
University of California

Los Angeles

Training Issues in High-Speed Fiber-Optic and

Radio Communication Systems

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Hong Chen

2003



c© Copyright by

Hong Chen

2003



The dissertation of Hong Chen is approved.

Mario Gerla

Ming Wu

Babak Daneshrad

Gregory J. Pottie, Committee Chair

University of California, Los Angeles

2003

ii



To my parents and my sister

iii



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Radio Communications and Fiber-Optic Transmissions . . 1

1.1.2 Challenges in Radio Communications and Fiber-Optic Trans-

missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . 6

1.3 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . 6

2 Channel Representation of Single-Mode Fibers with Polarization-

Mode Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Traditional Mathematical Descriptions of PMD . . . . . . . . . . 10

2.3 One-Input Two-Output Representation of Single-Mode Fibers with

PMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 PMD Inversion: From PMD Vector to Jones Matrix . . . . . . . . 20

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Low-Cost Compensation of First-Order Polarization Mode Dis-

persion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Effect of the First-Order PMD . . . . . . . . . . . . . . . . . . . . 31

iv



3.3 The Traditional Continuously Tunable FOPMDC . . . . . . . . . 32

3.4 The New Discretely Tunable FOMPMDC . . . . . . . . . . . . . . 33

3.5 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . 35

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Peak-to-Average Power Ratio Reduction for OFDM . . . . . . 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 PAR Properties of OFDM Signals . . . . . . . . . . . . . . . . . . 41

4.3 Partial Transmit Sequences . . . . . . . . . . . . . . . . . . . . . 43

4.4 Proposed Scheme: Orthogonal Projection-Based PTS . . . . . . . 44

4.5 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . 46

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Frequency Synchronization for OFDM . . . . . . . . . . . . . . . 51

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Frequency Offset Tracking Algorithms . . . . . . . . . . . . . . . 54

5.3.1 Pilot Tone-Aided Frequency Offset Tracking . . . . . . . . 54

5.3.2 Cyclic Prefix-Based Frequency Offset Tracking . . . . . . . 56

5.4 Comparison of Frequency Offset Tracking Algorithms in Simulation 59

5.4.1 Simulation Environment . . . . . . . . . . . . . . . . . . . 59

5.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . 60

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

v



6 Optimal Training for OFDM-Based Anytime Anywhere Radio

Transmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 Impact of Training Length on Throughput . . . . . . . . . . . . . 70

6.3.1 Effect of Channel Estimation Error . . . . . . . . . . . . . 71

6.3.2 Effect of Residual Frequency Offset . . . . . . . . . . . . . 76

6.3.3 Combined Effect of Channel Estimation Error and Residual

Frequency Offset . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Closed-Form Expressions of the Optimal Training Length . . . . . 81

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Concluding Remarks and Future Directions . . . . . . . . . . . . 88

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vi



List of Figures

1.1 A typical multipath channel in wireless communications. . . . . . 3

1.2 Single-mode fiber. (a) Ideal fiber: the light travelling along two

polarization axes move at the same speed; (b) Real fiber: the light

travelling along one polarization axis moves slower or faster than

the light polarized along the other axis. . . . . . . . . . . . . . . . 5

2.1 Simulated DGD and PMD vector components as a function of

frequency deviation from the optical carrier. The unit of DGD is

picosecond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Fiber optical transmission system with an electronic PMD com-

pensator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Fiber optical transmission system with a 2-path optical PMD com-

pensator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Frequency response of a static PMD channel. (a): Magnitude

response of Cf (ω); (b): Phase response of Cf (ω); (c) Magnitude

response of Cs(ω); (d) Phase response of Cs(ω). . . . . . . . . . 18

2.5 Structure of a finite impulse response filter. . . . . . . . . . . . . . 18

2.6 Scatter plot of the real part of cs(n) versus ∆τ(ω0). . . . . . . . 21

2.7 Scatter plot of the imaginary part of cs(n) versus ∆τ(ω0). . . . . 22

2.8 Scatter plot of the real part of ws(n) versus ∆τ(ω0). . . . . . . . 23

2.9 Scatter plot of the imaginary part of ws(n) versus ∆τ(ω0). . . . . 24

2.10 Different representations of PMD . . . . . . . . . . . . . . . . . . 25

vii



3.1 Fiber optical transmission system using a continuously tunable

FOPMDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Fiber optical transmission system using a discretely tunable FOP-

MDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Comparison of fiber DGD and optimal delay adjustments under

different DTI’s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Complementary cumulative distribution function (CDF) of eye-

opening penalty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Eye-opening penalty vs. delay adjustments. . . . . . . . . . . . . 38

4.1 Complementary cumulative distribution of peak-to-average power

ratio. N stands for the number of subchannel, and M the constel-

lation size. The RMS value of all the signals was normalized to

unity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 PAR vs. phase vector candidates. . . . . . . . . . . . . . . . . . . 45

4.3 Performance comparison of partial search and full search in OPPTS.

Two cases are considered. Part (a): R = 1.2%; Part (b): R = 2.3%. 46

4.4 Performance comparison of OPPTS and IPTS. Part (a): Perfor-

mance of OPPTS; Part (b): Performance of IPTS. . . . . . . . . 47

4.5 Performance of OPPTS in OFDM systems with various numbers

of subchannels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Reference OFDM blocks, CP stands for cyclic prefix. . . . . . . . 54

5.2 Reference plot for cyclic prefix-based method and imperfect timing

synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

viii



5.3 Performance comparison of the traditional CPB method using Ng

samples and the new CPB method using Ng − L + 1 samples.

Ng = 16, L = 8. Frequency offset is set to 0. . . . . . . . . . . . . 58

5.4 MSE performance of PTA for various levels of frequency offset and

different constellation sizes. N = 128, Ng = 8, Np = 8, D = 1. . . . 61

5.5 MSE performance of CPB for various levels of frequency offset and

different constellation sizes. N = 128, Ng = 16. . . . . . . . . . . . 62

5.6 Direct comparison of PTA and CPB for QAM signaling at various

levels of frequency offset. . . . . . . . . . . . . . . . . . . . . . . 63

5.7 Direct comparison of PTA and CPB for 16-QAM signaling at var-

ious levels of frequency offset. . . . . . . . . . . . . . . . . . . . . 64

5.8 MSE versus SNR performance curves of PTA and CPB in the sce-

nario of imperfect timing synchronization. Time offsets of 4,2,0,-2,

and -4 samples, are considered. Perfect frequency synchronization

is assumed, and QAM signaling is applied. . . . . . . . . . . . . . 66

6.1 Contours of optimal training length. Assumption: Channel esti-

mation error dominates. . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Contours of the ratio of optimal training length to packet length.

Assumption: Channel estimation error dominates. . . . . . . . . 74

6.3 Contours of optimal throughput. Assumption: Channel estimation

error dominates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 Contours of optimal training length. Assumption: Frequency syn-

chronization error dominates. . . . . . . . . . . . . . . . . . . . . 77

ix



6.5 Contours of the ratio of optimal training length to packet length.

Assumption: Frequency synchronization error dominates. . . . . 78

6.6 Contours of optimal throughput. Assumption: Frequency synchro-

nization error dominates. . . . . . . . . . . . . . . . . . . . . . . 79

6.7 Throughput G vs. Training length Lt. Packet length Lp = 500

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.8 Comparison of the actual (solid) and approximated (dashed) opti-

mal training length. Assumption: Channel estimation error dom-

inates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.9 Comparison of the actual (solid) and approximated (dashed) opti-

mal throughput. Assumption: Channel estimation error dominates. 84

6.10 Comparison of the actual (solid) and approximated (dashed) opti-

mal training length. Assumption: Frequency synchronization error

dominates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.11 Comparison of the actual (solid) and approximated (dashed) op-

timal throughput. Assumption: Frequency synchronization error

dominates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

x



List of Tables

5.1 The average relative amplitudes of the channel tap weights . . . . 60

xi



Acknowledgments

My greatest gratitude goes to my advisor Professor Greg Pottie. Greg has

been instrumental in ensuring my academic, professional, and financial well being.

In every sense, none of this work would have been possible without his support.

I sincerely thank Professor Babak Daneshrad, Professor Maris Gerla, and

Professor Ming Wu, for taking time to serve on my dissertation committee and

provide me with valuable input.

My great appreciation also goes to Professor Stephen E. Jacobsen, for being

my initial advisor, and to Professor Ali H. Sayed, for guiding me during my

beginning years at UCLA.

I am very grateful to my industry mentors who generously shared their time,

in-depth knowledge, and expertise with me when I was working with them during

the summer. They are Dr. Nick Frigo of ATT Labs-Research, Dr. Ke Han of

Marvell (was with Quantum), Dr. Bob Jopson and Dr. Herwig Kogelnik of

Bell-Labs, Dr. Cedric Lam of Opvista (was with ATT Labs-Research), and Dr.

Peter McEwen (was with Quantum and passed away in November 2001). I am

also indebted to Dr. Jerry Foschini who led me to the area of polarization mode

dispersion.

Many many thanks also go to my dear friends at UCLA and those in the Bay

area for their friendship, hospitality, and kind advice.

My final heartfelt acknowledgment goes to my husband Chengang. His sup-

port and encouragement has turned my journey through Ph.D. studies into a

pleasure. He has my everlasting love.

xii



Vita

1970 Born, Anhui, People’s Republic of China.

1989 B.E. (Computer Science), Hefei University of Technology, Hefei,

Anhui, China.

1992 M.E. (Automatic Control), University of Science and Technol-

ogy of China (USTC), Hefei, Anhui, China.

1992–1997 Researcher and Lecturer, Automatic Control Department,

USTC, Hefei, Anhui, China.

1998–1999 Grader, Electrical Engineering Department, UCLA.

1999–2001 Teaching Associate, Electrical Engineering Department,

UCLA.

2001–2003 Research Assistant, Electrical Engineering Department, UCLA.

Publications

1. Hong Chen and Gregory J. Pottie, An Orthogonal Projection-Based Ap-

proach for PAR Reduction in OFDM, IEEE Communications Letters, vol. 6, pp.

169-71, May 2002.

xiii



2. H. Chen, C. F. Lam, N. J. Frigo, G. J. Pottie, P. D. Magill, and M.

Boroditsky, A One-Input Two-Output Channel Representation for Single-Mode

Fibers with PMD, Journal of Lightwave Technology, vol. 21, pp. 743-9, Mar.

2003.

3. Hong Chen, Robert M. Jopson, and Herwig Kogelnik, On the Bandwidth of

Higher-Order Polarization-Mode Dispersion: the Taylor Series Expansion, Optics

Express, vol. 11, pp. 1270-82, Jun. 2003.

4. Hong Chen and Greg Pottie, A Comparison of Frequency Offset Tracking

Algorithms for OFDM, WC27-4, Globecom 2003.

5. Ali H. Sayed and Hong Chen, A Uniqueness Result Concerning a Robust

Regularized Least-Squares Solution, Systems Control Letters, vol. 46, pp. 361-9,

Aug. 2002.

xiv



Abstract of the Dissertation

Training Issues in High-Speed Fiber-Optic and

Radio Communication Systems

by

Hong Chen

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2003

Professor Gregory J. Pottie, Chair

Training is an integral phase of information transmission over a wired or wire-

less channel. During the training period, channel estimation, frequency synchro-

nization, and timing recovery are conducted for enabling a reliable information

bit recovery at the receiver.

This thesis proposes and verifies in simulation several new ideas and meth-

ods that facilitate the training process, optimize the performance of parameter

estimation, and maintain a delicate balance between training and data transmis-

sion. The goal is to achieve energy-efficient communications over time-varying

frequency-selective fiber optic links and radio channels.

Its contributions towards combating dispersive fiber optic channels include

a novel description of polarization mode dispersion effects in single-mode fibers,

allowing the traditional training and equalization techniques to be applied in

compensating the polarization mode dispersion, and an original training-based

approach that compensates the first-order polarization mode dispersion at low

cost.

For radio communications, this thesis addresses three important design issues

xv



in utilizing the orthogonal frequency division multiplexing (OFDM) technique.

OFDM has gained increasing interest, due to its high spectral efficiency and ro-

bustness against multipath fading. The main disadvantages of OFDM are its

low power efficiency caused by the high peak-to-average power ratio of OFDM

signals, and its high sensitivity to frequency synchronization errors. Among our

contributions are a fast algorithm that efficiently reduces the peak-to-average

power ratio of OFDM signals at low overhead, an extensive comparison of fre-

quency offset tracking algorithms, and finally, closed-form expressions of optimal

training length that enables fast training length adjustment to maximize system

throughput under varying channel conditions.
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CHAPTER 1

Introduction

Training is an integral phase of information transmission over a wired or wireless

channel. During the training period, channel estimation, frequency synchroniza-

tion, and timing recovery are conducted for enabling the information bit detec-

tion at the receiver. This thesis proposes and verifies in simulation several new

ideas and methods that facilitate the training process, optimize the performance

of parameter estimation, and maintain a delicate balance between training and

data transmission. The goal is to achieve energy-efficient communications over

time-varying frequency-selective fiber optic links and radio channels.

This first chapter presents the motivation behind this thesis, and defines the

fundamental problems considered. It also summarizes the contributions made

toward these problems, and outlines the remaining chapters.

1.1 Motivation

1.1.1 Radio Communications and Fiber-Optic Transmissions

Recently, increasing research and development activities have been seen in two

of the hottest areas of telecommunications: wireless communications and fiber-

optic transmissions. Now being introduced into the global communications in-

frastructure at an astonishing pace, both wireless and optical technologies are
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revolutionizing the industry and will undoubtedly dominate its future.

Wireless communications are driven by the desire for change from wired fixed

place-to-place communications to wireless mobile person-to-person communica-

tions, and for the ability to share information around the world with anyone,

anywhere, at any time. Wireless applications include cellular systems, wireless

local area networks (LAN), home wireless networking, and audio/video broadcast-

ing. Based on the target data rate, achievable transmission range, and constraint

on the power use, wireless communication standards can be classified into four

groups: (1) High power, wide area systems; (2) Low power, local area systems;

(3) Low data rate, wide area systems; (4) High data rate, local area systems. To

date, the achievable range of successful wireless transmissions is from 10 meters

to several kilometers, and the realistic data rate through radio channels is up to

54 Mbit/s.

In the meanwhile, fiber optics has been utilized since the late 1970s to pro-

vide long-range high-speed transmission at low cost [1]. In 1977, fiber optic

telephone systems were first installed in Chicago and Boston respectively. By

the early 1980s, single-mode fiber operating in the 1310 nm and later the 1550

nm wavelength windows became the standard fiber installed for these networks.

Today, computers, information networks, and data communications also embrace

fiber optic transmission. Particularly, due to the successful development of dense

wavelength-division multiplexing (DWDM) technology, fiber transmission capac-

ity has grown by a factor of 100 in the last decade. In 1990, Bell Labs trans-

mitted a 2.5 Gb/s signal over 7,500 km without regeneration. In 1998, Bell Labs

researchers transmitted 100 simultaneous optical signals, each at a data rate of

10 Gbits/s for a distance of nearly 250 miles (400 km). This increased the total

data rate on one fiber to one Tbits/s.
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1.1.2 Challenges in Radio Communications and Fiber-Optic Trans-

missions

There are many technological challenges in both areas, due to channel impair-

ments, bandwidth limitations, energy limitations, and delay constraints. The

impairment described as time-varying linear dispersion is the focus of this thesis.

Figure 1.1: A typical multipath channel in wireless communications.

In a wireless scenario as shown in Fig. 1.1, the incoming radio waves ar-

3



rive from different directions with different propagation delays [49]. The signal

received by the mobile at any point in space may consist of a large number of

plane waves having randomly distributed amplitudes, phases, and angles of ar-

rival. These multipath components combine vectorially at the receiver antenna,

and can cause the signal received by the mobile to distort or fade. Even when

a mobile receiver is stationary, the received signal may fade due to movement of

surrounding objects in the radio channel. Multipath generates inter-symbol in-

terference (ISI) in the received symbols and therefore poses significant challenges

in the development of wireless systems.

To combat the multipath fading channels, a special multi-carrier modulation,

namely orthogonal frequency division multiplexing (OFDM), has been proposed

as an effective modulation scheme. It has recently been adopted as standard for

high-speed wireless LANs, video/audio broadcasting, and 4G cellular systems.

The major design issues in utilizing OFDM include reducing its high peak-to-

average power ratio, which otherwise results in a low power efficiency, and min-

imizing its frequency synchronization errors. Several topics related to these two

issues will be addressed in this thesis.

Dispersion is also a fundamental limit to the performance of data transmission

over fiber optic links. In a single mode fiber, when light travels down toward the

receiver, it has two orthogonal polarization modes that follow the path of two

axes. When the core of the fiber is asymmetrical, as shown in Fig. 1.2 (b), the

light travelling along one polarization axis moves slower than the light polarized

along the other axis. This effect is known as the polarization mode dispersion

(PMD). It broadens the pulse enough to make it overlap with other pulses or

change its own shape enough to make it undetectable at the receiver. PMD

is a challenging issue due to its statistical nature. Research directions in the

4



Figure 1.2: Single-mode fiber. (a) Ideal fiber: the light travelling along two

polarization axes move at the same speed; (b) Real fiber: the light travelling

along one polarization axis moves slower or faster than the light polarized along

the other axis.

PMD area include PMD measurement, characterization, modelling, emulation,

and compensation. This thesis addresses PMD modelling and PMD compensa-

tion.
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1.2 Contributions of this Thesis

Again, the broad objectives of this thesis are to understand time-varying dis-

persive communication channels, and to develop algorithms and heuristics that

enable high data rate multimedia transmissions over these channels. The main

contributions made in this thesis are:

1. A novel model that maps a dispersive fiber optic channel into a one-input

two-output system. This new description not only conveys an alternative

view of the PMD effects on transmitted signals, but also allows traditional

training and equalization techniques to be applied in PMD compensation.

2. An original approach that enables a training-based low-complexity com-

pensation of the first-order polarization mode dispersion.

3. A fast algorithm that reduces the peak-to-average power ratio of OFDM

signals with low overhead.

4. An extensive comparison of frequency offset tracking algorithms for OFDM

systems.

5. Closed-form expressions of the optimal training length as a function of

packet length and signal-to-noise ratio. The results are valid for OFDM-

based anytime anywhere wireless mobile communication systems, and lead

to low-cost adaptive training length control for achieving a maximum sys-

tem throughput at medium and high SNR.

1.3 Organization of this Thesis

The remainder of this thesis is organized as follows.

6



Chapter 2 reports a new model for fiber optic channels subject to polarization

mode dispersion. Section 2.2 gives a brief introduction to the PMD phenomenon

and reviews two traditionally used mathematical descriptions of PMD. Section 2.3

derives the proposed 2-dimensional PMD channel response. Section 2.4 demon-

strates the PMD channel response for a simulated fiber. Section 2.5 further shows

how to find the corresponding PMD channel response from a given PMD vector.

Chapter 3 proposes a new algorithm that compensates the first-order PMD

at very low cost. Section 3.2 revisits the first-order PMD. Section 3.3 gives a

brief description of the existing continuously tunable first-order PMD compen-

sator (FOPMDC). Sections 3.4 introduces the new discretely tunable FOPMDC.

Finally, Section 3.5 discusses simulation results to show the utility of the new

scheme.

Chapter 4 introduces a novel orthogonal projection-based partial transmit

sequence (OPPTS) method for peak-to-average power ratio reduction in OFDM

systems. Section 4.2 briefs the OFDM modulation and the peak-to-average power

ratio properties of OFDM signals. Section 4.3 revisits the existing partial trans-

mit sequence (PTS) scheme. Section 4.4 presents a geometrical interpretation to

combining in any PTS approach and proposes the new scheme. The computa-

tional complexity as well as performance of the proposed method are evaluated

and compared with other methods in Section 4.5.

Chapter 5 compares frequency offset tracking algorithms for an OFDM-based

wireless mobile system. Section 5.2 presents the system model. Section 5.3 revis-

its the principles of the pilot tone-aided (PTA) method and the cyclic prefix-based

(CPB) approach. Two modifications that were found necessary are proposed for

the algorithms. Section 5.4 evaluates and compares PTA and CPB schemes in

simulation.

7



Chapter 6 investigates the optimal training length for OFDM systems under

varying channel conditions. Section 6.2 describes the system model used in the

chapter. Section 6.3 analyzes and quantifies the impact of the training length on

the system throughput. Section 6.4 derives closed-form expressions of the optimal

training length at medium and high SNR, and verifies the results in simulation.

Section 6.5 gives concluding remarks.

Chapter 7 concludes this thesis, summarizing its findings and suggesting pos-

sible topics for future research.
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CHAPTER 2

Channel Representation of Single-Mode Fibers

with Polarization-Mode Dispersion

2.1 Introduction

As the speeds of optical communication systems grow higher than 10 Gbit/s, po-

larization mode dispersion (PMD) in single-mode fibers becomes a dominant lim-

iting factor to system performance [2]-[8]. Polarization mode dispersion is caused

by asymmetry in the fiber core and cladding. Light propagation in single-mode

fibers is governed by two orthogonally polarized modes. In the case of imperfect

fibers, the two modes are no longer degenerate, resulting in pulse broadening and

system penalties. The PMD’s statistical nature makes it difficult to compensate.

To overcome the PMD-induced impairments in future high-speed optical net-

works, various strategies have been under active investigation [9]-[13]. In prin-

ciple these methods can be divided into two classes. One class emulates the

characteristics of complementary fiber PMD, using a series of birefringent fibers

connected by adjustable polarization controllers. The other is built on the clas-

sic inter-symbol interference (ISI) cancellation technique where linear equalizers

are employed. To apply methods of the first type, it is essential to know the

statistical characteristics of PMD parameters, including the principal states of

polarization (PSP) and the differential group delay (DGD) [7, 14]. The second

9



approach demands knowledge of PMD channel response for determining filter

length, filter tap spacing, and filter tap weight ranges. PMD channel response,

however, has not been characterized.

In this chapter, we define an equivalent baseband single-input two-output rep-

resentation for a single-mode fiber with PMD. This new description conveys an

alternative view of the PMD effects on transmitted signals, and provides explicit

information for the design of linear equalizers, both for initialization and channel

estimation-based adaptation. We begin with a brief introduction in Section 2.2

to two widely adopted mathematical representations of PMD. Section 2.3 derives

the proposed 2-dimensional PMD channel response. Section 2.4 demonstrates

the PMD channel response for a simulated fiber. In Section 2.5, we further

show how to find the corresponding PMD channel response given a polarization

dispersion vector. The operation is desirable for the theoretical analysis and sim-

ulation study of slowly changing PMD. Other impairments such as polarization-

dependent loss (PDL), polarization-dependent gain (PDG), fiber nonlinearities,

and chromatic dispersion are not considered here.

2.2 Traditional Mathematical Descriptions of PMD

There are two popularly used mathematical descriptions for the PMD phenomenon.

One is the Jones matrix which indicates that the equivalent baseband transmis-

sion properties of any linear birefringent fiber can be represented by a 2 × 2

frequency-dependent complex transformation matrix of the following form [5]:

T (ω) = eα(ω)U(ω) = eα(ω)




u1(ω) u2(ω)

−u∗2(ω) u∗1(ω)


 , (2.1)
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where ω represents the angular frequency deviation from the carrier ω0, and

the superior ∗ indicates transposition and conjugation. α(ω), u1(ω) and u2(ω)

are complex numbers. Note that α(ω), which is independent of the state of

polarization (SOP), does not contribute to the PMD effects. u1(ω) and u2(ω)

satisfy the relation

|u1|2 + |u2|2 = 1. (2.2)

To simulate U(ω), the fiber is commonly modelled as a concatenation of M

polarization-maintaining fibers with varying group delays and orientations of the

principal axes [15, 16]. Generally M larger than 100 is required to get realistic

PMD statistics. Mathematically U(ω) is given by

U(ω) =
M∏

i=1

Pi(ω) ·Di, (2.3)

with

Pi(ω) =




ej
∆τi
2

ω 0

0 e−j
∆τi
2

ω


 ,

and

Di =




cos(θi)e
jφi/2 sin(θi)e

jφi/2

− sin(θi)e
−jφi/2 cos(θi)e

−jφi/2


 .

Here ∆τi represents the group delay induced by the ith section, and is generated

following a uniform distribution in this chapter. Di gives a frequency-independent

coordinate transformation of the principal axes. θi and φi respectively denote

the random polarization and phase angle, and are randomly generated following

a uniform distribution with θi ∈ [0; 2π) and φi ∈ [−π/2; π/2].

The other PMD representation is called the principal states model, developed

by Poole and Wager [5]. It states that for every frequency component of a fiber,

there are two special polarization states, called the principle states of polarization

(PSPs). And for each pairs of PSPs at the fiber input, there is a corresponding

11
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Figure 2.1: Simulated DGD and PMD vector components as a function of fre-

quency deviation from the optical carrier. The unit of DGD is picosecond.

pair of PSPs at the fiber output. The input and output PSPs are related by

the fiber’s transmission matrix. Using the principal states model, PMD can be

described more concisely by the PMD vector:

~τ(ω) ≡ ∆τ(ω) · p̂(ω). (2.4)

Here the magnitude ∆τ indicates the differential group delay (DGD), and the

direction p̂, a Stokes vector, represents the slow output PSP. Given U(ω), ~τ(ω)

can be easily derived [4]. Fig. 2.1 shows an example of the PMD vector as a

function of frequency deviation from the optical carrier.

We emphasize that DGD and PSP’s are functions of ω, though in the literature

12



their meaning is often limited to the first-order PMD, i.e., DGD and PSP’s at ω0.

To facilitate our analysis, we label the Jones vectors representing the fast and

the slow output PSP’s at ω0 as ~ef
O and ~es

O, respectively. They correspond to the

eigenstates of the matrix UωU−1 evaluated at ω0 [5]. The subscript ω indicates

differentiation over ω. The superior −1 represents inversion. Likewise, denote

the Jones vectors representing the pair of input PSP’s at ω0 as ~ef
I and ~es

I , each

of which is simply U−1(ω0) times the corresponding output PSP. The difference

between the imaginary parts of the two eigenvalues of UωU−1 at ω0 gives ∆τ(ω0).

The first-order PMD vector is then

~τ(ω0) ≡ ∆τ(ω0) · p̂(ω0), (2.5)

where p̂(ω0) is the counterpart of ~es
O in Stokes space.

2.3 One-Input Two-Output Representation of Single-Mode

Fibers with PMD

In principle, linear equalization for mitigating PMD can be deployed in either

the electrical domain, as shown in Fig. 2.2, or the optical domain, as shown

in Fig. 2.3. Since electronic equalizers in direct detection systems are subject

to the loss of the phase information [17], various optical equalizers have been

proposed. [20] discussed a novel optical lattice filter approach aiming at all-order

PMD compensation, based on the analysis of the polarization trajectories on the

Poincaré Sphere. The dynamic control of filter parameters, however, demands a

careful and sophisticated design. [21] presented a simulation-based study of an

adaptive optical equalizer for combating PMD, chromatic dispersion, and self-

phase modulation. Using the eye-opening penalty as the performance criterion

and employing a nonlinear optimization method, the paper shows that significant

13
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Figure 2.2: Fiber optical transmission system with an electronic PMD compen-

sator.
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Figure 2.3: Fiber optical transmission system with a 2-path optical PMD com-

pensator.

performance improvement can be achieved with the proposed equalizer. The

paper also pointed out the importance of optimizing the filter order and the filter

tap spacing, but did not provide a general guidance for doing so.

In this chapter, we develop a one-input two-output channel representation for

a single-mode fiber with PMD in the context of an optical PMD compensator.

The derived channel response can provide direct information for determining the

optical equalizer length, the tap spacing and the tap weight ranges. It is also

useful for the design of electronic equalizers.

As shown in Fig. 2.3, the modulated optical signal is transmitted through

one or more fiber spans with erbium-doped fiber optical amplifiers (EDFA), and

14



finally goes through the PMD compensator, before being detected. The PMD

compensator is formed by a two-path optical line with one linear equalizer on

each path, a polarization beam splitter (PBS) at input, a polarization beam

combiner (PBC) at output, and a polarization controller (PC) before the PBS.

The PC rotates the time-varying output PSP’s, ~ef
O and ~es

O, of the fiber at ω0

into the fixed principal axes of the compensator. The PBS separates the output

pulse from the PC into two orthogonally polarized components, which are then

reshaped by the equalizers before being recombined.

Clearly the design of the equalizers requires knowledge of both paths in Fig.

2.3, one from A to B, and the other from A to C. Denote the transfer function

from A to B as Cf (ω), and that from A to C as Cs(ω). An equivalent baseband

one-input two-output PMD channel can be then defined with its 2-dimensional

frequency response as

C(ω) =




Cf (ω)

Cs(ω)


 . (2.6)

To derive C(ω) from U(ω), the input and output optical fields of the fiber

need to be specified first. Since any optical pulse in a single-mode fiber can be

expressed as the vector sum of a pair of orthogonal states of polarization, a well-

polarized input field may be then described in terms of the input PSP’s at ω0

by

~EI(ω) = (1− r)~ef
I + r~es

I , (2.7)

where r ∈ [0, 1] specifies the relative power along ~es
I . It can be seen that the

defined input field is independent of ω. In other words, all frequency components

in an input signal will have the same power-splitting ratio r.

Assume the fiber loss is polarization-independent and the chromatic dispersion

15



is completely compensated. The optical pulse at the output of the fiber is related

to U(ω) by

~EO(ω) = a(ω)eψ(ω)U(ω) ~EI(ω),

where a(ω)eψ(ω) is the frequency domain representation of the input signal. Set-

ting a(ω)eψ(ω) to 1, which is equivalent to transmitting a single short pulse, we

obtain

~EO(ω) = U(ω) ~EI(ω). (2.8)

~EO(ω) conveys complete information about the PMD channel. Similarly to ~EI(ω),

~EO(ω) can be expressed as a vector sum of ~ef
O and ~es

O, that is

~EO(ω) = Ĉf (ω)~ef
O + Ĉs(ω)~es

O. (2.9)

Here Ĉf (ω) indicates the component along ~ef
O, and Ĉs(ω) indicates the com-

ponent along ~es
O. The frequency-dependency of Ĉf (ω) and Ĉs(ω) implies the

existence of high-order PMD. We shall argue that Ĉf (ω) and Ĉs(ω) are identical

to Cf (ω) and Cs(ω), respectively.

It can be seen from Equations (2.8) and (2.9), that Ĉf (ω) and Ĉs(ω) are

actually the projection of ~EO(ω) onto ~ef
O and ~es

O respectively. Note that Cf (ω)

and Cs(ω) are defined as the components along the fixed axes of the compensator,

and a polarization controller has been employed to rotate ~ef
O and ~es

O into the fixed

ones. Therefore Ĉf (ω) and Ĉs(ω) are respectively identical to Cf (ω) and Cs(ω)

, and can be calculated through the following projection operations,

Cf (ω) =
~ef∗

O
~EO(ω)

~ef∗
O ~ef

O

, Cs(ω) =
~es∗

O
~EO(ω)

~es∗
O ~es

O

. (2.10)

Clearly C(ω) is a function of r.
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2.4 Numerical Example

In this section, we generate a virtual fiber with the multi-section model detailed

in Section II, and then numerically demonstrate its equivalent baseband 1-input

2-output channel representation. The light launch condition is set to r = 0.5, in

other words, the signal power is equally distributed over the two input principal

axes.

Given a randomly generated set {∆τi, θi, φi, 1 ≤ i ≤ M}, the fiber transfor-

mation matrix U(ω) as well as the input and output PSP’s at ω0 can be derived.

~EO(ω) and C(ω) may be calculated by using Equations (2.8) and (2.10), respec-

tively.

The resulting Cf (ω) and Cs(ω) is shown in Fig. 2.4. It can be seen that

around the optical carrier frequency (0 on the normalized axis), the magnitude

responses of both components are
√

2/2, or equivalently 0.5 in optical power. This

launch-condition-determined power distribution at ω0 coincides with the general

understanding that a narrowband signal suffers only the first-order PMD effect.

Apart from the carrier frequency, however, severe frequency-dependent power

coupling between the two polarization axes is observed. The random power-

wandering is due to higher-order PMD.

The time-varying property of the fiber PMD is simulated by employing dif-

ferent sets of {∆τi, θi, φi, 1 ≤ i ≤ M} over time. In our simulation, 1000 uncor-

related sets are used. The resulting fiber DGD at ω0 has a mean of 57 ps and a

dynamic range from 10 ps to 117 ps over time. At each static moment, two 6-tap

half-bit-period-spaced finite impulse response (FIR) filters, cf (n) and cs(n), are

designed to approximate the known frequency response, Cf (ω) and Cs(ω). The

filter structure is shown in Fig. 2.5. The filter order and the tap spacing are
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Figure 2.4: Frequency response of a static PMD channel. (a): Magnitude re-

sponse of Cf (ω); (b): Phase response of Cf (ω); (c) Magnitude response of Cs(ω);

(d) Phase response of Cs(ω).
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Figure 2.5: Structure of a finite impulse response filter.
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jointly determined to have the minimum number of taps while maintaining the

approximation error within the acceptable range. The tap weights are then ob-

tained by applying the equal-ripple design. The dynamics of a time-varying PMD

channel can be then visualized by showing how each of the filter taps changes

over time. Since ∆τ(ω0) is generally considered as an important parameter for

describing the PMD effects, we are particularly interested in how the taps vary

with it.

The scatter plots of the coefficients of cs(n) versus ∆τ(ω0) are presented, with

their real part in Fig. 2.6 and their imaginary part in Fig. 2.7. It can be seen

that over the dynamic range of ∆τ(ω0), both the real and the imaginary parts

of Tap 1 and Tap 6 are relatively small. This indicates that a length of 4 is

actually sufficient for filters used to represent the simulated PMD channel. This

observation gives useful information for determining the length of the equalizers,

which is usually required to be longer than that of the channel. Also in Fig.

2.6, each of Taps 3, 4 and 5 has a ∆τ(ω0)-related pattern. Explicitly, Tap 4

is always positive and determines the equalizer-induced delay. And as ∆τ(ω0)

goes up, Tap 3 decreases and Tap 5 increases to generate additional pulse delay.

Conversely as ∆τ(ω0) gets smaller, Tap 3 increases and Tap 5 decreases to reduce

the delay introduced by Tap 4. In Fig. 2.7, however, no ∆τ(ω0)-related pattern

is observed, the imaginary part of each tap of cs(n) is randomly distributed in a

symmetric region around zero.

Similar observations can be obtained from illustrating cf (n). The main dif-

ference is that Tap 3, rather than Tap 4 of the real part of cf (n), dominates the

equalizer-induced delay. The reason is that the pulse along the fast principal axis

is subject to a negative time shift, by the definition of U(ω). Therefore as ∆τ(ω0)

get larger, Tap 2 increases and Tap 4 decreases to result in more pulse leading.
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Now assume the receiver noise has a Gaussian distribution. We design two

minimum-mean-squared-error linear equalizers, wf (n) and ws(n), to remove the

PMD-induced inter-symbol interference. As the effective length of the simulated

PMD channel is only 4, the same filter structure in Fig. 2.5 is adopted for

equalizers in our simulation study. For each snapshot of the PMD channel, the

equalizer coefficients are first designed to approximate the inverse PMD channel

and then adjusted to minimize the average difference between the transmitted

signal and the received signal. Primary simulation results show that with the

optimally designed linear equalizers, the PMD compensator outperforms an ideal

first-order PMD compensator by 1.5 dB in the average eye-opening penalty. The

scatter plots of the coefficients of ws(n) are shown in Fig. 2.8 (real part) and Fig.

2.9 (imaginary part). Again, a ∆τ(ω0)-related pattern is observed in Fig. 2.8,

meanwhile, in Fig. 2.9 each tap simply scatters over a certain range around zero.

2.5 PMD Inversion: From PMD Vector to Jones Matrix

To perform theoretical analysis and a simulation study of slowly changing PMD,

it is desirable to visualize the PMD channel response corresponding to a given po-

larization dispersion vector. A direct transformation from a dispersion vector to

the corresponding PMD channel response is very difficult. Considering the lower-

order PMD only, however, a work-around can be found. Fig. 2.10 shows three

different representations of PMD, that is, the fiber transformation matrix U(ω),

the polarization dispersion vector ~τ(ω), and the 2-dimensional channel C(ω).

Conversions I and II have been discussed in Sections 2.3 and 2.4 respectively.

To alternatively achieve Conversion III, we propose to find the fiber transforma-

tion matrix from a dispersion vector first, then derive the corresponding PMD

channel response by applying Conversion II. Since the lower-order PMD usually
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Figure 2.6: Scatter plot of the real part of cs(n) versus ∆τ(ω0).
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Figure 2.7: Scatter plot of the imaginary part of cs(n) versus ∆τ(ω0).

22



0 0.5 1

x 10
−10

−1

−0.5

0

0.5

1

DGD (s)

real[ws(1)]

0 0.5 1

x 10
−10

−1

−0.5

0

0.5

1

DGD (s)

real[ws(2)]

0 0.5 1

x 10
−10

−1

−0.5

0

0.5

1

DGD (s)

real[ws(3)]

0 0.5 1

x 10
−10

−1

−0.5

0

0.5

1

DGD (s)

real[ws(4)]

0 0.5 1

x 10
−10

−1

−0.5

0

0.5

1

DGD (s)

real[ws(5)]

0 0.5 1

x 10
−10

−1

−0.5

0

0.5

1

DGD (s)

real[ws(6)]

Figure 2.8: Scatter plot of the real part of ws(n) versus ∆τ(ω0).
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Figure 2.9: Scatter plot of the imaginary part of ws(n) versus ∆τ(ω0).
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Figure 2.10: Different representations of PMD

dominates the PMD-induced distortion, this approximation is meaningful.

In order to find U(ω) from ~τ(ω), first apply a similarity transformation to

UωU−1, i.e.,

UωU−1(ω) = R(ω)




1
2
j∆τ(ω) 0

0 −1
2
j∆τ(ω)


 R−1(ω), (2.11)

where R(ω) denotes a 2 × 2 special unitary matrix rotating the coordinate axes

in the vector space of polarization states to the principal axes of the fiber at

frequency ω. Applying Taylor’s expansion to R(ω) and ∆τ(ω) up to first order,

we have

R(ω) = R0 + R0
ω · ω, (2.12)

and

∆τ(ω) = ∆τ 0 + ∆τ 0
ω · ω. (2.13)

Here ∆τ 0 denotes the DGD, ∆τ 0
ω represents the rate of the change in DGD, R0

relates to the principal axes, and R0
ω relates to the rate of the change in the prin-
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cipal axes, all evaluated at ω0. Given R0, ∆τ 0, ∆τ 0
ω and R0

ω, the transformation

matrix U(ω) can be then solved by integrating UωU−1 over ω.

As follows the U(ω) is derived for different scenarios. For simplicity, hereafter

we assume that R0 = I2×2, which can be achieved by carefully choosing the

coordinate axes so that it superimposes on the output principal axes of the fiber.

We may also assume U(ω0) = I2×2, which means that a common rotation on

all frequency components is ignored in evaluating the PMD effects. Therefore

the input PSP’s are mathematically the same as the output PSP’s at ω0, and

both can be written as the pair of




1

0


 and




0

1


. Note that the above two

assumptions facilitate the derivation but do not hide any PMD effects. Explicitly

write U(ω) as

U(ω) =




u1(ω) u2(ω)

−u∗2(ω) u∗1(ω)


 . (2.14)

The off-diagonal terms in U(ω) now represent power coupling between the two

principal axes.

Case 1: ∆τ 0
ω = 0 and R0

ω = O(O is an all-zeros matrix) give

UωU−1(ω) =




1
2
j∆τ 0 0

0 −1
2
j∆τ 0


 . (2.15)

Integrating both sides of Equation (2.15) over ω, we have

U(ω) =




e
1
2
j∆τ0·ω 0

0 e−
1
2
j∆τ0·ω


 . (2.16)

Obviously there is no power coupling between the slow and the fast principal

axes, which indicates the first-order PMD effect.
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Case 2: ∆τ 0
ω 6= 0 and R0

ω = O. From

UωU−1(ω) =




1
2
j∆τ(ω) 0

0 −1
2
j∆τ(ω)


 , (2.17)

we find that

U(ω) =




u1(ω) 0

0 u∗1(ω)


 , (2.18)

with u1(ω) = e
1
2
j(∆τ0·ω+ 1

2
∆τ0

ω ·ω2). Again, there is no coupling between the slow

and the fast principal axes. However, the phase in this case is no longer a linear

but a quadratic function of ω, which corresponds to the so-called polarization-

dependent chromatic dispersion effect, part of the second-order PMD impact.

Case 3: ∆τ 0
ω = 0 and R0

ω 6= O. To clarify this case, we rewrite the term R0
ω as

R0
ω = −1

2
j

3∑

i=1

aiσi. (2.19)

where σ1, σ2, and σ3 are 2× 2 Pauli spin matrices defined as

σ1 =




1 0

0 −1


 , σ2 =




0 1

1 0


 , σ3 =




0 −j

j 0


 .

ai, i = 1, 2, 3, describe the rate of the change in PSP at ω0. Plugging the expres-

sion (2.19) into Equation (2.11) and noticing that [I + R0
ω · ω]−1 is equivalent to

I −R0
ω · ω up to linear order, we arrive at the expression

UωU−1(ω) =
1

2
j∆τ 0σ1 +

1

2
j∆τ 0(a3σ2 − a2σ3) · ω, (2.20)

or equivalently

ln U(ω) =
1

2
j∆τ 0ω

[
σ1 +

1

2
a3σ2 · ω − 1

2
a2σ3 · ω

]
. (2.21)

By defining

r̂ ≡




r1

r2

r3




=
1

A




−1

−1
2
a3 · ω

1
2
a2 · ω




,
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and

φ = ∆τ 0ω · A,

with

A =

√
1 +

1

4
a2

3 · ω2 +
1

4
a2

2 · ω2,

we have

ln U(ω) = −1

2
jφr̂ · ~σ. (2.22)

Here r̂ is a 3-dimensional unit Stokes vector representing the rotation axis of

U(ω), φ is the rotation angle around r̂, and r̂ ·~σ = r1σ1 + r2σ2 + r3σ3 . Using the

exponential formula for a general Pauli Spin matrix [4], we arrive at U(ω) from

Equation (2.22) as follows




cos(φ/2)− jr1 sin(φ/2) j(r2 + jr3) sin(φ/2)

j(r2 − jr3) sin(φ/2) cos(φ/2) + jr1 sin(φ/2)


 . (2.23)

Clearly coupling exists between the slow and the fast axes, which explains the

system impact of another part of the second-order PMD, depolarization.

Case 4: ∆τ 0
ω 6= 0 and R0

ω 6= O, which together represent a more realistic

situation, give

UωU−1(ω) =
1

2
j∆τ 0σ1 +

1

2
j∆τ 0

ω · ω · σ1 (2.24)

+
1

2
j∆τ 0(a3σ2 − a2σ3) · ω,

we then arrive at

ln U(ω) =
1

4
j∆τ 0

ω · ω2 · σ1 (2.25)

+
1

2
j∆τ 0 · ω ·

(
σ1 +

ω

2
a3σ2 − ω

2
a2σ3

)
.
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The resulting U(ω) has the same form as (2.23) with r̂ and φ defined as

r̂ =
1

B




−1− ∆τ0
ω

2∆τ0 · ω
−1

2
a3 · ω

+1
2
a2 · ω




,

and

φ = ∆τ 0 · ω ·B,

where

B =

√√√√
(

1 +
1

2

∆τ 0
ω

∆τ 0
· ω

)2

+
1

4
a2

3 · ω2 +
1

4
a2

2 · ω2.

As stated at the beginning of this section, the corresponding two-dimensional

PMD channel response C(ω) can be therefore found from U(ω) by using the

procedure described in Section 2.3.

2.6 Conclusion

We have derived and numerically demonstrated an equivalent single-input two-

output baseband representation for fiber optic channels with PMD. The two-

dimensional channel response provides straightforward information to the design

of linear equalizers aiming to suppress the PMD effects. A relationship between

the polarization dispersion vector and the PMD channel response is also detailed,

which may also be used to analyze the system impacts of PMD up to second order.

Future work will focus on the equalizer design.
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CHAPTER 3

Low-Cost Compensation of First-Order

Polarization Mode Dispersion

3.1 Introduction

In order to make high-speed signal transmission feasible in fibers subject to severe

PMD effects, various strategies, including optical [9], electronic [12], and opto-

electronic signal processing [24] are being considered.

For first-order PMD mitigation, three methods have been discussed in the lit-

erature. The first approach, employing an electronic transversal filter, works well

in principle but requires tedious multi-parameter optimizations and adaptations

[16]. The second strategy, often referred to as the principal state of polarization

(PSP) launch [18], suppresses the first-order PMD effects by transmitting signals

over only one of the two principal axes of a fiber. This technique is infeasible in

long-haul systems owing to the need for a feedback loop from the receiver to the

transmitter. The third solution, using a continuously tunable two-path optical

delay line, implemented with either free-space optics or nonlinearly-chirped fiber

Bragg grating [19], is shown to be very promising. However, the complexity of

its control mechanism is rather high.

In this chapter, we propose a low-complexity discretely tunable optical ap-

proach, which achieves PMD mitigation as efficiently as does the continuously
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tunable counterpart. The rest of this chapter is organized as follows. Section 3.2

revisits the first-order PMD. Section 3.3 gives a brief description of the continu-

ously tunable first-order PMD compensator (FOPMDC). Sections 3.4 introduces

the new discretely tunable FOPMDC. Finally, Section 3.5 discusses simulation

results to show the utility of the new scheme. Other fiber-related impairments,

such as chromatic dispersion, polarization dependent loss, polarization dependent

gain and fiber nonlinearities, are not considered in this study.

3.2 Effect of the First-Order PMD

In a single-mode fiber, an arbitrarily polarized optical wave can be represented

as a linear superposition of two orthogonal polarization modes. PMD occurs

when the transmission speeds of the two modes are distinct due to the loss of

circular symmetry in the fiber [2]. PMD is time- and frequency-dependent, and

is commonly described by a time-varying three-dimensional dispersion vector,

~τ(ω) = ∆τ(ω) · p̂(ω), where the magnitude ∆τ denotes the differential group

delay (DGD) between output PSP’s, and the unit Stokes vector p̂ represents the

slow output PSP on the Poincaré sphere. The first-order PMD is defined to be the

dispersion vector at the optical carrier frequency ω0, i.e., ~τ(ω0) = ∆τ(ω0) · p̂(ω0).

A higher-order PMD is described by the derivative, ~τnω(ω0) = dn~τ(ω)
(dω)n |ω=ω0 , n ≥ 1,

where the subscript ω indicates differentiation. The bandwidth limitations of

higher-order PMD vectors are examined in [23]. They provide important guidance

on PMD measurement and PMD compensation in the frequency-domain.

In the time domain, the first-order PMD dispersion effect is manifested by

the two components along the two input PSP’s being separated in time at the

fiber output by the DGD ∆τ(ω0). Therefore to compensate PMD to the first

order, we may simply delay one component with respect to the other by ∆τ(ω0).
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However, the detection of ∆τ(ω0) is not a trivial task.

3.3 The Traditional Continuously Tunable FOPMDC

Fig. 3.1 shows a fiber optic transmission system using a continuously tunable

FOPMDC [16]. The modulated optical signal is transmitted through one or more

fiber spans with erbium-doped fiber optical amplifiers (EDFA), and finally goes

through the PMD compensator, before being detected. The PMD compensator

is based on an adjustable two-path optical delay line with a polarization beam

splitter (PBS) at input, a polarization beam combiner (PBC) at output, and a

polarization controller (PC) before the polarization beam splitter. The polariza-

tion controller rotates the time-varying output PSP’s of the transmission fiber

into the fixed principal axes of the compensator. The PBS separates the output

pulse from the PC into two orthogonally polarized components which are then

delayed relative to each other by a variable time ∆τc before they are recombined.

O/E

Fiber
EDFA PC

PBS       PBC

 FOPMDC

Photodetector
Decision 
  Maker

Figure 3.1: Fiber optical transmission system using a continuously tunable FOP-

MDC.

To achieve satisfactory first-order PMD compensation, the delay time ∆τc

should be adapted to the time-varying ∆τ(ω0). Since it is difficult to measure

∆τ(ω0) directly, the PMD-induced sensitivity is often observed by measuring

the power of a few frequency components extracted from the electrical baseband
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Fiber
EDFA PC

PBS       PBC

 FOPMDC

Photodetector
Decision 
  Maker

Figure 3.2: Fiber optical transmission system using a discretely tunable FOP-

MDC.

signal, using narrow bandpass filters [9]. A linear combination of the filter output

signals is then maximized with a gradient-based optimization algorithm so as to

minimize the bit error rate (BER).

No doubt both the narrow bandpass filtering and the search for the opti-

mal linear combination raise challenges to the design of such a compensator.

Moreover, the gradient-based peak searching may drop into local minima, and

therefore minima-escaping tools have to be used, which further complicates the

control mechanism.

3.4 The New Discretely Tunable FOMPMDC

To improve over the above scheme, we propose a discretely tunable optical delay

line which employs a set of parallel delay paths, each of which generates a fixed

delay, as shown in Fig. 3.2. Compared to the continuously adjustable delay line,

this discretely tunable alternative has lower hardware complexity and requires a

much simpler control mechanism. With the new compensator, the transmission

system shall work consecutively in two modes: compensator training, for deter-

mining the optical path to use, and data transmission. In the training mode, a
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known pseudo-random binary sequence (PRBS) is transmitted. After the polar-

ization controller rotates the fiber output PSP’s into the compensator principal

axes and the pulse is split into two orthogonal components, the signal along the

fast principal axis is fed into the delay paths, one at a time. By combining each

delayed signal with the component over the slow principal axis, the path-related

eye-opening penalty (EOP) can be then monitored. The optimal delay path is

the path generating the minimum penalty. In the transmission mode, the optical

switch stays on this optimal delay path to enable a continuous data transmission

until the compensator enters the next training period.

It is well-known that in a digital transmission system, minimizing bit error

rate (BER) is the final goal. This study adopts EOP as the performance criterion

because EOP has high correlation to BER but takes much less integration time

than BER does [25]. The EOP P is given by [12]

P = 10log10

[
ymin(d = 1)− ymax(d = 0)

yideal(d = 1)− yideal(d = 0)

]
, (3.1)

where y represents the output of the photodetector at the receiver, and d denotes

the input data bit. ymin(d = 1) refers to the minimum received optical power

for bit “1” and ymax(d = 0) refers to the maximum received power for bit “0”.

yideal(d = 1) and yideal(d = 0) represent the received power for “1” and “0”,

respectively, in the absence of PMD.

An important practical question in designing the discretely tunable FOPMDC

is how many delay paths are needed to cover a reasonable DGD dynamic range.

Let the delay time increment (DTI) denote the delay difference generated by two

successive parallel delay paths. Note that although DTI can be different from

path to path, we use a fixed DTI in this study for simplicity. Hence a DTI of

b ps implies that for a DGD range of 0 − B ps, n = dB/be paths, besides the

one with zero delay, are required. The d·e denotes the rounding operation. It is
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clear that for a fixed DGD coverage, a small DTI provides good tunability but

requires a large number of delay paths. On the other hand, a large DTI enables

the use of fewer delay paths but may have limited flexibility. Numerical results

presented in next section demonstrate that the performance of the new scheme,

as a function of b, approaches a limit rapidly as b decreases. And for DGD with

a dynamic range of 5-116 ps, b = 25 ps is a good choice. Note that the limit

represents the best performance that an ideal FOPMDC can achieve.

How often the pilot signal needs to be transmitted is determined by the prior

information of the PMD dynamics. Since PMD changes slowly, on time scales

of minutes in general, the pilot signal can be transmitted with low duty cycle.

Consequently the overhead is expected to be negligible.

3.5 Simulation Results and Discussion

In this section, the proposed scheme is numerically simulated for NRZ 10 Gbit/s

transmission over a virtual fiber link which has an average DGD of 32.5 ps and a

DGD dynamic range of 4.7− 78 ps. The pilot signal, a 27-bit PRBS, is inserted

in the data flow once every 1 s. The input signal is launched with its power

equally distributed along the two input PSP’s. Different DTI’s, T , T/2, T/4,

T/8, T/16, and T/32, are applied. T is 100 ps in the current 10 Gbit/s system.

The simulated PMD-free SNR is adjusted to obtain a BER of 10−9.

Fig. 3.3 demonstrates the time-varying fiber DGD as well as the optimal

delay adjustments under three different DTI’s. It is easy to see that under a DTI

of T/32 (dot line), the optimal delay adjustments is superimposed on the time-

varying fiber DGD to a certain degree. Fig. 3.4 summarizes the complementary

cumulative distribution function (CDF) of the eye-opening penalty by using all
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Figure 3.3: Comparison of fiber DGD and optimal delay adjustments under dif-

ferent DTI’s.

aforementioned different DTI’s. While a DTI of T/4 results in significant PMD

mitigation, a smaller DTI can generate little further performance improvement.

This indicates that T/4 (or 25 ps) is the best tradeoff between performance and

complexity. This DTI is also verified to be good for another virtual fiber that

has an average DGD of 58.7 ps and a dynamic range of 11− 116 ps.

The above feasibility of discrete tuning can be further supported by Fig. 3.5

in which the eye-opening penalty vs. delay adjustments is shown for 20 DGD

samples in a continuous period of 20 minutes. As it illustrates, the curve of

penalty vs. delay adjustments for each DGD sample has a relatively flat bottom.

That is, the penalty is not sensitive to the delay adjustment once it is close
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Figure 3.4: Complementary cumulative distribution function (CDF) of

eye-opening penalty.

to the minimum. Therefore the optimal adjustment for one moment could be

also good for the neighboring moments unless the PMD changes very fast. In

the demonstrated case, a delay adjustment of 50 ps works well for the whole 20

minutes.

3.6 Conclusion

A low-complexity discretely tunable FOPMDC is presented along with discussion

on the design of the delay line and numerical quantification of its performance.

At a cost of negligible overhead, the new scheme achieves good PMD suppression.
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CHAPTER 4

Peak-to-Average Power Ratio Reduction for

OFDM

4.1 Introduction

In the last few years orthogonal frequency division multiplexing (OFDM) has

attracted increased research interest due to its high spectral efficiency and ro-

bustness to multipath fading [41]. It has been adopted for several types of high-

data-rate wireless communication systems, including Digital Video Broadcasting

[42], HYPERLAN-II [43], and wireless local area networking (WLAN).

Performance of OFDM, however, is seriously limited by imperfect synchro-

nization and the high peak-to-average power ratio (PAR) of the transmitted

signal. The impact of frequency offset and timing error along with a comparison

of frequency offset estimation methods will be presented in Chapter 5. The cur-

rent chapter is focused on the PAR reduction. After a brief overview of existing

strategies for the purpose, a new scheme is proposed.

OFDM modulation combats the multipath fading by splitting the incoming

data stream into several parallel streams of lower rate, and transmitting each of

them in a different narrowband subchannel. Due to the large number of subchan-

nels, the peak of an OFDM signal with N subcarriers could reach N times that

of a single carrier system with the same power. In order to avoid nonlinear dis-
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tortion when power amplifiers are used, expensive high-power amplifiers (HPA)

are required. However, the power consumption of a HPA depends largely on its

peak power output, and thus dealing with occasional large peaks leads to low

power efficiency. This low power efficiency is undesirable for a mobile or portable

transmitter where energy is a limited resource.

In order to transmit OFDM signals with good spectral and power efficiency,

research efforts have been actively made in two directions, either linearizing the

power amplifier or reducing the peak-to-average power ratio. Techniques for

power amplifier linearization include power backoff, corrective distortion [27],

and envelop elimination and restoration [28]. Each of these approaches has its

own advantages and design concerns. Methods for minimizing the PAR of the

signal waveform include Clipping and Filtering [57], Complementary Golay Se-

quences [30], Tone Reservation [35], Selected Mapping [31], and Partial Transmit

Sequences [32].

Clipping results in serious out-of-band radiation and in-band noise. To reduce

the out-of-band emission, filtering after clipping is required, which may induce

spectral regrowth and decrease the bandwidth efficiency.

In [30], information is transmitted by mapping each data word into a Golay

sequence which has a limited PAR between 3 and 6 dB. Since the code rate

is shown to decrease exponentially as code length increases, this method is not

feasible for systems with a large number of subcarriers (>1024).

Tellado et al. proposed exploiting reserved or unused (due to low SNR) tones

to lower the PAR of a transmitted data block [35]. Krongold et al. extended

the technique to both the real-baseband and complex-baseband cases [36]. Such

solutions usually reduce bandwidth efficiency of the system to a certain degree.

Selected mapping generates a large set of data vectors representing the same
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information [31]. The data vector with the lowest PAR is then selected. Informa-

tion about which particular data vector was used is sent as side information. This

method results in significant PAR reduction even at low redundancy. However,

the side information needs to be specially protected.

The scheme of partial transmit sequences (PTS) results in significant PAR

improvement at low redundancy, and no distortion is introduced. Just as Selected

Mapping, it requires transmission of side information. A comparison between

PTS and Slected Mapping is presented in [38] with the conclusion that the former

is slightly better due to its lower complexity. However, in order to achieve the

best performance, PTS requires exhaustive search in the parameter space. In [34],

an alternative PTS algorithm, referred to as iterative PTS or IPTS, is presented

that achieves good performance at reduced complexity.

In this chapter, after briefing the OFDM modulation and the PAR properties

of OFDM signals, we revisit the general PTS scheme, give a geometrical inter-

pretation to combining in any PTS approach, and introduce a novel orthogonal

projection-based PTS (OPPTS) method for PAR reduction. The computational

complexity as well as performance of the proposed method are evaluated and

compared with exhaustive search in [33] and IPTS in [34].

4.2 PAR Properties of OFDM Signals

In an OFDM system with N subchannels, the complex baseband representation

of an OFDM signal is given by [37]

h(t) =
1√
N

N−1∑

n=0

mn · ejn∆wt, 0 ≤ t < NT, (4.1)

where ∆w is the frequency spacing, mn is the transmitted symbol at Subchannel

n, and T is the original symbol period.
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The PAR is defined as the squared maximum magnitude of a time-continuous

OFDM symbol divided by the ensemble rms value, that is,

PAR =
maxt∈[0,NT ){|h(t)|2}

Pav

, (4.2)

with

Pav = E{ 1

NT

∫ NT

t=0
|h(t)|2dt}.

Fig. 4.1 depicts the complementary cumulative distribution of PAR for various

values of N and constellation size M . Clearly, the PAR increase with the num-

ber of subchannels. In the meanwhile, for a fixed number of subchannels, the

3 4 5 6 7 8 9 10 11 12
10

−3

10
−2

10
−1

10
0

P
ro

ba
bi

lit
y 

of
 (

P
A

R
>

x0
)

x0 (dB)

N=128,M=4
N=512,M=4
N=1024,M=4
N=128,M=16
N=512,M=16
N=1024,M=16
N=128,M=64
N=512,M=64
N=1024,M=64N=128 

N=512 
N=1024 

Figure 4.1: Complementary cumulative distribution of peak-to-average power

ratio. N stands for the number of subchannel, and M the constellation size. The

RMS value of all the signals was normalized to unity.
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statistical behavior of the PAR is almost independent of modulation scheme.

4.3 Partial Transmit Sequences

The principle of PTS is described as follows. First, an OFDM symbol in the fre-

quency domain, S = [ m1 m2 · · · mN ], is partitioned into V pairwise disjoint

subblocks S(v), 1 ≤ v ≤ V , and each is multiplied by a constant complex-valued

phase factor bv, bv = ejφv , φv ∈ [0, 2π), 1 ≤ v ≤ V . The OFDM symbol is

therefore modified to

S =
V∑

v=1

bvS
(v). (4.3)

Next, the OFDM symbol in the time domain is found by applying the inverse

DFT to both sides of Equation (4.3),

s = IDFT{S} =
V∑

v=1

bvIDFT{S(v)} =
V∑

v=1

bvsv. (4.4)

Here sv, 1 ≤ v ≤ V , are called partial transmit sequences, which explains the

name of the scheme. To minimize the PAR, the free parameters bv, 1 ≤ v ≤ V ,

are properly chosen from a finite set of W allowed phase angles. In the literature,

W = 4 has been shown to be a good choice since a larger W results in negligible

gain. The optimum phase factors for the OFDM symbol are then given by

{b∗1, · · · , b∗V } = arg min
{b1,···,bV }

(
max

∣∣∣∣∣
V∑

v=1

bvsv

∣∣∣∣∣

)
. (4.5)

It is easy to see that Nlog2M is the total number of bits transmitted in an OFDM

symbol, and (V−1)log2W is the number of bits required for representing the phase

vector. The introduced redundancy is therefore R = (V − 1)log2W/(Nlog2M).
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4.4 Proposed Scheme: Orthogonal Projection-Based PTS

Define A to be the V × N matrix whose vth row is sv in Equation (4.4). s can

be rewritten as

s =
V∑

v=1

bvsv = bT A = [ bT a1 bT a2 · · · bT aN ], (4.6)

where an denotes the nth column of Matrix A, and b is a column phase vector of

length V , b = [ b1 b2 · · · bV ]T . It can be seen that the aim of the PTS scheme

is actually to minimize ‖bT A‖∞, or the maximum magnitude of bT an, 1 ≤ n ≤ N .

Since the inner product bT an is proportional to the projection of Vector b onto

Vector an, a desired phase vector b in the PTS scheme is revealed to be the one

that results in small projections onto all vectors an, 1 ≤ n ≤ N . This geometrical

interpretation to proper combining motivated us to find a good phase vector b

based on the orthogonal vectors yn of the columns an, 1 ≤ n ≤ N . The details

are described as follows.

First, find yn by projecting a pre-chosen vector (for example, an all-ones vector

1) onto the null-space of an, that is,

yn = (I − an(aT
nan)−1aT

n )1 = 1− an(aT
n1)/(aT

nan). (4.7)

It is obvious |yT
n an| = 0. To get a phase vector candidate xn, modify each element

of yn to the closest phase in the allowed phase angles set. The resulting |xT
nan| is

a small number. However, |xT
naj| can be large when j 6= n. Next, calculate the

PAR resulting from xn by evaluating ‖xT
nA‖∞. Fig. 4.2 shows the PARs resulting

from all phase vector candidates xn, 1 ≤ n ≤ N , for a randomly generated OFDM

symbol. Finally, choose xn that provides the lowest PAR to be the proper phase

vector for the current OFDM symbol. Note that any phase vector can be simply

rotated to have b1 = 1.
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Compared to W V−1 trials required by exhaustive search [33] and (V − 1)W

trials by the iterative PTS [34], OPPTS requires N trials plus NV complex

multiplications. For small N, W and V , such as N = 128,W = 4 and V ≤ 5,

exhaustive search always wins OPPTS. However, when N and V are reasonably

large, for example, N = 1024, V = 32,W = 4, OPPTS saves a significant amount

of computation by needing only 215 complex multiplications plus 210 trials while

exhaustive search requires 262 trials. In fact, the computational complexity of

OPPTS can be further reduced. Fig. 4.2 shows that there is more than one

phase vector candidate achieving a sufficiently low PAR, and the first one could

occur within the first few candidates. Thus a better way, named partial search, is

to adopt the best phase vector among the first U (U < N) candidates. Fig. 4.3
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shows the complementary cumulative distribution function (CDF) of the PAR

using OPPTS with different U at two redundancy levels, R = 1.2% and R =

2.3%, respectively. It can be seen that this alternative can reduce the total

number of trials and complex multiplications by at least 50%, without hurting

the performance.
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Figure 4.3: Performance comparison of partial search and full search in OPPTS.

Two cases are considered. Part (a): R = 1.2%; Part (b): R = 2.3%.

4.5 Simulation Results and Discussion

The simulation environment is an OFDM system with 128 subchannels (if not

specified) and 16-QAM modulation over all subchannels. Adjacent partitioning
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and partial search with U = N/2 are used in all simulations.
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Figure 4.4: Performance comparison of OPPTS and IPTS. Part (a): Performance

of OPPTS; Part (b): Performance of IPTS.

Part (a) of Fig. 4.4 shows the performance of OPPTS at different levels of

redundancy. The original OFDM signal has a PAR that exceeds 10.6 dB for less

than 0.1% of the signals. Using OPPTS, the 0.1% PAR reduces to 8.9 dB at

a redundancy of 0.4%, and to 6.9 dB at 1.6% redundancy. At low redundancy,

excluding the 2-subblock case where three aforementioned approaches achieve the

same performance, OPPTS shows only 0.4 − 0.8 dB degradation from the best

possible exhaustive search results in [38] where the simple adjacent partitioning

has already been replaced with pseudo-random partitioning for achieving better

performance. Our approach also outperforms the iterative PTS (its performance
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is shown in Part (b) of Fig. 4.4) by 0.4 − 0.7 dB. To confirm the performance

of our approach in OFDM systems with more subcarriers, Fig. 4.5 shows that a

PAR reduction of 3.7−3.9 dB can be achieved at a redundancy of 2% for N=128,

512, and 1024.
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Figure 4.5: Performance of OPPTS in OFDM systems with various numbers of

subchannels.

For a fixed N , while partitioning the subchannels into a large number of

subblocks which implies high redundancy, we observed that the further improve-

ment from using OPPTS becomes small. This is because with more subblocks,

the columns in A become more independent from each other and the flexibility

to get a “common” near-orthogonal vector decreases. This limits the usefulness

of OPPTS when high redundancy is allowed.
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Certainly the receiver should be informed of the phase vector so that it can

undo the combining to get the original OFDM symbol back. An easy way, subject

to certain performance loss, is to allocate information bits onto the first N − Q

subchannels (leave the rest Q subchannels in arbitrary states), then find the best

possible phase vector and put the side-information onto the last Q subchannels.

For a relatively small Q compared to N , for example, Q
N
≤ 1

32
which corresponds

to a redundancy up to 3%, our simulations show that the performance loss is

within 1 dB. When the side-information is required to be specially protected, the

overhead will be bigger than what we show here.

Also, in the literature, two careful designs are often considered in a PTS

scheme to improve its performance. The first strategy is to oversample the OFDM

signal to catch the hidden peak. In our approach, this modification simply means

replacing all length-N DFT/IDFTs with length-N̂ (N̂ > N) DFT/IDFTs. In

consequence Matrix A will have N̂ instead of N columns. The second strategy is,

as mentioned before, to replace adjacent partitioning with pseudo-random parti-

tioning. Again, this just implies a different way for constructing Matrix A. Since

the orthogonal-projecting operation in OPPTS is independent of the formulation

of Matrix A, our approach can be easily extended to include these two designs.

However using pseudo-random partitioning implies that more side-information

needs to be transmitted to the receiver, which complicates the detection process.

4.6 Conclusion

We presented an orthogonal projection-based PTS method for PAR reduction

in OFDM systems. Simulation results showed that at low redundancy the pro-

posed scheme experiences only 0.4 − 0.8 dB degradation from the best possible

exhaustive search results. This study also for the first time provided geometrical
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interpretation to combining in the well-known partial transmit sequences scheme.
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CHAPTER 5

Frequency Synchronization for OFDM

5.1 Introduction

Performance of OFDM is highly sensitive to imperfect synchronization. In par-

ticular, the carrier frequency offset causes a number of impairments including at-

tenuation/rotation of received OFDM symbols and intercarrier interference (ICI),

which degrade the BER of the system [44, 58]. To overcome this sensitivity to fre-

quency offset, various methods for frequency synchronization have been proposed

[58]-[46].

The synchronization process is normally split into an acquisition phase and a

tracking phase, in order to minimize both the overhead and the computational

effort at the receiver [46]. In the acquisition phase, a coarse estimate of the errors

is made. The residual small deviations are then corrected in the tracking mode.

For the subsequent frequency tracking algorithms to operate reliably, the initial

estimate is required to be accurate to half a subcarrier spacing. The focus of this

chapter is the frequency offset tracking problem.

The algorithms that are already available for frequency offset tracking can

be classified into three categories, i.e., pilot tone-aided (PTA), cyclic prefix-based

(CPB), and decision-directed (DD) schemes. PTA approaches estimate frequency

offsets by periodically inserting pilots on particular subacrriers and correlating

the received symbols with known symbols. CPB methods are generally based on
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correlating received samples taken one OFDM data block length apart, utilizing

the periodicity created by the insertion of the cyclic prefix (CP). DD schemes are

in principle identical to PTA approaches, except that tentative decisions replace

known symbols. Note that in general DD algorithms are not recommended as

their performance is often degraded by delay and possible error propagation.

The principles of PTA and CPB methods have been presented in the literature,

e.g., [59, 46]. For all the CPB estimators, a unified structure was also proposed

[47]. However, to our knowledge, a direct and complete comparison of PTA

and CPB schemes has not been reported to date. It is the aim of this chapter to

evaluate the two methods in the same environment and compare their sensitivities

to frequency offset, constellation size, and timing error. This comparison helps in

determining the most suitable frequency offset tracking scheme for a particular

application under consideration.

The rest of this chapter is organized as follows. Section 5.2 presents the system

model. Section 5.3 briefly revisits the principles of PTA and CPB methods. Two

modifications we found necessary are proposed for the algorithms. Section 5.4

presents simulation results. Section 5.5 concludes the chapter.

5.2 System Model

We assume a finite channel impulse response with L samples, h = [h1, ..., hL]T .

At the transmitter, the kth sample of an OFDM block generated by the Inverse

Fast Fourier Transform (IFFT) is

xk =

√
1

N

N−1∑

n=0

Xne
j2π kn

N , 0 ≤ k ≤ N − 1. (5.1)

Here Xn is the data symbol modulated onto the nth subcarrier, and N is the

number of subcarriers. After the data are converted into a sequence in the time
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domain, a cyclic prefix of length Ng (Ng > L) is added. Thus the actual trans-

mitted OFDM block is

x̄ = [xN−Ng , ..., xN−1, x0, ..., xN−1]
T .

The received sequence is the convolution of the transmitted sequence with the

channel impulse response, i.e.,

r̄ = x̄ ∗ h. (5.2)

When a frequency offset exists, the received OFDM signal is

zk = rke
j2πδf k/N + ωk, (5.3)

where δf = ε
∆f

is the relative frequency offset of the channel (the ratio of the

actual frequency offset ε to the subcarrier spacing ∆f), and ω is the additive

white Gaussian noise (AWGN). Both data and noise sequences are assumed to

be uncorrelated, independent and identically distributed (i.i.d.) random variables

with power of σ2
s and σ2

n, respectively. At the receiver, samples corresponding to

the cyclic prefix are removed and the remaining N samples are used for demod-

ulation. After the FFT operation, the symbol on the nth subcarrier is

Zn =

√
1

N

N−1∑

k=0

zke
−j2π kn

N , 0 ≤ n ≤ N − 1. (5.4)

Previous studies have shown that both the cyclic prefix and pilot tones can be

used to track frequency offset. In the next section we review these two approaches

and make necessary modifications to the algorithms. In order to separate the

effects of frequency offset from other degradations, frame and symbol timing are

assumed to be perfect unless otherwise specified, and the channel is assumed

to be slow-fading. Throughout this chapter, the signal-to-noise ratio (SNR) is

defined as SNR = σ2
s/σ

2
n.
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Figure 5.1: Reference OFDM blocks, CP stands for cyclic prefix.

5.3 Frequency Offset Tracking Algorithms

5.3.1 Pilot Tone-Aided Frequency Offset Tracking

Assume that one transmitted OFDM block consists of N subcarriers. Among

them, Np subcarriers are modulated by pilot symbols. Let P denote the set of

indexes of the Np pilot carriers. A pilot tone-aided method has the following

structure [59]

N + Ng

N
·D · δf =

1

2π
· arg{∑

n∈P

(
Zm,nZ

∗
m+D,n

)
(C∗

m,nCm+D,n)}. (5.5)

Here m and m+D respectively represent the mth and (m+D)th OFDM blocks, as

shown in Fig. 5.1. {Cm,n} and {Cm+D,n} are pilot symbols transmitted over the

same nth subchannel during the mth and (m+D)th time period, respectively. Zm,n

and Zm+D,n are the symbols received over the nth subchannel in the two periods.

D is an integer which indicates that D − 1 other OFDM blocks can be placed

between a pair of pilot symbol-embedded OFDM blocks. The multiplication
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with the conjugate complex value of the transmitted symbols serves to remove

the influence of the modulation. Note that the original algorithm in [59] does not

have the term N+Ng

N
at the left side of (5.5). We found the correction is necessary

because according to (5.3), the phase difference between zm,k and zm+D,k is (N +

Ng)D/N which can be reduced to D only if N >> Ng.

Since the PTA scheme involves the demodulation process which is imple-

mented with a Discrete Fourier Transform (DFT), it is inevitably subject to ICI.

The bound of the frequency offset-induced ICI was derived by Moose [58]. To

brief the bound here, we rewrite (5.3) into

zk =

√
1

N

[
N−1∑

n=0

XnHnej2πk(n+δf )/N)

]
+ ωk, 0 ≤ k ≤ N − 1, (5.6)

where Hn is the transfer function of the channel at the frequency of the nth carrier.

The nth element of the DFT sequence Zn shown in (5.4) can be decomposed into

three components

Zn = (XnHn) · sin(πδf )

N sin(πδf/N)
· ejπδf (N−1)/N + In + Wn. (5.7)

The first component is the OFDM symbol Xn modified by the channel transfer

function. This component experiences an amplitude reduction and phase shift

due to the frequency offset. The second term is the ICI caused by the frequency

offset and is given by

In =
N−1∑

l=0,l 6=n

(XlHl)
sin(πδf )

N sin(π(l − n + δf )/N)

·ejπδf (N−1)/N · e−jπ(l−n)/N . (5.8)

Assuming that the data have zero mean and are uncorrelated, Moose showed that

E{In} = 0, and

E|In|2 ≤ 0.5947|X|2|H|2 sin2(πδf ), |δf | ≤ 0.5. (5.9)
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Figure 5.2: Reference plot for cyclic prefix-based method and imperfect timing

synchronization.

Clearly, In is proportional to frequency offset, and the system tolerance to

noise decreases as the constellation size increases. Therefore, PTA schemes de-

grade with the increase of the frequency offset δf and/or constellation size M .

5.3.2 Cyclic Prefix-Based Frequency Offset Tracking

As implied by (5.3), a carrier frequency error of δf results in an evolving phase

error p(k) in the received samples z(k),

p(k) =
2πδfk

N
. (5.10)

Therefore, the phase error difference between two samples z(k1) and z(k2) is

a function of the frequency error and their time difference. When the original

phase difference between z(k1) and z(k2) is known and all other phase distortion

is absent, the relative frequency error δf can be derived from the phase error

difference.

The time-domain samples of the cyclic extension are a copy of the last Ng data
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samples of the OFDM block. As shown in Fig. 5.2, after the OFDM block passes

through a channel of length L, Ng −L + 1 pairs of samples in the received signal

remain identical except for a phase difference of 2πδf . Clearly the frequency error

can be estimated using each of these Ng − L + 1 pairs of samples. To improve

the estimation accuracy when exposed to noise and other channel impairments,

averaging should be carried out over the Ng − L + 1 estimates.

Note that in the literature the whole cyclic prefix of Ng samples are often used

for averaging. However, we noticed that the first L − 1 samples in the received

OFDM block are usually corrupted by interference from the previous OFDM

block. To show that Ng−L+1 instead of Ng samples should be used for reliable

frequency offset tracking when all subcarriers are modulated with data symbols,

Fig. 5.3 compares the two different choices in terms of mean square error in the

estimate. For zero frequency offset and SNR of 15 dB, the MSE is improved from

10−3 to 10−4 by replacing Ng with Ng − L + 1. The gain from averaging over

Ng − L + 1 samples becomes even more significant as SNR increases.

The above frequency offset tracking algorithm relies on the evaluation of the

following correlation function

p(k) =
Ng−L∑

m=0

z(k −m) · z(k −m−N)∗ (5.11)

where k is the index of the most recent input sample. When the timing is cor-

rect, a correlation peak indicated by p(kmax) can be achieved, and the phase of

p(kmax) equals the averaged phase shift between the guard time samples and the

corresponding data samples of the current OFDM block. Since the sample pairs

are spaced by N samples, this leads to the fine frequency offset estimation given

by

δf =
p(kmax)

2π
. (5.12)
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Figure 5.3: Performance comparison of the traditional CPB method using Ng

samples and the new CPB method using Ng − L + 1 samples. Ng = 16, L = 8.

Frequency offset is set to 0.
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Here the 2π ambiguity of the phase once again implies that a tracking algorithm

can only handle frequency errors smaller than ∆f/2.

5.4 Comparison of Frequency Offset Tracking Algorithms

in Simulation

To make a fair comparison, the same overhead is used for both algorithms. In

other words, the number of pilot tones plus the number of cyclic prefix samples

in the PTA algorithm equals the number of cyclic prefix samples in the CPB

algorithm. The mean square error (MSE) in the estimate is evaluated for various

frequency offsets, δf = 0, 0.1, 0.2, and different constellation sizes, M = 4, 16, 64.

All simulations were run for 10000 OFDM blocks to provide results showing

statistical information.

5.4.1 Simulation Environment

The number of subcarriers is fixed at 128. The length of the cyclic prefix is set

at 8 for the PTA algorithm and 16 for the CPB algorithm. The number of pilot

tones for PTA equals 8. Also, a frequency-selective channel is simulated with

the following parameters: 1) the length of the channel corresponds to L=8; 2)

the channel delay spread equals 70 ns; and 3) the sampling period is Ts=50 ns.

The channel model we adopted here was developed by the PCS Joint Technical

Committee (JTC) for simulation of radio propagation for Indoor Office environ-

ment [48]. The model uses a series of weighted delay taps to simulate multipath

propagation. Each tap weight is a Rayleigh distributed random variable with

average relative amplitude as shown in Table 5.1. The phase of each tap is a

uniformly distributed random variable in [0, 2π).
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Table 5.1: The average relative amplitudes of the channel tap weights

Tap Delay (nsec) Relative Amplitude (dB)

1 0 0

2 50 -2.9

3 100 -5.8

4 150 -8.7

5 200 -11.6

6 250 -14.5

7 300 -17.4

8 350 -20.3

5.4.2 Results and Discussion

5.4.2.1 Sensitivity to SNR, Frequency Offset, and Constellation Size

The performance of the described PTA scheme is shown in Fig. 5.4. Part a)

illustrates the resulting MSE in the scenario of QAM signaling. As can be seen,

without a frequency offset the MSE decreases as SNR increases. However, when

a nonzero offset exists, an error floor is observed. This verifies the influence

of the ICI analyzed in Section III. In addition, note that the error floor rises

significantly as the frequency offset increases. It is not surprising because the

frequency offset-induced ICI is proportional to the frequency offset. Parts b)

and c) in Fig. 5.4 respectively demonstrate the obtained MSE for the cases of

16 − QAM and 64 − QAM signaling. Clearly, the PTA scheme behaves worse

for higher order modulations due to its reduced tolerance to noise. Specifically,

when δf = 0.0, in order to keep MSE at the level of 10−3, SNR needs to increase

about 8 dB when using 16-QAM instead of QAM, and another 6 dB if 64-QAM
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Figure 5.4: MSE performance of PTA for various levels of frequency offset and

different constellation sizes. N = 128, Ng = 8, Np = 8, D = 1.
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Figure 5.5: MSE performance of CPB for various levels of frequency offset and

different constellation sizes. N = 128, Ng = 16.

is used.

Fig. 5.5 shows the performance of the CPB scheme. Again MSE in the esti-

mate is evaluated for various frequency offsets and constellation sizes. We can see

that for zero offset and QAM signaling, the MSE decreases with increasing SNR,

just as in the PTA scheme. On the other hand, in this case the resulting MSE

is very robust against the variation in the frequency offset and/or constellation

size. Only at very low SNR (< 0 dB) does the resulting MSE consistently but

negligibly rise as frequency offset increases.

To directly compare the above two approaches, Fig. 5.6 collects the simulation

results for QAM signaling. It can be seen that with zero frequency offset, the
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levels of frequency offset.
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PTA scheme is slightly better than the CPB method at all SNR levels. However,

with nonzero offsets, PTA is superior over CPB only at very low SNR. In Fig. 5.7

where the simulation results for 16-QAM signaling are summarized, we see that

the CPB method is always better than the PTA scheme. The same property has

been verified for the case of 64-QAM. Note that the demonstrated robustness of

the CPB scheme against constellation size contradicts the conjecture in [59] that

non-data-aided structures fail when high order modulation schemes are used.

5.4.2.2 Sensitivity to Timing Error

So far perfect time synchronization has been assumed, which is not true in real

applications. To investigate the sensitivity of the above methods to timing errors,

we introduced symbol offsets of -4, -2, 0, 2, and 4 samples respectively, then

repeated the above simulations. Here a negative time offset means that the FFT

window starts earlier than it should, as indicated in Fig. 5.2. In this case the

beginning of the FFT window remains within the cyclic prefix, therefore the

orthogonality of the carriers is maintained. A positive time offset, on the other

hand, corresponds to a late start of the FFT window. Clearly, it degrades the

FFT demodulation due to the loss of the beginning part of the OFDM data block.

Fig. 5.8 illustrates the resulting MSE for both the PTA and CPB schemes. It is

shown that the performance of the PTA scheme is very robust to negative time

offsets and degrades in the presence of positive time offsets. However, the CPB

scheme is sensitive to time offset in both directions. And overall, the PTA scheme

is less sensitive to timing error than the CPB scheme.
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5.5 Conclusion

In this chapter we compared two popular candidates for frequency offset track-

ing in OFDM systems. Extensive simulations show that the pilot tone-based

algorithm is sensitive to both frequency offset and modulation scheme, and the

cyclic prefix-based method is sensitive to timing error. Since the PTA scheme

also needs greater channel stability (it operates on at least two sequential OFDM

blocks), we conclude that CPB is overall a better approach for frequency offset

tracking.

Note that in our study, we have assumed that the CPB scheme does not

need pilot tones and thus may adopt a longer cyclic prefix while satisfying the

constraint of the overall overhead. In wireless scenarios, pilot tones are needed

for fine channel estimation. We may then argue that the same cyclic prefix

length and the same number of pilots should be adopted in evaluating both

approaches to perform a fair comparison. In this case, since the performance

of PTA is determined by the number of pilots, and the performance of CPB

depends on Ng −L + 1, the results reported in this chapter remains valid as long

as Ng−L+1 ≥ Np. When 1 ≤ Ng−L+1 < Np and the frequency offset is nonzero,

CPB is worse than PTA at low SNR and is still better than PTA at high SNR, due

to CPB’s robustness against frequency offset and modulation scheme. The SNR,

at which the two performance curves cross each other, increases with the increase

of Np − (Ng − L + 1). Therefore, a hybrid frequency offset tracking structure

using both pilots and cyclic prefix is expected to yield better performance and

should be further explored.
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CHAPTER 6

Optimal Training for OFDM-Based Anytime

Anywhere Radio Transmissions

6.1 Introduction

Training is an integral phase of reliable communications over unknown channels.

During the training phase, known symbols are transmitted for purposes of channel

estimation and synchronization. While too little training results in inaccurate

estimates, too much training leaves insufficient time for data transmission before

the channel changes. To maintain a maximum throughput for a high data rate

wireless mobile system, it is necessary to adapt the amount of training. The

knowledge of the optimal training length as a function of channel situations will

facilitate the training length scheduling.

For the piece-wise constant approximation of time-varying channels, the op-

timal training length has been studied in [54]. Under the assumption of perfect

synchronization, it is shown from the capacity point of view that at high SNR the

optimal training length is equal to the channel length (the minimum meaningful

training length); at low SNR, it increases until it converges to a third of the

channel coherence interval. However, the assumption of perfect synchronization

is not always valid in practical systems, especially when a system employs or-

thogonal frequency division multiplexing (OFDM) modulation. It is well-known
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that OFDM is more sensitive to synchronization errors than to channel estima-

tion errors, due to the longer duration of an OFDM symbol and the inter-carrier

interference caused by loss of the carrier orthogonality.

In this chapter we investigate the optimal training length for an OFDM-based

system that enables anytime anywhere multimedia transmissions. We approach

the problem by deriving the quantitative relationship between training length

and system throughput. Effects of both channel estimation error and residual

frequency offset are considered. Note that in order to significantly reduce the

training overhead, algorithms for blind estimation, synchronization, and detec-

tion have been proposed. However, they are only effective when a large amount

of data can be collected. This is clearly a disadvantage in the case of mobile wire-

less communications where the time-varying channel would preclude such data

gathering. Also, the high complexity of a blind estimator makes a training-aided

estimation the better choice.

The rest of this chapter is organized as follows. Section 6.2 describes the

system model used in this study. Section 6.3 analyzes and quantifies the impact

of the training length on the system throughput. Section 6.4 derives closed-form

expressions of the optimal training length in a variety of scenarios, and verifies

the results in simulation. Section 6.5 concludes the chapter.

6.2 System Model

The mobile wireless channel is modelled as a time-varying finite impulse response

(FIR) filter with coefficients h(t, τ), where t is the index of time, and τ is the

multipath index. A discrete version of h(t, τ) can be written as h(m, l), 1 ≤ l ≤ L,

where L represents the maximum length of the channel. Let H(n, k), 1 ≤ k ≤ K,
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denote the frequency response of the kth tone in the nth OFDM block. Here K

is the number of subchannels.

For statistical measures of the channel, channel correlation functions in both

the time and frequency domains have been explained in [49]. In this study the

coherence bandwidth/time is defined as the bandwidth/time duration over which

the frequency/time correlation function is above 0.9. In other words, the coher-

ence bandwidth Bc and delay spread ∆τ are linked by

Bc =
1

50∆τ
, (6.1)

and the coherence time Tc is related to the Doppler spread fd by

Tc =
1

fd

. (6.2)

To simplify our analysis, we further assume that the channel does not change

during the transmission of one packet, which can be easily validated through

proper packet size scheduling [50, 51].

6.3 Impact of Training Length on Throughput

The system throughput G is calculated by

G =
Lp

Lp + Lt

·R · (1− Pe)
Lp . (6.3)

Here R is the transmission rate which is known and application-dependent, Lp and

Lt respectively represent the packet length and training length, and Pe denotes

the probability of error. Our goal is to find the optimal Lt which maximizes G.

When the packet length is also known, we have a natural constraint on Lt, that

is,

L ≤ Lt ≤ Lp.
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The units of L, Lp, and Lt are samples.

Clearly, the impact of the training length on the system throughput is twofold.

On one hand, training overhead reduces the throughput, because less time is spent

on data transmission. On the other hand, a long training improves the accuracy

of parameter estimation and consequently reduces the probability of error Pe,

which to a certain degree compensates the loss in the effective data transmission

time. The mathematical description of the first effect is straightforward. How-

ever, the mathematical description of the second effect needs clarification of the

relationship between Lt and Pe, which obviously is difficult because it involves a

variety of parameter estimation tasks.

To simplify our analysis without sacrificing any important term, we consider

two dominating estimation errors, i.e., channel estimation error and residual fre-

quency offset. Various methods for estimating the channel frequency /impulse

response and frequency offset in OFDM systems have been proposed in the liter-

ature [56]-[59, 53]. In this chapter, we assume the use of the best estimators and

adopt the corresponding Cramér-Rao bound whenever we address mean square

error in estimates. SNR is defined as Es/No.

6.3.1 Effect of Channel Estimation Error

The mean square error in the estimate of the channel frequency response is defined

by

MSE = E





1

K

K∑

k=1

∣∣∣∣∣
H(n, k)−H(n, k)est

H(n, k)

∣∣∣∣∣
2


 , (6.4)

where H(n, k)est and H(n, k) represent respectively the estimated and actual

subchannel gains. By using the method in [55], the Cramér-Rao lower bound on
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the MSE is found to be

CRLB =
1

SNR · Lt

. (6.5)

The impact of the MSE on the probability of error Pe depends on the channel

modulation scheme. For quadratic amplitude modulation (QAM), it is [52]:

PC
e = 2Q

[√
SNR ·

(
1−

√
2 ·MSE

)]
, (6.6)

where Q[x] =
∫∞
x

1√
2π

e−y2/2dy. Substituting (6.5) into (6.6), we obtain the ex-

pression of the probability of error

PC
e = 2Q

[√
SNR ·

(
1−

√
2

SNR · Lt

)]
. (6.7)

Further combining expressions (6.7) and (6.3), we get the direct relationship

between the training length and throughput. The numerically obtained optimal

training length L∗t as function of Lp and SNR is depicted in Fig. 6.1. R is set at

50 Kbit/s for facilitating the labelling in figures, and the values of SNR are chosen

to yield Pe within the reasonable range of 10−5 to 10−2. For a fixed Lp and SNR,

we obtain the optimal training length by trying various Lt values within the

interval [2L,Lp] and then finding the one that maximizes G. Fig. 6.1 shows the

contours of the optimal training length on the plane of (LP, SNR). We observe

that at a fixed packet length, the optimal training length L∗t decreases with the

increase of SNR; at fixed SNR, L∗t increases with Lp. In other words, a longer

packet is expected to contribute more time on training. This is not surprising

because in order to achieve the same target packet error rate, a longer packet

requires lower probability of error which implies the need for a longer training.

Now consider L∗t /Lp (the ratio of the optimal training length to the packet

length). It almost remains constant at fixed SNR, especially for long packets, as

shown in Fig. 6.2. Fig. 6.3 demonstrates the corresponding optimal throughput.
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Figure 6.1: Contours of optimal training length. Assumption: Channel estima-

tion error dominates.
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It can be seen that at low SNR (<10 dB), short packets achieve better perfor-

mance than long packets. At moderate SNR (10 dB ≤ SNR ≤ 13 dB), short

packets still slightly outperform long packets. However, at high SNR (>13 dB),

a long packet is a better choice.

Note that for time-varying frequency-selective channels, channel mismatch

errors have two origins. One is the inaccurate channel estimation. The other is

the delay in the feedback loop. While error from the first cause can be reduced by

increasing the training length, error from the second cause can only be mitigated

through more frequent channel estimation. The latter is related to packet size

control which has been assumed available in this study.

6.3.2 Effect of Residual Frequency Offset

Now we consider the second dominating estimation error, i.e., residual frequency

offset ε. During the training phase, frequency offset ∆f between the receiver

and transmitter is estimated by correlating the received counterparts of a pair

of identical sequences of length Lt. The Cramér-Rao lower bound for frequency

offset estimation is [53]

CRLB(∆f) =
1

π2 · Lt · SNR
. (6.8)

According to the analysis in [44], residual frequency offset ε (normalized) results

in SNR degradation in dB of

D =
10

3 ln(10)
π2ε2 · SNR. (6.9)

Assuming ε is a variable with zero mean, the average SNR degradation is then

E{D} =
10

3 ln(10)

1

Lt

, (6.10)

76



6 7 8 9 10 11 12 13 14

500

1000

1500

2000

2500

SNR (dB)

 L
p (

sa
m

pl
e)

10
0 50

50
0

30
0

300

20
0

200

200
100

100

100

50

50

50

50
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chronization error dominates.

and the average SNR at the input of the decision device is given by

10
− 1

3 ln(10)Lt · SNR. (6.11)

Therefore, the probability of error for QAM is

P F
e = 2Q

[√
SNR

√
10
− 1

3 ln(10)Lt

]
. (6.12)

Combining expressions (6.3) and (6.12), we obtain L∗t , L∗t /Lp, and G∗, and

depict them respectively in Figs. 6.4-6.6. We obtain similar observations as those

in the previous subsection.
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6.3.3 Combined Effect of Channel Estimation Error and Residual Fre-

quency Offset

Assuming the worst case, the noise terms from the above two error origins are then

additive. For QAM, the noise term caused by channel estimation error is 1
Lt·SNR

,

and that from residual frequency offset is 1
3Lt·SNR

. Moreover, residual frequency

offset reduces the signal power by 1
3Lt·SNR

. Hence, the overall probability of error

is

Pe = 2Q




√√√√ 1− 1
3Lt·SNR

1
SNR

+ 1
Lt·SNR

+ 1
3Lt·SNR


 = 2Q

[√
3Lt · SNR− 1

3Lt + 4

]
. (6.13)

Clearly the effect of residual frequency offset dominates. This verifies our earlier

statement that an OFDM system is usually more sensitive to imperfect frequency

synchronization.

6.4 Closed-Form Expressions of the Optimal Training Length

The above numerical results provide helpful information to properly choosing the

training length during data transmissions. However, the trial-and-error approach

for finding the optimal training length is not feasible in practice. To solve this

problem, recall the optimization problem discussed in the previous section:

max
L≤Lt≤Lp

G =
Lp

Lp + Lt

·R · (1− Pe)
Lp . (6.14)

We observe from numerous simulations, that for any fixed Lp and SNR, G(Lt) has

a unique global maximum, as illustrated in Fig. 6.7. Therefore, the determination

of L∗t can actually be sought by differentiating G with respect to Lt. In other

words, L∗t is the solution of the following equation

dG

dLt

= − R · Lp

(Lp + Lt)2
· (1− Pe)

Lp · (6.15)
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[
1 +

Lp · (Lp + Lt)

1− Pe

· dPe

dLt

]
= 0.

Assuming Pe is small, which is valid most of the time, we are then able to find

the closed-form expressions for the optimal training length.

For channel estimation, differentiating (6.7) with respect to Lt, we get

dPC
e

dLt

= − 1√
π

e
−
(√

SNR·
(

1−
√

2
SNR·Lt

))2

/2 · L−
3
2

t . (6.16)

Further combine (6.15) and (6.16) to obtain the approximated optimal training

length as

L̂∗t =

(
L2

p ·
1√
π
· e−SNR/2

) 2
3

. (6.17)

Fig. 6.8 compares L∗t and L̂∗t . It can be seen that the difference between them

is small. Fig. 6.9 further shows that the throughputs resulting from L∗t and L̂∗t

are in agreement.

For frequency offset estimation, the approximated optimal training length is

found to be

L̂∗t =

(
1

3
√

2π
· L2

p · e−SNR/2 ·
√

SNR

) 1
2

. (6.18)

L∗t and L̂∗t are compared in Fig. 6.10. The corresponding system throughput is

compared in Fig. 6.11. Again, we observe negligible degradation from using the

approximation (6.18).
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Figure 6.8: Comparison of the actual (solid) and approximated (dashed) optimal

training length. Assumption: Channel estimation error dominates.
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6.5 Conclusion

We analyzed and quantified the impact of the training length on the system

throughput for an OFDM-based wireless communication system. The effects

of channel estimation error and residual frequency offset were considered. We

illustrated the optimal training length and optimal throughput as function of SNR

and packet length. We also obtained closed-form approximations for the optimal

training length, which readily lead to low-cost adaptive schemes for practical

training length control.
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CHAPTER 7

Concluding Remarks and Future Directions

In this study, we addressed several training-related issues for achieving energy-

efficient high-speed information transmission over dispersive fiber optic links and

radio channels.

We first studied the polarization mode dispersion phenomenon in single-mode

fibers. We proposed and validated that a fiber channel with PMD can be char-

acterized as a one-input two-output system. We showed that the system transfer

function, described by two finite impulse response (FIR) filters, can be derived

from any of the two popularly adopted PMD representations, i.e., a PMD trans-

formation matrix or a PMD vector. Theoretically, an equalization-based PMD

compensator can be then readily built based on the knowledge of the two FIR

filters. To provide a practical solution, an adaptation scheme is required for

adjusting the compensator’s coefficients to combat the change of the PMD chan-

nel over time. The development of such an adaptive algorithm along with its

implementation is not a trivial task and could lead to a new project.

Our effort towards suppressing the PMD effects resulted in a simple training-

based scheme that compensates the first-order PMD at low cost.

The present study also contributed to optimizing the performance of an

OFDM-based wireless transmission system by discussing and providing insights

into the peak-to-average power ratio of OFDM signals, the sensitivity of various
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frequency offset tracking methods to key system parameters, and the scheduling

of the training sequence length.

We found that the pilot tone-assisted (PTA) algorithm is sensitive to both fre-

quency offset and modulation scheme, and the cyclic prefix-based method (CPB)

is sensitive to timing error. Since the PTA scheme also needs greater channel

stability (it operates on at least two sequential OFDM blocks), we concluded

that CPB is overall a better approach for frequency offset tracking. However,

when pilot tones are needed for fine channel estimation, a hybrid frequency offset

tracking structure using both pilots and cyclic prefix might be expected to yield

better performance. This would be another interesting research project.

Finally, we have shown that the optimal training length is a function of signal-

to-noise ratio and packet length, and that the optimal scheduling of the train-

ing length can be achieved through transmitter-receiver cooperation. With the

increasing demand for multimedia applications, a system design that satisfies

Quality-of-Service (QoS) requirements becomes desirable. Hence, cross-layer de-

sign, taking into account the bursty nature of wireless data, is emerging as a

promising methodology for wireless networks. For example, packet structures

may be designed to reflect QoS prioritization. In this case, the optimization of

the training length will also be subject to more constraints and become a more

challenging research issue.
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Digest. OFC ’02. THGG56. 2002.

91



[22] H. Chen, C. F. Lam, N. J. Frigo, G. J. Pottie, P. D. Magill, and M.
Boroditsky. A One-Input Two-Output Channel Representation for Single-
Mode Fibers with PMD. Journal of Lightwave Technology. 743-9, Vol. 21,
Mar. 2003.

[23] H. Chen, R. M. Jopson, and H. Kogelnik. On the Bandwidth of Higher-Order
Polarization-Mode Dispersion: the Taylor Series Expansion. Optics Express.
1270-82, Vol. 11, Jun. 2003.

[24] B. W. Hakki. Polarization mode dispersion compensation by phase diver-
sity detection. IEEE Photonics Technology Letters. 121-123, Vol. 9, No. 1,
Janurary 1997.
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