

φij
). It is easy to see that σ2

φij
= σ2

Eij . Using (3.30), the

residual interference term in the j → i link at time t is

wH
i Hij(t)pj = βij(t)φij +

√
(1− β2

ij(t))Pij w
H
i Ēij(t)pj︸ ︷︷ ︸

ēij

. (3.31)

The SINRi(t) can be written as

SINRi(t) =
|si|2Pii∑K

j=1
j 6=i
|θij|2 + σ2

n

(3.32)

where si ∼ CN (0, Pii) and θij ∼ CN (0, 1/λij) where 1/λij(t) = Pij(1− β2
ij(t)) + σ2

φβ
2
ij(t).

Using Lemma 5, we can write an approximate but quite accurate formula for complimen-

tary cumulative density function (CCDF = 1- CDF) of SINRm(t) as

Pr(SINRm(t) > s) =
e−λ0σ

2
ns

(1 + λ0θm(t)s)km(t)
(3.33)

1/λmj(t) is the sum of two effects, initial un-cancelled interference whose effect decreases

with time, and time varying mis-aligned interference which grows with time. Hence we can

construct a piecewise approximation as the following with T0 a suitably chosen time:

1/λmj(t) =


σ2
φβ

2
mj(t) if t ≤ T0

Pmj(1− β2
mj(t)) if t > T0

(3.34)

By using this approximation km(t) becomes independent of t.
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Using eq. 3.24 and eq. 3.25, the throughput of the system can be written as

TH(Td) =
1

Td + Tr

K∑
i=1

Td∑
t=1

R̄i(t) (3.35)

The shape of the throughput curve versus Td is concave; it increases sharply as Td in-

creases due to increasing duty cycle, then decays slowly beyond a point as SINR degradation

over the data packet leads to throughput loss. The maximum point can be obtained by

solving the equation

T opt
d = arg min

Td

TH(Td + 1) < TH(Td) (3.36)

Denoting the partial sum of rates up to time Td as P (Td) =
∑Td

t=1

∑K
m=1Rm(t), expanding

eq. 3.36 T opt
d is the smallest positive integer Td that satisfies the following condition

P (Td) > (Td + Tr)
K∑
m=1

Rm(Td + 1) (3.37)

Eq. (3.37) can be checked for each positive integer Td until we satisfy the equation.

3.7 Summary

In the first part of this chapter we have in a preliminary fashion considered the problem of

capacity maximization in peer to peer networks where each user has multiple antennas that

can be used to suppress interference from other users. We have derived an estimate of the

capacity loss that results as a function of time from when transmitters cease adaptation to

the channel, so that the duty cycle between training and data transmission can be optimized.

We find that at low Doppler, it is possible to predict the time varying average capacity fairly

well so as to optimize the data duration accordingly. The capacity gain over a scheme that

retrains every coherence time is a decreasing function of the Doppler frequency. A practical

scheme to achieve the promised capacity was proposed. However, at high Doppler, there
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appears to be an inescapable capacity cost in that it can take too long to train compared

to the channel coherence time in order to achieve the optimal combination of transmit

and receiver antenna weights. In future work, we would like to characterize this gap and

find practical algorithms to approach the highest throughput. We will also examine more

complicated network topologies where the users experience a variety of Doppler conditions.

In the second part of this chapter we analyze Interference Alignment in a Gauss-Markov

time varying channel and provide an exact expression of the CCDF of SINR at time t and

a method to calculate the expected rate of a link at time t. We also provide a simpler

expression for the CCDF that is almost as accurate. By using some assumptions, we give

a formula for the sum throughput of the network for any choice of Td and Tr which can be

used to select the optimal data phase duration that maximizes the sum throughput of the

network.

Finally we extend the analysis to the Jakes model of the channel where we provide a

numerical method for computing the optimal data phase duration unlike the Gauss-Markov

channel where we are able to go further and also provide a simple expression for the through-

put of the system for any Td. Designers can use this analysis to on-the-fly determine the

appropriate length of data packets given the channel variation model and pathloss conditions

in the real world.
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Chapter 4

Practical Techniques for Enabling

Distributed & Centralized

Interference Alignment

There are more techniques to make Interference Alignment practically possible in a time

varying channel beyond simply full beam re-training and optimizing the data phase length

to maximize the throughput. One of the first important interference mitigation techniques

is receiver tracking.

Receiver tracking works by continuously adapting the receive beam based on a stochas-

tic estimate of the current intended channel and the interference co-variance matrix. The

adaptation algorithm’s input is the received symbol, which is the sum of desired signal and

interference and its desired output is the decoded symbol. The weights of the adaptation

filter correspond to the beam. The adaptation can be accomplished using a periodic update

scheme like a Wiener filter or a stochastic update scheme like the LMS and RLS algorithms.

Below we show the the additional benefit of using stochastic receiver tracking algorithms in

IA in a time varying channel.
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Figure 4.1: Benefit of beam-tracking at the receiver using adaptive algorithms such as LMS
and RLS. Since decoded symbols are used for adaptation, having link adaptation is important
to reap full benefits of receiver tracking.

4.1 Data Aided Receiver Tracking

Rate and SINR over a data packet can be improved by using receiver tracking algorithms such

as LMS and RLS that run in a data aided manner. In the absence of pilots, decoded symbols

are used to guide the adaptation. In this case, link adaptation or adaptive modulation

and coding is necessary so that successively smaller constellations are sent from the TX to

ensure that BER remains low and error free decoding helps LMS/RLS do their job well.

The improvement in SINR by using receiver tracking techniques along with and without link

adaptation is shown in fig. 4.1. Receiver tracking combined with link adaptation can give

additional 5− 6dB gain in SINR at the end of the coherence time.
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4.2 Over-the-air versus Feedback Based IA: Overhead

comparison

Feedback based IA or centralized IA is the procedure where global channel estimates are

made available at a central node (or every TX node) by using channel state feedback. It has

its benefits that it uses actual channel estimates, and is a straightforward fast procedure that

can execute the beamformer computation on a radio’s own hardware once all the estimates

are available locally. It is fast converging, robust to errors, and comparatively low overhead

in small setups. Its con is that it may involve too much feedback of information to each

node or to a central node in order to do the beam computation, which increases overhead

as the setup grows larger. It relies on accurate feedback of CSI, which in practice may be

inaccurate, corrupted, delayed, or even lost. The centralized method cannot handle lost or

delayed CSI.

Over-the-air or distributed IA on the other hand is the procedure of computing IA beams

by iteratively optimizing beams at both sides without ever needing global channel state

information at any node. Distributed IA does its job by starting from an arbitrary beam

estimate and having the TX and RX alternately send pilot symbols and update their beams

iteratively. Since only aggregate interference is estimated at each step, a major benefit is

that it is more robust to uncoordinated interference and does not suffer from problems like

loss or corruption of CSI feedback. Unfortunately, it takes many iterations over the air to

reach a good alignment solution (anywhere from 5 to 50) and the overhead may be too much

as compared to centralized CSI feedback solution for a small setup.

4.2.1 Feedback Based IA

Steps of feedback based IA are:

1. Sequential antenna by antenna pilot symbol transmission from each TX to RX to

enable full channel estimation for all connected links at each RX.
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2. Sequential antenna by antenna pilot symbol transmission in the reverse link from each

RX to TX to enable full channel estimation for all connected links at each TX.

3. Sending previously computed TX-to-RX channel estimates for each connected forward

link by an RX as feedback (data) on the reverse channel, sequentially.

4. Computation of TX & RX beams at each TX using the available knowledge of global

channel matrices, presumably starting from common arbitrary initial beams.

5. Beamformed transmission of pilot symbols from all TXs simultaneously or sequentially

to the RXs to allow the receivers to estimate the signal and interference co-variance

matrix and compute the receive beams appropriately.

4.2.2 Over-the-air Iterative IA

In the same way distributed IA takes the following steps:

1. Starting from arbitrary initial estimates, beamformed transmission of pilot symbols

from all TXs simultaneously to the RXs to allow the receivers to estimate the signal

and interference co-variance matrix and compute the receive beams appropriately.

2. Beamformed transmission of pilot symbols in the reverse channel from all RXs simul-

taneously to the RXs to allow the transmitters to estimate the signal and interference

co-variance matrix and compute the transmit beams appropriately.

3. Repeat (1) and (2) until convergence of beams or residual interference seen at the

receivers is minimal.

4.2.3 Calculation of Beam Training Overhead

Using the above sequence of events, we can compare the overhead imposed during initial

beam training by both feedback based and over-the-air IA. Consider a system with the

following parameters.
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• K: Number of User-pairs

• M : Number of antennas per node

• N1: Length of pilot sequence used for MIMO channel estimation

• N2: Length of pilot sequence used for concurrent beamformed channel estimation in

centralized IA

• N3: Length of pilot sequence used for concurrent beamformed channel estimation in

over-the-air IA

• L: Number of ping pong transmissions done for over-the-air IA

Beam training overhead:

• Feedback: (a)N1K+(b)N1K+(c)K2M2+(d)N2

• Over-the-air: (e)2LN3

Here are the corresponding explanations for the calculations:

(a) Sequential pilot transmission for MIMO channel estimation at receivers.

(b) Sequential pilot transmission in reverse channel for MIMO channel estimation at trans-

mitters.

(c) Feedback of M ×M MIMO channel by K receivers sequentially.

(d) Concurrent pilot transmission for beam computation at receivers.

(e) L ping pongs of N3 pilot symbols each for updating the beams.

For example, for K = 3, M = 2, N1 = 2, N2 = 3, N3 = 3, and L = 10

• Feedback: 51 symbols

• Over-the-air: 60 symbols
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For example, for K = 7, M = 4, N1 = 4, N2 = 7, N3 = 7, and L = 10

• Feedback: 847 symbols

• Over-the-air: 140 symbols

For example, for K = 3, M = 2, N1 = 107, N2 = 107, N3 = 107, and L = 10

• Feedback: 785 symbols

• Over-the-air: 2140 symbols

From the above examples, we see that feedback based IA is better when there are few users

or longer pilots must be used (due to low SNR, hardware impairments or other reasons) but

distributed IA is better when the number of users is more than 2 and short pilots are used.

We expect the feedback based technique to be a good choice in most situations where IA

is used to augment the capacity of an existing TDMA/FDMA system such as to combat

inter-cell interference in cellular systems. In ad-hoc networks where a large number of users

must be managed within a fixed bandwidth, distributed IA may be more promising.

Next we will take a look at how another strategy can be used to improve the IA system’s

robustness to channel variation by updating the RX and TX beams during data transmission

through short pilots.

4.3 RX-TX Beam Updating in the Middle

By transmitting short pilot symbols as feedback in the middle of data transmission, we can

allow the TX to update their beams and hence prolong a high SINR regime by driving down

misalignment as shown in fig. 4.2. We want to avoid full CSI estimation as that takes

a large overhead. The mechanism of doing these updates is essentially doing a few ping-

pongs of distributed IA strategy to let the beams update themselves. There can be multiple

such updates within a data phase. In this update strategy, we have many variables to tune
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to optimize the system performance. We have the option of choosing how many pilots to

transmit each time, how long into the data packet to transmit these pilots, and how many

ping-pongs (iterations) to do.

Figure 4.2: Distributed IA protocol to send short retraining pilots to update TX beams in
the middle of the data phase.

Here we show the results of simulations showing what are the optimal values of length of

short pilots and retraining intervals under different SNR, and Doppler conditions described in

table 4.1, leading us to some simple conclusions. The following simulations do not implement

receiver tracking and solely show the benefit of beam updating in the middle. Hence, this

strategy can be combined with receiver tracking to get additional benefits.

4.3.1 Simulations and Results

At a moderate SNR of 10dB, with very short retraining length, estimation error restricts

the capacity. With large retraining lengths ( 4% of coherence period), overhead becomes the

dominant factor as the estimation accuracy reaches a plateau due to the varying channel.

11 symbol long retraining ( 1% of Tcoh) gives the maximum throughput.

By assuming a small coherence time of 0.1/(fdTs), average capacity gains are not seen.

But short retrainings help give a smoother throughput curve thus providing less packet errors.

Without retraining, sum capacity degrades quickly. Many applications instead assume a

channel coherence time of 0.4/(fdTs) which is too large for an IA system. Compared to
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Simulation Scenario Figures Parameters
Common Values - K = 3 users, M =

2 ant/user, BW=1MHz,
all pathgains= 0dB

Medium SNR, High Doppler fig. 4.3 , fig. 4.4, fig. 4.5, SNR = 10dB,
fd = 100Hz,
Tcoh = 1000symbols

Low SNR, High Doppler , fig. 4.6, fig. 4.7 SNR = 5dB, fd = 100Hz,
Tcoh = 1000symbols

High SNR, High Doppler fig. 4.8, fig. 4.9 SNR = 15dB,
fd = 100Hz,
Tcoh = 1000symbols

High SNR, Low Doppler fig. 4.10 SNR = 15dB, fd = 10Hz,
Tcoh = 10, 000symbols

Table 4.1: Different simulation parameters and corresponding figures for those simulations
for updating beams in the middle technique.

training at such long intervals, short retrainings provide not just throughput stabilization

but also 24% higher average capacity.

At SNR = 5dB, we get improved stability with a 0.2bits/s/Hz loss in average capacity as

compared to training once every 1000 symbols and a 0.5bits/s/Hz gain compared to training

once every 2500 symbols. At SNR = 15dB, we get a throughput gain of 0.75bits/s/Hz and

improved stability as compared to a training schedule every 1000 symbols and 2.4bits/s/Hz

compared to a training schedule every 2500 symbols.

As the channel coherence times scales by a factor of 10 to 104, surprisingly the required

training length to maximize throughput scales only by a factor of 3. Hence, we can achieve

higher throughputs than in the high Doppler case.

We conclude that only short retraining lengths are required to maximize the average

throughput. We find that Ntr = 11 at the Tcoh = 1000 symbols and Ntr = 31 at Tcoh = 104

symbols are close to optimal between 5 to 15 dB SNR in the high interference scenarios

simulated. Periodic retraining stabilizes the throughput curve and also provides higher

average capacity as compared to training occurring once every coherence period.
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Figure 4.3: Average sum throughput vs TX retraining interval for the system in Table 4.1
at medium SNR, and high Doppler for different lengths of pilot sequence.
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Figure 4.4: Achieved sum rate vs time for the system in 4.1 at medium SNR, and high
Doppler, for optimal pilot length = 11 symbols, optimal retraining length= 333 symbols,
and suboptimal retraining length = 1000 symbols.
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Figure 4.5: Achieved sum rate vs time for the system in 4.1 at medium SNR, and high
Doppler, for optimal pilot length = 11 symbols, optimal retraining length= 333 symbols,
and highly suboptimal retraining length = 2500 symbols.
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Figure 4.6: Average sum throughput vs TX retraining interval for the system in Table 4.1,
at low SNR, and high Doppler, for different lengths of pilot sequence.
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Figure 4.7: Achieved sum throughput vs time for the system in Table 4.1, at low SNR,
and high Doppler, for optimal pilot length = 11 symbols, optimal retraining length= 1000
symbols, and a suboptimal retraining length = 250 symbols.
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Figure 4.8: Average sum throughput vs TX retraining interval for the system in Table 4.1,
at high SNR, and high Doppler, for different lengths of pilot sequence.
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Figure 4.9: Achieved sum rate vs time for the system in Table 4.1, at high SNR, and high
Doppler, for optimal pilot length = 11 symbols, optimal retraining length= 333 symbols,
and suboptimal retraining length = 1000 symbols.
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Figure 4.10: Average sum throughput vs time for the system in Table 4.1, at low SNR, and
high Doppler for different lengths of pilot sequence.
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4.4 Summary

For initial training, distributed IA is more efficient than centralized IA when the number

of users and antennas are large (7 users, 4 antennas or larger for instance). For most

smaller system settings, centralized IA will be more efficient with lesser overhead. Receiver

tracking can be very helpful in improving the SINR at the receiver without using additional

pilots. LMS or RLS algorithms can be used to adaptively track the optimal receive beam in

the changing channel, but to see a substantial improvement, link adaptation must be used

simultaneously, so that the transmitter chooses a small enough constellation that can be

decoded almost error free at the receiver. The feedback needed to accomplish link adaptation

can be done as part of acknowledgement (ACK) packets or one bit feedback or a side channel

during the transmission. Since the feedback is very small, it would not drag down the network

spectral efficiency significantly.

Receiver tracking can be combined with retraining in the middle to update the TX beams

using short bi-directional pilots. As shown, very short pilots (from 1% to 1/3% of Tcoh) are

optimal for achieving the maximum sum throughput with sufficient interference suppression.

Further, optimal lengths of data phases for distributed IA are found to be a fraction of the

coherence period, reinforcing the results obtained for centralized IA in section 3.5 that more

frequent training than the coherence time is required to maximize throughput. The choice

of pilot sizes can be ad-hoc based on the SNR of the links, but the optimal pilot length

increases as the SNR decreases in order to get higher quality estimates and decreases as the

coherence time decreases because of increasing percentage of overhead.
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Chapter 5

MAC Layer for Multiuser Networks:

CSMA, TDMA, or Interference

Alignment

In this chapter we compare Interference Alignment or IA inspired beamforming based ap-

proaches for multiuser concurrent communication to other medium access control (MAC)

approaches that allow multiple users to share a channel. Specifically we study CSMA and

TDMA and show how IA based approaches can provide better throughput while also main-

taining backward compatibility in legacy networks. We present a beamnulling based concur-

rent CSMA MAC protocol that allows higher throughput than CSMA while being backward

signaling compatible. Next, we present a simulation comparing a 7 user TDMA and a 7

users IA system in a time varying channel. Results show that IA is a promising multiuser

access control approach, even under a harsh time varying channel.
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5.1 A Concurrent CSMA MAC protocol for Mobile Ad

Hoc Networks using beamnulling 1

Traditional algorithms for MAC in mobile ad-hoc networks such as CSMA-CA allow only a

single user to transmit at a given time. This means that the sum throughput in a MANET

cannot increase to service additional users. Such MAC protocols disregard the possibility that

by utilizing multiple antenna processing to handle interference intelligently at the physical

layer (PHY), many concurrent user transmissions can co-exist. Previous works have proposed

altered versions of CSMA-CA that allow multi user operation but may not necessarily be able

to coexist with an existing IEEE 802.11 based network. This chapter proposes a concurrent

CSMA MAC protocol that is completely compatible with a traditional CSMA based MAC

and follows the same timing structure allowing co-existence of both protocols. Specifically,

in concurrent CSMA after a primary user has captured the channel, secondary users listen

to the request-to-send (RTS)/ clear-to-send (CTS) handshake and form a beamnull towards

the primary receiver. Hence secondary users can communicate concurrently with minimal

increase in interference to the primary receiver. Simulations show that the proposed PHY

and MAC scheme is able to achieve 2 to 3 times the network spectral efficiency of CSMA

with a single antenna and this improvement factor is sustained as the network scales in

size. Further the proposed scheme allows the network spectral efficiency (sum throughput

per unit bandwidth) to scale with users and improves upon a previous promising approach

which uses Interference Alignment.

5.1.1 Introduction

A MANET is a network formed without any central administration which consists of mobile

nodes that send packet data over the wireless medium [35]. Examples of a MANET can range

from a network of laptops, smartphones to drones and UAVs. MANET’s are also a valuable

1This section is reproduced from [34] c©2015 IEEE.
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resource for military communication as it does not require any infrastructure such as base

stations. Ideally, a MANET must be able to support an arbitrary number of users in the

network, but due to interference constraints and limitations imposed by the MAC protocol,

the network throughput does not scale with users. One way of mitigating this drawback is

to allocate additional spectrum to the MANET and allocate orthogonal channels to users.

But spectrum is a scarce and costly resource and also limited in availability. A better way

of accomodating multiple users in a MANET is to use an improved MAC protocol that can

support multiple users concurrently. CSMA-CA is a MAC protocol widely used by Wi-Fi

devices that has been adopted by IEEE 802.11 WLAN, but it only supports single user

transmission at a time. Our intention is to devise a MAC protocol that is fully compatible

with CSMA i.e. nodes following the new MAC protocol can coexist with other nodes following

CSMA. Such a constraint allows nodes to be added on the fly to a traditional CSMA network

and increase its throughput.

Many kinds of multiuser MAC protocols have been proposed in the past. In [36], authors

propose a MAC scheme where a multiuser RTS is transmitted by the access point (AP) and

based on a distributed signal to leakage ratio (SLR) thresholding scheme, users reply back

with time staggered CTS’s. This scheme can provide modest gains in network sum through-

put but it is not compatible with CSMA as it changes the protocol structure. Additionally,

concurrent transmissions in a MANET impose different interference constraints at receiving

users because unlike in AP, joint multi user beamforming is not possible as CSMA limits

information exchange among users after channel capture. Authors in [37] propose a similar

MAC scheme but allow the AP to decide which subset of users are assigned spatial streams,

based on their CTS feedback. This protocol again requires global CSI at the AP and works

only in a downlink scenario, not in a MANET. A recent successful technique of interference

cancellation is Interference Alignment which can allow the network throughput to scale with

its size [45] but it requires extensive CSI knowledge or iterative algorithms to converge to

a solution. It is not yet clear how the iterative IA algorithms will fit within a MAC pro-
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tocol. One notable effort in this regard has been done in [38] where the authors propose a

MAC/PHY scheme where multiple users can communicate concurrently by a combination

of interference nulling and alignment. Users follow a MAC scheme called 802.11n+, similar

to 802.11n where the RTS/CTS process is continued by the left over secondary users after

the initial channel capture phase, by communicating in a subspace which is orthogonal to

the primary user’s transmission vectors. Naturally, this works only for those secondary users

who have at least one more antenna than the number of spatial streams being transmit-

ted. In order to ensure backward compatibility with CSMA, secondary users must shorten

their data packets through fragmentation. While packet fragmentation is optionally allowed

in 802.11n, it necessitates the use of buffers and non-sequential decoding at the receiving

user which may be prohibitive for delay sensitive applications. Further, wrong selection

of fragmentation length can actually reduce throughput [39]. Hence, a PHY/MAC proto-

col for delay sensitive applications that can seamlessly coexist with CSMA while enabling

concurrent transmissions is desired.

In this section, we consider a MANET where each user is allowed to communicate to

another user using only a single hop. We assume delay sensitive data such as voice or media

is being transmitted over the network which prohibits the use of multiple hops due to latency

requirements. Here, it is important to note that restricting communication to a single hop

does not mean that all users can always hear each other’s transmissions. Rather, in a system

with a large hop radius, some users would be hidden from other users. While this prevents

some users from communicating, it also enables multiple transmissions to coexist without

interference. Since our intention is to describe a MAC protocol which, by definition, applies

to nodes within hearing distance of each other, we limit ourselves to a single hop system, as

it is sufficient for our analysis. Nonetheless, our protocol is equally applicable to multihop

MANETs where the path selection algorithm would define the set of nodes which compete

for the channel at every hop. The results can only be better if the proposed protocol is

applied to a multihop system (see Section 5.1.4). It has been shown that multiple antenna
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techniques such as diversity combining and spatial beamforming allow a system to achieve

a higher SNR [40]. Finding the optimal beamforming weights requires channel knowledge

at the transmitter. Then, in a multiuser scenario, if the channel knowledge towards another

user can be acquired, it can be used to beamnull towards this user to reduce the interference

caused. Utilizing the beamnulling capability of users, we develop a concurrent CSMA MAC

protocol that allows multiple point-to-point links to coexist and as a result, the MANET can

support more users with an acceptable throughput. This MAC protocol is designed in a way

that the primary transmission goes through the usual channel capture and RTS-CTS-DATA-

ACK phases of CSMA but additional users can communicate by listening to the primary

transmission and transmitting their data while beamnulling towards the primary receiver.

These secondary transmissions follow an ALOHA like best effort service. We show through

simulation that even a simple scheme like this that requires no additional information to

be exchanged allows multiple user streams to co-exist. This shows that the throughput of

CSMA can be increased using intelligent beamnulling which sets the stage for further work

on concurrent MAC protocols.

The section is organised as follows. Section 5.1.2 describes the network topology and

the physical layer processing at the user nodes. Section 5.1.3 describes the CSMA MAC

protocol how it is modified to support concurrent transmissions. Section 5.1.4 provides the

simulation parameters and results and draws conclusions based on them. We use boldface

upper case symbols such as H to denote a matrix, boldface lower case symbols such as p

denote vectors and normal symbols such as si or Nr denote scalar values.

5.1.2 System Model and Beamnulling

There are N users in a system. The users are distributed in a circle of radius d with a

uniform density and random placement in the circle. Each user node is equipped with Nr

antennas. The channel between the i-th and j-th user is denoted by Hij and is supposed to

be reciprocal i.e. Hji = Hij. Each user transmits at its maximum power P .
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System Model

Suppose the j-th user is listening to the i-th user in the presence of other interfering users

whose indices are denoted by the set Ij. Then the received signal at user j is given by

yj = Hijpisi +
∑
k∈Ij

Hkjpksk + nj (5.1)

where pi is the beamforming vector chosen by the ith user and si is the symbol transmitted

by the i-th user with E|si|2 = 1 and Esis∗k = 0. Noise nj is assumed to be complex Gaussian

CN(0, σ2
nI). It is assumed that each user is transmitting a single spatial stream, hence

pi ∈ RNr×1. The beamforming vector pi can be chosen to maximise the receive SNR as

shown in next subsection on Beamnulling. When the user j only has information about the

desired beamformed channel and not the interferers, then it does matched filtering to receive

the signal.

si =
(Hijpi)

∗yj
|Hijpi|2

(5.2)

Here (.)∗ denotes the hermitian operation. But in some cases the user may also know the

covariance matrix Qj of the interference it is seeing which may remain constant over some

duration. In this case, the user can do better by using a MMSE receiver to detect the signal

[41].

Qj = E
[∑
k∈Ij

(Hkjpksk + nj)(Hkjpksk + nj)
∗]

=
∑
k∈Ij

Hkjpkp
∗
kH
∗
kj + σ2

nI (5.3)

Then the desired symbol si can be decoded using the following transformation, where (.)†

denotes the Moore-Penrose pseudoinverse of the matrix.
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si = p∗iH
∗
ij(Hijpip

∗
iH
∗
ij + Qj)

†yj (5.4)

Beamnulling

The choice of the beam weight pi depends on what objective the transmitter is trying to

achieve. In the absence of interference, the beam weight that maximises the receive SNR

has a closed form solution. Assuming constant transmitted power P , the solution for pi is

given by

pi = arg max ||Hijpi||2 s.t. ||pi||2 = P . (5.5)

Say the SVD of the matrix Hij can be written as Hij = UΣV∗. Then the solution to

(5.5) is pi =
√
Pv1, where v1 is the 1-st column of the right unitary matrix V and also

the largest eigen mode of the channel Hij [42]. Alternatively, a user could also choose to

transmit omni-directionally by choosing pi =
√
P
Nr

q where q = [1, 1 · · · 1]T .

But to truly enable a multi-user MAC protocol, the choice of beam weights must be such

that it minimizes the interference generated when additional user streams are allowed to

co-exist. This is where beamnulling comes into play. Say, user i is sending data to user j

and user k wishes to talk to user l at the same time. Then a logical strategy for k is to

choose its beam weight pk so as to send minimum energy towards j. This can be formulated

as follows

pk = arg min ||Hkjpk||2 s.t. ||pk||2 = P . (5.6)

Again, writing the SVD of the interference channel matrix as Hkj = UΣV∗, the solution to

(5.6) is pk =
√
PvNr , where vNr is the last column of matrix V and also the smallest eigen

mode of the channel [42].

An implicit assumption in the derivation of both beamforming and beamnulling solutions

is that the knowledge of the point to point channel matrix Hij and the interference channel
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matrix Hkj is available at transmitters i and k respectively. As we will see in the coming

section, this assumption is valid as the channel information can be obtained during the CTS

phase using the training fields in the MAC header. In cases where the path loss from primary

RX to secondary TX is severe enough to wipe out the CTS, the secondary TX goes ahead by

simply beamforming towards the secondary RX. In the proposed concurrent CSMA protocol,

each user transmitting concurrently is only required to beamnull towards a primary receiver

and hence the need for distributed optimisation of the beam weights does not arise.

5.1.3 Concurrent CSMA MAC Protocol

In this section we discuss how we modify the CSMA protocol to achieve concurrent transmis-

sion from multiple users. We also discuss the method of obtaining channel state information

necessary for beamforming and beamnulling. The protocol timeline is drawn in figure 5.1.

We follow a θ-persistent CSMA model meaning that at each available opportunity, a

station transmits with probability θ and remains silent with probability 1− θ. As in CSMA,

when a previous transmission has ended, all users who have data to send, wait for a duration

of distributed inter frame spacing (DIFS) before proceeding into backoff. The transmitter

whose backoff counter expires first is assumed to have captured the channel and is called

the primary transmitter (TX). This node sends an RTS to its primary receiver (RX) and

if the path loss and fading are not severe, receives a CTS from the receiver. The primary

TX then selects a beam weight and proceeds to send the data to the primary RX. It is

important to note that the primary TX assumes it is the sole user of the spectrum and thus

does not do any beamnulling. Rather it selects to either beamform towards the primary

receiver or transmit omni-directionally. If the data is properly decoded, the RX broadcasts

an acknowledgement (ACK) which concludes the data transmission phase. After a duration

of short inter frame spacing (SIFS), the medium is open for contention again.

How concurrent CSMA departs from traditional CSMA is that after the contention phase,

it allows users which have data to send to go into a concurrent listen mode where they
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Figure 5.1: Timeline of proposed concurrent CSMA protocol with one secondary user

actively listen to the RTS and CTS from the primary TX-RX pair. RTS and CTS contain

information of the network allocation vector (NAV) i.e. the length of impending primary data

transmission. Additionally, each packet header contains pilot symbols in the short training

field (STF) and long training field (LTF) that are used to estimate the cross coupled channel

to the primary receiver [43]. Using the channel coefficients, a secondary transmitter (user)

selects a proper beam weight so as to form a null at the primary RX, as explained in the

previous section.

All secondary users whose intended receivers are not sensed busy, are allowed to transmit.

The secondary transmissions start synchronously with the primary data transmission and end

synchronously. This ensures that the primary ACK packet is not corrupted. It is noteworthy

that the secondary TX-RX skip the RTS, CTS and ACK phases, rather they only go through

CONC LISTEN and DATA TX phases. This mandates a subtle change in the MAC software
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Table 5.1: Physical and MAC layer parameters for simulation

PHY and MAC Parameters Value
fc (MHz) 425
BW (MHz) 1.25
Pathloss exponent 3
Noise Floor (dBm) −100
Antenna Gain (dBm) 2
Transmit Power P (mW) 1000
Modulation 16-QAM
RTS (µs) 36
CTS (µs) 40
ACK (µs) 36
SIFS (µs) 55
DIFS (µs) 34
Packet duration (µs) 1000

that all nodes in idle state will sense the channel for any secondary transmission directed

towards them, when the primary data transmission window starts. This scheme enables

the primary TX-RX pair to talk as per traditional CSMA model but in addition secondary

users are able to communicate by beamnulling towards the primary receiver, using a best

effort service with no ACK. Hence, the above MAC scheme allows concurrent transmissions

from multiple users which results in improved network throughput. Although the modified

MAC scheme does not guarantee that the additional interference to the primary or secondary

transmissions will be low enough for successfull reception, simulation shows that secondary

beamnulling is able to mitigate interference so that the proposed MAC protocol gives a

higher sum throughput.

For symbol detection the primary RX uses the matched filtering approach (5.2) since it

cannot anticipate the secondary transmissions. The secondary receiver on the other hand

can measure the interference channel between itself and the primary TX and can implement

an MMSE receiver (5.4), even though it is agnostic of other secondary transmitters.
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Figure 5.2: Simulated user topology with N=12 users in a circle of 1000m radius.

5.1.4 Simulations and Results

We construct a simulation of a N user system spread out in a circular area of radius d with

each user having Nr antennas. N can take values from 2 to 20, d from 100 m to 10000 m

and Nr is either 2 or 4. An example simulated user topology is shown in fig. 5.2. Only point

to point communication is allowed between users and each user transmits with a constant

power P and fixed modulation scheme. Both the physical layer beamnulling and MAC layer

CSMA have been implemented in MATLAB. The program simulated between 100 msec and

1 sec of CSMA operation with each packet lasting 1 msec. The channel was changed every 1

msec. We compare the network spectral efficiency (throughput per unit bandwidth) of the

proposed scheme with traditional CSMA. Results were derived from atleast 100 averages to

simulate different topographical positioning of users. The detailed simulation parameters
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Figure 5.3: Network spectral efficiency scaling of the concurrent CSMA for Nr = 2 for various
values of θ at a radius of d = 1000m

used are given in Table 5.1.

Fig. 5.3 shows a comparison between the network spectral efficiency achieved by the

proposed concurrent CSMA protocol using two antennas versus traditional single antenna

CSMA for different values of persistence probability θ. As expected, the spectral efficiency of

single antenna CSMA scheme decreases as users increase due to more collisions, eventually

saturating at about 1.8 bits/s/Hz. Concurrent CSMA however is able to increase the peak

spectral efficiency to nearly twice that of CSMA on average over all values of θ by enabling

multiple concurrent transmissions. Additionally, the number of users for which the peak

throughput is attained depends on the persistence probability θ. Hence, a system designer

can choose the optimum θ if the number of users can be learnt. Low θ values are suitable
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for a high user scenario (≥ 15) while high θ values are better to support fewer users. Con-

current CSMA also improves the saturation network spectral efficiency, but only for low to

moderate values of θ, since for high θ values, the collision probability becomes very high.

The throughput improvement is more pronounced when using Nr = 4 antennas in Fig. 5.4.

We achieve from 2 to 3 times gain in peak network spectral efficiency, depending on the

persistence probability. In this case, the saturation spectral efficiency is also increased 2

to 3 times for all values of θ. Using 4 antennas provides additional array gain and better

beamnulling capability to users, which manifests itself in the increased peak and saturation

throughput. The simulated system uses only a single spatial stream and the gains can be

further improved using multiple spatial streams at each user.

We also show that the incremental spectral efficiency gain is sustained as the network

scales in size. Fig. 5.5 shows the network spectral efficiency with 4 users and θ=1 for

a network size increasing from 100m to 10000m. It can be seen that the gain factor is

maintained at all values of network radius d, for the two as well as four antenna scenario.

The same plot is shown in Fig. 5.6 for θ = 0.6 exhibiting that the gain in performance is

maintained over a range of θ values. The network achieves slightly higher spectral efficiency

when users have 4 antennas than when they only have 2 antennas due to higher array gain.

Here, we note that if multihop is allowed, then the performance in Fig. 5.5 and 5.6 would

improve as distant users can be reached through multiple good quality links instead of the

direct link which has a large path loss. The percentage of successful connection attempts for

primary and secondary links in the proposed protocol is shown in Fig. (5.7) showing that

atleast 60 percent of the primary connections are successful, 90 percent of the time whereas

the additional performance improvement comes from the fact that on average 46 percent of

the secondary connections are also successful.

We compare our results with the Interference Alignment based approach proposed in [38].

Fig. 5.8 shows a comparison of the network spectral efficiency achieved at the PHY layer

(with no MAC layer overhead), with a one to one TX-RX mapping. The figure depicts two
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Figure 5.4: Network spectral efficiency scaling of concurrent CSMA with for Nr = 4 for
various values of θ at a radius of d = 1000m

kinds of modulation schemes binary phase-shift keying (BPSK) and 16-QAM or quadrature

amplitude modulation for 4 antenna users at a coverage radius of 1000 m. For both the

modulation schemes, the IA based approach starts as a better approach for fewer users

because it is able to align the interference from the few transmitting users leading to minimal

interference and hence higher throughput. But as the number of users increases, the network

throughput cannot scale, due to the requirement of perfect alignment which limits the number

of user streams to 4. Hence, a perfect alignment strategy is not the best when more users are

present in the system because their spatial segmentation can be utilized to achieve a higher

network spectral efficiency by allowing more secondary user streams. This figure also raises

the question of modulation and coding scheme selection based on the number of users. We
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Figure 5.5: Variation of network spectral efficiency with coverage radius d for a network with
4 users and θ = 1

wish to enable this feature in our concurrent CSMA in the future by allowing light weight

RTS-CTS exchange between the secondary users like in [38]. The key takeaway is that even

though allowing simultaneous channel access to multiple users increases interference, their

spatial separation offsets some of the SINR loss to allow the network throughput to scale,

atleast weakly, with the number of users. We believe that the scaling is much more evident

in Fig. 5.8 than figures 5.3 and 5.4 because in the latter simulation, not all desired secondary

TX-RX pairs can talk concurrently because a user may desire to talk to another user who is

busy.

In summary, the traditional single user channel access paradigm for wireless medium

access is highly suboptimal and a research effort is needed to explore concurrent user MAC
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Figure 5.6: Variation of network spectral efficiency with coverage radius d for a network with
4 users and θ = 0.6

protocols. Concurrent CSMA is a step in that direction and it is shown to at least double

the throughput of traditional CSMA. It is also shown that while interference alignment may

be good for small networks, concurrent transmissions allow the throughput to scale with the

number of users. Hence, a combination of the two techniques is a good choice [38].
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Figure 5.7: Distribution of the percentage of links able to succesfully decode their information
in the proposed protocol for primary and secondary links

5.2 TDMA and Interference Alignment in a Time Vary-

ing Channel

In this section we want to study how a time division multiple access system would compare

to a Interference Alignment system in a time varying channel. This study will also point

towards the benefit of IA over TDMA in non- (or very slow) time varying channels. Since in

TDMA the transmissions are given pre-decided slots, there is no multi-user interference at

the receiver. A point to point MIMO link operating in a TDMA system intends to maximize

its own capacity using the knowledge of the MIMO channel. This capacity can be maximized
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Figure 5.8: Comparison of the the proposed concurrent approach with the Interference Align-
ment and Cancelltion (IAC) presented in [38]

by choosing the right and left singular vectors of the channel as the transmit and receive

beams respectively i.e. if H is the MIMO channel and H = UΣV is the singular value

decomposition (SVD) of H, then V must be the transmit beam and U must be the receive

beam. Further for a fixed transmit power P , power can be allocated to the spatial streams

according to waterfilling solution[44].

5.2.1 Simulation Results

We simulate a K = 7 user-pairs system with M = 4 antennas per node. We fix the Doppler

rate fd = 200/3Hz and bandwidth 1/Ts = 1.25MHz. The coherence time is then Tcoh =
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0.1
fdTs

= 1875 symbols. The topology of users is such that SNR=30dB and the interferers are

successively 3dB, 6dB, . . . , and 18dB down from the signal level. We assume that both the

TDMA and IA systems use Shannon capacity achieving codes and are able to operate at the

instantaneous Shannon rate of log2(1 + SINR)bits/s/Hz. Initial MIMO channel estimation

is done at both TX and RX using 11 symbols long concurrent Zadoff-Chu pilot symbols.

The TDMA system uses SVD beamforming and waterfilling to choose the beams. The IA

system uses iterative Max-SINR beamforming along with RLS adaptive algorithm at the

receiver along with link adaptation (meaning the decisions are error free). The average rate

achieved per link during the coherence time is shown in fig. 5.9. It should be noted that there

are 7 links in the system and each link achieves this rate on average. Hence the total rate

achieved is 7 times this rate. This shows that IA is able to achieve much more throughput

than TDMA even under a time varying channel, hence is very promising as a MAC protocol

compared to TDMA.

5.3 Summary

In the first part of this chapter, we address the challenge of designing a multi user MAC

protocol for single hop mobile ad-Hoc networks with the aim of allowing multiple users to

transmit concurrently to increase the network spectral efficiency or equivalently the sum

throughput per unit bandwidth. We wish the protocol to be compatible with the exist-

ing 802.11 standard MAC protocol, CSMA-CA. We propose a concurrent CSMA protocol

that allows secondary users to access the channel concurrently with a primary user by mak-

ing the secondary users minimize their interference towards the primary receiver through

beamnulling. The chapter discusses how the RTS/CTS messages between the primary TX

and RX are utilised to obtain channel state information necessary for beamnulling. The

secondary transmissions operate synchronously with the primary but do not receive any ac-

knowledgements. Hence, the secondary transmissions follow a best effort service. We present

86



0 500 1000 1500 2000

Symbol number

1

2

3

4

5

6

7

8

9

A
ve

ra
ge

 R
at

e 
pe

r 
lin

k 
(b

its
/s

/H
z)

Interference Alignment with RLS at receiver
TDMA running average per link

K=7, M=4, fd = 200/3 Hz,
fs = 1.25MHz, SNR=30dB

Coherence Time=1876 symbols

Figure 5.9: Average rate achieved per link in a 7 user 4 antenna IA and TDMA system.

87



simulation results to show that using this enhanced MAC protocol on nodes having two or

four antennas, the peak network throughput increases by a factor between 2 to 3 compared to

CSMA. Concurrent CSMA also achieves a consistently higher saturation throughput across

a range of persistence probability θ.

We show that this throughput gain is maintained as the network scales in size and that

in comparison to a previous Interference Alignment based strategy [38], the proposed scheme

allows the throughput to scale with the number of users. Concurrent CSMA is a guiding

step towards a MAC protocol that truly utilizes all the degrees of freedom available in a

wireless network to allow seamless addition of users and throughput scaling. Moreover, it is

so designed so that it does not cause an interference to a co-existing CSMA network.

The reader may be curious about the fact that we only simulated a single stream for

CSMA transmissions where multiple streams are optimal. This was done to simplify the

system. To our knowledge, there is no known mechanism to optimally decide whether one

user should do MIMO transmission or two interfering users should do single stream transmis-

sions. Having each user send one stream allows extra dimensions to be filled by other users’

streams. This seems to be a win-win situation as everyone can use their largest eigenvector

to get a good gain. But deciding how to distribute beams between MIMO and more active

users in a concurrent network is left as a topic for future work.

In the second part, we show that an IA system performs better than a TDMA system

in a time varying channel and hence is a better choice for a MAC protocol promising better

throughput and concurrent communications ability.
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Chapter 6

Conclusions

In conclusion, in this thesis we have looked at ways to enable concurrent communications in

wireless networks by analyzing and tackling some of the challenges that occur in practical

networks. First, we identified Interference Alignment as a promising strategy for concurrent

communications and listed the challenges it still faces in implementation. We focused mainly

on mitigating the effects of a time varying channel on an aligned system and deriving the

optimal set of parameters to use in this case. In the last part of this thesis, we presented a new

MAC protocol based on beamnulling that can add concurrent communication capability to an

existing network while maintaining compatibility with the current protocol. We summarize

this work’s contributions as follows:

6.1 Summary of Contributions

We present analysis and closed form expressions of the cumulative density function of the

signal to interference and noise ratio over time for a general Interference Alignment system.

These expressions also provide us an easy way to calculate the average throughput of the

system for any chosen length of data phase Td. Thus, under the time varying channel, we

are able to optimize the data phase length to maximize average throughput. This capability

will be very helpful for system designers trying to set the network parameters in wireless
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networks with mobile nodes. We also present results using which nodes can jointly choose

how long to transmit data in the current fading, to maximize throughput.

In order to optimize distributed IA, which is difficult to analyze, we present results

showing that data-aided receiver tracking along with link adaptation improves the received

SINR significantly. Further, updating the TX beam in the middle of the data phase also

provides increased throughput stability or increased capacity or both. We have provided

many simulations showing how the optimal length of pilots and retraining frequency varies

with SNR and Doppler. This can give an indication of the optimal value to the system

designer, which can be refined while in operation.

Lastly, we present a new concurrent CSMA MAC protocol that is compatible with CSMA

and allows concurrent or secondary transmissions along with the primary transmission by

beamnulling towards the primary receiver. The network throughput can be increased 2 to

3 times compared to that of CSMA with a single antenna transmission. Our protocol also

allows the network throughput to scale slowly as more users are added unlike CSMA and

another competing protocol which do not scale. This provides a building block for more

complicated MAC protocols to be built on.

6.2 Future work

Interference Alignment has some limitations to its promise of concurrent communication.

First, it is sensitive to staleness of the channel state information and second, the number of

antennas imposes a limit on how many users can align (see eq. 2.1). A scalable solution to

multiuser communication must include a mix of alignment, time sharing and/or frequency

sharing. The problem of which group of users should align and which should remain orthog-

onal is a hard yet interesting resource allocation problem. It can be envisaged that users

moving slowly relative to each other can align and share the channel better whereas fast

moving users would be better served on orthogonal channels. Even more interesting would
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be to include power allocation and a variable number of spatial streams into the decision

matrix. Ensuring fairness among users in Interference Alignment systems is another open

problem since fairness and sum rate maximization usually go in opposite ways.

One important future responsibility we believe is to find novel use-cases of IA in everyday

life. Whether it be indoor device to device data transfer, inter-cell interference coordination

in cellular communications, creating mesh networks on the go, or serving as a connective

fiber in remote or disaster stricken areas, it is the application that will drive the adoption of

this advanced concurrent communications technology. But there are some applications that

look especially promising.

With the advent of higher frequencies like millimeter wave and terahertz, signals are

either completely or nearly line-of-sight (LoS) which means the effect of time varying fading

of the channel on an alignment system will be greatly reduced since LoS channels change

much slower. Hence alignment can become a particularly exciting opportunity if properly

investigated.

Second, coordination between indoor neighboring WiFi access points by using alignment

can greatly mitigate the co-channel interference in WiFi that significantly reduces its capacity

at present. Any indoor, device to device communication of the future can benefit from

interference alignment because the mobility of users will be low and signals will remain

aligned for a long time. I hope that the field of multi-user communication remains vibrant in

the future by continuing fundamental research and making new discoveries to revolutionize

what is possible in communications.
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Appendix A

Proof for Section 3.4

We want to prove that the pdf of xkl(t) conditioned on xkl(0) is given by

fxkl(t)|xkl(0) = CN (ρtxkl(0), ||pl||2(1− ρ2
t )IM). (A.1)

Let X = xkl(0), Y = xkl(t) and Z = [xkl(0), xkl(t)]
T . Then

fZ(z) =
1

π2M |Kz|
exp(−zHK−1

z z) (A.2)

and

fX(x) =
1

πM |KX |
exp(−xHK−1

X x), (A.3)

where

KZ = ||pk||2

 I ρtI

ρtI I

 , (A.4)

|KZ | = ||pk||4M(1− ρ2
t )
M , KX = ||pk||2I and |KX | = ||pk||2M .
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Hence we can write the pdf of Y conditioned on X as

fY |X(y|x) =
fZ(z)

fX(x)

=
1

πM ||pk||2M(1− ρ2
t )
M

exp

(
−(y − ρtx)H(y − ρtx)

||pk||2(1− ρ2
t )

)
= CN (ρtx, ||pk||2(1− ρ2

t )I). (A.5)

.
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Appendix B

Proofs for Section 3.5

B.1 Proof of Lemma 3

Since S is always non-negative, the complementary CDF of S is 1 for s < 0. For s ≥ 0,

Pr

(
X

Y + σ2
n

> s

)
= Pr

(
X > (Y + σ2

n)s
)

=

∫ ∞
y=0

∫ ∞
x=(y+σ2

n)s

λ0e
−λ0xfY (y) (B.1)

= e−λ0σ
2
ns

[
L∏
i=1

λi

]
L∑
j=1

∫ ∞
y=0

e−λjye−λ0ys∏L
k=1
k 6=j

(λk − λj)
. (B.2)

=

[
L∏
i=1

λi

]
L∑
j=1

e−λ0sσ
2
n∏L

k=1
k 6=j

(λk − λj)(λj + λ0s)
. (B.3)

B.2 Proof of Corollary 1

E[S] =

∫ ∞
0

1− FS(s) ds (B.4)
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After some simple manipulations, the integral reduces to

E [S] =

[
L∏
i=1

λi

]
L∑
j=1

eλjσ
2
n∏L

k=1
k 6=j

(λk − λj)λ0

∫ ∞
λjσ2

n

e−z

z
dz (B.5)

Recognizing the integral as exponential integral E1(λjσ
2
n) completes the proof.

B.3 Proof of Lemma 4

Substituting y = (x + θ0)/x we get I1(a, b) =
∫ (a+θ0)/a

(b+θ0)/b

[
yK−2

y−1
− yK−2

y−1+θ0/θ1

]
dy. Use long

division for e.g. yK−2/(y − 1 + θ0/θ1) =
∑K−3

p=0

(
1− θ0

θ1

)p
yK−3−p +

(
1− θ0

θ1

)K−2

y−1+θ0/θ1
, integrate and

take the limits.

B.4 Proof of Lemma 5

Using [33] the pdf of total interference in Lemma 2 can be approximated as Y ∼ Γ(k, θ).

Then simply following the proof of Lemma 3 we reach the result.
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