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ABSTRACT OF THE DISSERTATION

On robust estimation in causal machine learning

by

Jeffrey Jiang

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2024

Professor Gregory Pottie, Chair

This thesis presents three significant contributions to the field of machine learning, with a

focus on Variational Autoencoders (VAEs), energy-based models, and education simulations.

Firstly, we demonstrate the ability to impose substantial structure on the latent space of

VAEs, enabling out-of-distribution data generation, structural hypothesis testing, and the

production of augmentations in the latent space. These findings give us new ways to structure

and interpret the latent space, creating robustness and explainability. Secondly, we identify a

state-of-the-art defense technique using the unsupervised learning approach of energy-based

models. This technique effectively defends against several poisoning techniques without

requiring excessive additional training time or significantly reducing test accuracy. Lastly,

we have developed a simulation for educational purposes that aims to model and comprehend

the interactions between humans and machines. This simulation, built on causal information,

provides insights into the design of practical educational experiments and highlights the

challenges associated with implementing a dynamic Intelligent Tutoring System (ITS) in an

educational context. Interestingly, our simulation reveals that heuristic methods continue

to perform on par with deep learning techniques in the presence of unknown subpopulation

ii



distributions and hidden student states. This suggests that despite the rapid advancements

in deep learning, heuristic methods retain their effectiveness in certain scenarios. These

findings open new avenues for the application of machine learning techniques and provide a

solid foundation for future research in these areas.
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CHAPTER 1

Introduction

Recent years have enlightened much of the general public of the current state and the future

potential of artificial intelligence (AI) in our society. In light of this new frontier of AI, we’ve

come to realize that an important area of research is to understand how to interface the use

of AI with humans. In particular, AI has shown incredible performance in image recognition,

natural language processing, and reinforcement learning tasks. Examples can be seen in all

sorts of examples, such as self-driving cars, medical diagnosis, and even in education.

However, these advancements still have many subjective weaknesses. Most AI models are

heavily over-parameterized, leading to them mostly being unexplainable black-box models.

Furthermore, these models often focus on a single objective metric, such as accuracy, which

can lead to models that are brittle and overfit to the training data. This brittleness reduces

neural networks’ ability to generalize to new data, and can possibly be attacked with small

perturbations to an input dataset. In addition, the black-box nature of AI reduces human

trust in the model, and can lead to dangerous consequences in extreme cases. Thus, we

would like to investigate ways to incorporate explainability and human interaction into the

use of AI.

Across the thesis, we investigate the improvement of robustness through the use of causal

understanding. Causal reasoning is the process of understanding the cause-and-effect rela-

tionships between variables. All the projects presented in this thesis use some unsuper-

vised learning with causally-inspired structure or directly manipulate causal structures. The

causally-inspired unsupervised learning allows us to understand underlying structures in the
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data and provide better explanations for the model’s decisions. This all leads to a more

robust model that can generalize better to new data and is more trustworthy to humans.

These techniques no longer focus on just the single objective metric, but instead focus on

a more holistic understanding of the problem. Thus, it may come at a loss of performance,

but we believe that the trade-off is worth it.

In this thesis, we explore these causal structures for robustness in several problem settings.

In the first, we understand generative models that attempt to disentangle the causal factors

of variation in the data, and provide a structural understanding of the latent space. In the

second, we propose a defense against adversarial poisoning attacks that uses energy-based

models to purify the training data. In the third, we propose a method to simulate human

education that uses causal reasoning to generate counterfactual explanations for students

and attempts to handle the dynamics of human interactions.

The remainder of the thesis is organized as follows. Chapter 2 gives some background

information about the topics covered in the thesis. Chapter 3 describes some initial research

investigation on hidden-information games, how they apply to causality, and what makes

the problems interesting and difficult. Chapter 4 gives a first experiment on using causal

structure on an unsupervised learning to attempt to de-bias data points and generate points

unrealistic in the generating dataset. Chapter 5 extends on the idea in Chapter 4 to use causal

structure to test for the best causal structure explaining a dataset. Chapter 6 further extends

the ideas in the previous two chapters to understand how to structure the latent space of a

dataset to specifically correlate certain regions toward certain augmentations, allows for some

interesting emergent properties. Chapter 7 describes a state-of-the-art defense mechanism

against adversarial poisoning attacks that uses unsupervised energy-based models to purify

the training data. Chapter 8 describes a method to simulate human education that uses

causal reasoning to generate counterfactual explanations for students and attempts to handle

the dynamics of human interactions.

2



CHAPTER 2

Background

In this chapter, we provide a brief overview of the foundational concepts and techniques that

are relevant to the work presented in this thesis. The concepts will be built upon in more

depth in later chapters.

2.1 Probabilistic Graphical Models

2.1.1 Conditional Probability and Bayes’ Rule

A B

A ∩B

S

Figure 2.1: A Venn diagram depicting the events A and B in the total state space S.

Conditional probability is an important idea in probability. Given the notation in Figure

2.1, the conditional probability P [A|B] is the probability of A occurring if B is the possible

states remaining. Therefore,

P [A|B] =
P [A ∩B]

P [B]
(2.1)

In particular, when A and B are independent (i.e. A ⊥⊥ B), then P [A|B] = P [A], implying

P [A ∩B] = P [A]P [B].
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The basis of probabilistic graphical models comes from Bayes’ rule, which states that

P [A|B] =
P [B|A]P [A]

P [B]
(2.2)

where P [A|B] is the probability of event A given event B occurs (sometimes called the

posterior), P [B|A] is the probability of event B given event A occurs (sometimes called the

likelihood), P [A] is the probability of event A (sometimes called the prior), and P [B] is the

probability of event B (sometimes called the marginal distribution).

Bayes’ rule establishes a deeper understanding of conditional dependence. Conditional

probability connects the probability of A and B in a powerful way that allows for inference.

Suppose, for instance, your friend says something (A) to you in a loud coffee shop, but you

cannot directly hear everything due to the loud noise. You pick out a couple words (B) and

use a mixture of prior context (P (A)) and the likelihood of hearing those words (P (B|A))

to infer what your friend said (P (A|B)). Sometimes, you can get a high estimate of P (A|B)

and continue the conversation seamlessly. Other times, you might get a low estimate of

P (A|B) and ask your friend to repeat themselves.

2.1.2 Conditional Independence and Bayesian Networks

Conditional independence is a key concept in probabilistic graphical models. Two events A

and B are conditionally independent given event C if

P [A ∩B|C] = P [A|C]P [B|C] (2.3)

It is important to note that without knowledge of C, A and B may not be independent.

A Bayesian network is a directed acyclic graph (DAG) where each node represents a

random variable, and each edge represents a conditional dependency between the random

variables. Most importantly, the graph structure of the Bayesian network encodes the con-

ditional independence relationships between the random variables. This comes in several

forms. Consider the Bayesian network in Figure 2.2. For any two nodes with no shared
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S D

W CT

M

Figure 2.2: A Bayesian network depicting a graph determining where to meet. S is the

season, D is the day of the week, W is the weather, T is the time of day, C is the cost, and

M is the meeting location.

ancestors, nodes are independent, e.g. C ⊥⊥ T . For any two nodes with shared ancestors,

nodes are independent given their shared ancestors, e.g. W ⊥⊥ T |S. Finally, the distribu-

tion of any node is conditionally independent of all non-descendants given its parents, e.g.

M ⊥⊥ S,D |W,T,C.

One benefit of a Bayesian network is the factorization of the joint probability distribu-

tion, which heavily reduces the number of parameters. For instance, the joint probability

distribution of the Bayesian network in Figure 2.2 can be factorized as follows

P [S,D,W, T, C,M ] = P [S]× P [D]× P [W |S]× P [T |S,D]× P [C]× P [M |W,T,C] (2.4)

One example of conditional independence is the Markov property, which is a key concept

in stochastic processes and time-series probabilistic graphical models. The Markov property

states that the future random variables in a stochastic process is conditionally independent

of the past states given the current state. This can be represented as a Bayesian network

X1 → X2 → X3 → · · · → XT , where Xt+1 ⊥⊥ Xt−1 |Xt.
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2.1.3 Hidden Markov Models

Hidden Markov Models (HMMs) are a type of probabilistic graphical model that are used to

model time series data [Rab89]. An HMM is a directed graphical model with a sequence of

hidden states and a sequence of observed variables, as shown in Figure 2.3. Unlike a standard

Markov model, the HMM assumes that the state of the system is not directly observable,

but instead the system is observed through a set of noisy measurements.

The observed variables are the data that we have access to, while the hidden variables

are the latent variables that we do not have access to. The hidden variables are assumed to

be Markovian, meaning that the current state of the hidden variables only depends on the

previous state of the hidden variables. The observed variables are conditionally independent

given the hidden variables. The model is defined by the initial probabilities of the hidden

states, transition probabilities between the hidden states, and the emission probabilities of

the observed variables given the hidden states.

. . . ht−1 ht ht+1
. . .

xt−1 xt xt+1

Figure 2.3: A hidden Markov model with three time steps.

There are many ways to use an HMM. First, we can an HMM to generate a sequence of

hidden states and observations, given the parameterized distributions. Recursively, this can

be done by sampling the distributions:

h1 ∼ π

ht ∼ P [ht|ht−1]

xt ∼ P [xt|ht] (2.5)
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where π refers to the initial probability distribution. More importantly, we can use Bayesian

properties to get an online estimate of the hidden states as we make observations. Recur-

sively, we can calculate the probability of the hidden state ht being in state k of K total

states as follows:

P [h1 = k] =
P [x1|h1 = k] π(k)∑K
j=1 P [x1|h1 = j] π(j)

P [ht = k] =
P [xt|ht = k]P [ht = k|ht−1]∑K
j=1 P [xt|ht = j]P [ht = j|ht−1]

(2.6)

If we save only the maximum likelihood path to each previous state, this dynamic program-

ming algorithm is known as the Viterbi algorithm. The Viterbi algorithm is used to find the

most likely sequence of hidden states given the observed sequence.

Furthermore, HMMs allow for the estimation of the model parameters given the observed

data. The Baum-Welch algorithm is used to estimate the model parameters by maximizing

the likelihood of the observed data.

HMMs are used in a wide variety of applications, including speech recognition, bioinfor-

matics, and finance. They have the benefit of being able to model complex time series data

and are fairly explainable, while being relatively simple to implement and train. However,

they still have limitations, such as the requirement of having a fixed number of discrete hid-

den states and the Markov assumption. Complex, multi-level hidden states are effectively

impossible to estimate, given the propagation of errors in the model.

2.2 Causality and Causal Modeling

Causal modeling is the process of constructing models that represent the causal relationships

between variables. Causal models are used to understand the underlying mechanisms that

generate the observed data, and to make predictions about the effects of interventions on

the system. Causal models are typically represented as directed acyclic graphs (DAGs),

where the nodes of the graph represent the variables of interest, and the edges of the graph
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represent the causal relationships between the variables, which looks similar to a Bayesian

network.

One of the consequences of Bayes’ rule (Equation 2.2) is that there exists a symmetry

between child and parent in a Bayesian network. Causal models, on the other hand, are

asymmetric, in that if A→ B, then forcing B does not necessarily cause A. A basic example

is the sun rising causes the rooster to crow, but if we force a rooster to crow, the sun does not

rise. This is a key difference between causal models and Bayesian networks, where traditional

Bayesian networks only concern themselves with observing B. This gives rise to the idea of

interventions, where we can force a variable to a specific value and observe the effects on the

rest of the system. [Pea09a] uses the idea of interventions to define the do-operator, which

is used to represent the effect of interventions in a causal model.

Consider Figure 2.2 as an example causal model. Suppose we know one person can only

meet around noon, thereby forcing T to be noon. Suppose in the summer, we are normally

less likely to meet at noon because of the heat. In a traditional Bayesian network, if we were

to observe T = noon, then we would expect S = summer to be less likely. This would also

suggest that W = sunny is less likely and implies that M = hike would be more likely.

According to the causal model, by forcing T to be noon, we effectively break the causal

connection between S and T . However, S still causally affects M through W . For example,

if S is summer, then W = sunny is more likely and M = hike is less likely. As a result,

the expected intervened probability distribution P [M | do(T = noon)] is different from the

observed probability distribution P [M |T = noon].

In [Pea09b], Pearl introduces the three rungs of the ladder of causation. The first rung of

causal reasoning is the ability to understand the association relationships between variables,

which is the lowest level of causal reasoning. These are the more traditional statistical

models, which employ observations and correlations to understand the relationships between

variables. The second rung of causal reasoning is the ability to understand the interventional

relationships between variables. Models on the second rung are able to handle situations
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when certain variables are intervened upon. The third rung of causal reasoning is the ability

to understand counterfactual relationships between variables. Counterfactual reasoning is

the ability to understand the potential outcomes of a system if it had been intervened upon

differently. We believe that achieving counterfactual models can allow for true understanding

of a system and allows for more human-like reasoning.

2.3 Deep Learning

Deep learning is a subfield of machine learning that is concerned with the development and

application of deep neural networks. A single neuron is shown in Figure 2.4 and a single-

layer neural network is shown in 2.5. The neuron takes a set of inputs, applies a linear

transformation to the inputs, and then applies a non-linear activation function to the result.

The neuron is called the neuron because it is analogous to the behavior of a biological neuron.

The general neural network, sometimes called a multi-layer perceptron (MLP), is composed

of multiple layers of neurons, where the output of one layer is the input to the next layer,

hence the term “deep” learning.

x1

x2

x3

∑
Sum

f

Activation
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w1

w2

w3

Inputs Neuron Output

Figure 2.4: A single neuron

x1

x2

x3

y1

y2

y3

y4

Inputs Hidden Outputs

Figure 2.5: A multi-layer perceptron

(MLP) with a single hidden layer
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Theoretically, a neural network can approximate any linear or non-linear function, given

enough neurons and layers. In practice, the difficulty is getting to this functional approx-

imation. Neural networks are trained using a process called back-propagation, which is a

method for computing the gradient of the loss function with respect to the parameters of

the model. The gradient computed is used to update the parameters of the model using an

optimization algorithm, such as stochastic gradient descent. This universal function approx-

imation has powerful implications on a wide variety of applications and can be a possible

solution to many problems, to be discussed further in upcoming sections.

However, there are still some limitations to deep learning. Primarily, due to its large

number of parameters, deep learning models are often considered to be black-box models,

meaning that it is difficult to understand the internal workings of the model. Deep learning

models often require a large amount of data to train, which can be difficult to obtain in some

domains. Furthermore, deep learning models often require a large amount of computational

resources and time to train, which can be a barrier to entry for some. Finally, deep learning

models are mostly over-parameterized, which can lead to over-fitting, poor generalization to

new data, and poor robustness to data attacks.

2.3.1 Supervised and Unsupervised Learning

Because neural networks are universal function approximators, they can be used for both

supervised and unsupervised learning tasks. In supervised learning, the model is trained on

a labeled dataset, where the input data x is paired with the correct output y. These labels

can be continuous values, which would be regression tasks, or categorical, which would be

classification tasks. The goal of the model is to minimize an objective loss function ℓ(f(x), y)

that measures the difference between the predicted output and the true output. For instance,

the typical output of a classification neural network is a probability distribution over the cat-

egories and the final classification is the category with the highest probability. In particular

for classification tasks, categories are arbitrarily human-defined and do not necessarily have
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a natural ordering, such as the categories of animals. As a result, classification can often

create complex decision boundaries in data, which can both be difficult to interpret but also

brittle to small changes in the data.

In unsupervised learning, sometimes known as representation learning, the model is

trained on an unlabeled dataset, where the model is tasked with finding the underlying

structure of the data. One example is clustering, where the model is tasked with finding

the natural groupings of the data. Another example is dimensionality reduction, where the

model is tasked with finding a lower-dimensional representation of the data that retains the

most important information. In both cases, while the model is able to find its own patterns

in the data, it still often needs humans to select the number of clusters or dimensions. Un-

supervised learning has the benefit of creating boundaries that are more interpretable and

robust to small changes in the data, but it is often more difficult to train and evaluate.

2.3.2 Reinforcement Learning

Reinforcement learning is a category within the domain of machine learning. RL has been

used to solve many problems, such as playing games [SHM16, VBC19, SHS17], robotics

[KBP13], and even medical applications [SIB22] with varying levels of success. RL is pri-

marily concerned with training autonomous agents to make informed decisions within a

given environment, with the overarching objective of maximizing cumulative rewards. This

learning paradigm revolves around the iterative process of directly using trial and error to

interact with the environment, enabling agents to progressively attain specific goals. Several

pivotal components make up the framework of reinforcement learning.

At its core, an agent serves as the central decision-maker, actively engaging with the

environment. Informed by its current knowledge and the information it acquires from the

environment, the agent makes decisions aimed at optimizing its performance. The environ-

ment, on the other hand, represents the external system with which the agent interacts. It

provides feedback to the agent in the form of rewards, which the agent strives to maximize
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over time.

Integral to the reinforcement learning framework is the concept of a “state,” which en-

capsulates the current situation or configuration within the environment. States encompass

all information required for effective decision-making. In addition, the environment will give

the agent a reward based on the state of the environment. In parallel, the “action” domain

encompasses the set of conceivable choices or decisions at the disposal of the agent during

each time step. These actions bear direct influence on state transitions and the resultant

rewards received. Figure 2.6 illustrates the reinforcement learning framework, highlighting

the interactions between the agent and the environment.

Agent Environment

Action

State, Reward

Figure 2.6: Reinforcement Learning Framework

Typically, the goal of a reinforcement learning agent is to maximize its cumulative reward

over time. The reward itself is a scalar value that is often human designed to guide the agent

towards a specific goal. Different reward functions can lead to drastically different behaviors

in the agent, and the design of the reward function is a key part of the reinforcement learning

process.

The reinforcement learning agent refines its decision-making process through a continuous

cycle of action, observation of resulting states, and acquisition of rewards. This dynamic

learning process typically depends on a diverse array of algorithms and techniques, examples

are discussed below. In most of our techniques, we focus on finding the next action via

the Q-value. The Q-value represents our estimate of the expected discounted return for a

state-action pair.

However, RL still has many ongoing problems. Unlike supervised learning, RL deals with
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a non-stationary non-independent dataset, making sample efficiency an important point of

discussion. Therefore, RL has difficulty in low-interaction spaces and can have difficulty

adjusting to a changing environment. Finally, RL still suffers from similar problems to

supervised learning, in that interpretability and performance often have some level of trade

off.

2.3.2.1 Q-Learning

Q-Learning is a simplistic tabular RL method that can be summarized in several key steps

[SB18]. We maintain a table where the entries of the table are indexed by (s, a) and maintain

the current estimated Q-value, the expected discounted total reward, of taking action a when

in state s. While learning, entries of the table are continually updated via the Bellman

equation after observing the (s, a, r, s′) tuple by:

Q(s, a)← Q(s, a) + α
(
r + γ max

a′
Q(s′, a′)−Q(s, a)

)
(2.7)

where α is the learning rate and γ is the discount factor. Other slight differences in the

selection on the estimate of the new state’s value can be chosen, but this is the update for

Q-learning [SB18]. When using the Q-table, then, we normally want to take the action a

such that a = argmax
α

Q(s, α).

Unfortunately, the simplicity of Q-learning does come at a cost. While on the surface, we

can view the table as explainable, the explanations are atomic, and there is no systematic

way of explaining the difference in action between two similar states. It has low sample

efficiency and requires several passes through the entire Q-table to properly get accurate

information, which also makes it much less capable of updating to changing populations.

Nonetheless, Q-learning in small state and action spaces can provide a basic proof-of-concept

and understanding of how RL in education should function.
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2.3.2.2 Deep Q-Learning

Deep Q-Learning (DQL) substitutes the Q-table in Q-learning with a neural network. In-

terestingly, the neural networks can have significantly lower parameters than the Q-table, as

the goal of the neural network is to classify the states and group similar states to have similar

Q-values. Therefore, while updating the Q-function, it also updates states that it feels are

similar. This can produce an increased sample-efficiency and update time. Alternatively, it

can also be used to encapsulate more complex state spaces, particularly when there is hidden

information in the state space. However, it is still a black-box function and retains difficulty

of explanation.

In the DQL approach, we estimate the Q-function (state pair to a list of Q-values per

action) as a neural network. However, a major issue with deep learning on RL is the heavy

dependence of successive states. Thus, [MKS13] devises the experience-replay buffer as a

means of storing (s, a, r, s′) tuples of a large number of interactions. Then, these experiences

are randomly sampled into batches, breaking the heavy dependence of successive actions

and restoring some level of independence [MKS13]. From these sampled tuples, we get a

stochastic sample of an observed Q-function that we can compute a loss from the squared

TD-loss:

δ2t =
(
r + γ max

α
Q(s′, α)−Q(s, a)

)2
(2.8)

to do gradient updates. Again, when trying to decide on the optimal action, it will select a

such that a = argmax
α

Q(s, α).

2.4 Generative Models

2.4.1 Variational Autoencoders (VAEs)

An autoencoder, shown in Figure 2.7, is a specific type of unsupervised neural network

structure that takes high-dimensional input data, such as images, and compresses it into a
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Figure 2.7: (Variational) Autoencoder Architecture

lower-dimensional representation, called the latent space. The idea behind an autoencoder

is to have encoder and decoder neural networks of similar structure that work together to

compress and restore the input data, thereby making the goal to minimize ℓ(x, x̂).

A variational autoencoder (VAE), also structurally the same as the one in Figure 2.7, is

an extension of the autoencoder such that we also constrain the latent space to be a specific

distribution, often a Gaussian distribution [KW13]. The constraint regularizes the problem

and reduces overfitting, allowing for the VAE to generate new data by sampling from the

latent space and decoding the sampled latent values. The VAE is trained by maximizing

the evidence lower bound (ELBO), which, in practice, looks like a joint optimization of a

reconstruction term and a KL divergence:

L = ℓ(x, x̂) + λ ·KL(N (µz, σz) || N (0, I)) (2.9)

where (µz, σz) = e(x), z ∼ N (0, I), x̂ = d(z), and λ is a hyperparameter. The KL divergence

offers a measure-like distance between the latent space distribution and a standard Gaussian

distribution.

2.4.2 Conditional VAE (CVAE)

One of the problems with the VAE is that a randomly sampled image from the latent space

can be any image in the dataset. If the VAE could generate both cats and dogs, we would

not be able to control the generation of a cat or a dog. If we want to generate a specific type
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Figure 2.8: Conditional VAE Architecture

of image, such as a cat or a dog, then we would need to condition the latent space on the

class.

The conditional variational autoencoder (CVAE), shown in Figure 2.8, is an extension

of the VAE that attempts to add some supervised component to the structure [SLY15].

Effectively, the CVAE adds the label y to the input data x and the latent space z. The

training of the CVAE is similar to the VAE, but the loss function, which is structurally the

same as 2.9, is conditioned on the label y, so x̂ = d(e(x, y), y), where e is the encoder and d

is the decoder. When generating new data, we simply choose a label y and sample from the

latent space z ∼ N (0, I) to generate new data.

16



CHAPTER 3

Games

3.1 Motivation

Games have been the natural playground for RL, as they are easy to simulate, generally

have strong Markovian assumptions, and can be easily adjusted to test different structural

hypotheses [SHM16, VBC19, SHS17]. More importantly, games also have natural causal

structures involved. First, the rules of the game is a very rigid causal structure. As a result,

when playing games, people also try to develop causal methods to understand and play

games. Thus, games can be an interesting way to investigate the problem of interacting with

humans in a strict, causal way.

Game theory can be a part of the discussion behind games. In considering a competitive

multiagent RL problem, the problem will typically be solved by finding the Nash equilibrium

of the game. Oftentimes, this deals with the minimax solution, where the environment is

playing at its optimal level. However, we are not interested in finding the game-theoretic

solution, but rather in understanding the human’s strategy. Specifically, the challenge of dis-

covering the human state and winning the game reflects the same balance between exploita-

tion and exploration found in traditional dual control or reinforcement learning problems.

Furthermore, games can be easily be adjusted. These adjustments can result in com-

pletely new tasks with similar concepts. Or, we can use new methods to encode implicit

causal information through adding interventions. Ultimately, the flexibility of games is a big

selling point in their use, as their complexity can start small and increase based on how the
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rules have been set. This justifies the use of different methods of causal understanding of

both the game space and the individual space that can transfer much easier between different

versions of games. Besides just understanding how flexible our causal modeling is, we can

also make rule modifications for the explicit purpose of testing interventions.

3.2 Problem Formulation

We define the problem in terms of the vocabulary of an agent-environment interaction in

reinforcement learning (RL). Each game has some rigidly defined set of rules that define the

possible dynamics of the game and two actors a human and a RL agent. In our case, we

interchangeably call the agent the “bot” and the environment actor the “human.” In this

context, the environment encapsulates both the game, with its proposed structure, and the

human, with their playing structure.

The objective of the agent is to handle both aspects of the environment: to achieve an ob-

jective in the game (the problem state) and to achieve an understanding of the environment’s

human actor (the actor state). In particular, the actor state can influence how the problem

state dynamics evolve. Because the actor state is human, we assume the environment to be

non-stationary, but follows some causal set of human-understandable set of principles. With

partial observability, any deviation from the ground truth can quickly degrade prediction

performance [SB18].

In general, this non-Markovian “mind-reading” problem is intractable. However, we

further assume that the agent is able to perform interventions specifically to get information

about the environment. We also assume that actions are non-catastrophic, i.e. the agent can

always recover from any action that it takes and that the agent does not always need to take a

theoretically optimal action. Thus, at different points in time, we can reduce the uncertainty

of the unobserved environment state to better choose future actions. With the combination

of gaining information and the constraints on the environment, we can view the problem as
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a causal inference problem, where the agent is trying to infer the environment’s state based

on the interventions that it performs. This primarily reduces the problem to how much

information is gained through interaction and what quality of estimation this information

can provide. In terms of data, we may or may not assume that there is an abundance of

population data, but we always assume that there is a lack of individual data. Instead,

based on the population, we form prior knowledge models from which we learn possible

dynamics. However, we can only choose to create models small enough that estimation is

possible within a small number of observations and know how to adjust these models as more

data may come in. Our solution to this is to limit the models to discrete sets through the use

of causal models. By applying causal structures, we want to leverage sample efficiency, and

also provide explanations based on causal interventions and possible counterfactual realities

should we have performed other actions, plus a transfer between models based on the level

of information gained.

3.3 Formal Problem Statement

The RL environment can be separated into a Game Space and Human Space. Consider

the game space, defined for two players, denoted a for agent and e for environment. For

now, we will assume that the game has a predefined fixed structure. Each player observes

a sequence of observations {oat : t ∈ {1, . . . , T}}, {oet : t ∈ {1, . . . , T}}, performs a sequence

of actions {aat : t ∈ {1, . . . , T}}, {aet : t ∈ {1, . . . , T}}, and receive a sequence of rewards

{rat : t ∈ {1, . . . , T}}, {ret : t ∈ {1, . . . , T}}. Because the agent and environment do not have

to be playing symmetric games, the states and actions do not need to come from the same

support. Based purely on the game dynamics, P
[
oet+1, r

e
t+1|oat , aat

]
and P

[
oat+1, r

a
t+1|oet , aet

]
are some fixed distribution. Of course, because the game itself need not stationary, these

distributions can be different at different points in time t.

Now, we discuss the unobserved components from the agent’s perspective. For now, we
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ignore the reward, as that is defined purely based on the game dynamics. From the agent’s

perspective, the game can be reduced using Markovian assumptions on the game to

P
[
oat+1|oat , aat

]
=
∑
oet ,a

e
t

P [oet |oat , aat ]P [aet |oet ]P
[
oat+1|oet , aet

]
(3.1)

Here, the t indexing assumes that the t time step for the environment comes after the t time

step for the agent.

First, unless the game is fully observed, we only have partial information of oet given

oat , i.e. we can only have some distribution P [oet |oat , aat ]. The main consideration, though,

is that the agent cannot observe the policy P [aet |oet ], even if we know oet . Furthermore, we

assume in our problems that this policy is dynamic. For instance, if we normally assume

the self-play minimax solutions, we may assume that P [aet |oet ] = P [aat |oat ], but this is not

the case in our problem (the state and action spaces may not even be the same). Just to

illustrate, if we have a fully observed game, then we know that P [oet |oat , aat ] is the indicator

for the environment state’s observation, which the agent can deduce. Then Equation 3.1

simplifies to just understanding the environment’s policy.

P
[
oat+1|oat , aat

]
=
∑
aet

P [aet |oet ]P
[
oat+1|oet , aet

]
(3.2)

So, we define a hidden human state {ht : t ∈ {1, . . . , T}}. We want to see if the inclusion

of this human hidden state can help us better understand the environment. In the event of

infinite multiversal simulation data on the entire population, we can view h as the selector

of the specific person in a population. However, in our case, we only have a small amount of

data per person, so we can only view h as a selector of a subpopulation. In the worst case,

T = 1 could imply that there is no further information we can gather from the person about

how they play the game, and we can only rely on the population information that we have.

Using this, we can potentially estimate the environment’s policy as

q(oat , a
a
t , ht) ≈ P [oet |oat , aat ]P [aet |oet ] (3.3)

20



The inclusion of h does complicate things, though, as it introduces a second level of

dynamics and, thus, a second level of estimation uncertainty. If we were to do the estimation,

ht can depend on the entire history of the game, i.e. P [ht+1|h1:t, o
e
1:t, r

e
1:t], and perhaps even

to previous plays of this game or other games. Even if only a fixed window affects the history,

this adds to the difficulty of estimation. Furthermore, even if we were to have all the game

data, we would still have to either use unsupervised learning techniques to assign values of h

or use some other form of prior knowledge. Thus, we have to choose the possible modeling

of ht conservatively based on the data that we have in order to provide the best possible

estimate provided in Equation 3.3. As a step toward this direction, we allow the ability to

try and get access to ht through interventions, analogous to asking a student about how they

are studying.

Now we can add the rewards back in to picture. In our case, currently the reward will

depend only on the action taken aat and the next observation oat+1, but to be more general

we can also define

r(oat , a
a
t , ht) ≈ P

[
rat+1|oat , aat

]
(3.4)

and therefore, our final objective will be the same as most RL problems with maximizing

the aggregate expected reward

Ga
t =

T∑
k=t+1

γk−(t+1)rak (3.5)

at any point in time, where γ is the RL discount factor to balance short and long-term

rewards.

One other differentiating factor we want to consider in our problem is the inclusion of

interventions. On one hand, one can view the “exploration” steps in RL to be probing

interventions, as we are choosing to step away from the currently found optimal policy to see

if there are other solutions. On the other, we can also directly impose extra interventions,

actions that are not part of the “basic” set of actions in the game space that would change

the state in a way that would normally follow the game rules (usually with a cost in reward
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to make the game actions separate). From the perspective of information flow, typically

inclusion of probing interventions is an interesting way of changing the environment toward

providing better collaboration, even if the probing intervention has a cost.

Another way to view the interventions is that we change the rules into a similar, but

different version of the game. The idea is that most of the concepts should still transfer

between these versions of the game, but may now have extra tools to attempt to earn the

highest reward.
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Figure 3.1: A simple hypothesized DAG about how a student may produce results for any

single concept in a duration of time. Each of the inputs at the top are time dependent.
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3.4 Liar’s Poker

Liar’s Poker is the first game on which we tested our ideas. A basic overview of the rules:

• All cards are drawn from a deck consisting of NS suits and NR ranks, such as the

standard 52-card deck (with NR = 13, NS = 4).

• Each game consists of rounds. In each round, players are dealt completely new cards.

At the beginning of the game, each player is dealt the same number of cards (in this

example 2 cards).

• Each round consists of turns. The two players take turns making increasingly large

calls, which can be some predetermined subset of poker hand designations with some

ordering, e.g. calls of the form N ∈ {1, 2, 3, 4} of a kind of one of the 13 ranks,

R ∈ {2, 3, 4, . . . , K,A}, characterized by Call(N1, R1) with ordering,

Call(N1, R1) < Call(N2, R2)⇐⇒ N1 < N2 or (N1 = N2 and R1 < R2)

An honest call represents the player’s belief that there are at least N cards of rank R

in the total pool of cards (cards held by themselves and other players). However, calls

do not need to be honest.

• One common variation is setting R = 2 cards to be considered wild cards and each can

be substituted for any one card in any call to change the call likelihood distributions.

Players cannot call Call(N, 2).

• Finally, at any point after the first turn, a player additionally has the option of ending

the round by calling the opponent’s bluff. All cards are revealed and the last made call

is checked to see if it exists in the total pool of cards. If it does not, then the bluffing

player loses the round, otherwise the player who called the bluff loses. The loser starts

the next round with an additional card. If the player loses some number of rounds

(has more than some number of cards), then the player loses the game.
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Liar’s Poker is a competitive game about balancing levels of honesty and illustrates

the difficulty of estimating human behaviors in the absence of information. The “greedy”

option is to play honestly, as there is no way to lose in the next turn by calling honestly.

However, this provides the opponent with maximum information. From there, the opponent

can respond accordingly to gain advantage. On the flip side, when the opponent is expecting

honesty, playing deceptively can pay off if the opponent uses the information they assumed

was honest in their call. This shows a strategic trade-off in playing honestly and deceptively

where the structure of the game promotes honesty and information exchange, but selfish

interests promote deception. Furthermore, winning comes at a disadvantage in the short-

term as the loser gets an additional card, allowing them to have more information about the

pool of cards.

Structurally, the game’s causal model is described in Figure 3.2. In every action, there

is a player state (i.e. their understanding of probability and tendency to play), hidden game

information (their cards), and previous calls. The previous calls provide varying amounts of

information based on our estimation of the opponent’s state. If we are able to understand

how the actor likes to play, we can take that information to perform actions that give the

agent an advantage. Preliminary results showed that the greedy strategy performed well

against many of the other strategies. Even a strategy designed specifically to beat a greedy

strategy performed somewhat better than a greedy strategy, assuming the agent does not

adapt whatsoever.

However, Liar’s Poker ends up being difficult to investigate. One reason is that there is no

obvious minimax solution. As a result, there is no guarantee of a “good enough” solution at

any point in time. Furthermore, while it can be reduced, there is a lot of hidden information

in this game, most of which cannot be observed except post-hoc. While a player can observe

the strategy played to inform their actions in the next round, there is a reset in cards at

the minimum and so the conditions no longer hold. The only information that a player gets

can be untrustworthy. Lastly, there are too many possible strategies and even more possible
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strategy dynamics. Even within a single round the players’ strategies may vary wildly in

response to previous observations.

Previous Game

Time, t −→

Player A

Player B HB

SB,0 SB,1

CB,1

HA

SA,0 SA,1

CA,1

SB,2

CB,2

SA,2

CA,2

...

...

...

...

...

Figure 3.2: A DAG with the causal model that happens within a round, showing what goes

on in the first 4 turns of a game. S refers to the strategy of a player, H represents the

hand, and C represents the calls. The blue circles (strategies) are always unobservable. The

orange rectangles (calls) are always observable. The green rectangles (hands) are sometimes

observable (at the end of each round). The hand does not change between the turns in a

round.
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3.5 Rock Paper Scissors

Rock Paper Scissors (RPS) is a fascinating game focused solely on adversarial “mind-

reading.”

While it does not translate fully to the other example problems, it does illustrate some of

the techniques that we can use. Taking a look from a pure RL perspective, the RPS problem

can almost be viewed as a multi-arm bandit problem with arms selected at each of the 3

actions [SB18]. The multi-arm bandit problem is a classic RL problem where the agent has to

choose between K different actions, each with an unknown reward distribution. The rewards

are given based on how the opponent responds. The main problem with this formulation is

that the distributions for the arms are neither constant nor even pseudo-stationary.

When humans play RPS, we implicitly have biases toward or against one of the actions,

e.g. many say that people are biased to play rock for various reasons. Most of the time,

humans will try to rationalize the opponent’s decisions, such as “there’s no way they play

three rocks in a row,” which leads to each player having a different flowchart at any given

time. We hope to exploit this tendency to gain some advantage over human players.

One of the nice things about playing RPS is that from the game’s perspective, there is

a very balanced minimax solution — playing in a uniform random way that is completely

independent. This play-style will generate an average of 0 reward, regardless of the oppo-

nent’s strategy. Therefore, this allows for us to balance between exploiting the opponent

and gathering information while still maintaining a good reward. Given this, there are some

limited techniques we can attempt to use for estimation purposes. These “strategies” are

ultimately the causal graph that we can try to use to understand the human’s play-style.

Another benefit is that the game states are completely observed. The only thing that is

unobserved is the human strategy. Ultimately, the unobserved human strategy poses a large

problem in estimation.

Otherwise, the game does match a lot of properties that we want to investigate. Each
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game is only a single action and have no game-imposed requirement of any dependencies

between games. We can elongate this by having a “best-of” in a sequence of games, but in-

vestigating this is not actually different from just observing win percentage over the sequence.

It is unrealistic to ever assume we have enough information on a single player to understand

their playing style, but we can assume that we have enough information to understand the

population distribution of playing styles.

3.5.1 Generation of Strategies

From the most basic (and surprisingly optimal) standpoint, generating RPS is very simple.

We just have to choose an underlying distribution and sample from it, and we can make it

pseudo-stationary by allowing the underlying distribution to change with probability p every

round. Unfortunately, this is not very human-like. The first problem is that humans are

known to be bad at being random and will have an implicit bias. Furthermore, over the course

of a game, humans almost always fail at generating independent random actions. Despite

the fact that nothing in the game forces independence, humans will inherently introduce

their own dependencies into the game. Humans will instead produce some flowchart of what

happens after each action, whether they want to change things up because they won or lost

over a certain window, how many times they’ve played a certain action over a window, etc.

Thus, a true model of human players would require some modeling of these possible thought

sequences. We can view this as a player-type conditioned longer-window Markov Decision

Process, where the state is the last N observations plus the player type, and that state

determines the distribution of next action. Note that the observations includes some side

information, such as the number of wins and losses over the last N games.

The estimation of longer-window strategies is definitely desirable, as it would allow us to

better understand the human player. One basic example is a player that constantly chooses

R, P , S, R, P , S, . . . in sequence. Only understanding 0-window biases will deem this

equivalent to a uniform action player, but obviously the actions are not independent. An
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agent that is able to detect this dependency can theoretically achieve a reward of 1 every

game.

However, a major problem is that we don’t know an optimal window length. While most

humans do not have a long window length (probably less than 10), there is no guarantee

that the window length is fixed. Thus, we have two options: choose the longest realistically

estimable window length as a fixed length or maintain all possible distributions on window

lengths less than some maximum, and estimate which window length is most likely. Even

ignoring the computational requirements, the first option is not flexible toward shorter term

strategies. The second has the problem of having to estimate the window length, which is a

difficult problem in itself, especially when the strategies of different window lengths are not

necessarily distinct. For example, a strategy centered around number of rocks played in the

last 5 games will look similar to a strategy centered around the number of wins, if the player

has a specific bias to playing paper.

Finally, humans may change their strategy completely with one of many causal reasons

at any point in time. Without strict prior information about when a strategy shifts, the

estimation of a change will take some time, meaning the agent may be suboptimal until it

recognizes the change.

Furthermore, the strategies themselves can have significant overlap in that multiple

strategies can produce the same pattern of actions for a long string of actions, especially if

strategies are nominally changing. For instance, the frequent switching between two longer

window strategies can appear as a single short window strategy. However, the other struggle

with RPS is that we never have ground truth in the estimation problem, so these two regimes

can never be accounted for.
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3.5.2 Hotspots

One of the main techniques to aid in the estimation problem for RPS is to create a discretized

estimation space via the use of strategy hotspots. The idea of hotspots is to cluster popu-

lation data into H discrete clusters, where we decide H based mostly based on estimation

ability. One of the hotspots can always be the minimax solution. However, the minimax

solution does not produce any average gain in reward.

Figure 3.3: A clustering of good strategies (K = 4) in a 0-window context (bias only). Zero-

window strategies are represented by the 2-tuple (P [R] ,P [P ]).

Using this method, we collected a real dataset using some students in our senior design

class ECE 180D. In total, we were able to collect about 500 samples from 11 people. One

demonstration on real data that we collected is shown in Figure 3.3. Just as the whispering
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says, human players tended to play rock more and so the priors of choosing a good strategy

that heavily favors paper makes the most sense.

From these hotspots, we can see that these effectively deal with the digital dynamics.

Instead of trying to estimate an exact state, we now only have 4 states (including the “in-

formation gathering” state of providing minimax) that we have to estimate. Each state has

an associated representative “good enough” action should we be able to estimate. Further,

we also have population priors as to how often we expect to be in each state based on past

examples. It is much easier to choose among H fixed options (provided by population data)

rather than to smoothly learn a state within some error margin.

This method also reveals one of the important asymmetries of causal reasoning. Showing

that a hypothesis is true is difficult while showing a hypothesis is false can require only a single

data point. A pure gradient descent method would not be able to capture this, and so we

would have to move into more Bayesian techniques. Hotspots allow for the quick estimation

of player strategy with some understanding of population transition dynamics. Therefore,

the use of quantization is a good way to balance estimation quality while preserving our goal

of quick estimation.

3.6 Collaborative Game - Sets

After testing Liar’s Poker and Rock Paper Scissors, both competitive games, we find collab-

orative games fit the idea of understanding human interactions better. In adversarial games,

the environment is the opponent. In such an environment, the ideal flow of information

between competitors is to have as little as possible. Thus, the onus on forcing information

flow is on the structural design of the game. However, it is in both players’ best interest to

lie and deceive as much as is allowed to by the game, which lowers information quality of

actions to the agent. In the collaborative case, both players are now partners. The partner

does not have an incentive to force dynamics and so the problem results more toward natural

30



dynamics which can be much better behaved.

Thus, we also investigate Sets, a collaborative card game. First, the basic rules are as

follows:

1. There is a deck of D = R × S cards, each with a rank (of which there are R) and

suit (of which there are S). Players are each dealt N ≤ D
2

cards for a 2-person game.

When N = D
2

, then the game state becomes fully observed.

2. There are actually two phases where an action takes place. At the beginning of each

round, there is a “betting” round where all players guess the number of tricks they

think they can take. In a collaborative game, we assume the sum of tricks guessed

is equal to N . In a competitive game, we assume the sum cannot equal N . In the

collaborative 2-player game, only one person needs to guess (as the other will naturally

be the complement). For now, the guesser will be given to the environment.

3. Every turn, each player plays one card, starting with the winner of the previous round.

All following players must follow suit if they have the suit. If they do not, they can play

any other card, which normally would concede the trick to the partner. One variation

includes a trump suit that would win the trick, thereby ordering it as trump rank ¿

on-suit rank ¿ any other card. The highest valued card of the round wins the trick.

The winner takes the trick. There are a total of N tricks in a round.

4. Reward is given +1 if the number of tricks obtained is equal to the initial guessed goal,

−1 if not.

This game is somewhat different from many of the previous games in that luck plays a

small factor in this game because of the betting system. The goal is not to get the most

tricks but the correct number of tricks. Therefore, there is a skill to understand what to bet

and how to play in order to achieve such a bet.
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Consider the collaborative version described. In more complicated versions of the game, a

human may not understand what is the “optimal” bet, but could choose one that makes sense.

From there, the agent’s goal is to guide the flow of the game so that there is probabilistically

the best chance of achieving the goal together. This makes this game a simplistic analogy

to the education example. Here, we want to assume that the agent, up to their estimation

abilities, will always make the optimal move.

Furthermore, the game is highly flexible. We already indicate the possibility of competi-

tive and collaborative versions, which should have similar concepts. There is also a setting of

how much is being observed. Unlike the competitive game, we no longer have to assume that

someone could be playing completely adversarially, although we can consider it. Instead, the

main parameters we care about for the human is their understanding, and the dynamics of

that understanding through time.

3.6.1 Trivial Examples

In this game, the observation space of the game from either player is the cards that are in

their hand, the cards have been played this round, the cards that have already been played

in previous rounds, the number of tricks that each player has, and the goal value of each

player.

Consider the most trivial game, D = 2, R = 2, S = 1, N = 1. In this version of the

game, we can denote the cards using one-hot representation both to stay consistent to larger

versions of the game and to display one’s hand as a single array similar to a card. For brevity,

since this game only has one turn, we merge the cards played this turn and previous turns

into a single observation. When actually playing the game, the action space is only a single

action when the game starts, so the only “action” is the choice of the goal. The tabular

state-value function is displayed in Table 3.1.

Immediately looking at this value table, we see that the value is just a shifted XOR
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Hand Observed Goal Value

[1, 0] [·, ·] 0 1

[1, 0] [·, ·] 1 −1

[0, 1] [·, ·] 0 −1

[0, 1] [·, ·] 1 1

Table 3.1: Trivial Tabular Sets Value Function

function. For instance, if the hand is represented as [c0, c1], one way to represent the value

function is simply 2(c0 ⊕ goal) − 1, where the arithmetic operations just shift the 0 − 1

properties of the XOR into the 1 and −1 range of this problem. There are many other

representations as we have some other guarantees in the problem, such as c0⊕ c1 = 1. Thus,

the value function for all valid states depends only on 2 of the 5 variables.

Just to give the next most trivial game, we consider just adding a single card D = 3,

R = 3, S = 1, N = 1. This makes the game partially observed. The values are represented

in Table 3.2.

For example, assuming the environment is given the hand [0, 1, 0]. In the first stage of

the game (goal selection), we don’t observe the opponent, resulting in the states of line 7

and 8, which both have a value of 0. The final value depends on whether the opponent has a

higher or lower card, which we cannot know, resulting in the 0 value. However, if the agent

is given the hand [0, 1, 0], then any rational goal call should result in a win. In fact, the

call from the environment should give the agent all the information about the future game

without the game even being played.

Notice that for the hand [0, 1, 0], we now have another nested XOR operating as the

value function. The XOR-like pattern continues into more complex versions of the game for

the same conceptual reason. Having higher cards (from the rank perspective) will generally

prefer higher goal values, while having lower cards generally prefer having lower goal values.
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Hand Observed Goal Value

[1, 0, 0] [·, ·, ·] 0 1

[1, 0, 0] [·, ·, ·] 1 −1

[0, 1, 0] [1, 0, 0] 0 −1

[0, 1, 0] [1, 0, 0] 1 1

[0, 1, 0] [0, 0, 1] 0 1

[0, 1, 0] [0, 0, 1] 1 −1

[0, 1, 0] [0, 0, 0] 0 0

[0, 1, 0] [0, 0, 0] 1 0

[0, 0, 1] [·, ·, ·] 0 −1

[0, 0, 1] [·, ·, ·] 1 1

Table 3.2: Most Trivial Partial Information Tabular Sets Value Function

It may not represent exactly the XOR when the value of the goal increases, but the same

structure is present.

3.6.2 Dimensionality and Causality

We expand outward to the class of all collaborative, fully-observed 2-player games. There

are several properties about these games that are interesting. First, if both agents know the

optimal move at any point in time, then as long as the initial goal is set to have a non-zero

probability of winning, i.e. their value is not −1, then they always can win, which means

that the bot’s value function only has −1 or 1 if the environment is optimal. When we move

to partially-observed games, this property no longer holds, as evidenced in Table 3.2.

Another observation is that the second turn of an N–card game is essentially functionally

equivalent to an (N − 1)–card game. All we have to do is effectively re-index the ranks

after removing the cards played in the first turn from the deck and subtract the trick from
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the winner’s goal (with any goals out of bounds of the (N − 1)–card game immediately

having value −1). Of course the nice thing about this property is that learning can be done

recursively. As such, we can actually see that the game state is Markovian, just as most

other games.

However, there is something more to it from a causal perspective. The main thing to

note is that the (N − 1)–card game is a lower dimension game than the N–card game. In

fact, there can be equivalent state-action pairs in the N–card game that result in the same

state in the (N − 1)–card game, suggesting that there are redundant state-action pairs in

the N–card game. Capturing this redundancy highlights a basic form of causal structure in

dimensionality reduction. Ideally, we would be able to capture this dimensionality reduction

within the game so that the recursive properties can be used. In particular, this means that

in two instances of games, the same card could be connected to different nodes in a graphical

model.

Overall, there are other possible ways of condensing these variables further via approx-

imate dimensionality reduction, e.g. humans may not remember every card that has been

played in the round, and so more have a feeling for how strong the remaining cards are in

their hand. Using these concepts allows us to both explain the reasoning behind the games

but also construct meaningful understanding of how well the human understands the game

and the information that they have received. Thus, we expect to be able to causally restrict

this game into very few variables which can improve explainability. From a condensed state,

we can also attain much better explainability in possible human strategies as a result.

3.6.3 Interventions

One of the main way that Sets is a nice game is that we can directly control some rule changes

to create “interventions.” Here, we define an intervention as a coded way to break the normal

rules of the game to illustrate something. For instance, we can implicitly understand how

information is shared in the game by adding an “information” intervention. Here, we only
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add one additional rule. The agent is allowed one other action. This action will penalize

the reward by some value (e.g. −0.25). The only thing this action does is if the agent was

supposed to start, then the environment now starts.

In the last section, we brought up the fact that in the fully observed game, any action

with a positive probability of achieving the result should always achieve the goal with optimal

play. The other interesting property is that based on the rules, the number of tricks obtained

is always known if the environment plays first in sequence that turn and so most of the next

observation is guaranteed (it is completely guaranteed if the agent plays a higher card). As

such, playing second in a round has more control, hence why this intervention makes sense.

This intervention is then analogous to a teacher providing one-on-one aid to a student who

has been estimated to be likely to continue down a trajectory that is not good for the reward.

The cost is the amount of time that it takes from the teacher’s and student’s other tasks. If

that cost is warranted in producing a much better chance at a good result, then it should be

done. The students over time, if trying to achieve the same goal, should also begin to learn

that they should be applying actions that minimize the number of interventions needed, but

ultimately this intervention sidesteps the problem of trying to change the student’s dynamics

in a course and acts more as an implicit understanding of the student’s internal state.

In particular, this intervention is only able to help improve inaccurate policies in the

second phase of the game. There is nothing that the agent can do if the environment ended

up choosing a bad starting goal. Table 3.3 shows some example results in a 3-card fully

observed game. In this table, these optimal policies may still have some small amount of

noise, but almost always deterministically selects the optimal action. Semi-optimal allows

for some suboptimal plays but will still be weighted toward optimal actions, and random

means that all actions are chosen with equal probability.

Therefore, the work shows that including an intervention helps the win rate except when

the play policy was already optimal, in which case it is essentially the same. In the fully-

observed case, an optimal partner does not require any interventions. The average reward
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for many is comparable, but not always better even with the win-rate increase. The level of

improvement depends on the cost that the intervention requires. For example, the difference

between a −0.75 and −0.25 reward is that two interventions with the −0.25 reward resulting

in a win is still a positive overall reward, but it is negative for the −0.75 reward. Thus,

the cost can be seen as a counter of the total amount of interventions that can be made.

Ultimately, when the partner needs a lot of help, the intervention cost needs to be much

lower for the total reward to go up. We can claim that these require additional attention

from external resources in an educational space (tutoring, TA, etc.). However, for many of

the cases where the partner has some middling understanding, even with higher costs for

interventions, the interventions are worth the improvement of reward.

3.7 Conclusion

We have investigated three games that are simple enough to understand but complex enough

to have interesting dynamics. However, we have also found that even these simplistic games

pose significant problems in estimation and optimization. In particular, we have found that

competitive hidden-information games are difficult to investigate because of the adversarial

nature of the game. Collaborative games, though, are much more interesting because in-

formation sharing is part of the goal of the game. This provides a good starting point for

understanding the problems that we will face in the future, especially when dealing with

humans.
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Partner Goal Selection Partner Play Selection Intervention Cost Reward Win Rate

random random −∞ −705 32.35%

random random −0.75 −914.5 35.8%

random random −0.25 −726.75 37.6%

random random −0.1 −645.6 37.2%

optimal random −∞ 1697 92.4%

optimal random −0.25 1785.75 98.0%

semi-optimal random −∞ 583 64.55%

semi-optimal random −0.75 245.75 64.0%

semi-optimal random −0.25 609.25 70.7%

semi-optimal random −0.1 765.6 72.0%

semi-optimal semi-optimal −∞ 569 64.2%

semi-optimal semi-optimal −0.75 354.5 66.05%

semi-optimal semi-optimal −0.25 640.5 71.6%

semi-optimal semi-optimal −0.1 729.8 71.2%

random optimal −∞ −295 42.6%

random optimal −0.25 −430 42.95%

optimal optimal −∞ 1975 99.35%

optimal optimal −0.25 1924.25 99.7%

Table 3.3: Results of 3-card fully observed game given interventions. Results are shown for

the last 2000 iterations (last 20% of 10000 iterations starting from scratch). The intervention

cost of −∞ represents that the intervention action is not legal in this game variation.
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CHAPTER 4

De-Biasing Generative Models using Counterfactual

Methods

4.1 Introduction

In many fields such as medicine and economics, an explainable model, in particular a causal

model, is needed to elicit the effectiveness of interventions. This process makes diligent use of

prior knowledge, usually in a structural causal model (SCM) that instantiates unidirectional

relationships between the variables using a Directed Acyclic Graph (DAG) [Pea09a]. The

confidence needed in a causal model needs to be much higher than in a statistical model as

one needs to instantiate beliefs that are invariant and exist outside the domain of the data.

Traditionally, this knowledge comes from experimentally derived results, or domain experts

with experimental level knowledge. As such, there is a strong interest in the deep learning

community to integrate causal methods and information more directly with traditional deep

learning architectures. Although recent results show progress in causal deep learning, most

methods focus on either causal discovery or the use of prior causal information alone [ZNC19,

KSD17, YCG19].

Generative models have been crucial to solving many problems in modern machine learn-

ing [KW13]. Since the VAE’s inception, many have found that the disentanglement of latent

spaces can lead to better performance in generalizability and fine-tuned control over dis-

entangled features. In addition, many techniques have been proposed in recent years as to

how to improve disentanglement, largely based on factorization and independence techniques
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[HMP17, CLG18].

Recently, an effective approach that blends the space of causal models with generative

neural networks was displayed with the CausalVAE, which allowed the decoder to learn a

causally disentangled representation of latent space variables. One of the key contributions in

that paper was the inclusion of a Causal Layer. Most impressively, the CausalVAE enforced

a causal structure on generating images to noticeably disentangle intentionally dependent

latent variables via the use of a causal layer. This causal layer’s disentanglement allows the

CausalVAE to generate causal interventions. Specifically, when intervening on endogenous

variables, the CausalVAE is able to generate images that are outside the normal bounds of

the training dataset, as the intervention does not affect the exogenous variables [YLC20].

Here, we combine the ideas of counterfactual causal reasoning and generative modeling

by focusing on the causal layer of the CausalVAE. We modify the objective into learning a

more refined, isolated causal structure that the latent space must go through, which we call

the Causal Counterfactual Generative Model. This allows us to expand the use of the causal

layer to more than just single interventions, to also to hypothesize and synthesize datasets

of counterfactual causal models in interesting and useful ways.

4.2 Related Work

Causal discovery has increasingly been the focus of deep learning methods which seek to

reduce the combinatorial complexity of brute force searches for causal models from obser-

vational data. Progress in DAG search using continuously differentiable loss functions and

reinforcement learning for score functions has started to integrate deep learning methods

with causal discovery and identification [ZAR18, ZNC19].

Building on initial deep causal discovery, causal generative models learn or use causal

information for generating data and interventions. CausalGAN is a generative model that

learns a prior Structural Causal Model (SCM) for images and label spaces and demonstrates
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how interventions in the latent space can generate causally intervened images [KSD17].

DAG-GNN uses graph neural networks with a VAE architecture to extend causal discovery

methods to more use-cases [YCG19]. CausalVAE uses a causal layer in the middle of a

VAE architecture to learn an implicit causal model that can also generate unseen images

with latent space interventions [YLC20]. Causal discovery with generative models capitalize

on recent work in disentanglement to ensure the latent space has the necessary variable

structure for causal identification [HMP17]. Finally, causal generative models have been

used to address the issue of fair or “de-biased” data sets such as DECAF, a causally aware

GAN architecture applied explicitly to tabular data [BKB21].

When causal models are known or hypothesized to contain measured confounders, statis-

tical adjustment techniques have long been used to estimate causal effects when the structure

is known or identifiable. Inverse Propensity Score Weighting (IPW), or advanced methods

like Augmented IPW provide robust or doubly-robust ways to adjust for confounding bias

[GQ10].

4.3 Background

4.3.1 Counterfactuals and Interventions

The SCM literature has long explored the benefits of interventions and counterfactual mod-

eling once a causal model is known. Pearl introduces interventions using ‘do-calculus’ or

the explicit setting of a variable to a specific value and calculating the resulting outputs

[Pea09a]. In Figure 4.1 below, we introduce a 4-variable DAG with two exogenous and two

endogenous variables. An intervention on the right shows how this is effectively breaking the

parent nodes into the variable being intervened on, and explicitly setting it to a desired value

(x), written using do-calculus notation do(x). This operation allows us to directly fix the

value of a latent variable and asymmetrically propagate its value to other variables. Inter-

vened parents should have their adjusted values impact child nodes, but intervened children
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should not adjust parent values.

do(x)

Figure 4.1: Example of a DAG on the left and a mutated counterfactual model on the right

with an intervention setting the target variable to an explicit value x.

4.3.2 Counterfactual Models

Extending from the idea of interventions on instances of data, we define counterfactual

models as a new model formed by removing a path deemed undesirable or a source of bias

as seen in Figure 4.2. This could be a known bias present in the data generating process,

or a desire to envision a new data distribution outside the training dataset with a specific

graphical modification. Notice, unlike an intervention as in Figure 4.1, the target variable

need not be set explicitly but still is a function of the other parent variables. This allows

a data distribution to be generated in which the target is still a function of the remaining

parent nodes, possibly simulating a “de-biased” or counterfactually constructed dataset, as

opposed to explicit instantiations of the intervened variable.

θ xsun

wshadow xshadow

θ xsun

wshadow xshadow
x = f(θ)

Figure 4.2: Example of a counterfactual model in which a single path is removed to simulate

a new distribution of generated data.
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4.3.3 Constructing a Causal Generative Model

Following the classic VAE model, given inputs x, we encode into a latent space z with

distribution qϕ where we have priors given by p(·) [KW13].

ELBO = EqX

[
Ez∼qϕ [log pθ(x|z)]−D(qϕ(z|x)∥pθ(z))

]
(4.1)

In [YLC20], the causal layer is described as a noisy linear SCM:

z = STz + ϵϵϵ (4.2)

which finds some causal structure of the latent space variables z with respect to a matrix S.

By itself, S functions as the closest linear approximator for the causal relationships in the

latent space of z.

A non-linear mask can be applied to the causal layer so that it can more accurately

estimate non-linear situations as well. Suppose S is composed of column vectors Si. For

each latent space concept i, define a non-linear function gi : Rn → R and modify equation

(4.2) such that

zi = gi(Si ◦ z) + ϵϵϵ (4.3)

where ◦ is the Hadamard product. In this formulation, the view of S changes from one of

function estimation to one of adjacency. That is, if S is viewed as a binary adjacency matrix,

the gi functions take the responsibility of reconstructing z given only the parents, dictated

by Si ◦ z. In the simplest case, if gi(v) =
∑

j vj, the summation of all the values of v, then

Equation (4.3) degenerates back to Equation (4.2) [NZF19a].

Including the causal layer introduces many auxiliary loss functions that we mostly adopt

[YLC20]. First is a label loss (4.4), where the adjacency matrix S should also apply to the

labels u. This loss is used in pre-training in its linear form to learn a form of S prior to

learning the encoder and decoders. After pre-training, we apply a nonlinear mask fi that
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functions similarly to gi, but operates on the label space directly, but with the same S.

ℓu = EqX

[
n∑

i=1

∥ui − fi(Si ◦ u)∥2
]

(4.4)

The latent loss tries to enforce the SCM, described by Equation (4.3).

ℓz = Ez∼qϕ

[
n∑

i=1

∥zi − gi(Si ◦ z)∥2
]

(4.5)

Further enforcing the label spaces, we can define a prior p(z|u). We use the same con-

ventions as in [YLC20] and say that

p(z|u) ∼ N (un, I)

where un ∈ [−1, 1] are normalized label values. This translates to an additional KL-loss.

Finally, we apply the continuous differentiable loss function (4.6) and apply a scheduling

technique to enforce the DAG [ZAR18, YCG19]. The main use is that A is a DAG if and

only if

H(A) := tr [(I + A ◦A)n]− n = 0 (4.6)

The scheduling is done via the augmented Lagrangian

ℓh = λH(A) +
c

2
|h(A)|2 (4.7)

where at the end of every epoch, the scheduling update is

λt+1 = λt + ctH(At) (4.8)

ct+1 =


ηct |H(At)| > γ|H(At−1)|

ct else

where we set η = 2 and γ = 0.9.
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4.3.4 Causal Estimation

There are numerous ways to estimate a causal effect once the model has been identified.

Perhaps the most common and simplest is the Average Treatment Effect (ÂTE), which is

simply the difference of means between a population (index = i) treated and untreated

group, assuming a binary intervention variable (D), and an outcome variable (Y ) as in

equation (4.9).

ÂTE = E[Yi|Di = 1]− E[Yi|Di = 0] (4.9)

This näıve method does not consider any confounding variables. One common way to

adjust for such confounding bias is to use propensity scores (π̂(Xi)), which is a model for

how likely a sample is to receive the treatment based on the measured covariate factors. The

inverse of the propensity score can then be used to weight each sample as in equation (4.10)

and thus adjust for the bias of any measured confounders.

ÂTEIPW =
1

N

N∑
i=1

[
DiYi

π̂(Xi)
− (1−Di)Yi

1− π̂(Xi)

]
(4.10)

Finally, more recent developments in double-robust methods specify both an outcome

model and an exposure/propensity score model which can provide accurate estimation if

either one of the models is misspecified. Augmented IPW (AIPW) is a specific method

that extends IPW below with a set of outcome models estimating the outcome variable as a

function of the intervention and all covariates as introduced in [GQ10].

4.4 Problem Setting

4.4.1 Sun Pendulum Image Dataset

A toy pendulum image dataset is introduced in [YLC20]. This dataset is generated by

sweeping sun positions (xsun) and pendulum angles (θ) to produce realistic shadow width
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(wshadow) and shadow locations (xshadow) from deterministic non-linear functions. Figure

4.3 shows the DAG for this model and an example generated image, in which the sun and

pendulum variables are exogenous, and the shadow variables are endogenous. Thus, any

causal model will learn to reconstruct the shadow variables from the sun and pendulum

variables. Such relationships in observational studies are often invertible as correlation has

no directionality. Thus, without causal disentangling, an intervention on shadow position

would likely adjust the sun position to match.

θ xsun

wshadow xshadow

Figure 4.3: Pendulum toy image dataset DAG and example image

Each pendulum entry is determined by the two exogenous variables, pendulum angle

(θ) and sun position (xsun). Here, the data samples are generated roughly where the angle

of the pendulum and the angle of light from the sun range ∈ (−45, 45) degrees, generated

independently. Then from that, we calculate a physics-based interpretation of the shadow

position and width. In the calculation of both of the endogenous variables, we introduce

non-linearities by operating on trigonometric functions. In the shadow width case, we also

deal with a non-linear maximum function as the width is a positive value. Afterward, in

most of the datasets unless otherwise mentioned, we add Gaussian noise to the endogenous

variables in the dataset so that the SNR is 10dB.

This dataset is used to demonstrate causal generative model quality through reconstruc-

tion fidelity as well as causal learning by intervening on parent and child nodes, showing

interventions only propagate forward from parents to children and not vice-versa [YLC20].
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4.4.2 Tabular National Study of Learning Mindsets Data

To analyze our methods in a tabular setting, we use a simulated dataset based on The

National Study of Learning Mindsets [min21]. This was a randomized study conducted in

U.S. public high schools, the purpose of which was to evaluate the impact of a nudge-like

intervention designed to instill students with a growth mindset on student achievement. We

use a simulated subset of the data based on a model fit to the statistics of the original dataset

(the actual dataset was not publicly released). The study includes measured outcomes via an

achievement score, a binary treatment of a growth mindset educational intervention (not to

be confused with a causal intervention), and 11 other potential confounding factors that could

be parents of both the treatment and outcome. We select two of these confounding variables:

an average measure of the fixed mindset at each student’s school (inversely correlated with

achievement and educational intervention) and the students’ self-reported expectations of

their own success (positively correlated with achievement and educational intervention).

The full correlations between all four variables can be seen in Table 4.1. Thus, we maintain

a hypothesized DAG structure as in Figure 4.4 identical to the pendulum model. Note that

our interest is in regenerating the dataset with the treatment and targets as functions of the

confounders, so we do not learn the effect of the intervention on the outcome. We will use

our methods to generate datasets in which we can estimate the ATE to estimate our causal

effect using a simple difference of means.

School Mindset Success Expectation

Intervention Achievement Score

Figure 4.4: School Mindset DAG
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The intuitive belief is that a näıve estimate of the ATE, calculated as the difference of

means as in equation (4.9), would contain a positive bias due to the confounding variable

of a student’s own expectation. Students with higher expectations are more likely to par-

ticipate in the growth mindset course (self-selection bias) but are also likely to have higher

achievement anyway. Statistical adjustment techniques, such as Inverse Propensity Weight-

ing (IPW), attempt to control for such confounders by measuring and weighting the effect

based on the propensity to be treated. We will use such methods as a baseline for compar-

ison, as we will first generate a dataset approximating the existing data distribution while

learning some causal features. We will then employ a counterfactual model removing a con-

founding link and demonstrate a simulated dataset in which the näıve ATE aligns with the

ATE measure using the statistical adjustment methods.

Table 4.1: Correlation of Mindset Variables

SM SE D Y

School Mindset (SM) 1 −0.054 −0.046 −0.111

Success Expectation (SE) −0.054 1 0.059 0.439

Intervention (D) −0.046 0.059 1 0.221

Achievement Score (Y) −0.111 0.439 0.221 1

4.5 Causal Counterfactual Generative Model

We start from many of the same concepts as the original CausalVAE but begin by changing

the enforced structure of the causal layer, allowing us to make direct modifications to the

layer after training.
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4.5.1 Limits of the CausalVAE for Counterfactuals

The causal layer in [YLC20] has a purpose of passing some causal information about the

latent space through from parents to children. However, there is a fundamental difference in

how we would like to interpret our problem. Reiterating (4.2),

z = STz + ϵϵϵ

Whatever causal structure is learned by S, there will always be a “leakage” of information

via ϵϵϵ. This ϵϵϵ can be viewed as the output of a vanilla VAE, meaning that theoretically it can

contain contribute everything for image generation. This leakage informs z without passing

through the causal layer, so it weakens the need for S to learn all the causal structure

of the problem. In the image space, this leakage of information improves generation and

reconstruction and hence is desirable. However, it does not align with our objective of

finding a good underlying causal structure. In the most extreme case, we could, in theory,

find S = 0, which is still a valid DAG. In this case, no remaining causal information remains

in the layer and the entire CausalVAE reverts to a normal β-VAE.

4.5.2 Envisioning Bias-Free Models with CausalVAE

Here, we introduce CCGM as a modified and extended version of the CausalVAE, allowing

for counterfactual models. In particular, we can directly manipulate the causal layer so that

undesirable causal links learned from the data can be broken.

In CCGM, the encoder directly generates the output z, which is enforced to be standard-

normally distributed. We pass this through our causal layer as one final mutatable bottleneck

z = STz (4.11)

That is, it instantiates a linear SCM. One main distinction is that we solidify the structure

of S by having exogenous and endogenous priors. This way, S can be split into a DAG term
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and a diagonal term:

S = A︸︷︷︸
DAG

+ D︸︷︷︸
diag.

(4.12)

where D has 1 on the diagonal for exogenous variables and 0 if endogenous. This ensures

that the trivial solution where S = I is never learned and enforces a causal relationship from

the exogenous variables to the endogenous variables.

Similarly, we add the non-linear mask to the causal layer just as in equation (4.3), but

dropping the leakage.

zi = gi(Si ◦ z) (4.13)

When separating adjacency and estimation, we necessarily want to have a pre-training step

for 5 epochs, where we train S to recognize the adjacency of the labels before applying the

non-linear mask. After the pre-training, we apply training on both the S matrix and the

non-linear mask, but there should be fewer changes as the mask should take care of the

function approximations.

The ultimate goal of our work is to propose counterfactual causal models by directly

manipulating this S matrix. The framework proposed by [YLC20] requires one to retrain

the entire model to generate a counterfactual S while fixing a path in the graph to zero, as

their intervention method does not deal with the leakage. This is an expensive task in both

time and computing power, making it unscalable for larger S’s. Our method allows us to

generate data about a hypothesized counterfactual space directly by breaking links in the

causal graph, without the need to retrain the neural network.

4.5.3 General Structure of CCGM

While one could work with image-to-image VAEs, in our examples, we leverage as much

tabular data as we can to reduce computational needs. In the pendulum example, we know

the labels can be used as a perfect reconstruction of the data and so the labels that are

provided act as at least a perfect bottleneck, containing more information than needed, in
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the reconstruction of images.

Furthermore, the label-to-label structure can be used as a pre-training step in determining

a causal matrix. It then becomes a natural extension to apply the CCGM to tabular data.

We no longer require a VAE setup, although we preserve the mild non-linear networks which

allow for more complex causal functionality. Our experiments section will show a CCGM

capable of generating tabular data with a reasonable representative distribution and a bias

removed distribution. Note that noisy tabular data with hypothesized causal models (no

known ground truth model or guarantee of endogenous/exogenous priors) present a new set

of identification and estimation challenges.

4.6 Experiments

In this section, we evaluate the effectiveness of causal generative models on tabular and

image datasets, by answering the following questions: (1) how does the performance of

CCGM compare to the state-of-the-art methods in reconstruction and causal logic; (2)

how effective is CCGM for eliminating biases in image and tabular datasets; and (3) how

CCGM generates counterfactual models without extra training allowing for diverse and flex-

ible data-generation. We compare the performance of CCGM and CausalVAE to generate

counterfactual samples from a fixed causal model [YLC20]. We further compare CCGM to

advanced statistical adjustment methods for generating “de-biased” datasets vs. controlling

biases statistically.

4.6.1 CausalVAE

Our experiments with the standard CausalVAE found that the model could handle interven-

tions on specific latent space data, meaning that its decoder could causally disentangle some

concepts. However, non-zero interventions did not appear to be working as intended. Figure

4.6 shows a sweep of interventions on the pendulum and sun position data, respectively, on
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the same image. Notice that the first intervention, corresponding to 0, works as intended.

However, the pendulum does not change outside the 0 value, while the sun changes somewhat

in an expected fashion, but the shadow does not respond.

Furthermore, we noticed little to no change in the results of certain interventions when

generating counterfactual models, such as in Figure 4.5 below where a post training removal

on the path from sun location to shadow position did not remove the effect propagation.

These findings reflect that the CausalVAE was not designed to learn the full causal structure

due to the leakage in ϵϵϵ.

Figure 4.5: Result which still shows effect propagation (shadow moves) after removing the

path from sun location to shadow location in CausalVAE method

4.6.2 Label-to-Label

Our initial experiments pertain to the label-to-label space, where we have four parameters

(labels) that provide perfect information for image reconstruction.

We start with a set of labels u ∈ Rn, where n = 4. These four labels correspond to the

pendulum angle θ, the sun position xsun, the shadow width wshadow, and the shadow position

xshadow, respectively such that u = [θ, xsun, wshadow, xshadow]T . Then, u passes through an

encoder to generate z ∈ Rn, where we enforce the prior of p(z) ∼ N (0, I). This step allows

us to sample new labels from the latent space drawn from a Gaussian distribution, as we see

in the classic VAE [KW13]. Now, we subject z to the learned causal layer. Based on our

designation of u, we set diag(S) = [1, 1, 0, 0], representing the exogenous and endogenous
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Figure 4.6: A sweep of the pendulum angle (top) and sun position (bottom) in the latent

space for CausalVAE. Values are chosen to attempt to see changes. Outside the 0 interven-

tion, other interventions do not seem to make sense, especially with the shadows.

variables of u. Equation 4.13 is applied to z, and the information of z should be preserved

through the causal layer, even though the exact information of the endogenous variables is

intentionally dropped.

Finally, this reconstructed latent space vector ẑ is passed into a decoder to reconstruct

the original labels û. For consistency of visualization and easy of human understanding, we

pass these labels into a separate image generator to create all visualized images.

CCGM Generates Clean Label-to-Label Interventions. Since there are few parame-

ters in the label-to-label space we are able to generate clean counterfactual models as well

as interventions.

Our primary results for label-to-label is shown in Figures 4.7 and 4.8. The top row of both

figures show interventional sweeps on both θ and xsun, respectively. We take a true image and

apply a range of interventions sampled from the range of the resultant sampling distribution

(N (0, 1)) to generate counterfactual samples. Interventions on exogenous variables shows a

response in the shadow variables, but the other exogenous variable should stay constant.

Then, we apply the ideas of a counterfactual model. Instead of doing interventions on
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specific values, we break the link of xshadow with θ and xsun in S, respectively. Afterward, if

we do the same interventions, the shadow position no longer responds to that intervention.

While some results can be subtle, in Figure 4.7, the final image shows a noticeable difference

in position before and after the counterfactual model and in Figure 4.8, the first and last

interventions both show differences. The connection to shadow width remains, and so the

shadow width still responds to the swept variable.

True 0 1 2 3

0

50

True 0 1 2 3

0

50

Figure 4.7: Label-to-label (Top) Image response to a sweep of the pendulum angle. Notice

that for all interventions, the shadow responds to the pendulum. (Bottom) Image response

after shadow position is de-biased from pendulum angle. In particular pay attention to the

right-most image. While subtle, the shadow positions between the top and bottom image are

very noticeable. A quick scan from left to right on all the intervened images suggests that

the midpoint of the shadow remains constant throughout all the swept images. However,

it is worth noting that the shadow width still responds as if the shadow had moved to its

location.

4.6.3 Label-to-Image

We then consider the more challenging problem of generating an entire image from the label

information. Thus, we propose a label-to-image generative model based on the decoder of
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True 0 1 2 3

0

50

True 0 1 2 3

0

50

Figure 4.8: Label-to-label (Top) Image response to a sweep of sun positions. Again, notice

that the shadow responds to the sun’s position. (Bottom) In this case, the changes are more

noticeable in that the shadow position remains constant throughout the row and is very

different from the expected locations given the sun.

a VAE to use the disentanglement granted by the Causal Layer. We can use a pre-trained

version of the S matrix coming from the label-to-label VAE to start our training of the causal

generative model. For the sake of computational power, we keep the dataset in grayscale to

reduce the image size by at least a factor of 3, but the physics aspects are still present.

Other than this additional pre-training step to learn the S matrix, the encoding step

and the causal layer steps are still operating exactly the same as in the label-to-label VAE.

We simply attach an image decoder after the causal layer. As in [YLC20], we see that the

images have mostly disentangled the endogenous variables and the encoder is able to create

an image where interventions can happen. These images are displayed in Figure 4.9. Notice

especially in the shadow position intervention that the sun position and pendulum angle

have not changed. With CCGM, we can recreate the results from the label-to-label VAE in

the label-to-image generator. These results are shown in Figures 4.10 and 4.11.

As in the label-to-label space, the top row of both of the figures shows the sweeps of θ

and xsun in their latent space. With the interventions, the shadow responds accordingly and
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the complementary exogenous variable stays relatively consistent. The bottom row shows

that the shadow position no longer responds to the interventions that are being enforced.

In both Figure 4.10 and 4.11, the first and the last interventional images show noticeable

movement from the non-counterfactual interventions.

True 0 1 2 3

Figure 4.9: Interventions in the label-to-image VAE. Note that shadows respond to pendulum

angle and sun position.

True 0 1 2 3

True 0 1 2 3

Figure 4.10: Label-to-image (Top) Image response to a sweep of the pendulum angle. Notice

that for all interventions, the shadow responds to the pendulum. (Bottom) Image response

after shadow position is de-biased from pendulum angle. In this case, both the first and last

intervened images show noticeable differences from the pre-counterfactual images and one

can observe that the shadow midpoint remains consistent across the row.
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True 0 1 2 3

True 0 1 2 3

Figure 4.11: Label-to-image (Top) Image response to a sweep of sun positions. Notice that

the shadow responds to the sun’s position. (Bottom) image response after breaking the sun

position to shadow position link.

4.6.4 Mindset Data

We begin by first training our CCGM method on the original Student Mindset data. In

Figure 4.12, we see the generated achievement score from our model compared to the original

dataset. The model is able to regenerate each of the feature distributions. We take the top

30% as having the intervention (1) and lower 70% as no intervention (0) since this matches

the base rates in the original dataset. The current CCGM operates on continuous variables,

and we treat the intervention values generated as a probability of treatment.

The results of an ATE on the generated dataset vs the three baseline measurements on

the original dataset of ATE, IPW, and AIPW are shown in Figure 4.13. The generated

dataset overestimates the ATE bias. We intervene on the path from student expectation

to achievement scores, breaking the strongest positive correlation and see the CCGM “De-

Bias” ATE estimation clearly drop below the advanced adjustment baseline methods. This

makes intuitive sense since we leave the negatively correlated school mindset confounder

which likely plays a small role in underestimating the ATE. Note that the advanced methods

themselves are not necessarily ground truth, but they reflect an approximate ATE we would
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Figure 4.12: Generated distribution of achievement scores closely matches the distribution

in the original dataset.

expect a “de-biased” dataset to have.

Further, Table 4.2 shows the full results for all models and multiple de-biasing schemes.

It is clear that our generative model is able to produce a “de-biased” dataset accounting for

the positive ATE bias for the Student Expectation confounder. Although removing both

confounders does marginally increase the 95% bounds for out ATE as we would expect for

a negative bias, it does not also do so when we only remove the school mindset. Here it

becomes clear our model puts very little weight on this negative bias, a possible limitation

of our model with the noisy nature of this dataset and a point of interest for further inquiry.

All results are shown with empirical standard deviations and 95% confidence interval bounds

using bootstrap sampling methods (iters = 100).
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Figure 4.13: Bootstrap distribution of ATEs for various methods and baselines sampling the

entire dataset (n = 10391) 100 times.

4.7 Conclusion

In this chapter, we demonstrate the value of CCGM, an extension of previous causal gen-

erative model work that allows greater flexibility when considering counterfactual models

and generating “out-of-distribution” data. We demonstrate the benefits of such a model on

a simulated physics image dataset. We show the range of interventions and simulation of

images outside the training data, and outside the ground-truth physics, with a simple ad-

justment after training the model. We then demonstrate results on a tabular dataset where

ground-truth is not known. We show that we can learn the original data distributions, and

simulate datasets which remove the impact of confounders in ways the make intuitive sense

based on advanced statistical adjustment baselines. Much work is needed on refining the

precision on noisy datasets, extending the framework to more complex causal models, and

exploring the limitations based on the noise present and the target causal structure if known.
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Table 4.2: Mindset ATE Results

Mean ATE Std Dev [.025 .975]

CCGM 0.680 0.015 0.650 0.707

CCGM De-Bias

Student Expectation 0.240 0.023 0.192 0.283

CCGM De-Bias

Both 0.242 0.022 0.204 0.282

CCGM De-Bias

School Mindset 0.677 0.017 0.647 0.712

AIPW 0.405 0.018 0.364 0.441

IPW 0.404 0.018 0.363 0.440

Näıve 0.468 0.019 0.426 0.507

We believe CCGM is a promising start within a growing field of work in causal generative

models.
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CHAPTER 5

Causal Structural Hypothesis Testing and Data

Generation Models

5.1 Introduction

In most scientific fields, causal information is considered an invaluable prior with strong gen-

eralization properties and is the product of experimental intervention or domain expertise.

These priors can be in a structural causal model (SCM) form that instantiates unidirectional

relationships between variables using a Directed Acyclic Graph (DAG) [Pea09a]. The confi-

dence in causal models needs to be higher than in a statistical model, as its relationships are

invariant and preserved outside the data domain. In fields such as medicine or economics,

where ground truth is often unavailable, domain experts are relied on to hypothesize and

test causal models using experiments or observational data.

Generative models have been crucial to solving many problems in modern machine learn-

ing [KW13] and generating useful synthetic datasets. Causal generative models learn or use

causal information for generating data, producing more interpretable results, and tackling

biased datasets [KSD17, YCG19, BKB21]. Recently, [YLC20] introduces a Causal Layer,

which allows for direct interventions to generate images outside the distribution of the train-

ing dataset in its CausalVAE framework, which we used in CCGM from Chapter 4 and

continue to use in this chapter.

CausalVAE and CCGM focus on causal discovery concurrently with simulation (i.e.

reconstruction error-based training). But in many real-world applications, a causal model
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is available or readily hypothesized. It is often of interest to test various causal model

hypotheses not only for in-distribution (ID) test data performance, but for generalization

to out-of-distribution (OOD) test data. Thus, we propose CSHTest and CSVHTest,

which are causally constrained architectures that forgo structural causal discovery (but not

the functional approximation) for causal hypothesis testing. Combined with comprehensive

non-random dataset splits to test generalization to non-overlapping distributions, we allow

for a systematic way to test structural causal hypotheses and use those models to generate

synthetic data outside training distributions.

5.2 Background

5.2.1 Causality and Model Hypothesis Testing

Causality literature has detailed the benefits of interventions, and counterfactual modeling

once a causal model is known. Given a structural prior, a causal model can tell us what

parameters are identifiable from observational data alone, subject to a no-confounders and

conditioning criterion determined by d-separation rules [Pea09a]. Because the structural pri-

ors are not known to be ground truth, we assume a more deterministic functional form and

can make no assumptions about identifiability [Pea09b]. Instead, we rely on deep neural net-

works to approximate the functional relationships and use empirical results to demonstrate

the reliability of this method to compare structural hypotheses in low-data environments.

Structural causal priors are primarily about the ordering and absence of connections be-

tween variables. It is the absence of a certain edge that prevents information flow, reducing

the likelihood that spurious connections are learned within the training dataset distribution.

Thus, when comparing our architecture to traditional deep learning prediction and gener-

ative models, we show how hypothesized causal models might perform worse when testing

within the same distribution as the training data, but drastically improve generalization per-

formance when splitting the test and train distributions to have less overlap. This effect is
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seen the most in small datasets where traditional deep learning methods, absent causal pri-

ors, can “memorize” spurious patterns in the data and vastly overfit the training distribution

[AJB17].

Our architectures explore the use of the causal layer, provided with priors, as a hypothesis-

testing space. Both CSHTest and CSVHTest accept non-parametric (structural only, no

functional-form or parameters) causal priors as a binary Structural Causal Model (SCM) and

use deep learning to approximate the functional relationships that minimize a means-squared

reconstruction error (MSE). Our empirical results show the benefits of testing structural

priors using these architectures to establish a baseline for comparison where stronger causal

assumptions cannot be satisfied.

5.3 Causal Hypothesis Gen and Variational Model

5.3.1 Causal Hypothesis Testing with CSHTest

Our model CSHTest, uses a similar causal layer as in both CCGM and CausalVAE [BJP22,

YLC20]. The causal layer consists of a structural prior matrix S followed by non-linear

functions defined by multilayer perceptrons (MLPs). We define the structural prior S ∈

{0, 1}d×d so that S is the sum of a DAG term and a diagonal term:

S = A︸︷︷︸
DAG

+ D︸︷︷︸
diag.

(5.1)

A represents a DAG adjacency matrix, usually referred to as the causal structural model in

literature, and D has 1 on the diagonal for exogenous variables and 0 if endogenous. Then,

given tabular inputs xxx ∈ Rd, Sij is an indicator determining whether variable i is a parent

of variable j.

From the structural prior S, each of the input variables is “selected” to be parents of

output variables through a Hadamard product with the features xxx. For each output variable,

its parents are passed through a non-linear η fully connected neural-network. The η networks
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are trained as general function approximators, learning to approximate the relationships

between parent & child nodes:

x̂xxi = ηi(Si ◦ xxx) (5.2)

where Si represents the i-th column vector of A, and x̂xxi is the i-th reconstructed output

[NZF19b]. In the case of exogenous variable xxxi, a corresponding 1 at Dii, ‘leaks’ the variable

through, encouraging η to learn the identity function while a 0 value forces the network to

learn some functional relationship of its parents. The end-to-end structure, as seen in Figure

5.1, is trained on a reconstruction loss, defined by ℓ(xxx, x̂xx). We use the L2 loss (Mean Squared

Error):

ℓCSHTest = ||xxx− ηi(Si ◦ xxx)||22 (5.3)

CSHTest can be used, then, to operate as a structural hypothesis test mechanism for

two structural causal models S and T. The basic idea is that if ℓS < ℓT, across the majority of

non-random OOD dataset splits for training and testing, then S is a more suitable hypothesis

for the true causal structure of the data than T. In section 5.4.3 we demonstrate the ID, OOD

train/test splits to test this generalization capacity, and our experimental results provide

baselines for this approach.

5.3.2 Causal Variational Hypothesis Testing with CSVHTest

We extend CSHTest to a variational model CSVHTest, that includes sampling function-

ality like a VAE [KW13]. We do this primarily for a more robust model in low Signal-to-Noise

(SNR) regimes and to generate new data points that are not deterministic on the inputs,

allowing for more dynamic synthetic data generation. CSVHTest consists of an encoder, a

CSHTest causal layer and a decoder. Further details are provided in the appendix A.3.1.
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Figure 5.1: Causal Hypothesis Generative Architecture (CSHTest) with an example of

how the Structural Prior Matrix selects for the parents of each variable or identity if it is

exogenous. The η networks approximate the functional relationships in training.

5.4 Problem Setting

5.4.1 Structural Hamming Distance

In causal and graph discovery literature, the Structural Hamming Distance is a common

metric to differentiate causal models by the number of edge modifications (flips in a binary

matrix) to transform one graph to another [GKC17, KCW22], often described as the norm

of the difference between adjacency matrices:

H = ∥Ai −Aj∥1 (5.4)

However, Structural Hamming Distance does not account for the “causal asymmetry.”

The absence of edges is a more profound statement than inclusion, as any edge could have

a weight of zero. Hence, we define two types of hypotheses that are incorrect relative to

ground truth, which could have the same Structural Hamming Distances:

• Leaky hypotheses are causal hypotheses with extra links. In general, having a leaky
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hypothesis will produce models that are more prone to overfitting, but with proper

weighting, the solution space of a leaky causal hypothesis includes the ground truth

causal structure.

• Lossy hypotheses are causal hypotheses where we are missing at least one link. Lossy

hypotheses are much easier to detect because a lossy hypothesis results in lost infor-

mation. As such, a lossy hypothesis should never do better than the true hypothesis,

within finite sampling and noise errors.

From these definitions, we define the Positive Structural Hamming Distance and the Negative

Structural Hamming Distance. We define these as, for null hypothesis A0 and alternative

A1,

H+(A1,A0) = ∥A1 > A0∥1 H−(A1,A0) = ∥A1 < A0∥1 (5.5)

where H+ counts how leaky the alternative hypothesis is and H− counts how lossy it is. One

remark is that H = H+ + H−, but the “net” Hamming Distance ∆H = H+ −H− can also

be a näıve indicator of how much information is passed through the causal layer.

5.4.2 Baseline Models

5.4.2.1 Simulated DAG Baselines

We empirically test our theory that an incorrect hypothesis will result in worse OOD test

error using extensive simulations. We use the same methodology as [ZAR18], simulating

across multiple DAG nodes sizes, edge counts, OOD variable splits (described further in

5.4.3), and Structural Hamming Distance with iterations at the ground truth and modified

DAG levels for robustness. In our experimental results, we calculate the probability an

H of 1 closer to ground truth would have a lower OOD test error as the ratio across our

simulations:

P [ℓCSHTest(Sj) < ℓCSHTest(Si)]
∣∣∣
1

= ∥Ai −AGT∥1 − ∥Aj −AGT∥1 (5.6)
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where GT is ground truth, and so on for differences 2 and 3. In practice, we actually con-

sider the probability conditional on a tuple of the positive and negative Hamming distances

(H+,H−) thus allowing us to distinguish hypotheses that are leakier, lossier, or the spe-

cific mix of the two. Doing so allows us to better consider the fundamental asymmetry in

causality. Full hyperparameters and test cases can be found in Appendix A.5.

5.4.2.2 Sun Pendulum Image Dataset

A synthetic pendulum image dataset is introduced in [YLC20], and we use it here to produce

a physics-based tabular dataset where we know the ground truth DAG and can test the

abilities of CSHTest and CSVHTest. More about the dataset is described in Chapter

4.4.1. We take these values u = [θ, xsun, wshadow, xshadow]T ∈ Rd, where d = 4 and compile

a tabular dataset. This methodology provides a physics-based dataset where the causal,

ground truth causal model is known to show the abilities of CSHTest and CSVHTest.

5.4.2.3 Medical Trauma Dataset

We also analyze our model on a real-world dataset of brain-trauma ground-level fall patients

that includes multiple health factors, with a focus on predicting a decision to proceed with

surgery or not. We use an initial SHAP analysis to select three variables of high predic-

tion impact: Glasgow Coma Scale/Score for head trauma severity (GCS), Diastolic Blood

Pressure (DBP), the presence of any Co-Morbidities (Co-Morb), one demographic variable

Age, along with the Surgery outcome of interest. Without the ground truth, we test two

structural models shown in 5.2 based on knowledge of the selected variables and how they

may interact to inform the surgery decision.
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Surgery

Figure 5.2: Two hypothesized structural causal priors for a medical dataset on trauma

patients and the decision to perform surgery, H1 and H2.

5.4.3 Train/Test Data Splits

In order to test generalization error, we use a deliberate non-random split of our datasets

(as well as a baseline random split). This is done on a single feature column of the tabular

data at a time, splitting the data on that column at either the 25% or 75% quantile, with

the larger side (either the upper or lower 75%) becoming the training data. An example of

this train test split is visualized for both datasets in 5.3. We recommend viewing OOD test

error across as many dimensions and split quantiles as possible given the size of the dataset

and the available compute.

Figure 5.3: a) A 75% data-split on the pendulum angle feature (gray is training angle, green

is testing angles b) A 75% data-split on the Diastolic Blood Pressure data.
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5.5 Experiments

We test CSHTest and CSVHTest in multiple settings. First, we justify their usage by

comparing their performance on both ID and OOD validation to their non-causal counter-

parts, showing that they operate as normal when trained in ID but perform much better

when trained in OOD. We provide a table of relative loss probabilities to help interpret

results using extensive simulations. Next, we observe the benefits and limitations of the

CSHTest method when we hypothesize several possible causal structures on the pendulum

problem. Finally, we hypothesize and compare to structural priors on the medical dataset,

and simulate new data.

5.5.1 Generalization Ability of CSHTest

Pendulum Comparison

Random Split

Method Train Test Train Test

NN 0.02 0.02 0.04 10.27

VAE 0.11 0.06 16.97 89.4

CSHTest 0.03 0.03 0.02 0.26

CSVHTest 0.064 0.51 19.81 38.62

Table 5.1: Comparison of Traditional Deep Learning Techniques on a random and deliberate

dataset split with CSHTest and CSVHTest when the ground truth causal structural

information is known.

We compare the CSHTest with a similarly sized fully-connected NN and CSVHT-

est with a similarly sized VAE. The CSVHTest also has the same causal layers as the

CSHTest so the variational models are larger overall than the CSHTest and NN. Results

of the pendulum are shown in Table 5.1. Against ID (random) data, the CSHTest and
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CSVHTest effectively perform the same, suggesting that there is no loss in representation

by including the Causal Layer.

However, the CSHTest and CSVHTest models generalize much better to OOD data

validation than their respective non-causal comparisons. This demonstrates the use of the

CSHTest and CSVHTest as causal replacements to the NN and VAE. Conversely, as the

out-of-distribution error rate can determine the “closeness” of our model to the true causal

model, this would enable the use of the OOD loss as a proxy for causal hypothesis testing.

5.5.2 Simulated DAG Hypothesis Testing

Figure 5.4: Probability table for a 4-node 4-edge DAG size with a linear SEM ground truth

model for DAG simulations comparing hypothesis with various Hamming Distance Tuples.

Figure 5.4 shows the type of empirical probability tables we can construct by simulating

DAGs of various sizes under numerous conditions detailed in the appendix A.5. We note how
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by comparing the Hamming Distance tuples, we do not see a smooth gradient, but jumps

as the leaky/lossy asymmetry is realized. Instead, by also incorporating the net Hamming

distance to account for the causal asymmetry, we can explain the jumps. For instance,

(2,2,0) shows a marked drop off compared to any lower Hamming Distance model — like

ground truth (0,0,0) — because it has two edge losses (∆H = −2) which vastly decreases

needed information flow. In general, the upper triangle of this matrix should be below

50% and decrease as the Hamming Distances grow and get lossier. Within each Hamming

distance, the values typically increase as ∆H increases. Extensive simulations like this,

done with similar assumptions to a comparable real-world problem, can provide baseline

probabilities even if ground truth is not known, based on the relative Hamming Distances of

the hypotheses. Further results with a DAG of size 5x5 can be found in the appendix A.1.

5.5.3 Pendulum Hypotheses

We introduce 6 enumerated hypotheses for the pendulum dataset, enumerated in Figure 5.5.

We have two hypotheses that are 1 Structural Hamming Distance away from ground truth

(leaky and lossy), and 3 that are 2 Structural Hamming Distances away (2leaky, 2lossy,

and leak-loss). The choice of which edge to add or remove were arbitrary, unless required

by design. The individual names of the hypotheses give away their purpose, as they are

meant to be leaky or lossy in a specific way to observe the empirical qualities of the different

hypothesis tests. Of note, despite including an additional leakage in 2leaky, we maintain

the exogenousity of xsun, meaning that the θ to xsun is purely a leakage term from the

SCMs perspective. Secondly, the leak-loss hypothesis has a net Hamming distance of 0 and

structurally still has the same connectivity as ground truth. However, due to the choice of

paths, it likely has some functional limitations.
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Figure 5.5: The 6 enumerated pendulum hypotheses that we try out. Red and thin arrows

are arrows that we remove from the true DAG and green arrows are arrows that we add to

the true DAG. In the case of 2leaky, we maintain xsun as an exogenous variable, but allow θ

information to also influence its value.

5.5.4 Pendulum Hypothesis Testing

We consider these 6 different hypotheses, shown in Figure 5.5. We arbitrarily do a 75%

OOD split of the pendulum dataset on the sun position (as an exogenous example) and the

shadow position (as an endogenous example) to test causal hypotheses.

The pendulum results are shown in Figure 5.6. We can clearly distinguish two tiers of

results. One tier contains GT, leaky, and 2leaky. This tier has a common H− = 0. All

other DAGs, having H− > 0 show a very clear drop in OOD test performance. Thus, for

hypothesis testing, we are able to distinguish causal hypotheses that are missing paths from

ground truth. We leave it to further research to explore how to compare many hypotheses

that achieve a similar loss, such as a criterion that favors the minimal hypothesized DAG.

Of interest is the leak-loss model, which has ∆H = 0. Its loss is generally lower than

the purely lossy hypotheses, but still achieves a higher loss than the ground truth, despite
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graphically being the same level of connectedness. This result has the interesting consequence

of CSHTest being able to reject causal hypotheses with zero net Hamming distance.

Figure 5.6: Final OOD Test Error Rates of Each Hypothesized DAG structure in the Pen-

dulum Problem over Two Splits. See Appendix A.2.2 for numerical values and training

trajectories.

5.5.5 Medical Data Hypothesis Testing

In the medical dataset, the second hypothesis from 5.2, which includes a path from Age to

‘No Co-morbidities’ generalizes better than without the path, suggesting it is a better causal

model. We use both trained architectures to simulate OOD data, with the causal models

producing higher fidelity results to what we expect ground truth to be based on a holdout

test set over the same distribution 5.7.

5.6 Conclusion

In this chapter, we demonstrate the value of CSHTest and CSVHTest as causal model

hypothesis testing spaces and the implications as generative models. We verify the effective-

73



Medical Results

Hypothesis Train Test

H1 0.024 0.035

H2 0.017 0.025

(a) Medical results of CSHTest for

each of the hypothesized causal models.

(b) The test dataset reconstruction dis-

tributions for all models using medical

H1 on the Diastolic BP 75% data

Figure 5.7: Medical Dataset Results

ness of our methodology on extensive simulated DAGs where ground truth is known, and we

further show performance with ground truth and incorrect causal priors on a physics-inspired

example. We show how CSHTest can be used to test causal hypotheses using a real-world

medical dataset with ground level fall, trauma surgery decisions. CSHTest offers a novel

architecture, along with a deliberate data split methodology that can empower practition-

ers and domain experts to improve causally informed modeling and deep learning. There

is extensive further research needed to fully realize the utility of structural causal hypoth-

esis testing in conjugation with deep learning function approximation. We hope to better

differentiate leaky causal models, without constraints on losses, using minimum entropy

properties such as in [CGK22]. We also hope to extend both CSHTest and CSVHTest

to more flexible architecture which can combine recent progress with differential causal in-

ference and binary sampling to better automate full or partial causal discovery. The results

are a promising start of much further research integrating deep learning causal models with

real-world priors and domain knowledge.
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CHAPTER 6

Towards Composable Distributions of Latent Space

Augmentations

6.1 Introduction

Data augmentation has become an essential technique in deep learning, allowing models

to learn from a diverse set of input images by applying various types of transformations,

such as rotation, flipping, cropping, and color shifting. By artificially increasing the size of

the training dataset, data augmentation can reduce the risk of overfitting and improve the

generalization of the model to new, unseen data.

However, choosing the right set of augmentation techniques for a given task can be

challenging. Some types of augmentations may affect the way an image is interpreted, such

as flipping or rotating digits in handwritten digit recognition tasks. Practitioners must

employ priors on the data to know which augmentations are appropriate.

We observe augmentations as a causal prior on the image space and apply the techniques

introduced in Chapters 4 and 5. In this chapter, we introduce a novel approach for latent im-

age augmentation using Variational Autoencoder (VAE) architecture. Our approach allows

for the easy combination of multiple augmentation techniques and provides greater control

and interpretability of the latent space. Within the latent space of the VAE architecture, we

can apply, compose, and invert linear transformations to generate augmented versions of the

input images. The key contribution of our work is the use of latent-space linear transforms

and a two-step training method to learn mappings between the original and augmented la-
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tent spaces, with a surprising emergence of composability. We further demonstrate that our

approach can transfer a trained latent space to a new set of augmentations using a multi-

ple decoder architecture, enabling practitioners to transfer certain properties and potential

performance improvements dependent on the original augmentations.

Our experiments on the MNIST dataset demonstrate that our proposed approach can

improve the performance of VAEs and provide new insights into the underlying structure of

the data and the relationship between different augmentations. By viewing augmentations

as image-space priors and not data to simply be randomized across, we can constrain the

VAE’s information bottleneck and improve its generalization ability. In essence, our method

learns a low-dimensional, latent-proxy 6.1 for a set of image-space functions, even when the

image space model or transformation process is unknown a priori, as long as training samples

exist of the augmented images.

Image Space
xorig

xAug1 xAug2

xAugComp

Enc

Latent Space
zorig

zAug1 zAug2

zAugComp

Figure 6.1: Approximate model/DAG learned in latent space for known image space aug-

mentations
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6.2 Related Work

Control and manipulation of a lower-dimensional latent space in generative modeling is an

area of ongoing research. The Conditional VAE (CVAE) is an initial extension of a vanilla

VAE in which a conditional value or “one-hot” encoding is concatenated to both the Encoder

and Decoder inputs [SLY15]. The CVAE does a form of latent space separation by adding

dimensions based on a conditional variable, and it presents the most compelling comparison

to our own work as it allows unique interpretation of the latent space based on a prior

or semantic label. Other extensions of VAEs include the VQ-VAE, which uses a discrete

latent space to model discrete data types such as text, and the Flow-based VAE, which

uses normalizing flows to model complex posterior distributions [OVK17, SW18]. Latent

diffusion models are another approach that iteratively add noise in the training process and

can reverse this process in inference to achieve state-of-the-art text to image and image

completion and synthesis tasks [RBL22].

The latent space can also be used to apply lower-dimensional modeling or priors. Causal

generative models have seen a variety of success with both learning and utilizing causal in-

formation and structural models to generate counterfactual images and datasets [YLC20,

KSD17, BJP22, JPB22, BKB21]. Our method looks to also extend interpretability of the la-

tent space by approximating image augmentations, a priors-based prep-processing approach

in the image-space, in the latent space. This could loosely be thought of as a causal model

proxy to the image space causal model, Figure 6.1.

6.3 Background

6.3.1 Variational Autoencoders

The VAE framework is based on the principle of maximum likelihood estimation, where the

goal is to maximize the likelihood of the training data under the model. However, in order
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to make the optimization tractable, the VAE introduces a variational lower bound on the

log likelihood, which can be written as:

L(θ, ϕ;x(i)) = Eeϕ(z|x(i))

[
log dθ(x

(i)|z)
]

(6.1)

−KL
(
eϕ(z|x(i))||mθ(z)

)
= Eeϕ(z|x(i))

[
log dθ(x

(i)|z)
]

(6.2)

−
∫

eϕ(z|x(i)) log
eϕ(z|x(i))

mθ(z)
dz

where x(i) is a single training example, and θ and ϕ are the parameters of the decoder and

encoder, respectively. The first term in the lower bound, Eeϕ(z|x(i))

[
log dθ(x

(i)|z)
]
, is known

as the reconstruction loss, and it measures the difference between the reconstructed data and

the original data. The second term, KL
(
eϕ(z|x(i))||mθ(z)

)
, is known as the KL divergence,

and it measures the difference between the approximate posterior distribution and the latent

distribution. The first term is the decoding error (the classic rate-distortion theory), and

the second term is the extra rate for coding z assuming marginal pdf mθ(z).

The Conditional VAE (CVAE) is a natural extension of the VAE framework that adds

a conditional input to both the encoder and decoder networks. In the CVAE, the goal is to

learn a conditional generative model that can generate new samples from a specific class or

condition, given some additional information (additional details in Chapter 2.4.2). By adding

the conditional input to the VAE framework, the CVAE can generate samples conditioned

on a specific input, which is useful in many applications. For example, in image generation,

given a class label as the conditional input, the CVAE can generate images of that class.

6.3.2 Priors in Pre-processing

Data augmentation is not done naively, or without a strong sense of priors. In image

datasets, typical augmentations might include crops, rotations, flips, scaling, color modi-

fications, masks, and many more. In order to expand the training domain and learn a more

robust model, only augmentations which are invariant to the classification or interpretation
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of the resulting image can be applied, and similarly, negative augmentations which impact

classification can be used to refine the support of a distribution [SAS21]. As a simple exam-

ple, a left-right flip is an acceptable transformation for a 0 or 8 digit, but not for a 2 or 9.

One can think of augmentation as a causal model or directed-graph in the image space, in

which all augmented image distributions are the result of applying a transform or function

to a parent node of original images such that the resulting images are still within the same

class. Succinctly, given the original dataset Dorig,

Daug =
⋃
i∈Ac

d∈Dorig

c=class(d)

faugi(d) (6.3)

s.t. Ac = {i : class(d) = class(faugi(d)); d ∈ Dorig} (6.4)

for some pre-defined set of augmentations {faugi}.

This model is typically well known and easily applied in pre-processing, but is not made

explicit. Although these augmented distributions are classified or interpreted similarly at

a high-level, there are functional relationships and structure between them that we look to

make explicit.

6.4 Latent Augmentation VAE

6.4.1 Architectural Overview

In the Latent Augmentation VAE, as seen in Figure 6.2, we use trainable linear transforms in

the latent space to learn the mappings between original and augmented latent representations

resulting in a linear proxy model of the transformations applied in the image space that can be

used on test data or to generate new original and augmented images. We also utilize multiple

decoder heads such that one can transfer a learned latent space to a new set of augmentations

by training an alternative decoder head, which can preserve certain latent space geometries

and latent transform properties, improving latent augmentation performance.
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Figure 6.2: Latent Augmentation VAE Architecture

6.4.2 Training LAVAE

For our initial experiments, we focus on pairs of augmentations and their compositions (as

in Figure 6.1). Note there is no theoretic reason why more augmentations can not be used,

but we use two for illustrating geometric properties. We train the LAVAE in three stages:

1. Train the encoder/decoder and populate the latent space with the original, two types

of augmentations, and their composition

2. Learn explicit linear transformations Laugi between original and augmented latent

spaces

3. Transfer trained latent space and transformations by training new decoder on any other

set of augmentations

The respective losses for each of the three stages are as follows:

∑
x∈Daug

ℓBCE(x, x̂) s.t. x̂ = θ(ϕ(x)) (6.5)

∑
x0∈Dorig

∑
k∈A

(ϕ(faugk(x0))− ϕ(x0) · Laugk)2 (6.6)

∑
x0∈Dorig

∑
g(k)∈AT

k∈A

ℓBCE(faugg(k)(x0), θT (ϕ(x0) · Laugk)) (6.7)

where the trained parameters at each step are highlighted in blue. A,AT are two equal-

length sets of augmentations predefined by {faug} with g : A → AT forming a bijective
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pairing between the two sets, thereby allowing the latent structure to be preserved by the

transformations defined by A. θT is an alternative decoder head for each new set of augmen-

tations AT . In our 2-augmentation case, without loss of generality, we can assign A = {1, 2},

AT = {3, 4} where g(1) = 3 and g(2) = 4. We can also extend this formulation to any other

sets of augmentations given a new mapping. Note that stage 1 also includes the KL Diver-

gence loss to constrain the latent distribution, as described in appendix 2.4.1, with respective

weights on KL and reconstruction λKL = 5, λrecon = 1.

We perform experiments with non-linear latent augmentation networks, which show

slightly better performance, but lack composability and simple invertibility. We also ex-

periment with combining training stages 1 and 2, but this degraded final performance and

reconstruction.

6.4.3 Using LAVAE

Once an LAVAE is trained, there are a wide variety of uses which extend the capabilities

over previous VAE methods. There is basic reconstruction of the original, augmented, or

composed images:

x̂ = θ(ϕ(x)) ∀x ∈ Daug

We can augment the original images in the latent space:

ẑi = ϕ(x0) · Laugi

x̂i = θ(ẑi) | i ∈ A

where xi refers to faugi(x0).

We can go from the original images to the composed by multiplying the latent original

vector by both the latent augmentation transforms, despite an explicit composition in the
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latent space never being trained.

ˆ̊z = ϕ(x0) · Laug1 · Laug2

ˆ̊x = θ(ˆ̊z)

The reverse composition is also effective with some increased reconstruction error, indi-

cating the latent augmentations are somewhat composable.

ˆ̊zr = ϕ(x0) · Laug2 · Laug1

ˆ̊x ≈ θ(ˆ̊zr)

ˆ̊zr = zLaug2Laug1 ≈ zLaug1Laug2 = ˆ̊z

where z = ϕ(x0). Note that this latent space property holds true for our tested augmentations

even if the compositions in the image space are not equivalent (such as a 90◦ rotate and flip

will be different depending on the order applied). In this case, we only train the encoder and

decoder, in Stage 1, on one of the compositions (faug1 then faug2), so the reverse composition

in the latent space is not equivalent to the image space reverse composition with this process.

We can also invert the latent space transforms and go from an augmented input image

to an original image, giving us ‘any-to-any’ functionality:

x̂0 = θ
(
ϕ(xi) · L−1

augi

)
| i ∈ {1, 2}

x̂0 = θ
(
ϕ(̊x) · (Laug1 · Laug2)

−1
)

Finally, we can run the model recursively, taking our output and running back through the

network for the same or different augmentations. We find that even for general augmentations

that there is some level of stability in taking the same latent augmentation over and over.

x̂
(k)
0 = θ(ϕ(x̂

(k)
i ) · Laugi)

x̂
(k+1)
i = θ(ϕ(x̂

(k)
0 ) · Laugi)

k ∈ [1, n]

We show results on the stability of this use-case as a recursive generator in the next section.
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6.5 Experiments

All the displayed results use the test MNIST dataset with a model trained on the training

dataset.

6.5.1 LAVAE Reconstruction Results

Figure 6.3 shows the basic and augmented reconstruction results for the “Flips” (flip left /

right, flip up / down) augmentation pair.

Figure 6.3: Eight samples of “Flips” latent augmentations with baseline image space aug-

mentations for comparison

Figure 6.4 shows the inverse reconstruction results for the Flips augmentation pair.

Figure 6.5 displays two examples of recursive augmentation using flip left/right, where
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Figure 6.4: Eight samples of “Flips” latent inverse augmentations with original and aug-

mented images (inputs) for comparison

one sample gradually deviates (from a 2 to possibly an 8), while the 7 remains relatively

stable. Additionally, we illustrate a lower dimensional projection in a 2D space (using Inde-

pendent Component Analysis) of the latent vectors and their corresponding “paths” as we

repeatedly apply augmentations using LAVAE. This suggests a radius of stability around

certain samples with the repeated use of augmentations.

It is worth mentioning that the LAVAE can also be applied to sample the latent space

and interpolate between points. To achieve sampling, as the latent space is now divided

based on the augmentation, we constructed a simple bounding box using training samples

and sampled within that subspace to obtain an original image. Interpolation is simpler, as

we only need to provide two test images and sample at regular intervals across all latent

dimensions between the two points (16-D in this instance). Additional examples can be

found in Appendix B.2.
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Figure 6.5: Two samples latent trajectory (2-D projection) and reconstructions of recursive

flip left/right augmentation. The ‘7’ is stable, but the ‘2’ diverges both in latent space

trajectory and reconstructions.

6.5.2 LAVAE Transfer Decoders

LAVAE includes multiple decoder heads to enable the transfer of a trained latent space to

any pair of augmentations. Figure 6.6 shows the transfer reconstruction results from “Flips”

to “Nested Mini-Image, shear X-direction.”

This functionality was included because we saw that transferring to a pair of augmenta-

tions could increase the reconstruction performance over training on the augmentation pair

originally. This surprising result leads us to believe certain latent space geometries, based

on the choice of initial augmentations, better allow for latent augmentation reconstruction

and properties such as improved composability. Figure 6.7 shows a heat-map matrix of

reconstruction error (Mean-Squared Error in image space) with initial augmentation pair
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Figure 6.6: Eight samples of “Flips” latent augmentations with baseline image space aug-

mentations for comparison

choice vs. transferred augmentation pair in which transferring from a “Nested Mini-Image,

shear X-direction” to “Nested Mini-Image, shear X-direction” performs better than training

on “Nested Mini-Image, shear X-direction.” Examples of all the augmentation and more

results are in appendix B.1.

6.5.3 Conditional VAE Comparisons

As discussed, we realize that the Conditional VAE (CVAE) also uses a näıve form of latent

space partitioning, so we wanted to see to what extent it can do the same tasks as the

LAVAE. In this case, instead of having the conditional represent the classifications, we

want to partition just like with the LAVAE with respect to augmentation.

Thus, we first train the CVAE in the traditional way where the conditional is the augmen-

tation type. Example results are shown in 6.8. The decoder can reconstruct from the latent

with high fidelity, but changing the conditional does not augment the image as expected.

Instead, it produces a plausible image of that augmentation, but it does not preserve the

uniqueness of the original image. Therefore, the conditional variables and the latent vari-

ables are “entangled.” This suggests that the CVAE cannot naively handle causally-linked
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Figure 6.7: Initial augmentation pair choice vs. transferred augmentation MSE reconstruc-

tion error (across all augmentations)

images across conditionals.

Fundamentally, a causal view of the CVAE would represent the following idea: any

xi = faugi(x0) causally generated from some x0 should map to the same z. Thus, z should

contain the augmentation-invariant information. Then, based on the conditional, the decoder

should produce an augmented version of that image. Thus, the conditional contains all the

augmentation information, and we say that the augmentation and the image are disentangled.

Our second experiment attempts to show that the CVAE encoder and decoder are capable of

applying augmentations to an augmentation-invariant latent space, given a similar training

method to the LAVAE. However, in doing so, we can see that there is a significant hit in

reconstruction loss compared to the LAVAE as can be seen in Figure 6.9. Furthermore, the

composition property does not emerge in the same way that it does for the LAVAE.
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Figure 6.8: Initial augmentation pair choice vs. transferred augmentation MSE reconstruc-

tion error (across all augmentations)

Table 6.1: “Flips” Reconstruction Errors (MSE)

Model Orig Aug1 Aug2 ◦ Total

LAVAE 68.34 75.89 71.30 81.57 297.1

CVAETrad 98.11 260.18 351.79 279.82 989.84

CVAEAugInv 99.15 99.16 99.26 299.12 695.68

In Table 6.1, we compare the reconstruction errors of the LAVAE against both methods

of training the CVAE on the “Flips” augmentation pair, showing the superior performance

of LAVAE.

6.5.4 LAVAE Latent Geometries

In this final section, we present a comparison of 2D projection visualizations using PCA, ICA,

and T-SNE algorithms of the latent space geometries for two different pairs of augmentations,

“Flips” and “shear X-direction,” “canny edge-detect,” as shown in Figure 6.10. We leave a

more in-depth analysis and interpretation of the latent space geometries for future research.

However, we would like to point out that while symmetries seem to exist across augmentation
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Figure 6.9: LAVAE vs. CVAE reconstructions

pairs, the separation between regions and the relative areas of regions vary significantly across

pairs. Additional images can be found in Appendix B.3.

6.6 Conclusion

Data augmentation is a critical technique in deep-learning image models that can enhance

generalization. In this chapter, we have introduced a novel approach for latent image aug-

mentation using a Variational Autoencoder (VAE) architecture. This method facilitates

the combination of multiple augmentation techniques and offers greater control and inter-

pretability of the latent space. Our experiments on the MNIST dataset have shown that our

proposed approach outperforms comparable models in both flexibility of usage and perfor-

mance. Furthermore, our method provides new insights into the underlying structure of the

data and the relationship between different augmentations.

By treating augmentations as image-space priors instead of simply randomizing data, we

can constrain the VAE’s information bottleneck and learn a low-dimensional proxy for the

89



Figure 6.10: “Flips” (left) and “shear X-direction, canny edge-detect” (right) 2-d projections

using PCA, ICA, and T-SNE algorithms.

augmentation model. For future work, we plan to explore the combination of the CVAE and

the LAVAE, such as producing latent augmentations per class conditional, changing the

one-hot conditional to continuous augmentations, and having augmentations operate only

on the conditional embedding space. Additionally, we aim to apply our approach to other

datasets, including those where the image model might not be known, such as 2D to 3D

reconstruction or perspective shift tasks.
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CHAPTER 7

PureEBM: Universal Poison Purification via Mid-run

Dynamics of Energy-Based Models

7.1 Introduction

Large datasets empower modern, over-parameterized deep learning models. An adversary

can easily insert a few powerful, but imperceptible, poisoned images into these datasets,

often scraped from the open Internet, and manipulate a Neural Network’s (NN) behavior

at test time with a high success rate. These poisons can be constructed with or without

information on NN architecture or training dynamics. With the increasing capabilities and

utilization of large deep learning models, there is growing research in securing model training

against such adversarial poison attacks with minimal impact on natural accuracy.

Numerous methods of poisoning deep learning systems have been proposed in recent

years. These disruptive techniques typically fall into two distinct categories: backdoor,

triggered data poisoning, or triggerless poisoning attacks. Triggered attacks conceal an im-

perceptible trigger pattern in the samples of the training data leading to the misclassification

of test-time samples that contain the hidden trigger [GDG17, TTM18, SGF21, ZPJ22]. In

contrast, triggerless poisoning attacks involve introducing slight, bounded perturbations to

individual images that align them with target images of another class within the feature

or gradient space resulting in the misclassification of specific instances without necessitat-

ing further modification during inference [SHN18, ZHL19, HGF20, GFH21, AMW21]. In

both scenarios, poisoned examples often appear benign and correctly labeled, making them
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Figure 7.1: Top The full PureEBM pipeline is shown where we apply our method as a

preprocessing step with no further downstream changes to the classifier training or infer-

ence. Poisoned images are moderately exaggerated to show visually. Bottom Left Energy

distributions of clean, poisoned, and purified images. Our method pushes poisoned images

via purification into the natural image energy manifold. Bottom Right The removal of

poisons and similarity of clean and poisoned images with more MCMC purification steps.

The purified dataset results in SoTA defense and high classifier natural accuracy.

challenging to detect by observers or algorithms.

Current defense strategies against data poisoning exhibit significant limitations. While

some methods rely on anomaly detection through techniques such as nearest neighbor anal-

ysis, training loss minimization, singular-value decomposition, feature activation or gradient

clustering [CSL08, SKL17, TLM18, CCB19, PGH20, YLM22, PDM22], others resort to ro-

bust training strategies including data augmentation, randomized smoothing, ensembling,
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adversarial training and maximal noise augmentation [WXK20, LF20, ACG16, MZH19,

LLK21, TFY21, LYM23]. However, these approaches either undermine the model’s gen-

eralization performance [GFS21, YLM22], offer protection only against specific attack types

[GFS21, PGH20, TLM18], or prove computationally prohibitive for standard deep learning

workflows [ACG16, CCB19, MMS18, YLM22, GFS21, PGH20, LYM23]. There remains a

critical need for more effective and practical defense mechanisms in the realm of deep learning

security.

In our previous chapters, we have been using VAEs as an unsupervised learning tool that

we try to add causal structure to in various ways. In this problem, however, we find that these

poisons disrupt the data manifold in a way that attacks a neural network’s training ability,

even through basic augmentations. Adapting to this problem, we expect that providing aug-

mentations through the use of a supervised learning technique could be a way to tackle these

poisoning attacks. In this chapter, we propose a simple but powerful Energy-Based model

defense PureEBM, against poisoning attacks. We make the key observation that the energy

of poisoned images, found through an unsupervised neural network, is significantly higher

than that of baseline images for an EBM trained on a natural dataset of images (even when

poisoned samples are present). Using iterative sampling techniques such as Markov Chain

Monte Carlo (MCMC) that utilize noisy gradient information from the EBM, we can purify

samples of any poison perturbations iteratively. This universal stochastic preprocessing step

ΨT (x) moves poisoned samples into the lower energy, natural data manifold with minimal

loss in natural accuracy. The PureEBM pipeline, energy distributions, and the MCMC

purification process on a sample image can be seen in Figure 7.1. This work finds that

PureEBM significantly outperforms state-of-the-art defense methods in all tested poison

scenarios. Our key contributions in this work are:

• A state-of-the-art stochastic preprocessing defense ΨT (x) against adversarial poisons,

using Energy-Based models and MCMC sampling
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• Experimental results showing the broad application of ΨT (x) with minimal tuning and

no prior knowledge needed of the poison type and classification model

• Results showing SoTA performance is maintained when the EBM training data includes

poisoned samples and/or natural images from a similar out-of-distribution dataset

7.2 Related Work

7.2.1 Targeted Data Poisoning Attack

Poisoning of a dataset occurs when an attacker injects small adversarial perturbations δ

(where ∥δ∥∞ ≤ ξ and typically ξ = 8/255) into a small fraction, α, of training images.

These train-time attacks introduce local sharp regions with a considerably higher training

loss [LYM23]. A successful attack occurs when SGD optimizes the cross-entropy training

objective on these poisoned images, maximizing either the inference time impact of a trigger,

or modifying a target image classification by aligning poisoned images in the gradient or some

feature space. The process of learning these adversarial perturbations creates backdoors in

an NN.

In the realm of deep network poison security, we encounter two primary categories of

attacks: triggered and triggerless attacks. Triggered attacks, often referred to as backdoor

attacks, involve contaminating a limited number of training data samples with a specific

trigger (often a patch) ρ (similarly constrained ∥ρ∥∞ ≤ ξ) that corresponds to a target label,

yadv. After training, a successful backdoor attack misclassifies when the perturbation ρ is

added:

F (x) =


y x ∈ {x : (x, y) ∈ Dtest}

yadv x ∈ {x + ρ : (x, y) ∈ Dtest, y ̸= yadv}
(7.1)

Early backdoor attacks were characterized by their use of non-clean labels [CLL17, GDG17,

LMA17, SGF21], but more recent iterations of backdoor attacks have evolved to produce

94



poisoned examples that lack a visible trigger [TTM18, SSP19, ZPJ22].

On the other hand, triggerless poisoning attacks involve the addition of subtle adversarial

perturbations to base images, aiming to align their feature representations or gradients with

those of target images of another class, causing target misclassification [SHN18, ZHL19,

HGF20, GFH21, AMW21]. These poisoned images are virtually undetectable by external

observers. Remarkably, they do not necessitate any alterations to the target images or labels

during the inference stage. For a poison targeting a group of target images Π = {(xπ, yπ)}

to be misclassified as yadv, an ideal triggerless attack would produce a resultant function:

F (x) =


y x ∈ {x : (x, y) ∈ Dtest \ Π}

yadv x ∈ {x : (x, y) ∈ Π}
(7.2)

The current leading poisoning attacks that we assess our defense against are:

• Bullseye Polytope (BP): BP crafts poisoned samples that position the target near

the center of their convex hull in a feature space [AMW21].

• Gradient Matching (GM): GM generates poisoned data by approximating a bi-

level objective by aligning the gradients of clean-label poisoned data with those of the

adversarially labeled target [GFH21]. This attack has shown effectiveness against data

augmentation and differential privacy.

• Narcissus (NS): NS is a clean-label backdoor attack that operates with minimal

knowledge of the training set, instead using a larger natural dataset, evading state-

of-the-art defenses by synthesizing persistent trigger features for a given target class

[ZPJ22].

7.2.2 Defense Strategies

Poison defense categories broadly take two primary approaches: filtering and robust train-

ing techniques. Filtering methods identify outliers in the feature space through methods
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such as thresholding [SKL17], nearest neighbor analysis [PGH20], activation space inspec-

tion [CCB19], or by examining the covariance matrix of features [TLM18]. These defenses

often assume that only a small subset of the data is poisoned, making them vulnerable to

attacks involving a higher concentration of poisoned points. Furthermore, these methods

substantially increase training time, as they require training with poisoned data, followed by

computationally expensive filtering and model retraining [CCB19, PGH20, SKL17, TLM18].

On the other hand, robust training methods involve techniques like randomized smooth-

ing [WXK20], extensive data augmentation [BCF21], model ensembling [LF20], gradient

magnitude and direction constraints [HCK20], poison detection through gradient ascent

[LLK21], and adversarial training [GFS21, MMS18, TFY21]. Additionally, differentially

private (DP) training methods have been explored as a defense against data poisoning

[ACG16, JE19]. Robust training techniques often require a trade-off between generaliza-

tion and poison success rate [ACG16, HCK20, LLK21, MMS18, TFY21, LYM23] and can be

computationally intensive [GFS21, MMS18]. Some methods use optimized noise constructed

via Generative Adversarial Networks (GANs) or Stochastic Gradient Descent methods to

make noise that defends against attacks [MSH21, LYM23].

Recently [YLM22] proposed EPIc, a coreset selection method that rejects poisoned im-

ages that are isolated in the gradient space throughout training, and [LYM23] proposed

FrieNDs, a per-image pre-processing transformation that solves a min-max problem to

stochastically add l∞ norm ζ-bound ‘friendly noise’ (typically 16/255) to combat adversarial

perturbations. These two methods are the SoTA and will serve as a benchmark for our

PureEBM method in the experimental results.

When compared to augmentation-based and adversarial training methods, our approach

stands out for its simplicity, speed, and ability to maintain strong generalization performance.

We show that adding gradient noise in the form of iterative Langevin updates can purify

poisons and achieve superior generalization performance compared to SoTA defense methods

EPIc and FrieNDs. The Langevin noise in our method proves highly effective in removing
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the adversarial signals while metastable behaviors preserve features of the original image,

due to the dynamics of mid-run chains from our EBM defense method.

7.3 PureEBM: Purifying Langevin Defense against Poisoning At-

tacks

Given a clean training set Xclean ⊂ RD consisting of i.i.d. sample images xi ∼ pclean for

i = 1, . . . , n. Targeted data poisoning attacks modify αn training points, by adding optimized

perturbations δ constrained by C = {δ ∈ RD : ∥δ∥∞ ≤ ξ}. Poisons crafted by such attacks

look innocuous to human observers and are seemingly labeled correctly. Hence, they are

called clean-label attacks. These images define a new distribution xi + δi ∼ ppoison, so that

our training set comes from the mixture of probability distributions:

pdata = (1− α)pclean + αppoison (7.3)

The goal of adding these poisons is to change the prediction of a set of target examples

Π = {(xπ, yπ)} ⊂ Dtest or triggered examples {(x + ρ, y) : (x, y) ∈ Dtest} to an adversarial

label yadv.

Targeted clean-label data poisoning attacks can be formulated as the following bi-level

optimization problem:

argmin
δi∈Cδ,ρ∈Cρ∑n
i=0 1δi ̸=0≤αn

∑
(xπ ,yπ)∈Π

L
(
F (xπ + ρ;ϕ(δ)), yadv

)
(7.4)

s.t. ϕ(δ)=argmin
ϕ

∑
(x,y)∈D

L (F (x+δi;ϕ), y)

For a triggerless poison, we solve for the ideal perturbations δi to minimize the adversarial

loss on the target images, where Cδ = C, Cρ = {0 ∈ RD}, and D = Dtrain. To address the

above optimization problem, powerful poisoning attacks such as Meta Poison (MP) [HGF20],

Gradient Matching (GM) [GFH21], and Bullseye Polytope (BP) [AMW21] craft the poisons
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to mimic the gradient of the adversarially labeled target, i.e.,

∇L
(
Fϕ (xπ) , yadv

)
∝
∑
i:δi ̸=0

∇L (Fϕ(xi + δi), yi) (7.5)

Minimizing the training loss on RHS of Equation 7.5 also minimizes the adversarial loss

objective of Equation 7.4.

For the triggered poison, Narcissus (NS), we find the most representative patch ρ for

class π given C, defining Equation 7.4 with Cδ = {0 ∈ RD}, Cρ = C, Π = Dπ
train, y

adv = yπ,

and D = DPOOD ∪ Dπ
train. In particular, this patch uses a public out-of-distribution dataset

DPOOD and only the targeted class Dπ
train. As finding this patch comes from another natural

dataset and does not depend on other train classes, NS has been more flexible to model

architecture, dataset, and training regime [ZPJ22].

7.3.1 Energy-Based Model

An Energy-Based Model (EBM) is formulated as a Gibbs-Boltzmann density, as introduced

in [XLZ16]. This model can be mathematically represented as:

pθ(x) =
1

Z(θ)
exp(−Gθ(x))q(x), (7.6)

where x ∈ X ⊂ RD denotes an image signal, and q(x) is a reference measure, often a uniform

or standard normal distribution. Here, Gθ signifies the energy potential, parameterized by

a Convolutional Network with parameters θ. The normalizing constant, or the partition

function, Z(θ) =
∫

exp{−Gθ(x)}q(x)dx = Eq [exp(−Gθ(x))], while essential, is generally

analytically intractable. In practice, Z(θ) is not computed explicitly, as Gθ(x) sufficiently

informs the Markov Chain Monte Carlo (MCMC) sampling process.

As which α of the images are poisoned is unknown, we treat them all the same for a

universal defense. Considering i.i.d. samples xi ∼ pdata for i = 1, . . . , n, with n sufficiently

large, the sample average over xi converges to the expectation under pdata and one can learn

a parameter θ∗ such that pθ∗(x) ≈ pdata(x). For notational simplicity, we equate the sample
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average with the expectation.

The objective is to minimize the expected negative log-likelihood, formulated as:

L(θ) =
1

n

n∑
i=1

log pθ(xi)
.
= Epdata [log pθ(x)] . (7.7)

The derivative of this log-likelihood, crucial for parameter updates, is given by:

∇L(θ) = Epdata [∇θGθ(x)]− Epθ [∇θGθ(x)]

.
=

1

n

n∑
i=1

∇θGθ(x+
i )− 1

k

k∑
i=1

∇θGθ(x−
i ), (7.8)

where x+
i are called positive samples as their probability is increased and where k sam-

ples x−
i ∼ pθ(x) are synthesized examples (obtained via MCMC) from the current model,

representing the negative samples as probability is deceased.

In each iteration t, with current parameters denoted as θt, we generate k synthesized

examples x−
i ∼ pθt(x). The parameters are then updated as θt+1 = θt + ηt∇L(θt), where ηt

is the learning rate.

In this work, to obtain the negative samples x−
i from the current distribution pθ(x) we

utilize the iterative application of the Langevin update as the MCMC method:

xτ+1 = xτ −∆τ∇xτGθ(xτ ) +
√

2∆τϵτ , (7.9)

where ϵk ∼ N(0, ID), τ indexes the time step of the Langevin dynamics, and ∆τ is the

discretization of time [XLZ16]. ∇xGθ(x) = ∂Gθ(x)/∂x can be obtained by back-propagation.

If the gradient term dominates the diffusion noise term, the Langevin dynamics behave like

gradient descent. We implement EBM training following [NHH20], see App C.3.1 for details.

In practice, we find that learning the mixture of distributions pdata = (1−α)pclean+αppoison

yields an EBM with a purifying ability similar to that of training on pclean, suggesting our

unsupervised maximum likelihood estimation (MLE) method is unsurprisingly not affected

by targeted poisons.
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Algorithm 1 Data Preprocessing with PureEBM: ΨT (x)

Require: Trained ConvNet potential Gθ(x), training images x ∈ X, Langevin steps T , Time

discretization ∆τ

for τ in 1 . . . T do

Langevin Step: draw ϵτ ∼ N(0, ID)

xτ+1 = xτ −∆τ∇xτGθ(xτ ) +
√

2∆τϵτ

end for

Return: Purified set X̃ from final Langevin updates

7.3.2 Classification with Stochastic Transformation

Let ΨT : RD → RD be a stochastic pre-processing transformation. In this work, ΨT (x), the

random variable of a fixed image x, is realized via T steps of the Langevin update (7.9). One

can compose a stochastic transformation ΨT (x) with a randomly initialized deterministic

classifier fϕ0(x) ∈ RJ (for us, a naturally trained classifier) to define a new deterministic

classifier Fϕ(x) ∈ RJ as Fϕ0(x) = EΨT (x)[fϕ0(ΨT (x))], which is then trained with cross-

entropy loss via SGD to realize Fϕ(x). As it is infeasible to evaluate the above expectation of

the stochastic transformations ΨT (x) as well as training many randomly initialized classifiers

we take fϕ(ΨT (x)) as the point estimate of the classifier Fϕ(x). In our case this instantaneous

approximation of Fϕ(x) is valid because ΨT (x) has a low variance for convergent mid-run

MCMC.

7.3.3 Why EBM Langevin Dynamics Purify

The theoretical basis for eliminating adversarial signals using MCMC sampling is rooted

in the established steady-state convergence characteristic of Markov chains. The Langevin

update, as specified in Equation (7.9), converges to the distribution pθ(x) learned from un-

labeled data after an infinite number of Langevin steps. The memoryless nature of a steady-
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state sampler guarantees that after enough steps, all adversarial signals will be removed from

an input sample image. Full mixing between the modes of an EBM will undermine the origi-

nal natural image class features, making classification impossible [HMZ21]. [NHH20] reveals

that without proper tuning, EBM learning heavily gravitates towards non-convergent ML

where short-run MCMC samples have a realistic appearance and long-run MCMC samples

have unrealistic ones. In this work, we use image initialized convergent learning. pθ(x) is

described further by Algorithm 1.

The metastable nature of EBM models exhibits characteristics that permit the removal

of adversarial signals while maintaining the natural image’s class and appearance [HMZ21].

Metastability guarantees that over a short number of steps, the EBM will sample in a local

mode, before mixing between modes. Thus, it will sample from the initial class and not

bring class features from other classes in its learned distribution. Consider, for instance,

an image of a horse that has been subjected to an adversarial ℓ∞ perturbation, intended

to deceive a classifier into misidentifying it as a dog. The perturbation, constrained by the

ℓ∞-norm ball, is insufficient to shift the EBM’s recognition of the image away from the horse

category. Consequently, during the brief sampling process, the EBM actively replaces the

adversarially induced ‘dog’ features with characteristics more typical of horses, as per its

learned distribution resulting in an output image resembling a horse more closely than a

dog. It is important to note, however, that while the output image aligns more closely with

the general characteristics of a horse, it does not precisely replicate the specific horse from

the original, unperturbed image.

Our experiments show that the mid-run trajectories (100-1000 MCMC steps) we use to

preprocess the dataset X capitalize on these metastable properties by effectively purifying

poisons while retaining high natural accuracy on Fϕ(x) with no training modification needed.

A chaos theory-based perspective on EBM dynamics can be found in App. C.1.1.
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7.3.4 Erasing Poison Signals via Mid-Run MCMC

The stochastic transform ΨT (x) is an iterative process, akin to a noisy gradient descent,

over the unconditional energy landscape of a learned data distribution. As MCMC is run,

the images will move from their initial energy toward pdata. As shown in Figure 7.1, the

energy distributions of poisoned images are much higher, pushing the poisons away from the

likely manifold of natural images. By using mid-run dynamics (150-1000 Langevin steps),

we transport poisoned images back toward the center of the energy basin.
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Figure 7.2: Plot of ℓ2 distances between clean images and clean purified (blue), clean images

and poisoned purified (green), and poisoned images and poisoned purified images (orange) at

points on the MCMC sampling trajectory. Purifying poisoned images for less than 250 steps

moves a poisoned image closer to its clean image with a minimum around 150, preserving

the natural image while removing the adversarial features.

In the from-scratch poison scenarios, 150 Langevin steps can fully purify the majority

of the dataset with minimal feature loss to the original image. In Figure 7.2 we explore

the MCMC trajectory’s impacts on ℓ2 distance of both purified clean and poisoned images
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from the initial clean image (∥x−ΨT (x)∥2 and ∥x−ΨT (x+ δ)∥2), and the purified poisoned

image’s trajectory away from its poisoned starting point (∥(x + δ) − ΨT (x + δ)∥2). Both

poisoned and clean distance trajectories converge to similar distances away from the original

clean image (limT→∞ ∥x − ΨT (x)∥2 = limT→∞ ∥x − ΨT (x + δ)∥2), but the steady increase

in image distance of the two trajectories offers an empirical perspective of the metastable,

mid-run region. The intersection where ∥(x+δ)−ΨT (x+δ)∥2 > ∥x−ΨT (x+δ)∥2 (indicated

by the dotted red line), occurs at ∼150-200 Langevin steps and indicates when purification

has moved the poisoned image closer to the original clean image than the poisoned version

of the image. This region coincides with the expected start of the mid-run dynamics where

our properties are most ideal for purification. Additional purification degrades necessary

features for classifier training, as already seen previously in the bottom right of Figure 7.1.

We note that we are not the first to apply EBMs with MCMC sampling for robust

classification, but we are, to the best of our knowledge, the first to apply an EBM-based

purification method universally as a poison defense and use non-overlapping natural datasets

to further extend the generality of EBM purification.

7.4 Experiments

7.4.1 Experimental Details

We compare our method, PureEBM, against previous state-of-the-art defenses EPIc and

FrieNDs on the current leading triggered poison, Narcissus (NS) and triggerless poisons,

Gradient Matching (GM) and Bullseye Polytope (BP). Triggerless attacks GM and BP have

100 and 50 poison scenarios while NS has 10 (one per class). Primary results use a ResNet18

classifier and the CIFAR-10 dataset. We train a variety of EBMs using the training tech-

niques described in App. 7.3.1 with specific datasets for our experimental results:

1. PureEBM: To ensure EBM training is blind to poisoned images, we exclude the
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Table 7.1: Poison success and natural accuracy in all poisoned from-scratch training scenarios

(ResNet18, CIFAR-10). We report the mean and the standard deviations (as subscripts) of

100 GM experiments and NS triggers over 10 classes.

From Scratch

200 - Epochs

Gradient Matching-1% Narcissus-1%

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Avg Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Max Poison
Success (%) ↓

None 44.00 94.840.2 43.9533.6 94.890.2 93.59
EPIc 10.00 85.141.2 27.3134.0 82.201.1 84.71

FrieNDs 0.00 91.150.4 9.4925.9 91.060.2 83.03

PureEBM 0.00 92.260.2 1.270.6 92.910.2 2.16
PureEBM-P NA NA 1.380.7 92.700.2 2.78

PureEBMCN−10 0.00 92.990.2 1.430.8 92.900.2 3.06
PureEBMIN 1.00 92.980.2 1.390.8 92.920.2 2.50

PureEBM-PCN−10 NA NA 1.640.01 92.860.20 4.34

80 - Epochs

Gradient Matching-1% Narcissus-1%

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Avg Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Max Poison
Success (%) ↓

None 47.00 93.790.2 32.5130.3 93.760.2 79.43
EPIc 44.00 92.460.3 21.5328.8 88.051.1 80.75

FrieNDs 1.00 90.090.4 1.370.9 90.010.2 3.18

PureEBM 1.00 91.360.3 1.460.8 91.830.3 2.49
PureEBM-P NA NA 1.631.0 91.490.3 3.47

PureEBMCN−10 1.00 92.020.2 1.500.9 92.030.2 2.52
PureEBMIN 1.00 92.020.2 1.520.8 92.020.3 2.81

PureEBM-PCN−10 NA NA 1.681.0 92.070.2 3.34

indices for all potential poison scenarios which resulted in 37k, 45k, and 48k training

samples for GM, NS, and BP respectively of the original 50k CIFAR-10 train images.

2. PureEBM-P: Trained on the full CIFAR-10 dataset in which 100% of training samples

are poisoned using their respective class’ NS poison trigger. This model explores the

ability to learn robust features even when the EBM is exposed to full adversarial

influences during training (even beyond the strongest classifier scenario of 10% poison).

3. PureEBMCN-10: Trained on the CINIC-10 dataset, which is a mix of ImageNet (70k)

and CIFAR-10 (20k) images where potential poison samples are removed from CIFAR-
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Table 7.2: Poison success and natural accuracy in all poisoned transfer training scenarios

(ResNet18, CIFAR-10). We report the mean and the standard deviations (as subscripts) of

50 BP experiments and NS triggers over 10 classes.

Transfer Learning

Fine-Tune

Bullseye Polytope-10% Narcissus-10%

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Max Poison
Success (%) ↓

None 46.00 89.840.9 33.4133.9 90.142.4 98.27
EPIc 42.00 81.955.6 20.9327.1 88.582.0 91.72

FrieNDs 8.00 87.821.2 3.045.1 89.810.5 17.32

PureEBM 0.00 88.951.1 1.981.7 91.400.4 5.98
PureEBM-p NA NA 16.4827.2 88.272.4 86.49

PureEBMCN−10 0.00 88.671.2 2.972.5 90.990.3 7.95
PureEBMIN 0.00 87.521.2 2.021.0 89.780.6 3.85

Linear - Bullseye Polytope

BlackBox-10% WhiteBox-1%

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

None 93.75 83.592.4 98.00 70.090.2

EPIc 66.67 84.343.8 91.00 64.790.7

FrieNDs 33.33 85.182.3 19.00 60.900.6

PureEBM 0.00 92.890.2 6.00 64.510.6

PureEBM-p NA NA NA NA
PureEBMCN−10 0.00 92.820.1 6.00 64.440.4

PureEBMIN 0.00 92.380.3 6.00 64.980.3

10 indices [DCA18]. This model investigates the effectiveness of EBM purification

when trained on a distributionally similar dataset.

4. PureEBMIN: Trained exclusively on the ImageNet (70k) portion of the CINIC-10

dataset. This model tests the generalizability of the EBM purification process on

a public out-of-distribution (POOD) dataset that shares no direct overlap with the

classifier’s training data X .

5. PureEBM-PCN-10: Trained on the CINIC-10 dataset where the CIFAR-10 subset is

fully poisoned. This variant examines the EBM’s ability to learn and purify data where

a significant portion of the training dataset is adversarially manipulated, and the clean
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images are from a POOD dataset.

A single hyperparameter grid-search for Langevin dynamics was done on the PureEBM

model using a single poison scenario per training paradigm (from scratch, transfer linear and

transfer fine-tune) as seen in App. C.6. The percentage of classifier training data poisoned is

indicated next to each poison scenario. Additional details on poison sources, poison crafting,

definitions of poison success, and training hyperparameters can be found in App. C.3.2.

7.4.2 Benchmark Results

Table 7.1 and 7.2 shows our primary results in which PureEBM achieves state-of-the-

art (SoTA) poison defense and natural accuracy in all poison scenarios and fully

poisoned PureEBM-P achieves SoTA performance for Narcissus. Furthermore, all public

out-of-distribution (POOD) EBMs achieve SoTA performance in almost every

category without additional hyperparameter search.

For GM, PureEBM matches SoTA in a nearly complete poison defense and achieves

1.1% less natural accuracy degradation, from no defense, than the previous SoTA. For BP,

PureEBM exceeds the previous SoTA with an 8-33% poison defense reduction and 1.1-7.5%

less degradation in natural accuracy. For NS, PureEBM matches or exceeds previous SoTA

with a 1-8% poison defense reduction and 1.5% less degradation in natural accuracy.

7.4.3 Results on Additional Models and Datasets

Table 7.3 shows results when we apply NS poisons (generated using CIFAR-10) to the CINIC-

10 dataset. To ensure no overlap for our EBMs, we train on CINIC-10’s validation set, which

has the same size and composition as its training set. Table 7.4 shows results for MobileNetV2

and DenseNet121 architectures. PureEBM is SoTA across all models and in CINIC-

10 NS poison scenarios showing no performance dependence on dataset or model. Full

results are in App. C.2.
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Finally, the Hyperlight Benchmark CIFAR-10 (HLB) is a drastically different case study

from our standard benchmarks with a residual-less network architecture, unique initializa-

tion scheme, and super-convergence training method that recently held the world record of

achieving 94% test accuracy on CIFAR-10 using a surprising total of 10 epochs [Bal23]. We

observe that NS still successfully poisons the HLB model, and does so by the end of the

first epoch. Applying EPIc and FrieNDs becomes unclear, as they use model information

after a warm-up period, but we choose the most sensible warm-up period of one epoch, even

though the poisons have set in. From Table 7.4 subset selection based EPIc is unable to

train effectively, and FrieNDs offers some defense. PureEBM still applies with minimal

adjustment to the training pipeline and defends effectively against these poisons. Table 7.4

also shows the effect of differing MCMC steps where 25 MCMC steps already offers com-

parable defense to FrieNDs, and by 50 steps, PureEBM shows SoTA poison defense and

natural accuracy. Increasing steps further reduces poison success, but at the cost of natural

accuracy and linearly increasing preprocessing time.

The last column of the HLB section shows timing analysis on an NVIDIA A100 GPU.

Due to HLB training speeds, timings primarily indicate the processing time of the defenses.

PureEBM is faster in total train time and per epoch time than existing SoTA defense

methods. We emphasize that, in practice, PureEBM can be applied once to a dataset and

used across model architectures, unlike previous SoTA defenses EPIc and FrieNDs, which

require train-time information on model outputs. See App. C.4 for further timing.

7.4.4 Further Experiments

Model Interpretability Using the Captum interpretability library, in Figure 7.3, we com-

pare a clean model with clean data to the various defense techniques on a sample image

poisoned with the NS Class 5 trigger ρ [KMM20]. Only the clean model and the model

that uses PureEBM correctly classify the sample as a horse, and the regions most impor-

tant to prediction, via occlusion analysis, most resemble the shape of a horse in the clean
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Table 7.3: Poison success and natural accuracy when training on CINIC-10 Dataset From

Scratch Results with NS Poison

CINIC-10 Narcissus - 1% From-Scratch (200 Epochs)

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

CIFAR-10

Accuracy (%) ↑

None 62.060.21 86.320.10 90.79 94.220.16

EPIc 49.500.27 81.910.08 91.35 91.100.21

FrieNDs 11.170.25 77.530.60 82.21 88.270.68

PureEBM 7.730.08 82.370.14 29.48 91.980.16

and PureEBM images. Integrated Gradient plots show how PureEBM actually enhances

interpretability of relevant features in the gradient space for prediction compared to even

the clean NN. Additionally, we see that the NN trained with PureEBM is less sensitive to

input perturbations compared to all other NNs. See App. C.5 for additional examples.

Flatter solutions are robust to Poisons Recently [LYM23] showed that effective poisons

introduce a local sharp region with a high training loss and that an effective defense can

smooth the loss landscape of the classifier. We consider the curvature of the loss with

respect to our model’s weights as a way to evaluate defense success. The PSGD framework

[Li15, Li19, Li22, PL24] estimates the Hessian of the loss H of the model over the full

dataset and the poisoned points through training. In information theory, 0.5 log det(H) is

a good proxy for the description length of the model parameters. We find that training

with data points pre-processed by the PureEBM stochastic transformation ΨT (x) reduces

the curvature of the loss of the NN over the full dataset and around poisoned points. In

effect, NNs trained with points defended with PureEBM are significantly more robust to

perturbation than other defenses. In App. C.5.1, we find that PureEBM and FrieNDs

models’ parameters diverge from poisoned models more so than EPIc.
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Figure 7.3: Defense Interpretability: Model using PureEBM focuses on the outline of the

horse in the occlusions analysis and to a higher degree on the primary features in the gradient

space than even the clean model on clean data.

7.5 Conclusion

Poisoning has the potential to become one of the greatest attack vectors to AI models, de-

creasing model security and eroding public trust. Further discussion of ethics and impact

can be found in App. C.8. As a community, we hope to develop robust generalizable ML

algorithms. In this work, we present PureEBM, a powerful Energy-Based Model defense

against imperceptible train time data poisoning attacks. Our approach significantly ad-

vances the field of poison defense and model security by addressing the critical challenge

of adversarial poisons in a manner that maintains high natural accuracy and method gen-

erality. Through extensive experimentation, PureEBM has demonstrated state-of-the-art

performance in defending against a range of poisoning scenarios using the leading Gradient

Matching, Narcissus, and Bullseye Polytope attacks. The key to our method’s success is a
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Figure 7.4: Estimate loss curvature - classifier robustness - with log (|H|) against both

full and poisoned subset of training data. Model trained with PureEBM has the lowest

curvature compared to SoTA defense methods.

stochastic preprocessing step that uses MCMC sampling with an EBM to iteratively purify

poisoned samples, moving them into a lower energy, natural data manifold. We share similar

SoTA results with EBMs trained on out-of-distribution and poisoned datasets, underscoring

the method’s adaptability and robustness. A versatile, efficient, and robust method for puri-

fying training data, PureEBM sets a new standard in the ongoing effort to fortify machine

learning models against the evolving threat of data poisoning attacks. Because PureEBM

neutralizes all SoTA data poisoning attacks effectively, we believe our research can have a

significant positive social impact to inspire trust in widespread machine learning adoption.
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Table 7.4: MobileNetV2 and DenseNet121 results and HyperlightBench for a novel training

paradigm where PureEBM is still effective.

From Scratch NS-1% (200 epochs)

MobileNetV2 DenseNet121

Avg Poison

Success (%) ↓
Avg Natural

Accuracy (%) ↑
Avg Poison

Success (%) ↓
Avg Natural

Accuracy (%) ↑

None 32.700.25 93.920.13 46.5232.2 95.330.1

EPIc 22.350.24 78.169.93 32.6029.4 85.122.4

FrieNDs 2.000.01 88.820.57 8.6021.2 91.550.3

PureEBM 1.640.01 91.750.13 1.420.7 93.480.1

Linear Transfer WhiteBox BP-10%

MobileNetV2 DenseNet121

Poison

Success (%) ↓
Avg Natural

Accuracy (%) ↑
Poison

Success (%) ↓
Avg Natural

Accuracy (%) ↑

None 81.25 73.270.97 73.47 82.131.62

EPIc 56.25 54.475.57 41.67 70.135.2

FrieNDs 41.67 68.861.50 56.25 80.121.8

PureEBM 0.00 78.571.37 0.00 89.290.94

Hyperlight Bench CIFAR-10 NS-1% (10 Epochs)

Avg Poison

Success (%) ↓
Avg Natural

Accuracy (%) ↑
Max Poison

Success (%) ↓
Train Time

(s)

None 76.3916.35 93.950.10 95.69 6.810.62

EPIc 10.5818.35 24.886.04 50.21 612.4330.16

FrieNDs 11.3518.45 87.031.52 56.65 427.500.50

PureEBM-25 10.5926.04 92.750.13 84.60 54.700.48

PureEBM-50 2.161.22 92.380.17 3.74 92.890.48

PureEBM-100 1.891.06 91.940.14 3.47 168.690.46

PureEBM-150 1.931.15 91.460.17 4.14 244.720.47

PureEBM-300 1.680.82 90.550.21 2.89 478.290.47
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CHAPTER 8

Simulated Education

8.1 Introduction

Human-machine interactions have become an increasingly important question as AI tools

spread. Dealing with humans, however, introduces many challenges. First, people are nec-

essarily dynamic, both in that a person’s approach to interacting with tools may change

quickly due to unobservable external factors and in that each human’s response may have

long-term, unobservable, or unknown dependencies. Secondly, there will almost never be

enough data to train any model with any individual human, as the amount of experiences an

individual human can have is limited. Building upon the work we presented in Chapter 3, we

turn to education as a prime example of a human-machine interaction that has long-standing

research and interest, but provides a concrete example of the problems that we face.

Artificial intelligence’s role in education has become an increasingly important topic lately

with the introduction of large language models (LLMs), which provide students with cus-

tom responses and artificial discussions about almost any searchable topic on the Internet.

However, in this study, we seek to understand how to best create a long-term educational as-

sistant for an individual, targeted toward assisting with classes. Intelligent Tutoring Systems

(ITS) are computer-based educational tools that provide adaptive instruction to learners and

are considered “intelligent” enough to substitute for human tutors. When considering ITS

in the STEM domains, there is an inherent focus on model building and individual progress

tracking [FMK21]. As an ITS tracks a student’s progress, it will make interventions that
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will optimize the student’s success in the course.

There are many points that make tracking human learning a difficult task for machines. In

particular, education is a time-series problem with considerable hidden information. Hidden

information occurs in many forms in the education environment, most clearly in student

concept mastery, but also in terms of the possible responses that a student may have to a

lecture and the effect of external factors. Each of these kinds of hidden information increases

the difficulty of the problem, as we never have enough data from a single student to properly

estimate everything, so we have to rely on a mixture of population knowledge and probing.

Probing refers to the specific action by which the ITS either asks or quizzes student progress

to update its estimate of the student’s hidden concept mastery. The time-series nature of the

problem adds to its difficulty, as if we save too much past information, the problem becomes

intractable, while if we save too little, a past event may become a “hidden external event”

from the perspective of the ITS.

To gain better insight of how to best design an ITS, we break down many of the benefits

and difficulties of the education problem and create a simulated environment. This simu-

lated environment allows us to explore both realistic and idealistic scenarios with different

techniques.

In this chapter, we explore the options for creating an optimal ITS under many simulated

environment configurations. Among the questions we would like to answer are:

1. Can we create an ITS that can adapt to a student’s individual learning characteristics?

Struggling students should be recommended some remedial action, while the same

recommendations should not apply to a student making good progress.

2. What is the value of probing? Would an ITS that cannot probe do significantly worse

than one that can? And then, if the cost of probing increases, at what point would we

no longer find it worthwhile to probe?

3. Can we design a course structure that is more robust to poor probing? That is, if our
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probing capabilities are limited, would a quiz structure be significantly better than a

finals-only or midterm-final structure?

8.2 Background

8.2.1 Motivation

Recent years have enlightened many more of the public of the current state and the future

potential of artificial intelligence (AI) in our society. In light of this new frontier of AI, an

important area of research is to understand how to interface the use of AI with humans.

Examples can be seen in all sorts of examples, such as self-driving cars, medical diagnosis,

and education. AI has the potential to be extremely helpful to humans, but the black-box

nature of AI can also be hard to accept for many people and dangerous in extreme cases.

Thus, we would like to investigate ways to incorporate explainability and human interaction

into the use of AI. Education can also be viewed as a proxy environment, providing some

insight into the goals and problems of dealing with dynamic human interactions.

Education is an interesting problem for artificial intelligence. On the positive side, typical

educational programs are heavily structured and rules-based. This structure comes from

many areas. There is a prerequisite concept structure for many classes, especially in STEM

subjects. Furthermore, we have a wealth of expert knowledge in how to teach specific

courses, and a general idea for overall good teaching methodology. An example is that

we know prerequisite concepts need to be at a certain level before any headway into new

concepts can be made.

However, education is challenging for artificial intelligence. Even outside the machine

learning space, education is partially observed – no instructor knows everything about a

student. Partial observability can hinder the system’s ability to adapt appropriately because

it might not have access to all relevant contextual information, such as workload in other

courses, extracurricular work and events, and family and personal relationships. This can
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make it difficult for the system to detect when a student is struggling, engaged, or in need

of assistance. Without a complete picture of the learner’s interactions, the system will miss

opportunities to provide support, which can impact the learning process.

Furthermore, education is a time-series problem. The state of a student is constantly

changing with every point in time, especially if going to lecture, actively doing readings or

assignments, and discussing with friends. As with many other instances of time-series data,

time-series can pose several problems. First, we need to maintain an estimate of the student

learning state, which depends, potentially, on points in time far in the past. It also depends

on more parameters that we likely have no access to for the individual. Second, the true

estimation of a student’s state at a given point in time is effectively impossible without an

extensive examination, detracting from time spent instructing and learning.

Finally, explainability can be important, as students and teachers may be distrustful of

computer recommendations. This can go in many ways, where extremes would be explaining

to a struggling student why studying a specific concept is the most effective way to improve,

but also in explaining to an excelling student that no further studying is necessary. Further-

more, we would like some method that is at least somewhat flexible in differing population

distributions. These two points are closely related when it comes to methodology designs.

8.2.2 Prior Work

Intelligent tutor systems (ITS) have been investigated for a long time and have been shown

to outperform other computer aided instruction [KF15, KRW07]. Much work has been

contributed via the framework provided by ASSISTments [PSO22]. In particular, many

experiments are run in the ASSISTments platform, and they include a long list of features

that can quantify the students’ skill level at any given point in time. In particular, this work

has inspired and advanced the knowledge tracing domain significantly [PSH15, AWN22].

We use these features to create the simulated environment and acknowledge that we would

like to do further analysis to see how much we can fit ASSISTments datasets within our
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own model. We use basic knowledge tracing in our population model, though we maintain

explainability as our primary goal.

The field of reinforcement learning (RL) has been a major driving force in the devel-

opment of AI. RL has been used to solve many problems, such as playing games [SHM16,

MKS13, VBC19, SHS17], robotics [KBP13], and even medical applications [BJS21]. RL

deals with an agent interacting with an environment and through the agent’s interactions

with the environment, learns how to best respond in the future. It combines the ability of

online learning with the need to explore possible action consequences in the environment.

An adjacent field, inverse reinforcement learning (IRL) has also arisen in response to the

popularity of RL, where we try to learn an optimal reward function that explains expert

knowledge. While we don’t directly reference IRL in this work, our use of prior knowledge

can be easily extended to a discussion on IRL.

A considerable amount of work has taken place for RL in the field of education [FWH23].

[LXZ20] tests the effectiveness of a Deep Q-Network (DQN), a Deep RL approach, on a

simpler education environment, finding that it significantly outperforms heuristic methods.

It shares further similarities in that it introduces a population model, using a standard

single-step MLP, and a two-concept continuous-valued simulation course. We build upon

this simulation by introducing deliberate hidden information, introducing probing and the

trade-off of immediate time rewards, probes, and tutors, having a variety of concept mastery

dynamics conditioned on student type, and a highly configurable simulation.

8.3 Problem Setting

We view the education problem as a controls problem with unknown system dynamics. The

autonomous intelligent tutoring system, a cognitive-dynamic system, is trying to give rec-

ommendations to steer the student (the system) in the correct direction. If all the mechanics

of the system are deterministically known, course structure, student responses, etc., then we
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would have a traditional controls problem.

This education problem is based on the interactions between students, teachers, and the

overall structure of the course. Underlying everything, we assume that education, especially

in STEM subjects comes with a hierarchical causal structure, e.g. calculus builds on algebra,

which builds on arithmetic. Whether a student learns a concept depends both on their

mastery of prerequisite concepts and whether they have the motivation to spend time.

Students may have the noble goal of achieving knowledge of the course material, but

most of the time have the proxy goal of getting a good grade. As a student progresses

through a course, she can take many actions and their state necessarily changes over time.

However, each student’s actions differ based on individual factors and are mostly unobserved.

However, we consider that a student will consider a trade-off between extra performance in

a course and doing other life activities.

Similarly, professors generally want to educate students in their field, but also have

other interests such as research, resulting in limited time. However, professors are typically

unaware of the students’ states. Therefore, traditionally courses have a hard time providing

individualized support to students and require individual tutors.

Given this initial view, we introduce several major hurdles to directly understanding the

creation of an ITS.

8.3.1 Hidden Information

Education is a difficult task because of the various levels of hidden information. The control

mechanics are not only stochastic, they are unknown and can be changing as a response

to actions or due to completely unknown outside sources. At even the basic level, the two

major hidden pieces of information at any point in time are the current concept state and the

student’s responses to any intervention that is taken. We will make restricting assumptions

later to make the estimation problem feasible, but sensing and probing become the main
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ways to estimate the knowledge of the dynamics of the system.

8.3.2 Probing, Measurements, and Quantization

All measurements are imperfect and when it comes to human interactions, this is exacerbated

by other psychological and social factors. In general, observations in the real world can

only be measured up to some level of uncertainty, constrained by physical limits or just in

measurement capacity of devices in general. In an ideal scenario, we would be able to directly

know each student’s mastery for all relevant concepts. However, this direct information

cannot actually be obtained. Instead, this can only be measured through examinations,

which are expensive in time for both students and instructors and are subject to measurement

randomness, or through asking for student self-perception and historical performance, which

can help us predict future performance. However, experiments we have run have shown that

students often have no comparison metric to determine their own performance. Therefore,

if possible, a quantitative measurement is preferred.

On the other hand, we only have a limited number of control actions. There is a many-

to-one relationship between possible states and the best possible action. Also, in education,

intervention choices are less critical than in some other domains such as drone flight or

medicine. These two properties combine to allow for some action ambiguity. As such, having

a high precision state space is wasteful. It increases the necessary amount of parameters to

draw precise boundaries, data to train such parameters, and difficulty in explanation.

8.3.3 Individual Dynamics

Learning is inherently a dynamic process. Students build upon the information that they

have already learned. Weak mastery of a prerequisite can hinder student developments

on new dependent concepts. Furthermore, individual dynamics arise from both student

differences and external factors. This can both be a reactionary response to something
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observable, e.g. an exam or homework, or unobservable, e.g. family trouble or financial

issues.

In a traditional Markov process, having full knowledge of the single time-step, P [st|st−1],

fully characterizes the dynamics. Assuming this can be obtained, the main consideration lies

in the decision of the state space, which can keep updated latent space information from past

points in time. As students will respond to actions chosen by the ITS, we break down the

state into the student’s direct educational state and the student’s observations of the ITS’s

actions as part of the student’s observation space, notated as P [st|st−1, at−1]. The Markov

property is attractive, as it minimizes long-term graph connections, and allows prediction

to occur independently of the past. With it, we can start helping a student no matter when

they start using the ITS in the course (up to the warm-up period to filling out information

about the student state st). Theoretically, with sufficiently large state spaces, the entire past

can be represented in st. However, if this possible state space is too large, solving for the

dynamics is intractable.

Creating a relevant state space is thus nontrivial. In the education space, students may

change dynamics due to unobserved events, possibly creating issues in the future. These

could be due to events within education, such as poor teaching of a concept in a previous

institution, or outside of education, such as prioritizing a part-time job. This can create

situations where two students with the exact same history in observations in a course could

suddenly diverge greatly. For any unobservable or unmodeled event, we require our dynamics

to be flexible to sudden changes. This requires some consideration of the stability-plasticity

dilemma [Hay12].

The other problem is that the dynamics themselves are an individual property. For every

individual, P [st|st−1, at−1] will be different. Then, should the individual be included in the

state space st? It is infeasible to do so, as we can never actually get enough data about the

individual to accurately estimate the individual’s transitions. Not only do individuals just

not have the sheer number of interactions for a system to learn from, but also the actual
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instance of a transition is usually only relevant once. Therefore, we propose to estimate

states of individuals assisted by what we have seen from the population.

8.4 SimEdu

In order to address the difficulties of educational assistance, we use a reinforcement learning

(RL) framework. RL allows us to address some issues of dynamically changing environments

and population shifting, while still providing a computationally tractable approximation to

dynamic programming searches. It also provides us with some basic algorithms to benchmark

some ideas behind the education problem, highlight some of its difficulties, and understand

what could be optimal approaches. SimEdu introduces a combination of

1. A highly configurable simulated education environment. In particular, we allow the

configuration of concept structure, courses, student types, and possible interventions.

Based on the simulated aspect, we also allow the exploration of the level of hidden

information and how much information interventions can provide to the ITS.

2. A list of RL algorithms that demonstrate the use of the simulated education problem

and provide solutions, both in a purely data-driven technique and with fixed heuristic-

based models. The idea behind the variety of algorithms is for the demonstration of a

point, whether it is for performance or explainability.

3. A knowledge tracing mechanism for population modeling. In the population modeling,

there are the considerations of modeling student subtypes, using prior knowledge, and

its sample efficiency with regard to individual modeling.

A view of the information flow is provided in Figure 8.1.

In order to create the simulation, we draw from the wealth of teaching experience that

is available. This allows us to simulate environments using rules-based structures, giving
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causal explanations for certain student responses. These experiences give us a prior under-

standing of how an educational course should function and inform our design decisions in

the simulation process.

Ultimately the goal of this simulated environment is to perform randomized experiments

where our RL agent is interacting with a simulated human with predictable but stochastic

tendencies. This does not necessarily have to be in the education environment, but education

has some nice simplifications that we take advantage of in our problem that makes it easily

parallel to a real-world situation. Ideally, up to some level of approximation, the simulated

environment can directly reflect data that is gathered in the real world and, then, provide

an ITS for future students.

Time, t −→

ht Population

RL Agent

ht+1

Sim Env

{at−1, ot−1, rt−1}

h′
t

h′
t

ot, rtat

Figure 8.1: A figure showing the time-dynamics of the interactions between the three com-

ponents of SimEdu: The population model, the RL agent, and the Simulated Environment.

8.4.1 Simulated Environment

First, we introduce SimEdu as a highly-configurable, dynamic time-series environment used

for RL probing. The simulated environment gives us a well-defined method of analyzing

what conditions are necessary to provide good feedback in the ITS situation.
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Figure 8.2: Concept DAGs for multi-concept courses (left: one-concept course with prereq-

uisite, right: four-concept course with two prerequisites). Concepts taught in a course are

denoted with the precursor C and are denoted by letters (e.g. CA), while prerequisites are

denoted with precursor PR and selected via numbers (e.g. PR1).

8.4.1.1 Concept Graphs

Our first assumption about the education problem is that there exists a functional concept

graph that guides the educational experience. For example, we normally know that some

fundamental understanding of algebra is required before learning calculus, represented as a

path in the graph Algebra → Calculus. In theory, we can propose a directed acyclic graph

(DAG) of the learning concepts of an educational path. In our simulated environment, we

primarily deal with linear connections between concepts. This embodies the assumption that

there is no way to master a child concept before mastering a parent concept.

In practice, a full educational graph can get highly complex. Instead, we look at po-

tential subgraphs, with the Markovian assumption that knowing the state of the parents

of the subgraph, all future interactions are independent of the previous nodes. Two basic

educational graphs that we use in our multi-concept courses can be seen in Figure 8.2.

Subgraphs also handle the different levels of granularity concept graphs can have. Within

a course, small, individual concepts, e.g. factoring, completing the square, and the quadratic

formula as methods of solving quadratic equations, are taught one-by-one and may require
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specific attention. However, from the perspective of a follow-up course, an overall under-

standing of the higher-level concept is enough. Following the example, the three methods

combine to form an understanding of how to solve a quadratic equation, which is what the

next course needs. Even further along, this may even get further abstracted into “algebra

understanding.”

Any concept DAG will also have some weights wαβ, representing how much the mastery

of concept α affects concept β. Suppose we have concept γ. Let p ∈ P (γ) represent the

direct parents of γ. Then, the combined concept mastery C ′
γ can be represented as:

C ′
γ =

∑
p∈P (γ)

wpγC
′
p +

1−
∑

p∈P (γ)

wpγ

Cγ (8.1)

where 1 −
∑

p∈P (γ) wpγ represents the weight of the concept independent of its parents.

This representation, therefore, requires a DAG structure, as it requires the finalized concept

mastery for every parent C ′
p before C ′

γ can be computed. If γ were ever an ancestor of a

parent, Equation 8.1 would define a cyclic recursion.

8.4.1.2 Students

Once we have defined a concept graph, we can define students who have some inherent mas-

tery of every relevant concept. The student also contains a couple of additional parameters:

the amount of time they are willing to spend in each course time-step and a “motivation”

parameter, a valued parameter ranging from 0 to 1 which affects the trajectory of student

progress. In this simulation, there are two determining factors of the “student type”: the ini-

tial state of the concepts (particularly relevant for prerequisite concepts) and their inherent

motivation trajectory. This motivation parameter is an abstraction including their actual

motivation, inherent study skills, discipline, and other external factors.

As the motivation directly scales the effectiveness of the time spent, we do not also vary

the amount of time for the student and include the variation of that abstraction within the
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motivation parameter. The time spent directly influences a small amount of immediate time

reward regardless of its effectiveness.

For our experiments, we test with several possible trajectories: stable trajectories starting

at different levels and trajectories that trend upward and downward to represent students

that need a warm-up period and students that burn out throughout a course’s time. We

also include some small noise to the motivation, based on the possibility of random external

factors influencing student motivation.

Students are generated using user-defined distribution specifications. In the current sim-

ulation, the specifications include priors about relevant concepts, primarily the prerequisite

ones, and prior trajectories for motivation. In our current simulations, we assume that once

these priors are set, they are fixed for the course, up to some random noise.

8.4.1.3 Interventions

Once the students are defined, we can define possible interventions. An intervention is any

interaction with the student that deals with the concepts or motivation of the student. There

are scheduled interventions, which are the scheduled lectures and examinations. We mark

time-steps as the time between scheduled interventions. Then, the actionable interventions

are the interventions that the ITS has access to that are dynamically chosen based on its

observations. These interventions include probing interventions, tutor interventions, and

motivation interventions. In our simulation, all actionable interventions have a positive cost

associated with them, representing the time that each intervention takes.

Our concept interventions, which constitutes both lectures and tutor interventions, are

currently modeled as asymptotic exponential steps, given by

∆C

∆t
= km(Ctarget − C) (8.2)

where C represents the concept mastery, km is some constant scaled by both the intervention

type and the student’s motivation, and Ctarget can be defined per intervention type.

125



Then, each concept intervention can also give some amount of feedback, where the con-

figured quality of the feedback depends on the type of intervention. In our experiments,

lectures provide no feedback, tutor sessions provide a good amount of feedback, and exami-

nations provide a lot of feedback. In our simulation, we define the feedback as some number

of i.i.d. Bernoulli samples (Bern(C)).

Our motivation interventions, instead, are discrete steps. We divide the motivation into

two main categories, a study skills aspect and a transient motivation aspect. We have

a study-skills intervention that directly improves the study skills of a student permanently,

but can only happen once. Then, we have a limited motivation intervention that can improve

motivation for a student for a short period of time, in case there is a particular concept that

the student needs the extra motivation for. Both interventions currently move the student

up one step when active.

Probing interventions provide little to no direct benefit to the student, but provides much

more feedback. For our simulations, we offer two types of probes: a realistic probe and an

oracle probe. The oracle probe directly elucidates the hidden parameter C that defines

the student’s concept mastery. One can view this as learning the underlying probability

distribution dictating the Bernoulli samples. This type of probe ameliorates the partial

observability problem, as it allows the problem to become fully observed, at a cost. The

realistic probe, instead, simulates an examination for low cost. This gives the ITS reliable

information, but is subject to some random noise. Thus, it cannot give the same quality of

information, but it would be more realistic to implement.

8.4.1.4 Course

A course is the list of scheduled interventions. We design three types of courses, a basic one-

concept course, a prerequisite one-concept course, and a four-concept course. The prerequisite

one-concept course and the four-concept course follow a concept graph structurally defined

by Figure 8.2.
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We design courses to have the following difficulty level:

• The top students (referred to as ‘A’ students) will pass a course more than 90% of the

time with no ITS intervention.

• The bottom students will almost never pass the course without ITS intervention. How-

ever, if the student receives significant ITS intervention, they should almost always pass

the course.

An ITS can always tutor to help students pass the course, but this would not respect all

students’ time. Therefore, the goal is to design an ITS that probes for the student type and

then determines the amount of aid the student needs to receive.

8.4.2 Population Model

Following the definition of a course, another important aspect to an ITS’s success is the

population of students coming in. Hidden information is present everywhere in the education

problem. We decide that there are primarily two main pieces of student information that

will be hidden in the simulation, the student’s concept mastery and the student’s trajectory,

which we abstract as the student’s “motivation.” These two define the population of students

that enter a course.

The student concept mastery refers more to an instantaneous mastery, which can be

noisily measured with an evaluation or examination of some kind. On the other hand, the

student’s motivation cannot be measured instantaneously and could depend on longer-term

impacts and events.

8.4.2.1 Simulation

Following the discussion of the simulated environment, the student population is defined

with two points: the state of prerequisite concepts at the beginning of the course, and the
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overall student type in terms of motivation. Each prerequisite concept is quantized into 4

possible concept masteries, with most students in a natural classroom resting around the

passing level of all prerequisite concepts, and 20% students below and above that value.

Everything about the distribution is hidden to the population model and the ITS, except

perhaps in how many quantized steps we have split the distribution into.

8.4.2.2 Knowledge Tracing

Knowledge tracing is the task of modeling the time-series nature of student knowledge in

order to accurately predict student performance in the future, an inherently difficult problem

due to the complexity of humans [PSH15]. We apply Bayesian inference in the form of

a Hidden Markov Model (HMM) to provide knowledge tracing. However, we attach an

additional component that gives us flexibility in explainability, use of prior knowledge, and

exploration noise in reinforcement learning.

When dealing with student concepts, we first discretize the concept understanding into

K = 4 non-equal buckets. Using these buckets, we can model population information by

maintaining initial, transition, and emission probability Dirichlet priors [Str00, OGD22].

The Dirichlet distribution is the conjugate prior of the categorical distribution. This means

that sampling from the Dirichlet distribution gives rise to possible categorical probability

distributions required by the HMM. The Dirichlet distribution is also flexible, and different

parameters can specify distributions with bell-shapes or long tails, depending on necessity. It

is also specified with only as many parameters as the number of categories in the probability

distributions. Finally, it has an intuitive Bayesian update, where observing a specific inter-

action can be updated by simply adding a weighted increment to that interaction. Thus, its

parameters are always explainable as being the result of past observations and expert priors

can be implemented easily.

These give us very explainable ways to both use prior or expert knowledge and interpret
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the training as time goes on. We define Dirichlet parameters for each state-action pair. We

use the parameters to sample initial, transition, and emission probability distributions in an

epoch. However, as the emission probabilities depend only on how we want to define the

categories of students, we do not need to learn the distributions. We can set them beforehand

as a fixed prior to categorize student progress in each concept. The Dirichlet sampling also

immediately provides exploration noise to the reinforcement learning agent, creating some

input noise for robustness. From these distributions, we maintain estimated student concept

masteries with respect to time, getting both a likelihood of being in each respective bucket,

and the maximum likelihood state. As per the traditional HMM step [Rab89],

P{ht = k} =

∑K
i=1 P{ht−1 = i}PT (i, k)PE(k, ot)∑K

j=1

∑K
i=1 P{ht−1 = i}PT (i, j)PE(j, ot)

(8.3)

Then, as we update our models, we also update the Dirichlet priors with the state transitions.

Unfortunately, as the Dirichlet parameter method is still fundamentally mostly a tabular

approach, this method can be significantly less sample efficient. Therefore, the selection of a

relevant state space can heavily affect the training time and effectiveness of our approach in

hidden education environments. For example, we have found that the inclusion of the actual

value of the time step in the state is not desirable, and logically feels extraneous as doing a

specific intervention should not have time-dependent properties.

8.4.2.3 Sub-Population Models

In particular, one of the values in the state to consider is whether to consider subpopulations

or student types. Because in our simulation we have defined the population in terms of pre-

requisite knowledge and motivation, this pair of values can determine a student type. Thus,

there is an initial student type and a transitional student type, which dictates the motivation.

In particular, by keeping student type in the model, we can have different Dirichlet param-

eters for each student type, creating a better understanding of possible student transitions,

at the cost of reduced sample efficiency.
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Figure 8.3: Bayesian knowledge tracing via a Dirichlet parameterized sampling technique.

The population uses state information (which can possibly come from observations, such as

the RL’s choice of action) to sample PT ∼ Dirichlet(ϕ
(ot)
T ). After sampling, we proceed with

knowledge tracing with standard HMM updates. We can also sample a PE similarly, but in

our case we use PE as fixed priors.

However, trying to estimate student type is a second-order estimation problem, depen-

dent on accurate estimation in the first order plus having priors in the second order. The

estimation of the motivation parameter depends on an accurate estimation of the student

concepts, but an accurate estimate of student concepts also depends on the estimation of the

motivation parameter, leading to a somewhat cyclical estimation problem. This problem is

intractable, due to the accumulation of noise. Instead, we assume that students will always

take a diagnostic quiz where the student self-assesses their student type. The population

model can then use this information to select subpopulations.

While we make the assumption that the population model has some prior information

about which student type our student belongs to, this information is not passed to the

RL agent, so any information the RL agent can gain can only be through a more accurate
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estimate of the student’s state. In addition, even if the population model knows which group

each student belongs in, it is not given direct information about what the group’s expected

motivation will be at every time step, or information about the dynamics of how motivation

is integrated into the simulation.

8.4.2.4 Experiments

We deal with environments with 3 levels of observability in our experiments. The first

is a fully-observed environment, where we have all the oracle information necessary from

the environment itself, so that if we allowed an oracle probe intervention for the agent, it

would not actually do anything. Next, we deal with environments where only the concept

information is hidden. This models an ITS that can ask a student what they believe their

motivation is at the start of every session for free. However, the ITS cannot get accurate

information about student concepts. Finally, we have an environment where both are hidden

from the ITS.

8.4.3 Reinforcement Learning

RL offers a general framework that specifically handles interactions with an unknown envi-

ronment. As it focuses heavily on interactions, we look to RL as a way to be adaptive to

different types of humans while interacting.

However, RL still has many ongoing problems. In particular, unlike supervised learning,

RL deals with a non-stationary non-independent dataset, making sample efficiency an im-

portant point of discussion. Therefore, RL has difficulty in low-interaction spaces and can

have difficulty adjusting to a changing environment. Finally, RL still suffers from similar

problems to supervised learning, in that interpretability and performance often have some

level of trade-off.
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8.4.3.1 Rewards

Overall, the goal that we have set for our ITS is to increase the passing rate of students,

while giving students the most amount of free time. Thus, for time step n in an N step

course, our reward function is defined as:

Rn =


Kgn × gn + Kτ × τn

Tn
n < N

Kgn × gn + Kpass × 1G≥Gpass + Kτ × τn
Tn

n = N

(8.4)

where Kgn , Kτ , and Kpass refer to the reward weights of the grade reward, time reward, and

pass reward respectively. At every time step n, the environment provides a grade reward gn if

a graded intervention takes place, and an immediate time reward, defined by the proportion

of time the student has remaining after all the ITS interactions to how much she started

with τn/Tn. The immediate time reward can be realized as a student having free time to

spend on other tasks or enjoyment, or, from the perspective of a tutor, the amount of time

available for other students or tasks. At the end of the course we get the final course reward,

based on the students’ grade G =
∑

nKgngn, where we normalize with
∑

nKgn +Kpass = 1.

For instance, for a one-concept course, we could have KgN = 0.4 (0 for all other values of n),

Kpass = 0.6 and Gpass = 75%.

8.4.3.2 Rules-based Strategies

As we use RL to learn some policies, we also want to compare the learned policies to some

fixed rules-based policies. These rules-based policies come in several forms. First, we have

the policies that do not respond to the student, which are the policy that never tutors and

the policy that always tutors if time is available. These policies provide us with baselines

for what we expect from non-interactive ITS that we can compare our RL agent and more

interactive rules-based strategies with.

Then, we add a layer of “greedy” interactivity. For each possible action of the ITS, we

introduce a single interactive conditional for when each action should happen. We introduce
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a tutor limit. In this case, we would set the tutor limit to some value higher than Gpass, for

instance 80% or 85%, such that we tutor until our estimate of the student’s concept mastery

exceeds this limit. We also introduce study-skills and nudge conditionals for when we perceive

that the student’s motivation is not maximized. Finally, we probe if the confidence of any

concept is below a certain level.

These rules-based strategies provide a stable greedy policy that we have confidence should

be fairly successful to students. We call these strategies greedy because oftentimes the goal

of the strategy is to simply take an action until it cannot be taken anymore or the condition

for the action goes away. However, because of the simplicity of its design, it also provides

highly explainable policies. We also note that the rules-based policies only make use of the

same information as the model-free DQN and are not directly related to the rules used to

design the simulation.

8.5 Experiments

We ran a series of comprehensive experiments involving the manipulation of various ad-

justable parameters, including motivation dynamics, external factor distributions, and the

degree of partial observability.

8.5.1 Baseline Experiments

First, we ran certain baseline experiments so that we could both confirm whether our courses

were designed correctly and provide some understanding of the differences among heuris-

tic policies. In these baselines, we typically assume a fully-observed environment. The

fully-observed environment gives the ITS full detailed information about the underlying pa-

rameters used to compute the noisy observations. Furthermore, we can adjust the student

populations to specifically check whether our course performs up to par.

To reiterate, we expect that
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• Using a no intervention policy, A students should still pass the class most of the time,

but D students should almost never pass the course.

• Using a tutor-only policy, almost every student should pass the course. However, as

A students should have passed the course anyway, they should receive a lower total

reward.

Results are shown in Table 8.1 and are largely in line with our expectations. “All Stu-

dents” describes a course with a student population that is within expectations, where most

students are B students with smaller percentages on either side. In all cases, without tutor-

ing, A students have a very high pass rate and a high test reward. After applying tutoring

interventions, their pass rate goes up marginally, but their test reward always goes down.

Similarly, for D students, their pass rate is close to 0 without any interventions, but reaches

into 90% when tutored. An interesting point is the definition of “D student” produces few

consistently poor students across as courses get more complex, as there are more prereq-

uisite concepts, which can also factor into a student’s success. Thus, even though in the

four-concept courses, the D students are still performing poorly when tutored every time,

the absolute worst students are rare enough to not affect the total number of students much

in a real distribution.

8.5.2 Time Reward Experiments

First, we experiment with the reward constants, primarily the time reward constant Kτ .

Intuitively, we can understand that as Kτ → 0, the reward depends only on the grade, and

policies will tend toward tutoring as much as possible, as the cost for doing interventions

goes to 0. On the flip side, as Kτ → ∞, it can totally dominate the grade aspect of the

reward, and so the policy would no longer attempt to interact with the student whatsoever.

Table 8.2 shows the adaptability of interactive policies in a fully-observed one-concept

course. The first two columns serve as baseline comparisons, as they show the expectation
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Course
Type Policy

Student
Population Test Reward Pass Rate

Basic
One Concept

No Intervention
All Students 1.0207 84.1%
A Students 1.1171 97.9%
D Students 0.4829 3.3%

Tutor Only
All Students 1.0165 99.8%
A Students 1.0245 100.0%
D Students 0.9537 94.7%

Prerequisite
One Concept

No Intervention
All Students 1.0228 93.2%
A Students 1.0832 100.0%
D Students 0.4208 4.8%

Tutor Only
All Students 1.0119 100.0%
A Students 1.0195 100.0%
D Students 0.9326 94.2%

Four Concept

No Intervention
All Students 0.9632 63.3%
A Students 1.2057 99.7%
D Students 0.5267 0.0%

Tutor Only
All Students 1.0282 99.4%
A Students 1.0485 100.0%
D Students 0.6612 46.7%

Table 8.1: A list of design baselines for the three courses that we use.

as we move in either direction for Kτ . As expected, the pass rates of the non-interactive

strategies do not change across Kτ and only the test reward changes to reflect the effect of

Kτ .

We observe that the DQN is able to adapt to the population differently based on Kτ .

For high levels of Kτ , the DQN finds a policy with very high test reward, while finding

a pass rate between the no intervention and tutor-only policies. One note is that there is

some computational overhead present for extremely low values of Kτ , as the reward does

not propagate well into the DQN.

Furthermore, we also include a tutor limit rules-based approach, based primarily on our

expectation of a good fully-observed policy. The tutor limit policy simply tutors until it

reaches some limit, e.g. 85% to be safe, and then stops tutoring. In all but the highest time

reward, the rules-based approach actually performs similarly or better than the DQN in both
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fronts. This greedy method sacrifices some test reward it can get from the best students

for the stability of making sure students always pass, but knows to stop at a certain point

to retain a good amount of reward. These results illuminate one big difference between the

RL algorithm approaches and the greedy rules-based approaches. The RL algorithms tend

to be greedy toward the immediate rewards, procrastinating as much as possible and trying

to get as much test reward through immediate rewards. On the other hand, the tutor limit

policy does the exact opposite, where it is greedy toward the pass rate and tries for stability

in that front.

This implies that having a dynamic understanding of the reward can both be inherently

useful and have a visible effect on students. Thus, this allows for the custom selection of how

much time a student is willing to spend on a course and gives concrete results as to what the

expected results would be for a student. Furthermore, we show that rules-based approaches

provide both more stable and explainable solutions with similar results in most cases.

Policy

No Intervention Tutor Only DQN Tutor Limit

Kτ Test Reward Pass Rate Test Reward Pass Rate Test Reward Pass Rate Test Reward Pass Rate

0.0001 0.800± 0.253 80.8% 0.959± 0.026 99.9% 0.940± 0.010 98.6% 0.941± 0.044 99.6%

0.0005 0.811± 0.247 81.8% 0.959± 0.025 99.9% 0.943± 0.015 98.6% 0.944± 0.044 99.6%

0.001 0.830± 0.236 84.1% 0.961± 0.025 99.9% 0.947± 0.011 99.0% 0.945± 0.056 99.3%

0.002 0.830± 0.244 82.6% 0.964± 0.026 99.9% 0.949± 0.009 98.4% 0.954± 0.033 99.8%

0.005 0.855± 0.249 81.7% 0.969± 0.053 99.4% 0.969± 0.006 98.8% 0.972± 0.045 99.6%

0.01 0.901± 0.252 81.1% 0.984± 0.054 99.4% 0.999± 0.007 98.4% 1.003± 0.054 99.4%

0.02 0.994± 0.258 80% 1.017± 0.036 99.8% 1.067± 0.009 97.7% 1.067± 0.044 99.7%

0.05 1.309± 0.245 82.5% 1.106± 0.061 99.6% 1.318± 0.020 95.3% 1.255± 0.075 99.4%

Table 8.2: Time Reward Experiments (One Concept)

One thing in particular shows a clear difference between the RL method and the rules-

based method is when they tend to tutor. The rules-based approach is primarily greedily

improving student concept mastery, up to a limit. On the other hand, the DQN (and many
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other RL algorithms) will tend to be greedy for time (gaining the instantaneous rewards).

8.5.3 Partial Observability Experiments

We apply different approaches to showcase the difficulty of partial observability and the effect

of probing. Here, we use three different types of observability to make the problem more

difficult. Concept-hidden environments hide the status of the concept mastery for the student

from the ITS, but allow the ITS to see the motivation (based on some assumption that the

student will tell the ITS at the beginning of each section). The unobserved environment

hides both parameters. These are all done on the basic one concept setting with Kτ = 0.02.

We introduce the Study Skills (SS) heuristic strategies to indicate that the rules will

attempt a study skills and/or nudge intervention when it deems that it would be helpful. The

DQN class has access to these interventions, except potentially for the probe and the oracle

probe intervention. In addition, when using any partially observed information environment,

our policies will attach the relevant population model to track hidden information. Keep in

mind that the tutor-only policy in this case does not need any population information here,

as there is only a single concept to tutor.

Table 8.3 shows the results of multiple rules-based and DQN policies on these types of

environments across differing population types. We include both low-entropy population

types (single types of students) and high-entropy populations (an extreme AD student dis-

tribution, which just has 50% A students and 50% D students) to get an idea for how much

probing helps across the board.

In the first row of Table 8.3, we have the baseline effectiveness of the probe. The probe

allows for accurate estimation with the population model, allowing for a limit in tutoring.

There are two conclusions to be made. Across the board, the probe allows for better test

reward, highlighting its effectiveness. However, the probes still do eat into tutoring time,

showing some small pass rate drops for harder student distributions, yet test reward still

137



Policy Type

No Intervention Tutor Only Probe Tutor Limit

Exp. Type Population Type Test Reward Pass Rate Test Reward Pass Rate Test Reward Pass Rate

Fully Observed

Typical 1.0056 81.9% 1.0146 99.5% 1.0503 99.7%
A Students 1.1170 97.9% 1.0226 100.0% 1.0721 100.0%
D Students 0.4790 2.9% 0.9518 94.2% 0.9536 94.5%

AD Students 0.7937 49.8% 0.9925 97.9% 1.0099 96.7%

Concept Hidden

Typical 0.9927 79.8% 1.0166 99.8% 1.0266 99.6%
A Students 1.1151 97.6% 1.0237 100.0% 1.0451 100.0%
D Students 0.4805 3.1% 0.9463 93.5% 0.9439 92.6%

AD Students 0.7861 48.4% 0.9858 96.9% 0.9908 95.8%

Unobserved

Typical 1.0028 81.4% 1.0152 99.7% 1.0263 99.4%
A Students 1.1174 97.8% 1.0255 100.0% 1.0454 100.0%
D Students 0.4852 3.8% 0.9483 93.6% 0.9443 92.5%

AD Students 0.7825 47.9% 0.9901 97.4% 0.9933 96.2%

Policy Type

SS Tutor Probe SS Tutor Limit Oracle SS Tutor Limit

Exp. Type Population Type Test Reward Pass Rate Test Reward Pass Rate Test Reward Pass Rate

Fully Observed

Typical 1.0168 99.8% 1.0657 99.7% 1.0535 100.0%
A Students 1.0247 100.0% 1.0875 100.0% 1.0713 99.9%
D Students 1.0058 100.0% 1.0312 99.2% 1.0169 99.7%

AD Students 1.0152 100.0% 1.0557 99.1% 1.0414 99.7%

Concept Hidden

Typical 1.0188 100.0% 1.0614 99.5% 1.0282 99.9%
A Students 1.0234 100.0% 1.0813 99.9% 1.0455 100.0%
D Students 1.0062 100.0% 1.0089 95.7% 1.0090 99.6%

AD Students 1.0144 99.9% 1.0472 98.2% 1.0264 99.8%

Unobserved

Typical 1.0158 99.8% 1.0585 99.6% 1.0052 99.9%
A Students 1.0201 100.0% 1.0710 100.0% 1.0176 100.0%
D Students 0.9979 99.5% 1.0016 95.8% 0.9677 97.5%

AD Students 1.0085 99.5% 1.0355 98.0% 0.9962 99.3%

Policy Type

DQN No Probe DQN Probe DQN All

Exp. Type Population Type Test Reward Pass Rate Test Reward Pass Rate Test Reward Pass Rate

Fully Observed
Typical 1.0608 92.1% 1.0676 93.2% 0.9566 99.7%

AD Students 1.0053 96.8% 1.0106 99.9% 1.0121 99.8%

Concept Hidden
Typical 1.0708 93.8% 1.0471 98.1% 1.0718 93.8%

AD Students 1.0122 100.0% 0.9999 97.9% 1.0313 98.4%

Unobserved
Typical 1.0644 96.4% 1.0597 92.1% 1.0571 99.7%

AD Students 1.0196 99.5% 0.9885 97.2% 1.0438 95.3%

Table 8.3: Hidden Information Experiments Across a Variety of Policies.
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improves in spite of the pass rate drop.

Comparing the first and the second column shows the effectiveness of having study skills

interventions compared to simply tutoring. Again, looking across the second column shows

the effectiveness of probing. Interestingly, the oracle probe, even if at the same cost as

a regular probe, will result in lower test reward, but higher pass rate, for the unobserved

experiments. This is a reflection of its increased confidence in the student parameters,

allowing it to more confidently reach the limit threshold of 85%. However, this means that

the oracle probe will have possibly used more tutors than necessary to account for the safety

window.

Then, we compare the second and third rows of Table 8.3, as they have comparable

intervention lists. The DQN policies are capable of finding policies that have similar in test

reward to the heuristic methods, but usually with lower pass rates. However, with the same

test reward, we typically prefer to have the higher pass rate.

One final interesting result is that the DQN can produce highly variable results, especially

with the addition of the probing and oracle interventions. The maximal result is presented

in Table 8.3, but a more in-depth analysis is presented in Appendix D.1. Given all this, we

see that there is no significant benefit of using RL in the complexities of a partially observed

environment compared to our simple heuristic rules-based methods.

8.5.4 Distributional Shift Experiments

Here, we provide some insight into the robustness of the policies. We set up several experi-

ments using the results we obtained in the previous experiment, specifically the population

models and policies trained on the typical distribution and the one trained on the AD stu-

dent distribution in the completely unobserved environments. We test these models under

both of the two original distributions, and one other distribution containing 25% A students

and 75% D students. This 25/75 distribution is a harder class in terms of necessary tutor
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interventions, so a lower test reward is expected, but it is slightly easier in terms of probing.

Because the AD population is closer to the 25/75 distribution, we expect that shift to be

easier.

Because we have both the population model and the policy as two independent compo-

nents, we test situations where only a single one is mismatched. Table 8.4 shows the results of

these distributional shifts. Immediately, the DQN shows to be more brittle to distributional

change than the heuristic method. However, there is some nuance to the observation.

1. In cases where the population model is different from the test population, but the

policy is the same, all policies perform only slightly worse than the in-distribution

performance. This simulates a situation where a teacher may have some incorrect

preconceived notions of the population of students, but follows a policy left behind

by a previous teacher. This teacher performs almost similarly well to those who have

trained heavily in that distribution.

2. On the other hand, when a teacher tries to force a policy trained on one distribution of

students to a different one, things are not as stable. When going from a more difficult

student distribution to an easier one (e.g. from the AD students to the typical student

distribution), the teacher still performs well, but sacrifices some time required. On the

other hand, when going from an easier student population to a harder one, the policy

performs significantly worse than a trained model. These results are exacerbated with

the 25/75 distribution for the policy trained in a typical environment, but not for the

one trained in the 50/50 AD environment.

These results show both the flexibility of the simulation and the heuristic models to distri-

butional shifts in students. DQN shows some flexibility in these environments, but cannot

perform well going from an easy student distribution to a harder one.
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SS Probe Tutor Limit Test Population

Typical Students AD Students 25/75 AD Students

Population

Model

Policy

Distribution
Test Reward Pass Rate Test Reward Pass Rate Test Reward Pass Rate

Typical Typical 1.0585 99.6% 1.0113 99.6% 0.9995 98.6%

AD Students AD Students 1.0211 100.0% 1.0355 98.0% 1.0056 99.4%

Typical AD Students 1.0196 99.8% 1.0097 99.3% 1.0030 99.1%

AD Students Typical 1.0203 99.9% 1.0106 99.4% 1.0056 99.3%

DQN Test Population

Typical Students AD Students 25/75 AD Students

Population

Model

Policy

Distribution
Test Reward Pass Rate Test Reward Pass Rate Test Reward Pass Rate

Typical Typical 1.0644 96.4% 0.8988 71.4% 0.8039 58.2%

AD Students AD Students 1.0278 99.9% 1.0196 99.5% 1.0101 99.0%

Typical AD Students 1.0286 99.9% 1.0161 99.0% 1.0092 98.7%

AD Students Typical 1.0649 96.3% 0.8918 70.4% 0.7940 56.7%

Table 8.4: Distributional Shift Experiments. The table shows test reward results and pass

rate of students when changing the population model, the policy, or both. Bolded values are

in-distribution results.

8.5.5 Structure Experiments

Finally, based on our observations on the effect of probing interventions, we suspect that we

can also encode improved probing directly into the structure of courses. For the purposes

of the experiment, we design courses assuming the ITS has limited probing capabilities, as

many courses are designed today.

Referencing Figure 8.4, we create 4 different course structures. The first has only finals,

testing all 6 concepts in the four-concept course at the end F . The second has a midterm-

final structure, testing PR1, PR2 and CA at M and CB, CC, and CD at F . Finally, we

have a quiz structure that uses all 4 examinations Q1, M , Q2, and F . The final one is an

extension of the quiz structure with an additional diagnostic quiz about halfway into the
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Student State

Prerequisites

Time, t −→

PR1

PR2

CA

CB

CC

CD

Q1 M Q2 F

Current Course

Figure 8.4: The time-dynamic DAG structure of the four-concept course with the concept

DAG referenced in 8.2. The structure experiments are defined based on which subset of

evaluations (Q1, M , Q2, and F ) are present.

learning of every concept (and at the beginning of review sections for prerequisite material).

The understanding is that with more examinations, the ITS and instructor will have more

information about the student, to become capable of adjusting their understanding of the

students for more individualized plans. However, the more frequent examinations increase

the urgency of tutoring, as the earlier grades can affect the overall total grade in the course.

In order to fully align our goals with the balance of probing, we use the AD distribution to

maximize the difference between student types.

Table 8.5 shows results with these four different structures, tested on a random policy,

a study-skills tutor-limit policy, and a DQN policy, each without the ability to probe. The
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random policy effectively shows the difficulty of the class, showing that in our simulation, the

difficulty of the class increases with the complexity of the course structure. This is somewhat

realistic, in that students who are time-limited lose some flexibility in when they can study

for their course. However, this is also a limitation of the design of our system. Students

do not forget in this environment, so students are never better off on an exam being tested

earlier rather than later.

Moving on to the heuristic and the learned policies, we see that they both achieve much

higher test rewards and pass rates compared to the random policy. Overall, with the four

concept policy, we see that the DQN’s test reward is higher than that of the heuristic policy,

but with a lower pass rate. Most importantly, both policies are able to pull the pass rate

of the quiz and midterm-final structures up in line with the finals-only structures. While

the policies are unable to allow them to surpass the finals-only structure, the amount of

improvement showcases the utility of the extra information available in other structures in

improving performance. Furthermore, the diagnostics provided in the diagnostic structure

does provide a small boost in both methods.

Random SS Tutor Limit DQN

Course Structure Test Reward Pass Rate Test Reward Pass Rate Test Reward Pass Rate

Finals Only 1.0101 92.4% 1.0235 99.7% 1.0782 97.4%

Midterm-Final 0.9732 86.9% 1.0171 99.1% 1.0575 96.5%

Quizzes 0.9444 82.6% 1.0145 98.8% 1.0453 97.8%

Quiz + Diags 0.9596 85.0% 1.0164 98.8% 1.0659 94.7%

Table 8.5: Four-Concept Structure Experiments.
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8.6 Conclusion

In this chapter, we develop SimEdu, a realistic simulation environment, population model,

and policy, to explore adaptive assistance of student learning. The system captures the

hidden information of learning, the trade-offs in different types of interventions, and the

value of probing in the context of a course. We find that for such systems, a deep RL agent

performs well, but not significantly better than certain rules-based heuristic systems. It is

shown that partial observability directly correlates to problem difficulty and thus, highlights

the importance of probing. With the importance of probing, we also show that course

structures that encourage more information gain show improvements in student performance.

In this simulation, we find that RL does not perform significantly better than well-designed

heuristic methods in these hidden information environments, especially in terms of flexibility

and explainability.

There are still many ways to extend the work presented in this chapter. There are several

extensions just to this simulated environment. Many of the design decisions in the simula-

tion, though complex already, are made to simplify estimation as much as possible. First,

one can extend the population model to have different levels of representation, explainability,

and trainability. For instance, applying [PSH15] could provide a much improved population

model while trading off explainability. We can add some more overarching dynamics, such

as forgetting, concept reinforcement via contextual reuse, and concept improvement depen-

dencies across prerequisites.

While the simulation has broad coverage over many hypothetical scenarios, we can use

pre-existing observational data to make the simulation more realistic. Further mathematical

or data-driven models can be explored that more closely align with students’ true concept

graphs, trajectories, and conditional dependencies of traits. One exciting extension is un-

locked with a continuous stream of education data, either through observing experiments

or from direct interactions with students. The SimEdu framework can be adjusted to use
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flexibly, where the simulation aspect is also adapting to match the real-world data. This

can give rise to a structural hypothesis approach taken in Chapter 5, which allows for an

unsupervised method of fitting, simulating, understanding, and intervening. This can be

used to understand the dynamics of the real-world education system, and to hypothesize

and test interventions for future students.

Plus, education is only one of the many time-series domains that are increasingly aided

with computers. Many of the ideas here, though often with different names, can extend to

other domains, such as medicine, finance, psychology, personal assistance, and other areas

of computer interactions.
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CHAPTER 9

Conclusions

In this thesis, we have focused on the use of causal modeling to improve the robustness

of machine learning models. Structural causal models attempt to instill a deeper, human

understanding of the world to machine learning models.

In this research, we have made three significant findings that contribute to our under-

standing and application of machine learning techniques, particularly in the areas of Varia-

tional Autoencoders (VAEs), energy-based models, and education simulations.

Firstly, we discover that it is possible to impose substantial structure on the latent space

of the VAE. This structure enables us to generate data out of distribution, test structural

hypotheses, and produce augmentations and their compositions in the latent space. This

finding opens up new possibilities for using VAEs in a variety of applications, including

causal data augmentation and causal hypothesis testing.

Secondly, we identify a state-of-the-art technique using the unsupervised learning ap-

proach of the energy-based model. Remarkably, this technique can defend against several

poisoning techniques without requiring excessive additional training time and without sig-

nificant reduction in test accuracy. This finding has important implications for the security

and efficiency of machine learning models.

Lastly, we develop an education simulation that attempts to discretize and understand

human interactions with machines. By using causal information to create the simulation,

we enable both an understanding of how to design real-world education experiments and

an understanding of what are the challenges and difficulties that apply to a dynamic ITS
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in an education problem. In our simulation, we find that heuristic methods still perform

comparably to deep learning techniques. This finding suggests that heuristic methods can

still be effective in certain applications, despite the recent advances in deep learning.

However, as with any research, our study has limitations and raises new questions. Future

research could further explore the potential applications of structured VAEs, investigate how

poison defenses can interact with other domains, e.g. text and additional image domains,

and improve the realism of our education simulation so that our conclusions have wider reach

or extend the ideas to other similar human interactions. Despite these challenges, we believe

that our findings provide a solid foundation for future research in these areas.

The construction of accurate generative simulations of the real world is a difficult task

and can have many future implications. With such simulations, a system can begin to

hypothesize different outcomes, intervene in order to improve future outcomes, and explain

such decisions. Further, in a system that can hypothesize and re-evaluate its own causal

models, the system begins to understand the higher levels of causality. This can lead to a

more general approach to artificial intelligence, a better understanding of the possibilities of

machine learning, and a more cooperative result for human interactions.
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[OVK17] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. “Neural Discrete
Representation Learning.” CoRR, abs/1711.00937, 2017.

[PDM22] Omead Pooladzandi, David Davini, and Baharan Mirzasoleiman. “Adaptive Sec-
ond Order Coresets for Data-efficient Machine Learning.”, 2022.

[Pea09a] Judea Pearl. “Causal inference in statistics: An overview.” Statistics Surveys,
3(none):96 – 146, 2009.

[Pea09b] Judea Pearl. Causality. Cambridge University Press, 2 edition, 2009.

[PGH20] Neehar Peri, Neal Gupta, W Ronny Huang, Liam Fowl, Chen Zhu, Soheil Feizi,
Tom Goldstein, and John P Dickerson. “Deep k-NN defense against clean-label
data poisoning attacks.” In European Conference on Computer Vision, pp. 55–70.
Springer, 2020.

[PL24] Omead Pooladzandi and Xi-Lin Li. “Curvature-Informed SGD via General Pur-
pose Lie-Group Preconditioners.”, 2024.

[PSH15] Chris Piech, Jonathan Spencer, Jonathan Huang, Surya Ganguli, Mehran Sahami,
Leonidas Guibas, and Jascha Sohl-Dickstein. “Deep Knowledge Tracing.”, 2015.

[PSO22] Ethan Prihar, Manaal Syed, Korinn Ostrow, Stacy Shaw, Adam Sales, and Neil
Heffernan. “Exploring Common Trends in Online Educational Experiments.” In
Antonija Mitrovic and Nigel Bosch, editors, Proceedings of the 15th International
Conference on Educational Data Mining, pp. 27–38, Durham, United Kingdom,
July 2022. International Educational Data Mining Society.

[Rab89] Lawrence R. Rabiner. “A Tutorial on Hidden Markov Models and Selected Ap-
plications in Speech Recognition.” Proceedings of the IEEE, 77(2):257–286, 1989.
errata at http://alumni.media.mit.edu/ rahimi/rabiner/rabiner-errata/rabiner-
errata.html.

[RBL22] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. “High-resolution image synthesis with latent diffusion models.” In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 10684–10695, 2022.

[SAS21] Abhishek Sinha, Kumar Ayush, Jiaming Song, Burak Uzkent, Hongxia Jin, and
Stefano Ermon. “Negative Data Augmentation.”, 2021.

153



[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. MIT Press, Cambridge, MA, 2018.

[SGF21] Hossein Souri, Micah Goldblum, Liam Fowl, Rama Chellappa, and Tom Gold-
stein. “Sleeper agent: Scalable hidden trigger backdoors for neural networks
trained from scratch.” arXiv preprint arXiv:2106.08970, 2021.

[SGG21] Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P Dickerson, and Tom
Goldstein. “Just How Toxic is Data Poisoning? A Unified Benchmark for Back-
door and Data Poisoning Attacks.”, 2021.

[SHM16] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. “Mastering the game of Go
with deep neural networks and tree search.” Nature, 529:484–503, 2016.

[SHN18] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. “Poison Frogs! Targeted Clean-Label Poi-
soning Attacks on Neural Networks.”, 2018.

[SHS17] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Grae-
pel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. “Mastering Chess
and Shogi by Self-Play with a General Reinforcement Learning Algorithm.”, 2017.

[SIB22] Nabeel Seedat, Fergus Imrie, Alexis Bellot, Zhaozhi Qian, and Mihaela van der
Schaar. “Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations.” In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceed-
ings of Machine Learning Research, pp. 19497–19521. PMLR, 17–23 Jul 2022.

[SKL17] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. “Certified Defenses for Data
Poisoning Attacks.”, 2017.

[SLY15] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. “Learning Structured Out-
put Representation using Deep Conditional Generative Models.” In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

[SSP19] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. “Hidden
Trigger Backdoor Attacks.”, 2019.

154



[Str00] Malcolm J. A. Strens. “A Bayesian Framework for Reinforcement Learning.”
In Proceedings of the Seventeenth International Conference on Machine Learn-
ing, ICML ’00, p. 943–950, San Francisco, CA, USA, 2000. Morgan Kaufmann
Publishers Inc.

[SW18] Jianlin Su and Guang Wu. “f-VAEs: Improve VAEs with Conditional Flows.”
CoRR, abs/1809.05861, 2018.

[TFY21] Lue Tao, Lei Feng, Jinfeng Yi, Sheng-Jun Huang, and Songcan Chen. “Better safe
than sorry: Preventing delusive adversaries with adversarial training.” Advances
in Neural Information Processing Systems, 34, 2021.

[TLM18] Brandon Tran, Jerry Li, and Aleksander Madry. “Spectral signatures in backdoor
attacks.” In Advances in Neural Information Processing Systems, pp. 8000–8010,
2018.

[TTM18] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. “Clean-label back-
door attacks.”, 2018.

[VBC19] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jader-
berg, Wojtek Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard
Powell, Timo Ewalds, Dan Horgan, Manuel Kroiss, Ivo Danihelka, John Aga-
piou, Junhyuk Oh, Valentin Dalibard, David Choi, Laurent Sifre, Yury Sulsky,
Sasha Vezhnevets, James Molloy, Trevor Cai, David Budden, Tom Paine, Caglar
Gulcehre, Ziyu Wang, Tobias Pfaff, Toby Pohlen, Dani Yogatama, Julia Cohen,
Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Chris Apps,
Koray Kavukcuoglu, Demis Hassabis, and David Silver. “AlphaStar: Master-
ing the Real-Time Strategy Game StarCraft II.” https://deepmind.com/blog/

alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.

[WXK20] Maurice Weber, Xiaojun Xu, Bojan Karlaš, Ce Zhang, and Bo Li. “Rab: Provable
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APPENDIX A

CSHTest and CSVHTest: Causal Generative

Hypothesis Testing

A.1 DAG Simulation Results

A.1.1 DAG Size 5x5: Linear

Figure A.1: Probability table for a 5 node 5 edge DAG size with a linear SEM ground truth

model for DAG simulations comparing hypothesis with various Hamming Distance Tuples.
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A.2 More about the Pendulum

A.2.1 Pendulum Training Architecture and Hyperparameters

Unfortunately, there is a limitation with regard to hyperparameters. Because we are effec-

tively using the average loss over several random initializations onto the generalization set

as the primary proxy of SCM “goodness,” the hyperparameters that we choose to represent

the η neural networks do have possible effects in our overall methods.

• 50 Epochs. 40 Iterations.

• Causal η networks: [4, 16, 4] nodes per output.

• For CSVHTest, Encoder and Decoder networks: [4, 4] node MLP per input.

• Normally-distributed initialization.

• Activation: Soft Leaky ReLU.

• Optimizer: PSGD (discussed further in A.4). Initial Learning Rate of 0.01.

• Cosine Annealing Scheduler. Warm Restarts implemented for non-variational models.

A.2.2 Further Pendulum Results

Full numerical results of Figure A.1. Train and Loss trajectory curves are shown in Figures

A.2 and A.3.

A.3 Background Theory

A.3.1 Variational Hypothesis testing and Data Generation with CSVHTest

We extend CSHTest to a variational model CSVHTest, that includes sampling function-

ality like a VAE [KW13]. Thus, CSVHTest can generate new data points that are not
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Figure A.2: Loss trajectory of the Sun Split OOD Run

Figure A.3: Loss trajectory of the Shadow Position Split OOD Run
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Hypothesis GT lossy leaky 2lossy 2leaky leak-loss

Sun 7.14± 0.92 13.48± 1.06 7.41± 0.98 13.26± 0.92 7.21± 0.79 11.66± 1.15

Shadow Position 10.63± 1.09 17.29± 1.16 11.02± 0.93 17.56± 0.60 10.98± 2.16 14.75± 1.08

Table A.1: Mean and Standard Deviation of the Final Test Loss in Pendulum Hypothesis

Testing Experiments.

deterministic on the inputs, allowing for synthetic data generation. CSVHTest consists of

an encoder, a CSHTest causal layer and a decoder.

CSVHTest uses the same encoder and decoder networks as CSHTest defined in Chap-

ter 4.3.3. Further enforcing the label spaces, we can define a prior p(z|u). We use the same

conventions as in [YLC20] and say that

p(z|u) ∼ N (un, I)

where un ∈ [−1, 1] are normalized label values. This translates to an additional KL-loss.

These encoder and decoder networks do not compress the data, but enable a transforma-

tion of the inputs to a normally distributed space, enabling sampling without preventing the

relevance of the causal priors given by Si. Thus, CSVHTest is an extension of CSHTest

with

zzzi = fenc(xxxi), ẑzzi = ηi(Si ◦ zzz), x̂xxi = fdec(ẑzzi) (A.1)

The loss function for CSVHTest includes a weighted Kullback–Leibler (KL) divergence

loss to normalize the latent space on top of the reconstruction loss as in CSHTest. We also

add a weighted latent reconstruction loss for the embedded CSHTest which enforces sepa-

ration of the encoder and decoders as transformations, and the η networks as the functional
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Figure A.4: Comparison of CSHTest, CSVHTest, NN, and VAE in the presence of noise

approximators on these transformations.

ℓKL = KL(zzzi||N (0, 1)) (A.2)

ℓlatent = ℓ(zzz, ẑzz) (A.3)

ℓMSE = ||xxx− ηi(Si ◦ xxx)||2 (A.4)

ℓCSHTest = ℓMSE + λKL ∗ ℓKL + λlatent ∗ ℓlatent (A.5)

A.3.2 Results of the Effect of Noise on CSHTest and CSVHTest

We notice that the Variational version CSVHTest often works better than CSHTest in

the presence of noise. Results are shown in Figure A.4.

A.4 Causal Problems and the Investigation of Optimizers

While working on the causal problems, because of the input of so many zeros in the structural

Hadamard product, the loss space is not very well-behaved. As a result, we notice some

inconsistency in loss trajectory with different optimizers. We do an initial investigation on

the possibilities of different optimizers in our problem space.
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Initially optimizers Adam, SGD, Adabelief, and PSGD [Li18b, Li19, Li18a, Li22] are

compared primarily for mean OOD MSE test loss across iterations in a limited number of

test cases [Li18b, ZTD20]. Due to better performance, Adabelief and PSGD are compared

in a more robust set of cases. Figure A.5 shows a scatter plot of the final losses across all

test cases, and a subset of the results are listed in Table A.2. Although PSGD routinely

outperform AdaBelief both in mean final loss and variance (across 3 iterations per test),

there were select conditions and DAGs in which any single optimizer would underperform

or not converge. We leave it to further research to investigate optimizer performance and

considerations for causally informed deep learning architecture that are constrained in unique

ways than traditional deep learning models. PSGD had better loss in 171 cases, and lower

variance in 148 of the 176 test cases.

Optimizer Test Cases (176 total, every combination of below):

• DAG Size (number of nodes, number of edges): (4,4), (5,5)

• SEM: linear, nonlinear generative functions

• Model: CSHTest, CSVHTest

• SNR: 0 noise (inf SNR), 7 dB

• Hamm (Structural Hamming Distance): 0 (ground truth), 1

• Split: ID (in-distribution or random), OOD (out-of-dist. or 75% quantile split)

• Split Number: Which node/variable is data being split on (not relevant to ID)

Table A.2 has results for DAG Size (4,4) nonlinear
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Figure A.5: Comparison of final test loss of optimizers PSGD and AdaBelief across 176

unique tests

A.5 DAG Simulation Settings

A.5.1 Training Hyperparameters

The following fixed setting where used when training models for the simulations. A random

seed (1) was used in all experiments.

• 100 Epochs

• Random Weight Matrix N (0, 1) for linear model weights

• Linear model η nets size: [4,4] MLP

• Non-linear model η nets size: [4,16,8,2] MLP

• activation function: Soft Leaky ReLU

• 10 Iterations of a Ground Truth DAG per DAG size

• 5 Iterations of modified DAGs per Hamming Distance
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Figure A.6: Example of loss curves for optimizers PSGD and AdaBelief inf,1 dB SNR and

0,1 Hamming Distance.

• 100 data points (N) per DAG of training data

• Optimizer: PSGD

• Noise Gaussian, 0-mean, variance calculated per SNR

• Split Number: Which node/variable is data being split on (not relevant to ID)

A.5.2 Test Cases

• DAG Size (number of nodes, number of edges): (4,4), (5,5)

• SEM: linear generative functions

• Model: CSHTest
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• SNR: 0 noise (inf SNR), 5 dB

• Hamm (Structural Hamming Distance): 0 (ground truth), 1, 2, 3, 4

• OOD (out-of-dist. or 75% quantile split)

• Split Number: Which node/variable is data being split, one per each variable (4 for a

4 node graph)

A.6 Final Losses with Sample Variances

The Final Losses with Sample Variances for the DAG simulations are shown in Table A.3.
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AdaBelief PSGD
Model SNR Hamm Split Split Num

CSHTest 7.0 0 ID 1 0.17 ± 2.26e-04 0.15 ± 6.74e-06
OOD 0 0.17 ± 2.26e-04 0.15 ± 6.74e-06

1 0.17 ± 2.26e-04 0.15 ± 6.74e-06
2 0.17 ± 2.26e-04 0.15 ± 6.74e-06
3 0.17 ± 2.26e-04 0.15 ± 6.74e-06

1 ID 1 0.2 ± 6.69e-03 0.16 ± 1.18e-03
OOD 0 0.2 ± 6.69e-03 0.16 ± 1.18e-03

1 0.2 ± 6.69e-03 0.16 ± 1.18e-03
2 0.2 ± 6.69e-03 0.16 ± 1.18e-03
3 0.2 ± 6.69e-03 0.16 ± 1.18e-03

∞ 0 ID 1 0.0 ± 4.07e-05 0.0 ± 9.75e-10
OOD 0 0.0 ± 4.07e-05 0.0 ± 9.75e-10

1 0.0 ± 4.07e-05 0.0 ± 9.75e-10
2 0.0 ± 4.07e-05 0.0 ± 9.75e-10
3 0.0 ± 4.07e-05 0.0 ± 9.75e-10

1 ID 1 0.0 ± 3.92e-05 0.0 ± 2.54e-10
OOD 0 0.0 ± 3.92e-05 0.0 ± 2.54e-10

1 0.0 ± 3.92e-05 0.0 ± 2.54e-10
2 0.0 ± 3.92e-05 0.0 ± 2.54e-10
3 0.0 ± 3.92e-05 0.0 ± 2.54e-10

CSVHTest 7.0 0 ID 1 0.33 ± 4.85e-02 0.9 ± 1.54e+00
OOD 0 0.33 ± 4.85e-02 0.9 ± 1.54e+00

1 0.33 ± 4.85e-02 0.9 ± 1.54e+00
2 0.33 ± 4.85e-02 0.9 ± 1.54e+00
3 0.33 ± 4.85e-02 0.9 ± 1.54e+00

1 ID 1 0.28 ± 2.72e-02 0.19 ± 9.08e-04
OOD 0 0.28 ± 2.72e-02 0.19 ± 9.08e-04

1 0.28 ± 2.72e-02 0.19 ± 9.08e-04
2 0.28 ± 2.72e-02 0.19 ± 9.08e-04
3 0.28 ± 2.72e-02 0.19 ± 9.08e-04

∞ 0 ID 1 0.0 ± 3.55e-06 0.0 ± 1.08e-09
OOD 0 0.0 ± 3.55e-06 0.0 ± 1.08e-09

1 0.0 ± 3.55e-06 0.0 ± 1.08e-09
2 0.0 ± 3.55e-06 0.0 ± 1.08e-09
3 0.0 ± 3.55e-06 0.0 ± 1.08e-09

1 ID 1 0.18 ± 8.86e-02 0.0 ± 1.62e-08
OOD 0 0.18 ± 8.86e-02 0.0 ± 1.62e-08

1 0.18 ± 8.86e-02 0.0 ± 1.62e-08
2 0.18 ± 8.86e-02 0.0 ± 1.62e-08
3 0.18 ± 8.86e-02 0.0 ± 1.62e-08

Table A.2: Comparison of final test loss of CSHTest and CSVHTest with optimizers

PSGD and AdaBelief
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Train Test

Hypothesis Split Model

H1 Random CSHTest 0.02± 2.34e− 07 0.02± 9.42e− 08

CSVHTest 7.09± 1.71e + 00 8.21± 2.44e + 00

DBP 75% CSHTest 0.02± 2.00e− 06 0.04± 3.82e− 06

CSVHTest 0.74± 1.81e− 02 0.23± 2.32e− 02

GCS 25% CSHTest 0.02± 4.67e− 07 0.03± 2.67e− 06

CSVHTest 0.39± 4.62e + 00 1.08± 4.28e + 00

H2 Random CSHTest 0.02± 6.01e− 08 0.02± 3.88e− 07

CSVHTest 7.1± 3.82e + 00 8.17± 5.36e + 00

DBP 75% CSHTest 0.02± 5.07e− 07 0.03± 6.59e− 08

CSVHTest 0.74± 3.66e− 03 0.17± 3.16e + 01

GCS 25% CSHTest 0.02± 1.30e− 07 0.06± 5.45e− 05

CSVHTest 0.36± 2.44e + 00 3.83± 3.94e + 00

Table A.3: Mean and Standard Deviation of the Final Test Loss in Medical Hypothesis

Testing Experiments.
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APPENDIX B

Appendix: Latent Augmentation VAE

B.1 Architecture and Training

• Model:

– Encoder: 2 Conv layers followed by a fully-connected layer. For CVAE, append

one-hot representation of the augmentation class to the features before the FC

layer.

– Latent Space: 16 dimensions.

– Decoder: Fully-connected layer followed by 2 ConvTranspose layers. For the

CVAE, again append one-hot representation of the augmentation class to the

latent space inputs. For LAVAE, each pair of augmentations gets its own decoder

head.

– For LAVAE, Laugi : 2 16 × 16 linear matrices. Will be used regardless of which

decoder is being used.

• Optimizer: Adabelief, one for Encoder/Decoder, one for latent augmentation networks,

and one for each additional decoder head

– learning-rate: 0.0001

– epsilon=1e-16, betas=(0.9,0.999)

• Training Epochs
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– Encoder/Decoder - 100

– Latent Augmentation Networks - 60

– Additional Decoders - 100

• Training Parameters

– batch-size 64

Figure B.1: All Augmentations Visualized
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Figure B.2: Sampled digits and augmentations via bounding box method

Figure B.3: Interpolating between two test samples (top and bottom row) with augmenta-

tions

B.2 Sampling and Interpolation

An example of sampled images showing the structure of the latent space is shown in Figure

B.2. Then Figure B.3 shows that we still maintain the interpolation properties of the VAE,

as we take equally spaced points in the latent space and decode them to see the progression

of the digit and augmentation.

170



B.3 Latent Space Geometries

The following figures show the 2-D projections of the latent space different choices in aug-

mentations.

Figure B.4: “Flips” Image, Latent, and Reconstructions Image 2-D Projections
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Figure B.5: “Nested Mini-Image, Edge-Detect” Image, Latent, and Reconstructions Image

2-D Projections

Figure B.6: “90◦ Clockwise Rotation, Flip left/right” Image, Latent, and Reconstructions

Image 2-D Projections
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Figure B.7: “X-direction shear, Canny edge-detect” Image, Latent, and Reconstructions

Image 2-D Projections

173



APPENDIX C

PureEBM

C.1 EBM Further Background

C.1.1 Chaotic Dynamics

Chaos theory offers a distinct perspective for justifying the suppression of adversarial signals

through extended iterative transformations. In deterministic systems, chaos is characterized

by the exponential growth of initial infinitesimal perturbations over time, leading to a di-

vergence in the trajectories of closely situated points — a phenomenon popularly known as

the butterfly effect. This concept extends seamlessly to stochastic systems as well. [HMZ21]

were the first to show the chaotic nature of EBMs for purification. Here we verify that both

poisoned images and clean images have the same chaotic properties.

Stochastic Differential Equations and Chaos

Consider the Stochastic Differential Equation (SDE) given by:

dXt = V (X)dt + ηnoisedBt, (C.1)

where Bt denotes Brownian motion and ηnoise ≥ 0. This equation, which encompasses the

Langevin dynamics, is known to exhibit chaotic behavior in numerous contexts, especially

for large values of ηnoise [LLB03].
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Maximal Lyapunov Exponent

The degree of chaos in a dynamical system can be quantified by the maximal Lyapunov

exponent λ, defined as:

λ = lim
t→∞

1

t
log
|δXηnoise

(t)|
|δXηnoise

(0)|
, (C.2)

where δXηnoise
(t) represents an infinitesimal perturbation in the system state at time t,

evolved according to Equation C.1 from an initial perturbation δXηnoise
(0). For ergodic

dynamics, λ is independent of the initial perturbation δXηnoise
(0). An ordered system exhibits

a maximal Lyapunov exponent that is non-positive, while chaotic systems are characterized

by a positive λ. Thus, by analyzing the maximal Lyapunov exponent of the Langevin

equation, one can discern whether the dynamics are ordered or chaotic.

Following the classical approach outlined by [BGS76], we calculate the maximal Lyapunov

exponent for the modified Langevin transformation, described by the equation:

Zηnoise
(X) = xτ −∆τ∇xτGθ(xτ ) + ηnoise

√
2∆τϵτ , (C.3)

This computation is performed across a range of noise strengths ηnoise. Our findings

demonstrate a clear transition from noise-dominated to chaos-dominated behavior. Notably,

at ηnoise = 1 — the parameter setting for our training and defense algorithms — the system

transitions from ordered to chaotic dynamics. This critical interval balances the ordered

gradient forces, which encourage pattern formation, against chaotic noise forces that disrupt

these patterns. Oversaturation occurs when the gradient forces prevail, leading to noisy

images when noise is dominant. These results are illustrated in Figure C.1.

The inherent unpredictability in the paths under Zηnoise
serves as an effective defense

mechanism against targeted poison attacks. Due to the chaotic nature of the transformation,

generating informative attack gradients that can make it through the defense while causing

a backdoor in the network becomes challenging. Exploring other chaotic transformations,
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Figure C.1: Left: The maximal Lyapunov exponent varies significantly with different values

of the noise parameter ηnoise. Notably, at ηnoise = 1, which is the setting used in our training

and defense dynamics, there is a critical transition observed. This transition is from an

ordered region, where the maximal exponent is zero, to a chaotic region characterized by

a positive maximal exponent. This observation is crucial for understanding the underlying

dynamics of our model. Right: The appearance of steady-state samples exhibits marked

differences across the spectrum of ηnoise values. For lower values of ηnoise, the generated

images tend to be oversaturated. Conversely, higher values of ηnoise result in noisy images.

However, there exists a narrow window around ηnoise = 1 where a balance is achieved between

gradient and noise forces, leading to realistic synthesis of images.

both stochastic and deterministic, could be a promising direction for developing new defense

strategies.

We see that as expected the Lyapunov exponent of the Langevin dynamics on clean and

poisoned points are exactly the same.

C.1.2 EBM Purification is a Convergent Process

Energy-based models and Langevin dynamics are both commonly associated with divergent

generative models and diffusion processes in the machine learning community, in which

samples are generated from a random initialization using a conditional or unconditional
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Figure C.2: Random Noise initialization of purification process

probability distribution. In contrast, we emphasize that the EBM and MCMC purification

process is a convergent generative chain, initialized with a sample from some data distribution

pdata with metastable properties that retain features of the original image due to the low

energy density around the image [NHH20]. To illustrate this point, Figure C.2 shows the

purification process on random noise initialization. Even with long-run dynamics of 50k

Langevin steps producing low energy outputs, the resulting ‘images’ are not meaningful,

highlighting the desired reliance on a realistic sample initializing a convergent MCMC chain.

Previous analysis demonstrates the mid-run memoryless properties that remove adversarial

poisons and enable the EBM purification process once paired with the metastable aspects of

the convergent MCMC chain.
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C.2 Additional Results

C.2.1 Full Results Primary Experiments

Results on all primary poison scenarios with ResNet18 classifier including all EPIc versions

(various subset sizes and selection frequency), FrieNDs versions (with Bernoulli or Gaussian

added noise), and all natural PureEBM versions are shown in Tables C.1 and C.2. Asterisk

(*) indicates a baseline defense that was selected for the main paper results table due to best

poison defense performance.

We note that the implementation made available for EPIc contains discrepancies, occa-

sionally returning random subsets, and drops repeatedly selected points every epoch. We did

our best to reproduce results, and choose the best of all version ran to compare to. Further,

we note that our results outperform the results reported by [YLM22], listed in the table here

as EPIcreported.

C.2.2 Extended Poison % Results

We tested applying Narcissus poisons at train-time to higher percentages of the dataset.

Results for from-scratch are shown in Table C.3, and for transfer learning in Table C.4.

We find that the PureEBM defense is able to effectively defend against poisons at higher

percentages, while EPIc and FrieNDs defenses are break down.

C.2.3 Full MobileNetV2 and DenseNet121 Results

In Figures C.5 and C.6, we show the full results for MobileNetV2 and DenseNet121 archi-

tectures for all poison scenarios and training paradigms.
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Table C.1: Poison success and natural accuracy in all poisoned from-scratch training scenar-

ios (ResNet18, CIFAR-10). We report the mean and the standard deviations (as subscripts)

of 100 GM experiments and NS triggers over 10 classes.

From Scratch

200 - Epochs

Gradient Matching-1% Narcissus-1%

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Avg Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Max Poison
Success (%) ↓

None 44.00 94.840.2 43.9533.6 94.890.2 93.59
EPIc-0.1* 34.00 91.270.4 30.1832.2 91.170.2 81.50
EPIc-0.2 21.00 88.040.7 32.5033.5 86.890.5 84.39
EPIc-0.3* 10.00 85.141.2 27.3134.0 82.201.1 84.71

FrieNDs-B 1.00 91.160.4 8.3222.3 91.010.4 71.76
FrieNDs-G* 0.00 91.150.4 9.4925.9 91.060.2 83.03

PureEBM 0.00 92.260.2 1.270.6 92.910.2 2.16
PureEBM-P NA NA 1.380.7 92.700.2 2.78

PureEBMCN−10 0.00 92.990.2 1.430.8 92.900.2 3.06
PureEBMIN 1.00 92.980.2 1.390.8 92.920.2 2.50

PureEBM-PCN−10 NA NA 1.640.01 92.860.20 4.34

80 - Epochs

Gradient Matching-1% Narcissus-1%

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Avg Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Max Poison
Success (%) ↓

None 47.00 93.790.2 32.5130.3 93.760.2 79.43
EPIc-0.1* 27.00 90.870.4 24.1530.1 90.920.4 79.42
EPIc-0.2 28.00 91.020.4 23.7529.2 89.720.3 74.28
EPIc-0.3* 44.00 92.460.3 21.5328.8 88.051.1 80.75

FrieNDs-B 2.00 90.070.4 1.420.8 90.060.3 2.77
FrieNDs-G* 1.00 90.090.4 1.370.9 90.010.2 3.18

PureEBM 1.00 91.360.3 1.460.8 91.830.3 2.49
PureEBM-P NA NA 1.631.0 91.490.3 3.47

PureEBMCN−10 1.00 92.020.2 1.500.9 92.030.2 2.52
PureEBMIN 1.00 92.020.2 1.520.8 92.020.3 2.81

PureEBM-PCN−10 NA NA 1.681.0 92.070.2 3.34

C.2.4 Full CINIC-10 Results

In Table C.7, we show the full results for CINIC-10 for all poison scenarios and training

paradigms. We also include the CIFAR-10 accuracy, where we test only on the CIFAR-10

portion of the CINIC-10 test set.
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Table C.2: Poison success and natural accuracy in all poisoned transfer training scenarios

(ResNet18, CIFAR-10). We report the mean and the standard deviations (as subscripts) of

50 BP experiments and NS triggers over 10 classes.

Transfer Learning

Fine-Tune

Bullseye Polytope-10% Narcissus-10%

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Max Poison
Success (%) ↓

None 46.00 89.840.9 33.4133.9 90.142.4 98.27
EPIc-0.1 50.00 89.001.8 32.4033.7 90.022.2 98.95
EPIc-0.2* 42.00 81.955.6 20.9327.1 88.582.0 91.72
EPIc-0.3 44.00 86.756.3 28.0134.9 84.366.3 99.91

FrieNDs-B 8.00 87.801.1 3.345.7 89.620.5 19.48
FrieNDs-G* 8.00 87.821.2 3.045.1 89.810.5 17.32

PureEBM 0.00 88.951.1 1.981.7 91.400.4 5.98
PureEBM-p NA NA 16.4827.2 88.272.4 86.49

PureEBMCN−10 0.00 88.671.2 2.972.5 90.990.3 7.95
PureEBMIN 0.00 87.521.2 2.021.0 89.780.6 3.85

Linear - Bullseye Polytope

BlackBox-10% WhiteBox-1%

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

None 93.75 83.592.4 98.00 70.090.2

EPIc-0.1 91.67 83.482.9 98.00 69.350.3

EPIc-0.2* 66.67 84.343.8 91.00 64.790.7

EPIc-0.3 66.67 83.233.8 63.00 60.861.5

FrieNDs-B 35.42 84.972.2 19.00 60.850.6

FrieNDs-G* 33.33 85.182.3 19.00 60.900.6

PureEBM 0.00 92.890.2 6.00 64.510.6

PureEBM-p NA NA NA NA
PureEBMCN−10 0.00 92.820.1 6.00 64.440.4

PureEBMIN 0.00 92.380.3 6.00 64.980.3

C.3 Further Experimental Details

C.3.1 EBM Training

Algorithm 2 is pseudo-code for the training procedure of a data-initialized convergent

EBM. We use the generator architecture of the SNGAN [MKK18] for our EBM as our

network architecture.
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Table C.3: Narcissus transfer fine-tune results at various poison %’s

Narcissus-1%

Avg Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Max Poison
Success (%) ↓

None 17.0627.0 93.180.1 81.97
EPIc-0.1 15.5825.5 92.750.2 73.65
EPIc-0.2 12.3323.8 85.862.9 74.32
EPIc-0.3 12.7421.2 91.374.0 67.45

FrieNDs-B 1.440.8 90.610.2 2.49
FrieNDs-G 1.340.7 90.500.2 2.50

PureEBM 1.501.4 91.650.1 5.19
PureEBM-P 4.507.4 89.610.3 24.43

PureEBMCN−10 1.771.2 91.560.1 4.07
PureEBMIN 1.620.9 90.910.1 3.35

PureEBM-PCN−10 4.336.2 90.990.2 21.25

Narcissus-2.5%

Avg Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Max Poison
Success (%) ↓

None 22.2230.1 93.350.1 89.74
EPIc-0.1 19.7727.5 92.720.3 87.51
EPIc-0.2 24.2631.2 85.593.3 96.07
EPIc-0.3 12.3218.7 92.240.4 61.33

FrieNDs-B 2.253.3 90.440.3 11.46
FrieNDs-G 2.433.6 90.510.2 12.61

PureEBM 1.601.2 91.270.1 4.76
PureEBM-P 7.9312.4 90.260.2 39.59

PureEBMCN−10 2.211.6 91.450.1 5.02
PureEBMIN 1.850.9 90.850.2 3.39

PureEBM-PCN−10 5.958.5 90.800.2 28.88

Narcissus-10%

Avg Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Max Poison
Success (%) ↓

None 33.4133.9 90.142.4 98.27
EPIc-0.1 32.4033.7 90.022.2 98.95
EPIc-0.2 20.9327.1 88.582.0 91.72
EPIc-0.3 28.0134.9 84.366.3 99.91

FrieNDs-B 3.345.7 89.620.5 19.48
FrieNDs-G 3.045.1 89.810.5 17.32

PureEBM 1.981.7 91.400.4 5.98
PureEBM-P 16.4827.2 88.272.4 86.49

PureEBMCN−10 2.972.5 90.990.3 7.95
PureEBMIN 2.021.0 89.780.6 3.85

PureEBM-PCN−10 11.8419.9 88.771.3 66.63
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Table C.4: BP transfer linear gray-box results at various poison %’s

Narcissus-5% Narcissus-10%

Poison
Success (%) ↓

Natural
Accuracy (%) ↑

Poison
Success (%) ↓

Natural
Accuracy (%) ↑

None 26.00 93.600.2 32.00 93.600.2

EPIc-0.1 12.00 93.340.4 50.00 92.790.6

EPIc-0.2 18.00 92.531.4 34.00 92.861.4

EPIc-0.3 18.00 92.800.9 24.00 92.891.0

FrieNDs-B 4.00 94.090.1 4.00 94.110.1

FrieNDs-G 4.00 94.120.1 4.00 94.130.1

PureEBM 0.00 93.180.0 0.00 92.940.1

PureEBMCN−10 0.00 93.140.1 0.00 92.610.1

PureEBMIN 0.00 92.090.1 0.00 91.510.1

Narcissus-25% Narcissus-50%

Poison
Success (%) ↓

Natural
Accuracy (%) ↑

Poison
Success (%) ↓

Natural
Accuracy (%) ↑

None 66.00 92.890.4 93.75 83.592.4

EPIc-0.1 70.00 92.430.8 91.67 83.482.9

EPIc-0.2 76.00 91.722.0 66.67 84.343.8

EPIc-0.3 62.00 90.952.7 66.67 83.233.8

FrieNDs-B 26.00 93.720.2 35.42 84.972.2

FrieNDs-G 22.00 93.730.2 33.33 85.182.3

PureEBM 0.00 92.920.1 0.00 92.890.2

PureEBMCN−10 0.00 93.000.1 0.00 92.820.1

PureEBMIN 0.00 92.750.1 0.00 92.380.3

C.3.2 Poison Sourcing and Implementation

Triggerless attacks GM and BP poison success refers to the number of single-image targets

successfully flipped to a target class (with 50 or 100 target image scenarios) while the natural

accuracy is averaged across all target image training runs. Triggered attack Narcissus poison

success is measured as the number of non-class samples from the test dataset shifted to the

trigger class when the trigger is applied, averaged across all 10 classes, while the natural

accuracy is averaged across the 10 classes on the un-triggered test data. We include the

worst-defended class poison success. The Poison Success Rate for a single experiment can

be defined for triggerless PSRnotr and triggered PSRtr poisons as:

PSRnotr(F, i) = 1F (xπ
i )=yadvi

(C.4)
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Table C.5: MobileNetV2 Full Results

From Scratch - MobileNetV2

200 - Epochs

Gradient Matching-1% Narcissus-1%

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Avg Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Max Poison
Success (%) ↓

None 20.00 93.860.2 32.7024.5 93.920.1 73.97
EPIc-0.1 37.50 91.280.2 40.0927.1 91.150.2 79.74
EPIc-0.2 19.00 91.240.2 38.5527.5 87.650.5 74.72
EPIc-0.3 9.78 87.801.6 22.3523.9 78.169.9 69.52

FrieNDs-B 6.00 84.302.7 2.001.3 88.820.6 4.88
FrieNDs-G 5.00 88.840.4 2.051.7 88.930.3 6.33
PureEBM 1.00 90.930.2 1.640.8 91.750.1 2.91

80 - Epochs

Gradient Matching-1% Narcissus-1%

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Avg Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Max Poison
Success (%) ↓

None 30.00 92.540.2 27.2626.5 92.530.2 74.82
EPIc-0.1 16.00 90.450.3 31.3730.9 90.510.3 89.36
EPIc-0.2 22.00 89.900.3 29.2227.6 89.910.3 76.54
EPIc-0.3 14.00 90.230.3 30.6930.6 90.300.3 82.92

FrieNDs-B 1.00 87.890.3 1.981.1 87.900.4 4.00
FrieNDs-G 3.00 87.900.4 2.001.4 88.090.3 5.07
PureEBM 1.00 89.710.2 1.790.8 90.640.2 2.65

Transfer Learning - MobileNetV2

Fine-Tune NS-10% Transfer Linear BP BlackBox-10%

Avg Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Max Poison
Success (%) ↓

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

None 23.5923.2 88.301.2 66.54 81.25 73.271.0

EPIc-0.1 23.2522.8 88.351.0 65.97 81.25 69.782.0

EPIc-0.2 19.9519.2 87.671.3 50.05 56.25 54.475.6

EPIc-0.3 21.7028.1 78.176.0 74.96 58.33 58.749.0

FrieNDs-B 2.211.5 83.050.7 5.63 41.67 68.861.5

FrieNDs-G 2.201.4 83.040.7 5.42 47.92 68.941.5

PureEBM 3.665.4 84.180.5 18.85 0.00 78.571.4

PSRtr(F, y
π) =

∑
(x,y)∈Dtest\Dπ

test
1F (x+ρπ)=yπ

|Dtest \ Dπ
test|

(C.5)

C.3.2.1 Bullseye Polytope

The Bullseye Polytope (BP) poisons are sourced from two distinct sets of authors. From

the original authors of BP [AMW21], we obtain poisons crafted specifically for a black-
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Table C.6: DenseNet121 Full Results

From Scratch - DenseNet121

200 - Epochs

Gradient Matching-1% Narcissus-1%

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Avg Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Max Poison
Success (%) ↓

None 14.00 95.300.1 46.5232.2 95.330.1 91.96
EPIc-0.1 14.00 93.00.3 43.3832.0 93.070.2 88.97
EPIc-0.2 7.00 90.670.5 41.9733.2 90.230.6 86.85
EPIc-0.3 4.00 88.31.0 32.6029.4 85.122.4 71.50
FrieNDs-B 1.00 91.330.4 8.6021.2 91.550.3 68.57
FrieNDs-G 1.00 91.330.4 10.1325.2 91.320.4 81.47
PureEBM 0.00 92.850.2 1.420.7 93.480.1 2.60

80 - Epochs

Gradient Matching-1% Narcissus-1%

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Avg Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Max Poison
Success (%) ↓

None 19.00 94.380.2 38.0136.3 94.490.1 89.11
EPIc-0.1 16.00 92.780.3 32.8533.0 92.870.3 79.42
EPIc-0.2 13.00 92.690.3 30.6728.1 92.820.2 65.46
EPIc-0.3 15.00 93.350.2 36.8036.0 93.340.2 90.41
FrieNDs-B 1.00 89.930.4 5.6011.6 90.010.4 38.08
FrieNDs-G 1.00 89.970.4 7.5918.7 89.890.4 60.68
PureEBM 2.00 91.880.3 1.590.9 92.590.2 3.06

Transfer Learning - DenseNet121

Fine-Tune Linear

Bullseye Polytope-10% Narcissus-10% Bullseye Polytope-10%

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Avg Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

Max Poison
Success (%) ↓

Poison
Success (%) ↓

Avg Natural
Accuracy (%) ↑

None 16.00 88.910.7 56.5238.6 87.032.8 99.56 73.47 82.131.6

EPIc-0.1 18.00 88.091.0 53.9739.0 87.042.8 99.44 62.50 78.882.1

EPIc-0.2 14.00 80.443.1 43.6636.5 85.972.6 97.17 41.67 70.135.2

EPIc-0.3 10.00 72.8411.9 43.2443.0 72.7610.8 100.00 66.67 70.2010.1

FrieNDs-B 4.00 87.061.0 5.349.9 88.620.8 33.42 60.42 80.221.9

FrieNDs-G 2.00 87.370.9 5.5510.4 88.750.6 34.91 56.25 80.121.8

PureEBM 0.00 84.391.0 2.481.9 88.750.5 7.41 0.00 89.290.9

box scenario targeting ResNet18 and DenseNet121 architectures, and gray-box scenario for

MobileNet (used in poison crafting). These poisons vary in the percentage of data poisoned,

spanning 1%, 2%, 5% and 10% for the linear-transfer mode and a single 1% fine-tune mode

for all models over a 500 image transfer dataset. Each of these scenarios has 50 datasets that

specify a single target sample in the test-data. We also use a benchmark paper that provides

a pre-trained white-box scenario on CIFAR-100 [SGG21]. This dataset includes 100 target
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Table C.7: CINIC-10 Full Results

CINIC-10 Narcissus - Class 1 From-Scratch

200 - Epochs

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

CIFAR-10

Accuracy (%) ↑

None 62.060.21 86.320.10 90.79 94.220.16

EPIc 49.500.27 81.910.08 91.35 91.100.21

FrieNDs 11.170.25 77.530.60 82.21 88.270.68

PureEBM 7.730.08 82.370.14 29.48 91.980.16

80 - Epochs

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

CIFAR-10

Accuracy (%) ↑

None 43.750.25 85.250.16 82.63 93.360.20

EPIc 37.350.26 81.150.17 79.98 90.500.31

FrieNDs 10.140.22 77.460.54 73.16 87.790.47

PureEBM 4.850.02 81.650.15 9.14 91.330.20

samples with strong poison success, but the undefended natural accuracy baseline is much

lower.

C.3.2.2 Gradient Matching

For GM, we use 100 publicly available datasets provided by [GFH21]. Each dataset specifies

a single target image corresponding to 500 poisoned images in a target class. The goal of

GM is for the poisons to move the target image into the target class, without changing too

much of the remaining test dataset using gradient alignment. Therefore, each individual

dataset training gives us a single data point of whether the target was correctly moved into

the poisoned target class and the attack success rate is across all 100 datasets provided.
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C.3.2.3 Narcissus

For Narcissus triggered attack, we use the same generating process as described in the

Narcissus paper, we apply the poison with a slight change to more closely match with the

baseline provided by [SGG21]. We learn a patch with ε = 8/255 on the entire 32-by-32

size of the image, per class, using the Narcissus generation method. We keep the number of

poisoned samples comparable to GM for from-scratch experiment, where we apply the patch

to 500 images (1% of the dataset) and test on the patched dataset without the multiplier. In

the fine-tune scenarios, we vary the poison % over 1%, 2.5%, and 10%, by modifying either

the number of poisoned images or the transfer dataset size (specifically 20/2000, 50/2000,

50/500 poison/train samples).

C.3.3 Training Parameters

We follow the training hyperparameters given by [YLM22, ZPJ22, AMW21, SGG21] for

GM, NS, BP Black/Gray-Box, and BP White-Box respectively as closely as we can, with

moderate modifications to align poison scenarios. HyperlightBench training followed the

original creators settings, where we substituted in a poisoned dataloader [Bal23].

C.4 Timing Analysis

Table C.9 shows the training times for each poison defense in the from-scratch scenario on

a TPU-V3. As PureEBM is a preprocessing step, the purification time (∼400 seconds)

is shared across poison scenarios, making it increasingly comparable to no defense as the

number of models/scenarios increase. Although EBM training is a compute-intensive process,

noted in detail in App. C.3.1, we share results in the section Table 7.1 on how a single EBM

on a POOD dataset can obtain SoTA performance in a poison/classifier agnostic way. While

subset selection methods like EPIc can reduce training time in longer scenarios, PureEBM
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Table C.8: Training Parameters for Poison Defense Experiments

Parameter From Scratch Transfer Linear Transfer Fine-Tune

Device Type TPU-V3 TPU-V3 TPU-V3

Weight Decay 5e-4 5e-4 5e-4

Batch Size 128 64 128

Augmentations RandomCrop(32, padding=4) None None

Epochs 200 or 80 40 60

Optimizer SGD(momentum=0.9) SGD Adam

Learning Rate 0.1 0.1 0.0001

Learning Rate Schedule

(Multi-Step Decay)

100, 150 - 200 epochs

30, 50, 70 - 80 epochs
15, 25, 35 15, 30, 45

Langevin Steps (EBM) 150 500 1000

Langevin Temperature (EBM) 1× 10−4 7.5× 10−5 1× 10−4

Reinitialize Linear Layer NA True True

offers superior performance and flexibility to the classifier training pipeline.

Table C.9: Median Wall Clock Train Times From Scratch

Train Time (seconds)

Gradient Matching Narcissus

epochs 80 200 80 200

None 220216 548249 293694 7154194

EPIc 225697 5006253 3564213 6359462

FrieNDs 7740394 11254413 8728660 12868573

PureEBM 221336 552047 296292 7293219
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C.5 Additional Model Interpretability Results
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C.5.1 Poisoned Parameters Diverge

[YLM22] proposes a subset selection method EPIc which rejects poison points through

training. EPIc produces coresets, that under the PL* condition (1
2
∥∇ϕL(ϕ)∥2 ≥ µL(ϕ),∀ϕ),

when trained on converges to a solution ϕ∗ with similar training dynamics to that of train-

ing on the full dataset. While such a property is attractive for convergence guarantees and

preserving the overall performance of the NN, converging with dynamics too close to the

poisoned parameters may defeat the purpose of a defense. As such we consider the closeness

of a defended network’s parameters ϕ∗ to a poisoned network’s parameters ϕ by measuring

the L1 distance at the end of training (∥ϕ− ϕ∗∥1). All distances use the same parameter

initialization and are averaged over 8 models from the first 8 classes of the Narcissus poison.

In Figure C.5, we specifically consider increasingly higher percentiles of the parameters that

moved the furthest away (ϕnth%, ϕ
∗
nth%). The intuition is that poisons impact only a few

key parameters significantly that play an incommensurate role at inference time, and hence

we would only need to modify a tail of impacted parameters to defend. As we move to in-

creasingly higher percentiles, both the PureEBM and FrieNDs defense mechanisms show

a greater distance away from the poisoned model weights, indicating significant movement

in this long tail of impacted parameters. We find that, as theory predicts, defending with

coresets methods yield parameters that are too close to the poisoned parameters ϕ leading

to suboptimal defense.
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Figure C.5: Comparing parameter distances from defended models to poisoned model (same

init) for increasing percentiles of the most moved parameters. PureEBM-trained models

show the least movement in the tail of parameter which poisons are theorized to impact most

(followed very closely by FrieNDs but well above EPIc).

C.6 EBM Langevin Dynamics Grid Searches

Figure C.6: Grid Search for Langevin steps and temp on Narcissus Fine-Tune Transfer
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Figure C.7: Grid Search for Langevin steps and temp on Bullseye Polytope Fine-Tune Trans-

fer

Figure C.8: Grid Search for Langevin steps and temp on Bullseye Polytope Linear Transfer

C.7 Poisoned PureEBM

Given a dataset x ∈ X where all samples x have been poisoned, we consider what happens

if we train an EBM on X . Specifically, we consider if the fully poisoned PureEBM can 1)

purify given poisoned images and 2) how the energies estimated by the poisoned PureEBM

compare to that of a clean PureEBM. We see in C.9 that the energies predicted by a poi-
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soned PureEBM (left) are significantly closer to clean images compared to estimates from

a clean PureEBM (right). This offers us some insight into how the poisoned PureEBM

method works so effectively, counter to initial intuition. When we train a PureEBM on

clean images we are learning some sampling trajectory towards the maximum likelihood

manifold of the clean dataset i.e. when we sample from a clean PureEBM via Langevin

Dynamics we move the input image in the direction of an expected clean image. When we

train on a fully poisoned dataset it becomes unclear what should happen. Theoretically, if

the poison distribution is perfectly learned, one should learn a trajectory toward a poisoned

distribution. That is, if one gives a clean image to the poisoned PureEBM, sampling from it

should move the clean image towards the poisoned distribution, and the image could become

poisoned itself. Another byproduct is that poisoned images, since they have been trained

on, should have a low energy. From Figure C.9 left we see that the energies of the poisoned

images are much lower than that of Figure 7.1, reproduced here (Fig. C.9 right).
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Figure C.9: Energies of poisoned points estimated by a poisoned PureEBM are much closer

to clean points than that of poisoned points estimated by a clean PureEBM.

From Tables in C.2 we see that poisoned PureEBMs can perform nearly as well as clean

PureEBMs. This means that the reduced energy gap between poisons and clean images in

this setting does not hurt the purification process. Thus, the purification process remains

universal.
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C.8 Potential Social Impacts

Poisoning has the potential to become one of the greatest attack vectors to AI models. As

the use of foundation models grows, the community is more reliant on large and diversely

sourced datasets, often lacking the means for rigorous quality control against subtle, imper-

ceptible perturbations. In sectors like healthcare, security, finance, and autonomous vehicles,

where decision making relies heavily on artificial intelligence, ensuring model integrity is cru-

cial. Many of these applications utilize AI where erroneous outputs could have catastrophic

consequences.

As a community, we hope to develop robust generalizable ML algorithms. An ideal

defense method can be implemented with minimal impact to existing training infrastructure

and can be widely used. We believe that this research takes an important step in that

direction, enabling practitioners to purify datasets preemptively before model training with

state-of-the-art results to ensure better model reliability. The downstream social impacts of

this could be profound, dramatically decreasing the impacts of the poison attack vector and

increasing broader public trust in the security and reliability of the AI model.

The poison and defense research space is certainly prone to ‘arms-race type’ behavior,

where increasingly powerful poisons are developed as a result of better defenses. Our ap-

proach is novel and universal enough from previous methods that we believe it poses a much

harder challenge to additional poison crafting improvements. We acknowledge that this is

always a potential negative impact of further research in the poison defense space. Fur-

thermore, poison signals are sometimes posed as a way for individuals to secure themselves

against unwanted or even malicious use of their information by bad actors training AI mod-

els. Our objective is to ensure better model security where risks of poison attacks have

significant consequences. But we also acknowledge that poison attacks are their own form

of security against models and have ethical use cases as well.

This goal of secure model training is challenging enough without malicious data poisoners
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creating undetectable backdoors in our models. Security is central to being able to trust our

models. Because our universal method neutralizes all SoTA data poisoning attacks, we

believe our method will have a significant positive social impact to be able to inspire trust

in widespread machine learning adoption for increasingly consequential applications.

195



Algorithm 2 ML with SGD for Convergent Learning of EBM (7.6)

Require: ConvNet potential Gθ(x), number of training steps J = 150000, initial weight θ1,

training images {x+
i }

Ndata
i=1 , data perturbation τdata = 0.02, step size τ = 0.01, Langevin

steps T = 100, SGD learning rate γSGD = 0.00005.

Ensure: Weights θJ+1 for energy Gθ(x).

Set optimizer g ← SGD(γSGD). Initialize persistent image bank as Ndata uniform noise

images.

for j=1:(J+1) do

1. Draw batch images {x+
(i)}mi=1 from training set, where (i) indicates a randomly selected

index for sample i, and get samples X+
i = x(i) + τdataϵi, where i.i.d. ϵi ∼ N(0, ID).

2. Draw initial negative samples {Y (0)
i }mi=1 from persistent image bank. Update {Y (0)

i }mi=1

with the Langevin equation

Y
(k)
i = Y

(k−1)
i −∆τ∇Yτfθj(Y

τ−1
i ) +

√
2∆τϵi,k,

where ϵi,k ∼ N(0, ID) i.i.d., for K steps to obtain samples {X−
i }mi=1 = {Y (K)

i }mi=1. Update

persistent image bank with images {Y (K)
i }mi=1.

3. Update the weights by θj+1 = θj − g(∆θj), where g is the optimizer and

∆θj =
∂

∂θ

(
1

n

n∑
i=1

fθj(X
+
i )− 1

m

m∑
i=1

fθj(X
−
i )

)

is the ML gradient approximation.

end for
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APPENDIX D

SimEdu

D.1 DQN and SimEdu

Figure D.1: Example DQN Training Trajectory for DQN without probing capabilities on an

unobserved course. Error bars represent the one standard deviation away from the mean

across 1000 simulated students.

We observed that DQN, when used with SimEdu, produces a very unstable and incon-

sistent training process. An example training trajectory is shown in Figure D.1. Notice

that within 25 epochs, the training loss has stabilized for the most part. However, the train

and test rewards are highly inconsistent. Based on these results, we devise an evaluation

metric to choose the best RL agent across the epochs. This evaluation metric is a weighted

average between the average test reward, the median test reward, and the pass rate. Part
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of the difficulty comes from the design of the reward function, Equation 8.4. Because of the

1G≥Gpass , there is a steep drop in reward when the total grade is low. Therefore, the variance

of rewards can be very large in a specific epoch.

Figure D.2: Example DQN Training Trajectory for DQN with full probing capabilities on

an unobserved course. Error bars represent the one standard deviation away from the mean

across 1000 simulated students.

However, most of the inconsistency is likely due to the difficulty of partial observability

for RL. In particular, we noticed that with a DQN that is capable of (oracle) probing, such

as the one in Figure D.2, the inconsistencies are even greater, and they tend to perform

worse, even though they have actions that should help it within the dynamics. In the

implementation, the DQN without probing capabilities has a reduced action space, which

overall reduces the required search space. The low immediate impact of individual probes

introduces several problems. First, introducing probes elongates the total number of steps

while training, diluting rewards even further backward and requiring additional searches.

Second, because probes can change the state so little, they can produce loop structures

in the RL search space, causing possible confusion and continuous probing. Overall, the

intuitive thought where RL is greedier in terms of immediate rewards shines through with

the variability of results. We acknowledge that further hyperparameter tuning is required
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and the RL agents with the larger action space likely require longer training time.
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