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ABSTRACT OF THE DISSERTATION 

 

Neural Networks for Correction of Pointing and Focal Errors  

on Large Deep Space Network Antennas at Ka-Band 

 

by 

 

Ryan Mukai 

Doctor of Philosophy in Electrical Engineering 

University of California, Los Angeles, 2003 

Professor Gregory J. Pottie, Chair 

 

 

Two types of neural networks, multilayer feedforward networks and radial 

basis function networks, are evaluated along with interpolated least squares 

algorithms for correcting pointing errors and focal errors on NASA’s 70-meter 

and 34-meter Deep Space Network (DSN) antennas at Ka-band (32-GHz) 

frequencies.  Ka-band systems offer the possibility of gains as high as 8-10 dB 

over existing X-band (8.4-GHz) systems, but sensitivity both to pointing 

errors and to deformations of the antenna’s main reflector are greatly 

increased[7,38,52].  The correction of pointing and focal errors is thus a 

necessary step toward realizing the potential gains of a move to Ka-band, and 
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algorithms for correcting antenna pointing and for correcting antenna focus 

via subreflector z-position adjustment are presented.  Both simulation results 

and real-world experimental results show that neural networks and 

interpolated least squares algorithms achieve pointing and subreflector 

positioning accuracy that will eliminate most pointing and focal-error related 

SNR losses at Ka-band, significantly improving antenna efficiency.
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1 Introduction 
 

An upgrade from existing X-band (8.4-GHz carrier) systems to Ka-band (32-

GHz) systems is a goal of the NASA Deep Space Network (DSN).  The advantages of 

moving to higher carrier frequencies include an increase in antenna gains, reduced 

sensitivity to deep space plasma effects, and greater available bandwidth [7,52].  Such 

a move has the potential to yield gains as high as 8-10 dB [7,37,52]. 

Due to the shorter wavelengths and narrower beam width at 32-GHz, the 

system will exhibit increased sensitivity to both pointing errors and deformations of 

the ground antenna’s main reflector [6,7,11,20-24,28-31,35,37-40,42,43,46-48,48-

55,57].  These errors can be induced by wind, thermal gradients, errors in the pointing 

prediction model for a given spacecraft, and gravitational distortions of the dish itself.  

For example, pointing prediction models for a spacecraft, which are based upon the 

rotation of the Earth and upon the motion of the spacecraft relative to the Earth, 

sometimes contain errors of up to 10-millidegrees.  This will result in severe SNR 

losses at the receiving horn since 3-dB losses are associated with pointing errors of 4-

millidegrees.  The DSN’s goal is to keep RMS pointing errors within 0.8-

millidegrees, an operating point which corresponds to a 0.1-dB loss of SNR[29,31].  

Furthermore, the antenna’s main reflector may suffer from RMS distortions of over 

1.0-millimeter and peak distortions as high as 2.5-millimeters due to gravity and wind 

as shown in both holography-derived [37,44] and theodolite-derived [22] pictures of 
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antenna dish deformation.  Although such distortions are indicative of remarkable 

structural engineering of the main reflector, which has a diameter of 70-meters, the 

wavelength  is 9.369-millimeters at a frequency of 32-GHz.  Since the effect of 

a distortion is doubled by reflection, a 3.0-millimeter change in RF path length (i.e. 

caused by severe wind gusts) results in a 231-degree phase shift of the received wave.  

This significantly distorts the received field in the antenna’s focal plane, leading to 

SNR losses as severe as 4-6 dB under some conditions [7,44,47].  There is a need to 

recover as much signal energy as possible in order to realize the advantages of Ka-

band communications. 

A system developed at the Jet Propulsion Laboratory, the Array Feed 

Compensation System (AFCS), has been successful in SNR recovery, and the further 

development of algorithms and techniques for use with the AFCS to improve SNR 

performance lies at the heart of this research.  The original development of the AFCS 

and its associated algorithms is first described in a paper by Vilnrotter and Rodemich 

[52] and expanded on later in a series of papers by Vilnrotter, Rodemich, Cramer, 

Iijima, Fort, Dolinar, Zohar, et al [6,7,20,38,46-48,48-51,53-55,57].  The AFCS, to be 

discussed further in Section 1.2, provides powerful real-time compensation for time-

varying losses and pointing errors as well as compensation for many types of 

elevation-dependent static deformations [37,38,44].  Although parts of the static 

component can be compensated by the AFCS, there are parts of this component that 

must be compensated by means of a deformable mirror placed in the RF path whose 

deformations are determined using knowledge of systematic, gravity-induced 
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deformations of the main reflector in order to insure that the received signal power 

can be captured and recombined by the AFCS [11,21,23,24,37,38,45].  The 

combination of both systematic error compensation with a deformable flat mirror and 

real-time and systematic error compensation with the AFCS yields tremendous 

performance enhancements [37,38,47]. 

In this dissertation, our emphasis is on the correction of errors in real-time 

using the AFCS.  The DFP, used for compensating systematic errors as described in 

[38] and in the joint AFCS-DFP experiments conducted in 1999 [37,38,47], is highly 

efficient at recovering SNR that would otherwise be lost due to known, systematic 

deformations of the main reflector.   Further information on the DFP and on joint 

AFCS/DFP experiments can be found in [11,21,23,24,35,37,38,44,45].  In this 

dissertation, the DFP is not considered, and our focus is on the use of the AFCS to 

compensate for real-time errors.  This system is discussed in Section 1.2. 

1.1 Overview of the antenna 
 

NASA’s Deep Space Network, hereafter referred to as the DSN, is a network 

of reflector antennas placed at three deep space communication facilities 

approximately  apart around the world; at Goldstone, California; near Madrid, 

Spain; and near Canberra, Australia.  This strategic placement permits observation as 

the Earth rotates and enables the DSN to support interplanetary spacecraft missions, 

radio and radar astronomy observations, and some Earth-orbiting missions.  The three 

70-meter reflector antennas, one at each facility, are among the world’s largest 
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steerable reflector antennas and are the subject of this dissertation.  Figure 1.1 is a 

simplified drawing of a DSN antenna which illustrates the coordinate system used 

throughout this work.  Here,  refers to the antenna’s pointing azimuth;  refers 

to the pointing elevation; and the “focus” coordinate Z refers to the position of the 

antenna’s subreflector along the pointing axis.  Since this work deals with fine 

pointing, measured in millidegrees, as opposed to coarse pointing, the (XEL,EL)-

plane is shown.  This plane is used to specify very fine pointing in azimuth (XEL) and 

elevation (EL), and the planar approximation is accurate for the small pointing offsets 

under consideration. 

 

 
Figure 1.1: A simplified drawing of a DSN reflector antenna illustrating the coordinate system 
used in this research. 
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The main “dish” of the antenna is called the main reflector, while the 

secondary reflector above the center of the main dish is called the subreflector.  An 

incoming RF wave first strikes the main reflector, which reflects the RF wave toward 

the subreflector.  The subreflector, in turn, reflects the waves toward the focal plane 

of the antenna.  Within the focal plane are one or more receiving horns which are 

designed to capture the RF energy and send it to the appropriate electronics for 

processing.  This system is sensitive to changes in the shape of the main reflector and 

to changes in the position of the subreflector, both of which can have a significant 

effect on the antenna’s overall gain performance and on the channel link budget 

[20,22-24,38-40,42,43,45-48,48-55].  In addition, errors in the antenna’s pointing 

prediction model can reduce received SNR[28-31,47,57].  Our objective is to 

determine the pointing direction and the subreflector offset which will yield the 

highest possible received SNR and, thus, the highest possible antenna gain in the link 

budget.  This problem therefore involves determining the current antenna offset 

(XEL,EL,Z) with respect to the optimal pointing and subreflector position, which is 

denoted as (0,0,0).  With this offset available, both the subreflector position and the 

pointing can be corrected to achieve maximum SNR in the focal plane. 

1.2 Overview of the AFCS 
 

The AFCS and its associated algorithms, developed at the Jet Propulsion 

Laboratory by Vilnrotter and Rodemich [52] and extended in [6,7,20,38,46-48,48-

51,53-55,57], is a seven-element array of Ka-band horns placed in the antenna’s focal 



 6 

plane.  The primary effects of pointing errors and main reflector deformation are 

those of causing power to shift away from the nominal center of the focal plane and 

of distorting the focal plane field by spreading its power and introducing phase 

distortion[7,52].  An array of horns is better able to recover signal power that would 

otherwise be lost due to pointing errors and deformations of the antenna’s main 

reflector than a single, large horn designed to capture the “average field” since there 

will be phase cancellations resulting in a loss of received SNR if a single large horn is 

used to capture such an “average field”: hence, there is a need to use complex 

combining weights along with an array of horns for improved performance[7,52].  A 

photograph of the hexagonal array of AFCS receiving horns is shown in Figure 1.2.  

Here, the AFCS and its seven Ka-band horns are shown on the XKR cone of the 70-

meter antenna at DSS-14 at Goldstone, California in the Mojave Desert.  The seven 

Ka-band receiving horns are placed in the focal plane of the antenna. 
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Figure 1.2: The Array-Feed Compensation System (AFCS). 

 

Deformations of the dish have significant effects on the focal plane field.  

Figure 1.3 illustrates the focal plane field for the case of a perfect, undistorted dish 

with no pointing errors.  Figure 1.4, Figure 1.5, and Figure 1.6 illustrate how the 

horns of the AFCS can recapture significant amounts of signal power that would 

otherwise be lost. 
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Figure 1.3: Focal plane field with no main reflector deformation. 

 

 
Figure 1.4: Power distribution in the focal plane at 15-degrees pointing elevation. 
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Figure 1.5: Power distribution in the focal plane field at 45-degrees pointing elevation. 

 
 
 

 
Figure 1.6: Power distribution in the focal plane field at 75-degrees pointing elevation. 

 

 

 

The previous works by Vilnrotter and others [6,7,20,38,46-55] discuss the 

ability of the AFCS to recover the signal power captured by its outer horns and to use 

complex combining to create a single, combined channel which has a higher SNR 
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than any one of the seven individual channels.  Leading into the present work, Zohar 

and Vilnrotter [57] have studied the concept of using the complex baseband outputs 

of the AFCS to obtain information on the focal plane field which can be used to 

correct pointing, and Vilnrotter and Fort [47] have demonstrated a non-interpolated 

least-squares pointing correction algorithm.  The present research focuses on the use 

of the AFCS to determine optimal pointing and optimal antenna subreflector position 

to maximize received SNR.  The author’s previous work on pointing correction, co-

authored with Vilnrotter, Arabshahi, and Jamnejad, is in [28-31]. 

1.3 Overview of Dissertation Topics 
 

This research concerns the following optimization problem: given the ability 

to observe the seven-channel output of the AFCS, how can we adjust both pointing 

and subreflector position to achieve the highest possible SNR?  The inputs to this 

system are the pointing offsets XEL and EL and the subreflector z-axis position Z.  

The output is the SNR to be maximized. 

In Chapter 2 we present the background material necessary for understanding 

both the problem itself and our approach to the problem.  In Chapter 3, we define the 

optimization problem and consider some of the challenges involved in achieving 

maximum SNR with the AFCS and with the ability to control pointing and 

subreflector position.  In Chapter 4, we present a constrained least-squares approach 

to controlling the pointing and subreflector position of the antenna, which leads to the 

interpolated least squares algorithms used in simulations and in real-world 
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experiments.  Chapter 4 differs from previous approaches to antenna pointing.  Zohar 

and Vilnrotter had previously attempted to estimate pointing errors by estimating 

phase tilts in the aperture plane, and these tilts were computed on the basis of an 

inverse Fourier transform with aliasing taken into account [57].  Their approach 

yields important information on the nature of the problem, but it turns out to be 

impractical for the 70-meter antenna with its severe main reflector deformation.  

Others have studied the use of a monopulse system in controlling antenna 

pointing[12,15,27], but Zohar and Vilnrotter use a maximum likelihood approach that 

the monopulse does not yield [57].  A non-interpolated least-squares algorithm was 

used by Vilnrotter et al. in experiments conducted during 1999 [47], and the 

additional use of interpolation forms the backbone of Chapter 4.  Chapter 5 discusses 

the use of neural networks on DSN antennas.  This differs from previous approaches 

to the combined pointing and subreflector control problem on large DSN antennas in 

that it offers lower computational complexity than the interpolated least-squares 

algorithm of Chapter 4 and the potential for real-time adaptivity.  Chapter 6 presents 

simulation results in which the interpolated least-squares algorithm and neural 

networks are compared and the advantages of neural networks are presented.  Chapter 

7 presents real-world experimental results taken from the 70-meter antenna at DSS-14 

in 2001 and from the 34-meter antenna at DSS-13 in 2002.  Chapter 8 presents our 

conclusions, along with several directions for future research. 
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2 Background material 

2.1 DSN antenna overview 
 

In our treatment of the antenna, we will make use of the theory of Fourier 

optics.  Although Fourier optics and optical theory in general are typically applied to 

visible light systems, this theory remains applicable in many other regions of the 

electromagnetic spectrum.  In particular, both geometric optics and wave optics can 

be applied to the study of DSN antennas since electromagnetic waves at RF 

frequencies, like visible light, are governed by the same laws of electromagnetism 

and propagation although these RF wavelengths are approximately four orders of 

magnitude longer than typical visible light wavelengths.  Nevertheless, the antenna 

can still be viewed as an optical system that operates at RF frequencies rather than 

visible light frequencies, and we will refer to it as an RF optical system.  The RF 

optics approach is widely used in the antenna engineering literature, and a very small 

sample of references that take this approach includes [8,11,19,21-24,26,35-

44,44,45,57].  Many of these references are directly related to DSN antennas 

(although the textbook by Hecht [19] is meant to be generally applicable), and the RF 

optics approach is a widely accepted engineering approach. 

The antenna under consideration is a reflector antenna whose RF optical 

system consists of a 70-meter diameter main reflector, a subreflector, and a focal 

plane in which receiving elements are placed.  When a uniform plane wave from a 
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source strikes the main reflector, it is focused onto the subreflector.  The subreflector 

reflects the electromagnetic energy down to the focal plane of the antenna.  Here, the 

energy collected by the 70-meter aperture is focused onto an area which is typically 

much less than one-hundred square centimeters.  Receiving horns placed in the focal 

plane act as electromagnetic sensors which can capture the signal and send it down to 

high-frequency electronics for processing.  A diagram of the overall system from [31] 

is shown in Figure 2.1. 

 

 
Figure 2.1: Conceptual diagram of the antenna and the AFCS.    © 2002 IEEE.  Reprinted with 
permission from Mukai, R., Vilnrotter, V.A., Arabshahi, P., and Jamnejad, V., “Adaptive 
Acquisition and Tracking for Deep Space Array Feed Antennas”, IEEE Transactions on Neural 
Networks, vol. 13, no. 5, pp. 1149-1162, Sep, 2002 
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2.1.1 Important Relationships in a Cassegrain Antenna 
 

For the purpose of this dissertation, it is important to document the model of 

the antenna that is used throughout much of the analysis.  The modeling assumptions 

made here will play a role in understanding the relationship between subreflector 

position Z and equivalent deformation of the main reflector.  These assumptions also 

play a role in understanding the relationship between dish deformations and resulting 

equivalent phase errors in the aperture plane and also enable a critique of the accuracy 

of our model.  The model developed here will play a role in determining the form of 

an interpolated least squares estimator to be developed in Chapter 4. 

Cassegrain antenna systems, including the 70-meter DSN antenna under 

study, are sometimes modeled as paraboloid-hyperboloid reflector systems, with the 

main reflector modeled as an ideal, circularly symmetric paraboloid and the 

subreflector modeled as an ideal, circularly symmetric hyperboloid [19,32,39], 

leading to a Fourier-transform model[57].  Although the actual 70-meter DSN 

antenna is a shaped reflector system and not a true paraboloid-hyperboloid Cassegrain 

[2,23,39], it is possible to treat the system as if it were based upon a parabolic main 

reflector and a hyperbolic subreflector, and this approach is taken here.  This is an 

approximation to the true antenna.  Simulations that compare the paraboloid-

hyperboloid model to a physically realistic model with respect to the problem of 

pointing and focal correction are part of the subject of Chapter 6.  In this chapter and 

in Chapters 3 and 4, the paraboloid-hyperboloid model will be implicitly assumed as 

it sometimes is in the literature.  For example, this model is used by Zohar and 
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Vilnrotter in their analysis of pointing [57], and a modified form of this model, with 

corrections to take the true reflector shapes into account, is used in holography by 

Rochblatt et al. [39,40,42,43]. 

A paraboloid-hyperboloid Cassegrain system yields optical behavior 

equivalent to that of a pure parabolic system with the same aperture but with a longer 

parabolic focal length [25].  Define: 

 
1. : The effective focal length of the equivalent parabolic reflector 

2. : The actual focal length of the parabolic reflector in the Cassegrain system 

 
The magnification of the system is defined by: 

  (0.0.1) 

Parabolic deformation of the main reflector can be modeled by a change in the 

focal length of the parabola.  Let z be the axial coordinate and let r be the radial 

coordinate.  To model this change, start with the equation for an ideal parabolic 

reflector: 

  (0.0.2) 
 

where f is the focal length of the circularly symmetric paraboloid.  Equation (0.0.2) 

can be used to compute the shape of either the actual reflector or the effective 

(equivalent) parabolic reflector, depending on whether we use the true focal length or 

the effective focal length.  The parabolic reflector shape is shown in Figure 2.2. 
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Figure 2.2: Parabolic reflector shape 

 
The phase errors that result from deformation of the main reflector were 

analyzed extensively by Rochblatt et al. for the purpose of determining antenna 

deformations via holography [37,39-44], and a result from that work states that phase 

errors  caused by deformation of the main reflector are given by [43]: 

  (0.0.3) 

 
where  is the error normal to the antenna surface and where the angle  is as shown 

in Figure 2.2.  Consider the value of  at the edge of the main reflector, which yields 

the greatest value of .  For the true main reflector, we have: 
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  (0.0.4) 

 
which yields .  For the effective main reflector, we have: 

  (0.0.5) 

which yields . 

For a given error  measured normal to the surface, the change in overall RF 

path length is only 13.9% less for the true main reflector than it is for the effective 

reflector.  However, in this dissertation, all errors are measured along the z-direction 

instead of normal to the surface, which means [43]: 

  (0.0.6) 
 

Since the phase error given in equation (0.0.3) is linearly proportional to the z-

direction error given by equation (0.0.6), and since we only deal with  directly 

without concerning ourselves with errors normal to the surface [39-43], we can treat 

errors in main reflector shape along the z-direction as being the same whether we are 

examining the true main reflector or the effective main reflector.  An error in z-

position always has the same effect on phase.  Since there is no need to concern 

ourselves with whether a deformation applies to the true main reflector or to the 

effective main reflector that yields the same focal plane field as the paraboloid-

hyperboloid Cassegrain system, we will treat the effective main reflector throughout 

this dissertation with the understanding that small z-deformations of the true main 
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reflector have the same phase effects as if they had been applied to the effective main 

reflector. 

2.2 Predict models 
 

Predict models are sets of data supplied by the DSN that are used to predict 

carrier frequencies seen on the ground, proper antenna pointing, and proper 

subreflector positioning.  Such predict models are described by Vilnrotter and Fort in 

[47] and play an important role in the operation of the antenna. 

The received frequency at the antenna is affected by the relative movement of 

the spacecraft with respect to the ground receiving station.  The Earth’s rotation on its 

axis and revolution around the sun along with motion of the spacecraft itself lead to 

time-variations in the carrier frequency received at an Earth-based ground station due 

to the Doppler effect [47], and the DSN computes the received frequency at each 

ground station as a function of time.  This set of frequency predicts is referred to as a 

set of sky frequency predicts, and knowledge of these predicts plays an important role 

in enabling ground receivers to acquire the carrier and lock on to it.  As stated by 

Vilnrotter and Fort [47], the AFCS receiver uses these predicts in order to acquire and 

tracking the incoming carrier signal from the spacecraft, which was Cassini in the 

case of the real-world experiments presented in Chapter 7 and in [31]. 

Two other predict models, one for pointing and another for the subreflector, 

play an important role in practical operations involving the AFCS.  Given Earth’s 

rotation and the trajectory of the spacecraft, it is possible to compute a set of pointing 
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predicts which permit the antenna to track the spacecraft with errors no greater than a 

few millidegrees (thousandths of a degree).  These highly accurate pointing models 

provide the primary source of pointing information for the antenna.  Since Earth’s 

rotation typically requires the antenna to move at an average rate of about four 

millidegrees per second during tracking, primary pointing information must come 

from the predicts.  However, since pointing predicts typically have errors of a few 

millidegrees, it is necessary to refine the antenna’s pointing in order to achieve 

maximum signal power at the focal plane [47,57].  This, in turn, requires that small 

pointing corrections in the (XEL, EL) plane shown in Figure 1.1 be applied to 

maintain maximum SNR at the receiver, and our discussion of antenna pointing 

focuses on this problem.  A good pointing predict model which requires only small 

corrections of a few millidegrees is assumed throughout this dissertation. 

A DSN-provided subreflector model, which is used to position the 

subreflector in as close to an optimal position as possible during tracking, is used to 

control the positioning of the subreflector.  We focus only on the subreflector’s 

position along the Z-axis shown in Figure 1.1.  The subreflector model is typically 

accurate, but we seek to find corrections to subreflector position since errors in 

position along the Z-axis cause errors in focus at the focal plane.  Such errors tend to 

disperse energy over a larger area of the focal plane, causing SNR losses [43].  

Additionally, focal errors may be caused by wind, thermal expansion, and by the very 

weight of the dish, especially at high pointing elevations (high values of ) [47], 

and a 5-millimeter error in subreflector position can cause a loss of roughly 1.4 dB 
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[22,39-44].  For this reason, the ability to estimate the optimal subreflector position to 

maximize received signal power is also important [43].  Systematic subreflector error 

correction is considered by Rochblatt et al. [39,40,42-44], but there is also a need for 

real-time estimation of optimal subreflector position that is addressed here. 

2.3 AFCS Signal Modeling 
 

AFCS signal modeling is described in the original AFCS paper [52] and also 

in [46,50,51,53,54,57].  A detailed description of AFCS signal processing is also 

given by Vilnrotter and Fort in [47], and we present a summary of the information on 

AFCS signal processing from [47] here.  The outputs of the AFCS are used in 

determining and in compensating for both pointing errors and certain dish 

deformations.  Each of the seven horns of the AFCS receives a portion of the signal.  

The signal in the kth channel is written [31,46,47,52-54]: 

  (0.0.7) 
 
where the signal and background noise components (real signals) are given by 

[31,46,47,50-54]: 

  (0.0.8) 
and 

  (0.0.9) 
 
Here,  and  are uncorrelated baseband random processes which represent 

the in-phase and quadrature components of the noise, and  represents the 32-GHz 

carrier. 
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As explained in [47], a 31.7-GHz signal is used to downconvert the 32-GHz 

signal to an intermediate frequency of 300-MHz.  From this point, since the received 

carrier frequency is affected by both Earth’s rotation and the relative motion of the 

spacecraft, a set of pre-calculated spacecraft frequency predicts is used to determine 

the proper mixer frequency, which is also tracked by a frequency-locked loop.  The 

final downconversion yields a set of complex baseband samples.  The system samples 

at a rate of 128 samples per second, and these samples are represented as: 

 
  (0.0.10) 
 

where 

  (0.0.11) 
The noise statistics are given by: 

  (0.0.12) 
and 

  (0.0.13) 

 
It is assumed that noise is independent among channels and that successive 

noise samples in any given channel are independent.  The amplitude and phase of the 

signal in equation (0.0.11) are assumed constant from sample to sample.  A received 

vector is defined by: 

  (0.0.14) 
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The signal represented by the vector in equation (0.0.14) can be separated into real 

and imaginary parts as follows.  Let: 

  (0.0.15) 

Then define: 

  (0.0.16) 
 

The variance of each of the components of vector  is .  This vector is 

corrupted by zero-mean AWGN (additive white Gaussian noise).  At the operating 

point (XEL,EL,Z) that specifies the antenna’s pointing and subreflector position, the 

mean of  is the fourteen-element vector 

 and 

the probability density function is: 

  (0.0.17) 

 

where N is the length of the vector (in this case, N=14) and where 

  (0.0.18) 
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In order to reduce the effects of noise, averaging may be used as follows: 

  (0.0.19) 

 
A new vector  is generated 128 times per second [47].  By averaging 

with a period  we can generate a new vector once per second.  An averaging 

period of  results in a new vector every ten seconds, and so on.  The effects 

of noise are reduced since: 

  (0.0.20) 

 
As shown by Zohar and Vilnrotter [57] and as will be discussed in Chapters 3 

and 4, this vector of samples from the AFCS yields important information on the 

focal plane field.  It is this information which can be used to correct pointing and 

focal errors in order to maximize the received SNR. 

For notational convenience we will sometimes denote the average AFCS 

complex baseband output vector  simply as , the complex baseband output 

vector.  This will be true especially in our discussion of interpolated least-squares 

estimation in Chapter 4. 

2.4 Neural networks 
 

Neural networks provide a way to approximate continuous functions over 

bounded intervals and are a significant part of this research.  Two types of neural 
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networks, radial basis function networks and multilayer perceptrons, were used.  

Their properties are discussed in the next two subsections. 

If we are seeking to approximate a continuous scalar function , we 

can often train a neural network to do so if we have a large number of training 

samples.  Let  be a set of N training input vectors and  be the corresponding 

set of desired outputs where .  Define  to be the neural network’s 

response to input vector .  The mean squared error over the training set is: 

  (0.0.21) 

 
The objective of neural network design and training is that of minimizing the 

mean squared error defined in equation (0.0.21).  Minimization of this mean squared 

error results in a network that provides a better approximation of the underlying 

function , and this is the subject of the next two subsections. 

2.4.1 Radial Basis Function networks 
 

Radial basis function (RBF) networks are one of two types of neural networks 

evaluated in both simulations and real-world experiments for antenna pointing 

control.  These networks are described in detail by Haykin [17], and the OLS learning 

algorithm used to train them in this research was developed by Chen et al. [5].  Here, 

we will summarize the material presented by Haykin [17].  A diagram of such a 

network is shown in Figure 2.3. 
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Figure 2.3: Diagram of a single output RBF neural network.  © 2002 IEEE.  Reprinted with 
permission from Mukai, R., Vilnrotter, V.A., Arabshahi, P., and Jamnejad, V., “Adaptive 
Acquisition and Tracking for Deep Space Array Feed Antennas”, IEEE Transactions on Neural 
Networks, vol. 13, no. 5, pp. 1149-1162, Sep, 2002 

 
In Figure 2.3, there are twelve scalar inputs to the RBF network.  Note that an 

RBF network may have an arbitrary number of inputs in general, although twelve-

input networks were used in this research for reasons to be discussed in Chapter 4.  

Let these be denoted by .  We note that each of the M radial basis units 

receives all twelve of these inputs.  The scalar inputs may be combined into a vector: 

  (0.0.22) 
 
Each radial basis unit receives the complete input vector , and the nth basis unit has 

its own center vector defined by: 

  (0.0.23) 
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which is of the same dimensionality as the input vector .  The nth basis unit 

performs the following computation: 

  (0.0.24) 

 
where b is a parameter that determines the region of response of the basis unit.  

If , the unit’s response is unity.  As the Euclidean distance between  and  

approaches infinity, the unit’s response approaches zero.  One way to define the 

region of response is to define the Euclidean distance between  and  such that the 

unit’s output is 0.5.  This distance, which is sometimes called the spread, is: 

  (0.0.25) 

 
since 

  (0.0.26) 

 
The outputs of the radial basis units are sent to the linear combiner shown in Figure 

2.3.  The output of a single-output network is: 

  (0.0.27) 

 
Although Figure 2.3 shows only a single output of the form given by equation 

(0.0.27), some RBF networks have multiple outputs, each with its own independent 

bias term and set of linear combining weights. 

RBF networks can be used in classification problems, and Cover’s theorem on 

the separability of patterns shows us that as long as a set of vectors is separable, 
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meaning that there exists a hypersurface capable of separating them into a given 

desired binary partition, there will always exist an RBF network capable of 

performing this desired partitioning in the sense that its output will be greater than or 

equal to zero for one class of inputs and less than zero for the other class of inputs 

[17].  RBF networks are also very powerful function interpolators.  Given a set of 

data points, we may wish to approximate the underlying function responsible for 

generating those points.  The theory of regularization, which is not discussed further 

in this dissertation, gives us tools for creating RBF networks capable of very accurate 

function approximation and interpolation given a set of data points [17], and it is this 

function approximation capability that is exploited here. 

Constructing an RBF network to perform the desired interpolation is a 

challenging problem, and one solution that often works well in practice is the OLS 

learning procedure developed by Chen, et al. [5].  A description of this procedure, 

based on the original paper by Chen, et al. [5], is given in Appendix A. 

OLS has a number of useful properties.  It is a computationally fast network 

design algorithm which does not have the severe computational overhead of gradient 

backpropagation methods [5,17].  If the input vectors are indeed statistically 

representative of the underlying input process, it often does an excellent job of 

finding a set of radial basis centers such that the number of radial basis units is 

minimized even while the mean squared error criterion is met [5].  The networks 

produced have, in both simulation and real-life, yielded very good antenna pointing 

control performance as will be seen in Chapters 6 and 7 and as shown in [28-31]. 
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2.4.2 Multilayer feedforward networks 
 

In our treatment of multilayer feedforward networks, we will closely follow 

Hagan, Demuth, and Beale [16], whose highly efficient matrix notation both 

simplifies the treatment of these networks and is used here.  A single hidden layer 

feed forward network is similar to the RBF network of Figure 2.3 but with the radial 

basis units replaced by a linear combiner with an output non-linearity.  The nth 

hidden layer can be described by [16]: 

  (0.0.28) 
 
where: 
 

1.  is the column vector of outputs of the nth layer for  

2.  is the column vector of inputs to the network 

3.  is the synaptic weight matrix of the nth  layer 

4.  is the column of bias weights of the nth layer 

5.  is a function applied to the column vector  on an element-by-

element basis.  It may be linear only in the output layer and will be non-linear 

for all hidden layers.  A common choice is the hyperbolic tangent function 

[16,17], and the hyperbolic tangent was used in the hidden layers of all 

multilayer feedforward networks discussed in this dissertation. 

 
It should be noted having a linear hidden layer n is not sensible.  To see this, 

let: 
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  (0.0.29) 
 
thus making layer n linear.  In that case, we can compute the activation levels of layer 

(n+1) as follows: 

  (0.0.30) 

 

It is now clear that we can replace layers n and (n+1) with a single hidden 

layer with  and with .  Thus, a linear hidden 

layer could easily be incorporated into the succeeding layer.  This would permit the 

elimination of any linear hidden layers, and a purely linear network would always 

have an equivalent single-layer form.  In this treatment, it will be assumed that all 

hidden layers have a non-linear function . 

Multilayer feedforward networks are commonly used for function 

approximation.  A very important theorem regarding these networks is the Universal 

Approximation Theorem [9,10,16,17].  Consider a function  where both the 

input and the output may, in general, be vectors.  Assume that each element of this 

function’s output is a continuous, bounded function over a finite, bounded region of 

the input vector space.  For any finite, positive error tolerance  there exists a 

multilayer feedforward network with a single, non-linear hidden layer such that 

 for all input from the bounded region where is the output of the 

network corresponding to [9,10,16,17]. 
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The Universal Approximation Theorem illustrates the function approximation 

power of single-hidden-layer networks, but it is only an existence theorem.  It does 

not give us a procedure for actually finding such a network [9,10,16,17].  In 

particular, it does not tell us the number of hidden layer units needed, the necessary 

synaptic weight matrix, or the necessary bias matrix.  In most cases, the number of 

hidden layer units is determined a priori, sometimes on the basis of experiment and 

sometimes on the basis of formal criteria.  The synaptic weights and the bias terms 

are usually determined through an iterative training process.  The backpropagation 

method is the most commonly used form of training, and the basic version of 

backpropagation is described by both Hagan et al. [16] and Haykin [17] among many 

sources.  We present a discussion of backpropagation that closely follows Hagan et 

al. [16] and uses the same notation in Appendix B. 

2.5 Summary 
 

This chapter introduces a number of concepts that are needed in subsequent 

chapters.  The DSN antenna studied in this dissertation can be enhanced using a 

seven-element focal plane array system that uses complex baseband downconversion 

to obtain seven complex baseband signals, one for each focal plane element.  These 

signals are processed in order to obtain useful information on antenna operating 

conditions.  Although predict models provide sky frequency information, pointing 

information, and subreflector position information to be used in communications with 

distant spacecraft, predicts often contain errors that can lead to a loss of SNR.  The 
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complex baseband signals provided by the AFCS will be exploited to achieve more 

accurate pointing and subreflector control. 

Neural networks provide a powerful method of approximating smooth, 

continuous, and bounded functions.  Since neural networks are trainable, they also 

offer the advantage of adaptivity under changing conditions.  Both neural networks 

and interpolated least squares estimation methods to be introduced in Chapter 4 will 

be evaluated in this dissertation. 
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3 Defining the Problem: Optimizing SNR with 
Pointing and Subreflector 

 
Our objective is that of achieving maximum SNR at the receiver given the 

ability to control pointing and the z-axis position of the antenna’s subreflector.  We 

begin by modeling the antenna as a system whose inputs are the pointing and 

subreflector controls (XEL, EL, Z) and whose outputs are the complex baseband 

outputs of the AFCS.  Since we assume the system noise to be given by the Gaussian 

distribution of equation (0.0.17), and since this Gaussian noise is independent of the 

received signal, the problem of maximizing the SNR is equivalent to that of 

maximizing received signal power.  The optimization problem we wish to solve is 

this: find the pointing offsets and subreflector position, which are given in the ordered 

triple (XEL, EL, Z), such that the power received by the AFCS in the focal plane is 

maximized.  In other words, we are seeking to maximize a function P(XEL, EL, Z) 

which gives power as a function of three inputs. 

One complication here is that the function P(XEL,EL,Z) is itself dependent on 

overall pointing elevation, which we distinguish from the fine-pointing coordinate EL 

by calling it .  From this point forward, EL will be used to denote changes in fine 

pointing relative to the spacecraft’s position, while  will be used to denote overall 

pointing elevation of the antenna itself.  We note that  has a significant effect on 

the received focal plane field as it results in significant changes in the deformation of 
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the main reflector [24,37,39,40,42-44].  The resulting changes in the focal plane field 

are illustrated from Figure 1.4 through Figure 1.6 for 15, 45, and 75 degrees.  This 

implies that the power function to be maximized changes with elevation.  Our 

optimization problem, therefore, is that of maximizing  for any 

given pointing elevation . 

It should be noted that  is the combined power of all seven 

channels.  As first discussed in [52] and also in [46,47,50,51,53,54] and in Section 

3.5, this is a function not only of the offset (XEL,EL,Z) but also of a set of complex 

combining weights.  The problem of estimating these weights and of obtaining 

maximum likelihood estimates of these weights has been solved in [46,47,51-54], and 

the effect of these complex combining weights on the overall optimization problem is 

discussed in Section 3.5. 

In this chapter and in Chapter 4, we will be relying on the equivalent parabolic 

reflector model of the antenna discussed in Section 2.1.1. 

3.1 The aperture plane field 
 

In order to express , we need to start with the relationship 

between the field at the aperture plane and the field seen by the AFCS at the focal 

plane.  In the paraboloid-hyperboloid model, this is a Fourier transform relationship 

[57], and we will closely follow Goodman [14] along with Zohar and Vilnrotter [57] 

in our presentation of this relationship.  For simplicity, polar coordinates will be used 
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throughout much of our treatment.  The coordinate pair  will always refer to the 

aperture plane, where the aperture is that of the antenna’s main 70-meter diameter 

reflector.  The coordinate pair  will always refer to the focal plane, which is the 

plane in which the AFCS horns are placed.  Let  be the scalar field in the 

aperture plane, and let  be the scalar field in the focal plane.  Goodman 

gives the following relationship between the two [14]: 

  (0.0.31) 

 
where we use the following definitions: 

1. :   The scalar field in the aperture plane. 

2. :    The wavelength of the carrier.  9.369-mm here. 

3. :   The wave number, defined by . 

4. :   The effective focal length of the antenna.  152-meters. 

5. R:   The radius of the main reflector.  35-meters. 

It must be noted that the shaped-reflector antenna does not have a well-

defined effective focal length [2].  The use of 152-meters as an effective focal length 

is based on a “best-fit” model.  A physical optics simulation of the actual antenna was 

written by Dr. Vahraz Jamnejad of the Jet Propulsion Laboratory, and this simulation 

was used to generate the focal plane field for an ideal, undistorted 70-meter antenna.  

Focal lengths ranging from 120-meters to 200-meters in 1-meter increments were 

tested using equation (0.0.31).  In each case, the resulting Fourier-transform-based 
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focal plane field  was compared to the physical optics generated field, and a 

squared error distance measure between field magnitudes was used as an error metric.  

The field generated using f=152-meters was found to yield the closest match to the 

field generated by the physical optics simulation, and f=152-meters was taken to be 

the effective focal length of our idealized Fourier-transform based model.  It must be 

noted that this figure differs from what one would obtain by looking at the angle, as 

seen from the focal plane, subtended by the antenna’s subreflector, and this is in 

agreement with the fact that the actual shaped-reflector antenna (as opposed to an 

idealized paraboloid-hyperboloid model) lacks a well-defined effective focal length 

[2].  Since the Fourier-transform based model is an approximation to the true antenna, 

and since our theoretical development is based upon this model, comparison 

simulations were run in order to determine the applicability of this model to the 

optimization problem at hand.  The results of these simulations are given in Chapter 

6. 
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Figure 3.1: Illustration of the antenna with a pointing error. 

 
It is assumed that the source, which was the Cassini spacecraft in the real-

world experiments of Chapter 7 and of [31], illuminates the antenna with uniform 

plane wave illumination.  Let  and  denote the pointing errors, in radians, in 

the XEL and EL directions, respectively.  Let  and  be the polar coordinates of the 

aperture plane.  The uniform plane wave, as received in the aperture plane of the 

antenna, is given by [57]: 

  (0.0.32) 

where the small angle approximation is used under the assumption that these are 

small pointing errors. 

The field given in equation (0.0.32) is the field that impinges upon the 

aperture plane of the antenna in the presence of pointing errors.  If the pointing errors 

source 
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are zero, then the scalar field is a constant over the entire aperture plane (at complex 

baseband) [14,57]. 

The deformation of the effective antenna reflector, given by the function 

 in the aperture plane coordinate system, describes deformations of the dish 

caused by wind, gravity, thermal gradients, and other imperfections in the shape of 

the main reflector [22,37,39,40,42-44], although the deformations in the 

aforementioned references were measured both normal to the surface and along the z-

direction.  This dissertation focuses only on z-direction errors.  It is possible to model 

the effects of this deformation by having the distortion affect the aperture plane field 

instead of the main reflector.  That is, we can assume a perfect main reflector with 

phase distortions in the aperture plane field proportional to .  In doing this we 

note that the deformations occur internal to the optical system of the antenna.  The 

phase error caused by any deformation of the main reflector is doubled by reflection 

[39,40,42,43].  Phase errors are given by  instead of  due to the 

reflection doubling effect.  We can now write the effective aperture plane field in 

terms of both pointing errors and deformations as: 

  (0.0.33) 

 
To simplify the treatment, we will combine the deformation and pointing terms into 

one function, placing both in .  This does require multiplying the pointing 
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error terms by  prior to adding them in to the new  since pointing errors 

should not be phase doubled while dish deformations are phase doubled.  The 

resulting equation for the aperture plane field, based on this effective , is: 

  (0.0.34) 

 

As stated in Section 2.1.1, we can use the same deformation function  when 

considering either the effective main reflector or the true main reflector. 

3.2 A model of pointing errors and main reflector 
deformation  

 
Since the antenna may be mispointed, and since the dish may be deformed by 

its own weight, thermal gradients, and other factors, we can model these errors using 

a dish deformation function , which can take not only deformations of the 

main reflector but also tilts of the dish, which correspond directly to pointing errors, 

into account.  Combining equations (0.0.31) and (0.0.34) yields: 

  (0.0.35) 

 
This Fourier transform relationship allows us to examine the effect of pointing 

and subreflector position changes on the focal plane field , and it is the 
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focal plane field which determines received signal energy as it strikes the seven-horn 

AFCS assembly.  We can decompose  into two components: a controllable 

component consisting of tilts and a defocus error (which correspond to pointing and 

to subreflector z-axis position) and an uncontrollable component consisting of all 

other errors.  Let  denote the controllable component and  denote 

the uncontrollable component.  We write: 

  (0.0.36) 
 

The controllable component, , may be broken down into three terms 

for XEL, EL, and Z, as follows.  Define the first four Zernike polynomials given in 

[3]: 

  (0.0.37) 

 
These functions, evaluated over the unit circle, have special properties which 

are discussed in detail by Born and Wolf [3].  However, we note that  and 

 correspond directly to x-tilt, or XEL pointing, and y-tilt, or EL pointing, 

respectively.  Furthermore, , in the context of physical optics, often refers to 

defocus.  As such, it closely corresponds to subreflector Z-position (or, under other 

circumstances, to wind-induced deformation of the main reflector).  We note, 

however, that  both shifts the edges of the main reflector dish 



 40 

forward while shifting the center backward, which is not what we desire.  The center 

of the dish is a fixed point, and we include the “piston” term  as an 

additional term to remove any shifts of the center of the dish in order to maintain a 

physically realistic model.  By setting the coefficients of  and  both 

equal to , we insure that our model of correctable deformation remains physically 

realistic.  We may now write: 

 

 (0.0.38) 

 
where R is the radius of the main reflector.  The coefficients , , and  

correspond directly to XEL, EL, and Z, respectively, and the appropriate linear scaling 

factors relating the two equivalent sets of triples will be derived in Chapter 4.  

Decomposing the effective aperture field function yields: 

  (0.0.39) 

 
Substituting equation (0.0.39) into equation (0.0.35) gives us: 
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 (0.0.40) 

 
Equation (0.0.40) expresses the focal plane field as a function of both the 

uncorrectable antenna dish deformation and the correctable pointing and defocus.  

Since the pointing elevation  has a very significant effect on  

[22,37,39,40,42-44], the focal plane field  is also heavily affected as shown 

in Figure 1.4 through Figure 1.6.   will thus be heavily affected by 

overall pointing elevation, and the optimal operating point in (XEL,EL,Z)-space may 

vary significantly with . 

3.3 Observing the Received Signal Power and Focal Plane 
Information with the AFCS 

 
Our objective is to maximize the total received signal power from the seven 

horns as a function of XEL, EL, and Z (or, equivalently, , , and ).  To do this, 

we must find the total received power P as a function of the focal plane field 

.  Zohar and Vilnrotter treat the complex baseband outputs of the AFCS 

horns as samples of the focal plane field taken at the horn centers [57], and this 

approximation will prove very useful in our treatment of this problem as well.  We 
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will discuss some of the reasoning behind this approximation prior to applying it to 

the problem at hand. 

3.3.1 Sampling Functions 
 

For simplicity, we will first examine the case of rectangular sampling of a 

two-dimensional function.  Our treatment will closely follow that of Wozencraft and 

Jacobs [56] and of Bracewell [4], although there exist numerous other texts 

containing similar material.  We will argue that the horns of the AFCS act as 

approximate sampling functions, justifying the point-sample approximation of Zohar 

and Vilnrotter [57] and allowing us to come up with a way of expressing total 

received power as a function of the pointing and subreflector control inputs.  Here, in 

order to simplify the treatment, we will deal with hypothetical functions in 

rectangular coordinates.  Let  be the Fourier transform of a strictly 

bandlimited function  which satisfies: 

  (0.0.41) 
 

Equation (0.0.41) implies that  is zero outside of a rectangular 

window, making the function  strictly bandlimited but strictly unlimited in 

spatial extent.  By the sampling theorem, there exists a set of samples  such 

that: 

  (0.0.42) 

where 



 43 

  (0.0.43) 

 
Equation (0.0.43) gives us a sampling function.  The infinite set of these sampling 

functions  forms a complete, orthogonal basis over the set of all 

bandlimited functions  whose Fourier transforms  satisfy equation 

(0.0.43).  We can find the expansion coefficients by: 

  (0.0.44) 

 
The function  is called a sampling function [56]since it can be used to 

recover samples of the bandlimited function .  If we expand equation (0.0.44) 

by substituting with equation (0.0.43), we obtain: 

  (0.0.45) 

 
which is really a sampled version of the following convolution: 

  (0.0.46) 
 
where 

  (0.0.47) 

 
Since , the convolution in equation (0.0.46) is really a 

low-pass filtering operation on , which has no effect beyond multiplication by 

a scalar constant since the Fourier transform of  satisfies equation (0.0.41).  
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Hence, sampling the convolution, which is a scaled replica of the original bandlimited 

function, is equivalent to sampling the function itself except for a constant scaling 

factor since convolution with a low-pass filter of the same bandwidth as the original 

function does not fundamentally change the function. 

Since the horns are arranged in a hexagonal array and have circular apertures, we 

need to consider the case of hexagonal sampling.  Once again, sampling functions do 

exist, and we describe Petersen and Middleton’s optimal sampling method first [33].  

The optimal sampling lattice is a hexagonal grid, which can also be described as a 

 rhombic grid [33,57].  If the function has a spectrum that is circularly limited 

with bandwidth B (described as a spectral bound of  in wave number space by 

Petersen and Middleton [33]), the optimal sampling grid has spacing  between 

the hexagonal sampling points.  The sampling function, described in (x,y)-

coordinates, is given by: 

  (0.0.48) 

 
The expression in equation (0.0.48) is the optimal sampling function which satisfies 

the orthogonality condition [33].  It is also a complicated function.  In practice, one 

could use a simpler function in polar coordinates [4,33]: 

  (0.0.49) 



 45 

 
where B is the bandwidth of the original function and where  is a Bessel 

function of the first kind, order 1.  It should be pointed out that the approximate, 

suboptimal sampling function of equation (0.0.49) violates the orthogonality 

condition and is not the true optimal sampling function [33] although it is far simpler 

due to its circular symmetry. 

Both the circularly symmetric sampling function of equation (0.0.49) and the 

rectangular sampling function of equation (0.0.47) are spatially unlimited due to the 

strict frequency limitation.  For this reason, the horn aperture pattern cannot be an 

exact sampling function since each horn aperture is a strictly spatially limited 

function.  Nevertheless, the AFCS could be regarded as performing point sampling 

[57], making this approximation a useful one.  From this point forward, the point 

sampling approximation will be used with the understanding that although the horns 

are good approximate sampling functions they are not perfect. 

3.4 Achieving Optimal Performance 
 

Given that the horn outputs are very nearly samples of the focal plane field, 

and given that equation (0.0.40) gives us the focal plane field as a function of the user 

inputs and of the uncorrectable part of the dish deformation, we are ready to express 

power as a function of four quantities: XEL, EL, Z, and .  Equivalently, we 

can express power as a function of , , , and .  Let the set of horn 

centers, in the polar coordinates of the focal plane, be given by: 
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  (0.0.50) 
 
The total received power is equal to the sum of the squared magnitudes of each 

complex baseband horn output, which is, under the point sampling assumption: 

  (0.0.51) 

 
When we substitute equation (0.0.40) into equation (0.0.51), we obtain: 

  (0.0.52) 

 
Here,  represents the uncorrectable portion of the dish deformation, which is 

a function of pointing elevation, thermal gradients, and other factors.  For a given 

, we seek to maximize  as a function of the three controllable 

parameters.  Ultimately, our objective is to find  to maximize 

 in equation (0.0.52).  Although one may attempt a direct 

optimization approach, two entirely different methods were chosen.  The first is based 

on an interpolated least squares algorithm that estimates , while the 

second uses neural networks to estimate . 

A set of SNR predicts, which are predictions of receiver SNR under ideal 

conditions, are available from the DSN.  These provide a way of finding the 
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maximum received power , which provides a target power.  Given that only three 

control inputs (XEL, EL, and Z) are available, some of the dish deformation will 

remain uncorrected, and .  Given that  is available from the 

DSN, one can define: 

  (0.0.53) 
 
as a strictly positive quantity to be minimized.  Hence, the problem of SNR 

maximization may also be posed as a problem of minimizing . 

Due to the presence of the uncorrectable portion of the deformation , there 

will be a positive quantity 

  (0.0.54) 
 
which forms the lower bound for equation (0.0.53).  The problem to be solved may, 

therefore, be cast either as a problem of maximizing the SNR in equation (0.0.52) or 

as a problem of minimizing the difference in equation (0.0.53).  Equation (0.0.54) 

provides the best (lowest) achievable , and this quantity is strictly positive due 

to the uncorrectable deformation . 

It must be noted that the ordered triple , although related to 

(XEL,EL,Z) by linear scaling factors, is not the same as (XEL,EL,Z).  A derivation of 

the linear scaling factor for both XEL and EL is presented in Section 4.3.  In the case 

of the linear scaling factor from  to Z, the relationship is more complicated.  Here, 

Z denotes the change in position of the subreflector from its nominal position while 
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 denotes a change in an expansion coefficient in equation (0.0.38), and the 

relationship between the two is derived in Section 4.3.2. 

3.5 Optimizing the complex combining weights 
 

In equation (0.0.51), we took the sum of the output powers of the seven 

receiving elements to be the total power to be maximized.  The problem of coherently 

combining the horn outputs to produce a total output of maximum SNR remains a 

part of this optimization problem, and this coherent combining problem has been 

addressed first in the original paper by Vilnrotter and Rodemich [52] and later in 

[6,20,46-48,50,51,53,54].  Let the noise in each receiving element have power  

(that is,  in the in-phase channel and  in the quadrature channel).  The upper 

bound on achievable SNR is then given by [6,20,46-48,50-54]: 

  (0.0.55) 

 
where  is the complex baseband output of the nth receiving horn.  In this case, 

there exists an optimal set of combining weights  such that the maximum SNR is 

achieved, and these weights are given by [6,20,46-48,50-54]: 

  (0.0.56) 

 
By using maximum likelihood estimates of the weights given in equation 

(0.0.56), the SNR can be brought very close to the upper bound in equation (0.0.55) 

[6,20,46-48,50-54].  In fact, the original paper by Vilnrotter and Rodemich shows that 
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combining loss can be kept below 0.1 dB [52].  This validates the concept of 

maximizing the sum of received power at the horns in equation (0.0.51) since this 

maximizes the upper bound in equation (0.0.55) .  The problem of maximum 

likelihood estimation of coefficients to actually achieve the upper bound that equation 

(0.0.51) implies has been treated in the original paper [52] and in follow-on work 

[6,46,48,50,51,53,54], and the reader is referred there for further information since 

the problem of estimating the optimal offset (XEL,EL,Z) is the focus of this 

dissertation.  It should be noted, however, that the optimal combining weights vary 

significantly as a function of overall antenna deformation and must be updated in 

real-time during actual operation using maximum likelihood estimation 

procedures[6,46,48,50-54]. 
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4 A Constrained Least Squares Approach to SNR 
Maximization 

 
In Chapter 3 we stated our goal of maximizing SNR as a function of the 

ordered triple (XEL,EL,Z).  Let us define the point in (XEL,EL,Z)-space at which SNR 

is a maximum as (0,0,0).  This is the optimal operating point which yields the highest 

possible SNR given our three control inputs.  At any given moment, the antenna may 

be operating at a point other than the optimal point, and we seek to estimate the 

antenna’s present operating point in (XEL,EL,Z) space since knowledge of this 

operating point will enable us to correct pointing and focus in order to maximize 

SNR.  Our approach will consist of attempting to find a constrained least squares 

estimator for (XEL,EL,Z) which accepts the complex baseband output vector of the 

AFCS as its input and returns an estimate of (XEL,EL,Z) as its output. 

The objective function, , is dependent on overall pointing 

elevation .  Thus it is necessary to find this optimal operating point for any given 

 since, during the course of tracking,  will vary over a wide range as the 

spacecraft or other target rises and sets in the sky due to Earth’s rotation.  We first 

consider the estimation problem for a fixed  in Sections 4.1 through 4.4, and we 

briefly discuss extensions of this estimator to handle arbitrary  in Section 4.5.  

Section 4.1 is a discussion of the constraints on our least-squares problem imposed by 

physical reality.  With those constraints given, Section 4.2 defines the least-squares 
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problem itself.  The method used to generate the data reference tables used in our 

estimation algorithm is given in Section 4.3.  A practical algorithm, the interpolated 

least-squares estimation algorithm for estimating (XEL,EL,Z), is given in Section 4.4, 

and a brief discussion of pointing elevation dependence is given in Section 4.5.  This 

chapter concludes with a practical discussion of the use of estimation algorithms in 

real-life acquisition and tracking in Section 4.6. 

4.1 Focal plane field information from the AFCS 
 

The baseband output of the seven-element AFCS system is represented by a 

seven-element complex voltage vector given by: 

  (0.0.57) 
 
In a situation in which the source and antenna remain absolutely stationary with 

respect to each other, in which absolute focal plane phase recovery is possible, and in 

which channel conditions are static, the above vector would be a vector of focal plane 

samples as discussed in Section 3.3.  Under such conditions, one could write: 

  (0.0.58) 
 
where  is the center of the nth horn.  Unfortunately, due to the real-life factors 

discussed here, equation (0.0.58) from the previous case does not hold.  In a realistic 

scenario, the following difficulties are present: 

 
1. Time-varying received frequency due to the Doppler effect.  This is caused by 

motion of the spacecraft and rotation of the Earth. 
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2. Changes in weather conditions and other channel conditions that result in 

changes in received signal power.  Although SNR predicts exist at the DSN, 

there are factors including atmospheric effects and other effects that cause 

available received power to vary from the DSN predict models.  

 
The existing system uses sky frequency predicts in conjunction with a phase-

locked-loop to lock the signal.  As such, it maintains the central horn, which has the 

highest signal power in normal operation, at zero-phase.  This means that  in 

equation (0.0.57) is kept at zero phase by this system.  If we compare  to 

, we see that while the focal plane field  at the center horn’s 

location  is, in general, a complex function (with a phase and amplitude 

depending on the received field), the central horn output yielded by this system is set 

to zero phase. 

Since all phases of the outer horns are found relative to that of the central 

horn, it is true that relative phase relationships among the horns are preserved.  

However, we do not have the absolute phase of  available to us since the 

phase-locked loop operates to keep the center channel’s output at zero-phase.  This 

prevents complete reconstruction of the focal plane field and its absolute phase 

information via the AFCS.  Furthermore, random variations in spacecraft power and 

channel conditions result in random amplitude of the received signal [47].  Hence, 
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even the magnitude of  could be different from the magnitude of  that 

would be observed under ideal conditions. 

For a given operating point (XEL,EL,Z), random changes in absolute signal 

amplitude imply that we now lack a unique one-to-one mapping between the 

operating point (XEL,EL,Z) and the received vector .  Under noiseless conditions 

the relative phases among the horns would remain the same, but the amplitudes of the 

channels would only maintain their relative relationships while the absolute amplitude 

would be a random variable.  Hence, the problem at hand is constrained by both the 

lack of absolute focal plane field phase knowledge and by the randomness of the 

amplitude of the central channel’s output.  This makes our problem a constrained one, 

and in Section 4.2 we will see it is a least-squares problem. 

This situation is handled in the following manner.  Define: 

  (0.0.59) 

 
In equation (0.0.59), we have normalized all seven complex baseband outputs by 

dividing by the central horn’s complex baseband output, which is a real output due to 

the fact that the central horn has zero-phase as a result of the operation of the phase-

locked loop.  Let  be defined as the nth element of the vector .  We always have: 

  (0.0.60) 
 
Hence, there is no information in the first element of .  We can drop the first 

element and define the vector  as a six-element complex vector as follows: 
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  (0.0.61) 

 
The above vector is a new complex voltage vector consisting of the normalized outer 

horn complex voltage outputs, where normalization is performed by dividing by the 

central horn’s complex voltage output.  Given an operating point (XEL,EL,Z), we 

obtain the vector  which is corrupted by AWGN.  We then obtain the vector  by 

dividing the outer horn outputs by the center horn’s output at complex baseband, thus 

obtaining the six complex numbers that comprise vector .  We can, equivalently, 

define a 12-element real vector  whose elements are the real and imaginary parts of 

the elements of  as follows: 

  (0.0.62) 

 
For a given operating point (XEL,EL,Z) at pointing elevation , we define: 

  (0.0.63) 
 
which is the expected value of  at the given operating point (XEL,EL,Z) at elevation 

. 

4.2 The constrained least squares problem 
 

Ultimately, we seek an estimate of (XEL,EL,Z) that we can use to correct the 

pointing and subreflector position in an effort to bring the system to the optimal point 
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(0,0,0) where SNR is maximized.  One approach to this problem is that of finding the 

ordered triple  that minimizes the following function: 

  (0.0.64) 
 
at the current pointing angle .  Here,  is the 12-element vector defined in 

equation (0.0.62) that corresponds to received vector .  In the noiseless case, the 

ordered triple  that achieves this minimum will give us 

 since, in the absolutely noiseless case,  is a purely 

deterministic function of  and of the operating point (XEL,EL,Z) and would thus 

be exactly equal to .  In that case, the ordered triple  

for which  would be exactly the current operating point.  In 

practice, however,  always contains some noise because the vector of AFCS outputs 

 is corrupted by AWGN, and our objective is to find  to minimize 

.  This is a constrained least squares 

problem.  The algorithms that we will use to obtain  are designed to 

solve this constrained least squares problem, and these algorithms are called 

interpolated least squares algorithms.   They are so-called because we are solving a 

constrained least-squares problem and because they use interpolation to assist in 

finding the minimum of .  In Section 4.3 
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we discuss the problem of obtaining the vectors  for use in a lookup 

table.  In Section 4.4, we provide a practical implementation of an algorithm to find 

the minimum of  as a function of (XEL,EL,Z) using quadratic 

interpolation. 

4.3 Obtaining  
 
The basic procedure for obtaining  is that of performing a raster 

scan.  In a raster scan, the antenna is swept through a rectangular grid of points in 

(XEL,EL,Z)-space similar to that of Figure 4.1. 

 
Figure 4.1: Illustration of a three-dimensional data set. 

 
Since, in real life, incoming data are corrupted by noise, it is necessary to minimize 

noise effects in the data set by taking several vector samples at each point in 

(XEL,EL,Z) space.  Since these samples are taken over a period not exceeding ten 

seconds, the resulting average is unaffected by changes in received spacecraft power 

at the given point in (XEL,EL,Z)-space since those changes occur on a slower time 

scale in practice.  The resulting averaged vector  is then used to compute the 
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estimate of the mean vector , which is stored in a lookup table for 

future reference.  In the example of Figure 4.1, the raster scan is taken at 5 values of 

subreflector defocus parameter Z: -6.0 mm, -3.0 mm, 0.0 mm, 3.0 mm, and 6.0 mm.  

In each “defocus plane” shown in Figure 4.1, which is labeled with a given value of 

Z, the antenna is swept through (XEL,EL)-space from -3.0-millidegrees to +3.0-

millidegrees in both pointing directions in 1.0-millidegree steps.  The raster scan of 

Figure 4.1 gathers a total of 245 reference data vectors which are estimates of 

 for each of the points in the scan. 

4.3.1 Translating between (XEL,EL) and tilt coefficients 
 

In this section, we will seek to understand the effect of a pointing offset in 

(XEL,EL) in terms of movement of the focal plane field.  A change in pointing can be 

modeled by a tilt of the main reflector, and such tilts are modeled by: 

 (0.0.65) 

 
where  is an arbitrary aperture plane field.  We have assumed that the 

circular aperture cutoff is part of the aperture field function , leading to the 

infinite integration limit.  The treatment will be simpler if we switch to rectangular 

coordinates.  Rewriting some of the terms of equation (0.0.38) in rectangular 

coordinates, we have: 

  (0.0.66) 
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Re-writing equation (0.0.65) in rectangular coordinates, and assuming that the 

circular aperture limit is already taken into account in the aperture field function 

itself, we have: 

  (0.0.67) 

 

Hence, an x-tilt coefficient of  will yield a translation in the focal plane of  

and similarly for a y-tilt. 

We translate tilts into units of millidegrees with the objective of finding how 

many millimeters of translation we get in the focal plane for each millidegree of dish 

tilt.  From Section 3.1, we note that a change in the coefficients  and  must be 

doubled to get the true movement in the dish edge because we have folded these 

coefficients into the deformation function, which is phased-doubled.  We first 

translate from millidegrees of dish tilt to millimeters in coefficients using the small 

angle approximation: 

  (0.0.68) 

 
The coefficient changes by 0.3054-millimeters for each millidegree of tilt, using the 

small angle approximation.  Multiplying the tilt coefficient by  yields 
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2.6526-millimeters of focal plane translation for each one-millidegree change in 

pointing. 

We next consider the problem of determining a sampling interval in 

(XEL,EL)-space.  The following issues need to be considered first: 

 
1. The spatial frequency content of the objective function  is 

unknown.  The normalized input vector defined in equation (0.0.62) and the 

vectors  are not vectors containing samples of the focal 

plane field: they contain processed focal plane field information instead of 

actual samples.   

2. The elements of the mean normalized voltage vector  do not 

have the same frequency spectrum as the focal plane field function .  

The very act of dividing the outer horn voltages by that of the central horn 

creates a mapping from  to . 

 
The statements above imply that any sampling interval calculated for  in 

(XEL,EL,Z)-space will not, in general, be applicable to any one of the components of 

the vector function .  If a Nyquist interval is calculated for 

 (based on the bandwidth limitation imposed by the circular aperture) then, 

in general, that Nyquist interval is not applicable to the vector function 

 or to the scalar function .  An example from one-
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dimensional signal processing illustrates this concept.  Given a time-domain signal 

x(t) with bandwidth B, the Nyquist rate is 2B.  If we consider the spectrum of the 

signal , we have a signal bandwidth of 2B and a Nyquist rate of 4B, so in this 

case processing has doubled its bandwidth.  If we pass x(t) through a low-pass filter 

of bandwidth B/2, then the new signal’s bandwidth is halved and so is the Nyquist 

rate.  Processing can alter the frequency characteristics of signals, and since the 

computation of  involves significant non-linear processing of the 

focal plane field, the frequency content is not known due to the translation from  

to .  In general, although the circular aperture limitation does impose a bandwidth 

limit on the focal plane field, this does not translate readily into a bandwidth limit on 

either the vector function  or on the objective function to be 

minimized, which is .   Hence, we do not attempt to use the 

bandwidth limitation on  imposed by the circular aperture to determine a 

sampling interval for . 

Our choice of spacing in the raster scan is governed by practical 

considerations.  Since the DSN’s goal is to keep pointing errors below 0.8-

millidegrees, a 1.0-millidegree interval is typically chosen for the raster scan in the 

XEL and EL directions.  Such an interval choice is determined not only by the DSN’s 

goal but also by the fact that Vilnrotter and Fort, in their paper discussing 

experiments conducted in 1999, state that the system is able to resolve errors of 1.0-

millidegrees or less [47] and by the fact that Zohar and Vilnrotter have shown that, in 
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principle, the AFCS is capable of fine pointing discrimination with errors of 1.0-

millidegree or less as well [57].  The choice of spacing in Z, the subreflector’s z-

position offset, is also governed by practical considerations.  Due to the time it takes 

to complete a raster scan and due to changes in  over time resulting from the 

Earth’s rotation, a compromise is made between resolution in Z and the need to 

complete a raster scan without very large changes in  occurring during the scan 

period.  In the real world experiments at DSS-13, 2.0-millimeter spacing in Z was 

chosen. 

4.3.2 The defocus coefficient 
 

In the previous subsection we derived the coefficients relating  and  to 

XEL and EL.  We did not derive such a coefficient relating Z, the subreflector 

position, to , the parabolic coefficient in the deformation function.  This is carried 

out here. 

Using equation (0.0.2) to find  we can accurately approximate the change 

in focal length  corresponding to dish edge movement .  If the dish is 

deformed by a purely parabolic deformation, such that its new shape is also parabolic, 

the result is a change in focal length.  Define  to be the change in the z-position of 

the dish edge due to a purely parabolic deformation.  Define  to be the resulting 

change in true focal length.  We can approximate  accurately for small  as 

follows: 
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  (0.0.69) 

 
where R is the radius of the dish (35-meters) and  is the true focal length (28.89-

meters).  Each +1.0-millimeter change in  yields a -0.3669-millimeter change 

in .  We can also say that each +1.0-millimeter in  yields -2.7253-millimeters in 

. 

A purely parabolic deformation of the main reflector thus causes a shift in its 

focal point.  According to Jamnejad [25], one can compensate for a change in the 

focal point by moving the subreflector.  Define  to be the change in subreflector 

position along the z-axis.  This change is magnification dependent.  Using our 

model’s effective focal length of 152-meters and the parabolic reflector’s focal length 

of 28.89-meters [32], we obtain: 

  (0.0.70) 

This leads to [25]: 

  (0.0.71) 

 
This implies 2.630-millimeters of compensating subreflector movement for 

each millimeter of movement of the physical dish edge due to parabolic (defocus) 

deformation.  Since, in real life, dish edge movements from a parabolic deformation 

do not exceed 3-millimeters [37,44], the maximum amount of subreflector movement 
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required to compensate is roughly 7.89-millimeters.  The subreflector can move 

between -11.43 cm to +10.668 cm in the z-direction [1], and this is a much greater 

degree of travel than what would be required for compensating for any defocus 

deformation that would occur in the real world. 

Define P as the number of millimeters of dish edge movement due solely to 

parabolic distortion.  We now supply a series of conversion factors needed to convert 

among , Z, and P for pure defocus deformations for the 70-meter antenna. 

1. 1.0-millimeters in  => 2.0-millimeters in P 

2. 1.0-millimeters in P => 0.5 millimeters in  

3. 1.0-millimeters in  => 5.26-millimeters in Z in the opposite direction 

4. 1.0-millimeters in Z => 0.190-millimeters of  in the opposite direction 

5. 1.0-millimeters in P => 2.63-millimeters in Z in the opposite direction. 

6. 1.0-millimeters in Z => 0.380-millimeters in P in the opposite direction. 

 
Although focal error simulations were based on the 70-meter antenna, focal 

error experiments were performed on the 34-meter antenna at DSS-13.  It is necessary 

to find a set of conversion factors similar to that above for the 34-meter antenna as 

well.  The true focal length of the main reflector at DSS-13 is 11.68-meters [32].  By 

equation (0.0.69), a 1.0-millimeter change  in focus causes a 0.5296-millimeter 

change in the parabolic deformation parameter P in the opposite direction.  By 

equation (0.0.71), we can approximate  using .  The conversions for the 34-

meter antenna are given below. 
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1. 1.0-millimeters in  => 2.0-millimeters in P 

2. 1.0-millimeters in P => 0.5 millimeters in  

3. 1.0-millimeters in  => 3.78-millimeters in Z in the opposite direction 

4. 1.0-millimeters in Z => 0.265-millimeters of  in the opposite direction 

5. 1.0-millimeters in P => 1.89-millimeters in Z in the opposite direction. 

6. 1.0-millimeters in Z => 0.530-millimeters in P in the opposite direction. 

 
A movement of the subreflector does not result in a pure quadratic phase error 

even though we have chosen to model it as such using equations from [25] to 

compute equivalent subreflector movements corresponding to focal length changes.  

There are several circularly symmetric Zernike polynomials involved in expanding 

the effects of a subreflector position change, and this model makes an important 

simplifying assumption by treating subreflector Z-position changes as changes in the 

quadratic phase of the effective aperture plane field. 

In this dissertation, we will use the parabolic deformation parameter P, which 

measures the movement of the edge of the antenna in the z-direction due to parabolic 

deformation, extensively.  This parameter will be the parameter we focus on in the 

simulation results of Chapter 6 because the architecture of the simulation software 

emphasizes deformations of the main reflector.  For this reason, we will refer 

frequently to (XEL,EL,P)-space instead of (XEL,EL,Z)-space in Chapter 6 in 

discussing simulation results.  However, since we have no direct control of P in real 

life, the parameter Z (subreflector position) will be the focus of the real-world 
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experiments in Chapter 7.  This distinction is emphasized here and will be repeated 

again in Chapters 6 and 7.  Since the phase changes caused by a change in Z are not 

purely parabolic even though we have modeled them as such, it is important to keep 

that distinction in mind when examining simulation results and real-world 

experimental results.  Hence, there is an important difference between simulation and 

experiment that must be noted. 

4.4 A practical implementation 
 

The implementation used in practice is based on minimization of 

, using fully normalized complex voltages as described in Sections 

4.1 and 4.2.  It is also based on the concept of Taylor series approximations and on 

quadratic approximation in particular. 

Suppose we seek to minimize a function , and we know that the 

minimum value lies near .  We can expand this function as: 

  (0.0.72) 

 
The term  will be close to zero for x sufficiently close to  and, in that 

case, may be safely ignored.  As long as we are sufficiently close to , we may 

approximate  by a quadratic by ignoring  in equation (0.0.72).  Finding 
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the global minimum of this quadratic will yield an approximate minimum of 

 provided that the minimum point is sufficiently close to . 

Given the difficulty in determining the spatial frequency spectrum of 

 and given the fact that interpolating with methods similar to that of 

equation (0.0.42) can be a computationally intensive process for large lookup tables 

the following procedure is used in practice: 

1. Compute  for each raster 

scan point  in the reference table.  Choose the point 

 from the lookup table that minimizes w.  This is the starting 

point, and  is the lowest value of w over the 

points contained in the lookup table. 

2. Let  denote the spacing in XEL in this table.  We use the adjacent 

values   and 

 in order to determine a quadratic. 

3. Fit a parabola to the set of points 

. 

4. Find the value  which minimizes this parabola.  It is our estimate of XEL. 

5. Repeat the same process for both EL and Z. 
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The above procedure is not the optimal quadratic interpolation procedure: a 

more sophisticated procedure seeks a best-fit quadratic in all three variables and seeks 

to minimize that quadratic.  In practice, however, the procedure above has yielded 

results which are very close to those obtained with an optimal quadratic fit but with 

reduced computational complexity, and the one-dimensional interpolation procedure 

was the one used in real-life experiments.  Other interpolation methods, including 

sinc-function and cubic-spline interpolation, are also possible and are tested in the 

simulations of Chapter 6. 

This interpolated least squares algorithm serves as our performance baseline 

against which neural networks are compared.  It is an interpolated version of a least-

squares pointing algorithm written and tested by Vilnrotter and Fort [47].  This 

algorithm estimates the current offset (XEL,EL,Z) by attempting to minimize the 

objective function , so it tries to solve a least-squares minimization 

problem under the constraint that the six complex voltages it uses are normalized by 

the center horn, making this a constrained least squares problem.  This algorithm 

suffers from two disadvantages compared to neural networks: 

1. The antenna changes over time, and these changes result in a need to update 

the reference table, which serves as a model for this algorithm.  The 

generation of a three-dimensional lookup table is a time-consuming task, and 

minimizing DSN antenna downtime is very important. 

2. This algorithm must compare the received voltage vector  to every reference 

vector  in the reference table.  In order to minimize the finite 
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window effects which result from using finite-sized lookup tables (assuming 

that optimal interpolation of the type illustrated in equation (0.0.42) is used) it 

is necessary to have a large table, and large tables are typically necessary 

given the wide range of antenna operating conditions.  For example, a table 

could span a range from -3 to +3 millidegrees in both XEL and EL as well as a 

range of -6 to +6-millimeters in Z with 1-millidegree spacing in both XEL and 

EL and 2-millimeter spacing in Z, but this results in a table with 343 entries, 

resulting in 343 Euclidean distance computations for each incoming voltage 

vector from the AFCS baseband assembly during operation. 

4.5 Estimation over a broad range of elevations 
 

Since  is strongly dependent on , a method for estimating 

 for all elevations is needed.  We recall that knowledge of 

 gives us knowledge of .  Rochblatt, et 

al. have shown that one can compute  for all  provided that one knows 

 for at least three elevation angles and have actually computed an all-angles 

deformation model of the main reflector of the 70-meter antenna using this method 

[38,44].  Using this knowledge, one can compute the resulting focal plane field and 

subsequently create a model of .  Such models allow focal plane 

fields to be computed in principle, but this approach is not practical.  The 

computation of focal plane fields for a given elevation  is not feasible in real time.  
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A practical method of overcoming this limitation is to create three-dimensional raster 

scan sets at several well-chosen values of .  Since main reflector deformation is a 

continuous function of  [38,44], we can safely use a raster scan set generated for a 

given  for any elevations that are close to it.  In reality, raster scan sets cover a 

range of elevations since  is changing during the raster scan process, particularly 

in the case of three-dimensional pointing and defocus scans, but the fact that antenna 

deformation is a continuous function of  implies that for sufficiently small 

elevation spreads during the scanning process this method will produce valid tables.  

The most common method used in real-life is that of taking raster scan sets 

consecutively as the antenna either rises or falls in elevation, and such a technique has 

produced excellent results when the reference tables are applied in real-life.  One 

needs only to select the reference table that was gathered over a range of elevations 

that includes the current elevation, and this set will work for the current elevation as 

confirmed in Chapter 7 and in [31].  From this point forward, we will always assume 

that we are using a three-dimensional lookup table appropriate to our current antenna 

elevation. 

4.6 A practical note on the use of interpolated least squares 
estimators for pointing and focus correction 

 
Algorithms such as interpolated least squares and neural networks will 

compute a correction to be applied to the antenna.  In order to compensate for 

possible estimation errors, only a fraction of this correction is applied.  Hence, it 
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normally takes several steps to get to the optimal operating point.  It is often sufficient 

for the algorithm to estimate the direction of the correction to be applied.  Even if the 

magnitude is wrong, as long as the magnitude is not significantly greater than the true 

magnitude of correction necessary, the algorithm will approach the optimal point, 

defined as (0,0,0). 

An example best illustrates this.  Suppose the antenna starts at the point (3,-

3,3) in (XEL,EL,Z)-space.  In this case, suppose the estimator works ideally, returning 

the exact operating point in (XEL,EL,Z)-space at each iteration.  Clearly, if the full 

correction is applied, the system will correct its pointing and focus in only one step.  

Suppose instead that at a given time the correction is reduced by a factor of 0.7 prior 

to being applied.  The starting portion of a time series of corrections is shown below. 

Table 1: Time series with 70% correction applied at each iteration and perfect estimation. 

Time Step Actual Operating Point Estimated Operating Point 
1 (3,-3,3) (3,-3,3) 
2 (0.9,-0.9,0.9) (0.9,-0.9,0.9) 
3 (0.27,-0.27,0.27) (0.27,-0.27,0.27) 
4 (0.081,-0.081,0.081) (0.081,-0.081,0.081) 
5 (0.00243,-0.00243,0.00243) (0.00243,-0.00243,0.00243) 
 

Next, suppose our estimator consistently overestimates.  For simplicity, we 

will assume it always overestimates by a constant factor of .  At the point (3,-3,3) it 

would estimate (4,-4,4).  Once again, just 70% of the correction is applied each time. 

Table 2: Time series with 70% correction applied at each iteration and estimates that are 
33.33% too high. 

Time Step Actual Operating Point Estimated Operating point 
1 (3,-3,3) (4,-4,4) 
2 (0.2,-0.2,0.2) (0.267,-0.267,0.267) 
3 (0.0133,-0.0133,0.0133) (0.0178,-0.0178,0.0178) 
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4 (0.0009,-0.0009,0.0009) (0.0012,-0.0012,0.0012) 
 
We also consider the case where the estimates are consistently 50% too low. 

Table 3: Time series with 70% correction applied at each iteration and estimates that are 50% 
too low. 

Time Step Actual Operating Point Estimated Operating Point 
1 (3,-3.3) (1.5,-1.5,1.5) 
2 (1.95,-1.95,1.95) (0.9750,-0.9750,0.9750) 
3 (1.2675,-1.2675,1.2675) (0.6338,-0.6338,0.6338) 
4 (0.8239,-0.8239,0.8239) (0.4119,-0.4119,0.4119) 
5 (0.5355,-0.5355,0.5355) (0.2677,-0.2677,0.2677) 
6 (0.3481,-0.3481,0.3481) (0.1741,-0.1741,0.1741) 
7 (0.2263,-0.2263,0.2263) (0.1132,-0.1132,0.1132) 
 

The important point of the hypothetical data shown from Table 1 through 

Table 3 is this: even if there are errors in the estimator, the use of a multiplicative 

factor to scale the corrections will result in more robust, reliable performance.  This is 

especially true if there is a consistent tendency to overestimate, provided that the 

percentage overestimation does not cause unstable oscillations.  Although this results 

in slower convergence in the underestimation case of Table 3, it also helps to stabilize 

the system and to prevent oscillations in some overestimation cases. 

There are two distinct phases of operation in a practical application: 

acquisition and tracking.  In acquisition, the antenna is several millidegrees off-point 

or several millimeters out of focus.  In this case, the goal is to correct the error and to 

bring the antenna to the optimal operating point.  Once this is achieved, tracking 

involves keep the antenna on point, and tracking accuracy is critically affected by 

estimation accuracy near the origin.  Tracking accuracy focuses on maintaining robust 

performance in response to relatively small perturbations.  This distinction will be 
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important in the discussions of simulation and experimental results in Chapters 6 and 

7. 
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5 Neural Networks: An Efficient, Adaptive Approach 
 

The interpolated least squares algorithm is based on a constrained least-

squares method for antenna pointing and subreflector defocus estimation.  This 

algorithm is a reference against which other candidate algorithms may be compared.  

One of its most significant weaknesses is complexity in both time and memory.  

Another limitation is the lack of adaptability.  If there are significant long-term 

changes in the shape of the main reflector due to aging, seismic damage, or other 

factors, new raster scans must be gathered.  This is a time-consuming operation and 

while better and faster raster scan procedures exist [36] and have been used 

extensively in holography [39-41,43], we seek algorithms which can adapt to long-

term changes in the antenna in real-time or in near-real time.  Since time on an 

operational DSN antenna is always at a premium, we seek to avoid taking new raster 

scan sets more often than necessary. 

One approach to real-time learning, which also offers significant 

computational savings in both time and memory compared to the interpolated least 

squares algorithm, is that of neural networks [16,17].  Neural networks can be trained 

using the same raster-scan-based reference sets used by the interpolated least squares 

algorithm.  Radial basis function (RBF) networks may be trained using the OLS 

algorithm [5,17], which has proven very successful in practice in real-world 

experiments at DSS-14 [31] and in simulations [28-31], or multilayer feedforward 

networks can be trained using backpropagation or one of its many variants [16,17].  
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The later approach has worked well at DSS-13.  Both approaches will be considered 

here. 

5.1 The computational complexity advantage of neural 
networks 

 
Starting with a complexity analysis of the interpolated least-squares algorithm, 

assume a reference table of size .  Since the closest point is found by 

searching over  points, it is necessary to compute a squared Euclidean 

distance between two 12-dimensional vectors  times each time the algorithm 

is run.  Each Euclidean distance comparison would involve 23 additions (actually12 

subtractions and 11 additions) and 12 multiplications.  The algorithm’s complexity is 

proportional to , which is the size of the main table.  At DSS-13, the lookup 

table ranged from -4.0 to +4.0 millidegrees in both XEL and EL in 2.0-millidegree 

steps, resulting in 25-point (XEL,EL) planes in the table.  Since the defocus planes 

ranged from Z = -6.0-millimeters to Z=+6.0-millimeters in 2.0-millimeter steps, the 

table contained 175 lookup points.  Hence, a total of 175 Euclidean distance 

computations were needed for each step.  At DSS-14, where only pointing was 

treated, 49-point raster scans with both XEL and EL ranging from -3.0- to +3.0-

millimeters in 1.0-millidegree steps were used.  There were 49 Euclidean distance 

computations for each step. 

A multilayer feedforward neural network with a single hidden layer is 

computationally simpler.  Such a network, with 30 hidden layer neurons and 1 output 
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node, requires the multiplication of a 12-element input vector (written as a column 

vector) with a 30 x 12 element synaptic weight matrix.  This involves 360 

multiplications and 330 additions to produce 30 neural activation levels, each of 

which must be added to a bias weight for another 30 additions.  Each of these goes 

through a hyperbolic tangent function, requiring 30 calls to “tanh”.  Finally, these are 

multiplied by a 1 x 30 synaptic weight matrix resulting in one output, which is added 

to a bias weight.  This involves 30 multiplications and 30 additions.  If three networks 

are used, one for each of the coordinates in (XEL,EL,Z), we multiply the total number 

of operations by 3 to obtain the computational complexity of a neural network 

solution.  A different set of computations would be used if we were to run a single 

three-output network with 30 hidden layer neurons. 

Table 4: Complexity analysis of three single-output multilayer feedforward networks 

Phase Additions Multiplications Other Total 
     

Matrix multiplication 330 360 0 690 
     
Bias weight addition 30   30 
     
Subtotal 360 360 0 720 
     
Hyperbolic tangent   30 30 
     
Subtotal 360 360 30 750 
     
Matrix multiplication 29 30 0 59 
     
Bias weight addition 1   1 
     
Subtotal 390 390 30 810 
x 3 networks 1170 1170 90 2430   
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Table 5: Complexity analysis of a single three-output multilayer feedforward network 

Phase Additions Multiplications Other Total 
     

Matrix multiplication 330 360 0 690 
     
Bias weight addition 30   30 
     
Subtotal 360 360 0 720 
     
Hyperbolic tangent   30 30 
     
Subtotal 360 360 30 750 
     
Matrix multiplication 87 90 0 177 
     
Bias weight addition 3   3 
     
Totals 450 450 30 930 
 

Complexities of the multilayer feedforward network and the interpolated least 

squares algorithm at DSS-13 are compared below (note that three single-output 

networks were tested at DSS-13 as time constraints prevented testing of a single 

three-output network): 

Table 6: Complexity comparison for pointing and defocus estimation 

ALGORITHM ADDITIONS MULTIPLICATIONS OTHER TOTAL 
Interpolated 
least squares 

4025 2100 0 6125 

Three single-
output 
multilayer 
feedforward 
neural networks 

1170 1170 90 2430 

One three-
output 
multilayer 
feedforward 
neural network 
(tested only in 

450 450 30 930 
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simulations) 

 
The complexity of evaluating the hyperbolic tangent function is dependent on 

the instruction set architecture of the underlying processor.  The highly popular Intel 

x86 series of processors includes the hyperbolic tangent function built into the 

processor architecture, making evaluations relatively swift.  This can result in the 

multilayer feedforward network yielding run times two to six times faster than that of 

the interpolated least squares algorithm (depending on how many networks are used) 

and, as shown in Chapter 7, neural networks yield real-life estimation accuracy which 

is virtually indistinguishable from that of the interpolated least-squares algorithm. 

An example taken from DSS-14 also illustrates a similar advantage if RBF 

neural networks are used.  At DSS-14, all experiments focused on pointing only.  

Each lookup table, which had both XEL and EL ranging from -3.0 to +3.0-

millidegrees in 1.0-millidegree steps, contained 49 points.  The complexities of the 

interpolated least-squares and RBF neural network algorithms once again show an 

advantage with neural networks.  Here, two separate networks (one for XEL and one 

for EL) were used, with between four and eight radial basis units each.  A radial basis 

unit must perform the following computations: 

1. 23 additions and 12 multiplications (squared Euclidean distance) 

2. Multiplication by the spread factor . 

3. Exponentiation. 
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In each of the hidden layer basis units, there are 23 additions, 13 

multiplications, and 1 exponentiation for a total of 37 operations.  Assuming eight 

basis units per network, the hidden layers perform 296 operations total.  The linear 

summation involves 8 multiplications and 8 additions for each network.  The 

complexity summary is given below.  Note that the numbers for the RBF network are 

doubled since two networks were used: one for XEL and one for EL. 

Table 7: Complexity of two single-output RBF networks pointing-only case 

Phase Additions Multiplications Other Total 
     

Euclidean distances 184 96 0 280 
     
Spread factor mult  8  8 
     
Exponentiation   8 8 
     
Subtotal 184 104 8 296 
     
Matrix multiplication 7 8 0 15 
     
Bias weight addition 1   1 
     
Subtotal 192 112 8 312 
     
x 2 networks 384 224 16 624 
 
Table 8: Complexity of one dual-output RBF network pointing-only case 

Phase Additions Multiplications Other Total 
     

Euclidean distances 184 96 0 280 
     
Spread factor mult  8  8 
     
Exponentiation   8 8 
     
Subtotal 184 104 8 296 
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Matrix multiplication 14 16 0 30 
     
Bias weight addition 2   2 
     
Totals 200 120 8 328 
 
Table 9: RBF network complexity in the pointing only case 

ALGORITHM ADDITIONS MULTIPLICATIONS OTHER TOTAL 
Interpolated 
least squares 

1127 588 0 1715 

Two single-
output RBF 
neural networks 

384 224 16 624 

One dual-
output RBF 
neural network 

200 120 8 328 

 
As shown in Chapter 7, RBF networks yield accuracy that is virtually 

indistinguishable from that of the interpolated least squares algorithm at only about 

one-fifth to one-third the computational complexity on the pointing-only problem.  

However, RBF networks exhibit much higher complexity when both pointing and 

defocus are taken into account, while multilayer perceptron networks maintain their 

low computational complexity.  This is illustrated in Section 6.1.3, where RBF 

networks grow in complexity when we begin adding defocus to the estimation 

problem.  The growth of RBF network complexity could be attributable to the fact 

that RBF networks form local approximations while multilayer feedforward networks 

form global approximations [17]. 

The disadvantages above do not mitigate the interpolated least-squares 

algorithm’s value as a benchmark against which neural networks may be compared.  

The disadvantage of slow lookup table performance could be corrected by conversion 
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of the MATLAB code into C and compilation of the resulting C code.  Alternately, 

the entire implementation could be coded directly in a compiled language to yield 

even faster performance.  This algorithm remains a viable contender for 

implementation on DSN antennas in addition to being a benchmark for comparison.  

However, the superb performance, good adaptability, and significantly reduced 

computational complexity of neural networks make them very strong candidates as 

well. 

5.2 Two Types of Neural networks 
 

RBF networks are commonly used to construct highly localized 

approximations to a function [17], in contrast to the more global approximations 

constructed by multilayer feedforward networks.  Given that neural networks are used 

only to correct small pointing errors and small errors in subreflector position, the 

range of input is bounded.  Like multilayer feedforward networks, RBF networks 

offer adaptability to changes in the antenna over time.  By contrast, the lookup tables 

for the interpolated least squares algorithm would need to be re-generated if 

significant changes were to occur in the antenna over time.  This would require an 

entire new set of raster scans and would result in significant antenna downtime for 

data collection.  Furthermore, the OLS algorithm yields very fast training since the 

number of iterations of the main algorithm is bounded by the number of samples in 

the training set [5]. 

RBF networks are not without disadvantages.  If the input vector lies far 

outside the bounded input range of training, then all of the basis units will have output 
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near zero.  Although this does not typically occur as long as the antenna is operating 

well within the region of interest, this does indicate a weakness in the generalization 

power of this localized approximation.  Furthermore, selection of the basis unit width 

to be used in all basis units has a crucial impact on performance in real-world 

experiments, and some degree of human judgment or of brute-force simulation testing 

is sometimes necessary to find the appropriate range of basis widths. 

Multilayer feedforward networks offer computational simplicity and good 

adaptability compared to the interpolated least squares algorithm.  Their chief 

advantages over RBF networks are twofold.  First, performance is significantly less 

sensitive to network design parameters than that of RBF networks.  Although RBF 

networks exhibit sensitivity to radial basis width selection, multilayer feedforward 

networks have shown relatively little sensitivity to the number of hidden-layer 

neurons.  This robustness is an important feature since it is often difficult to 

determine, in the absence of formal criteria, how many hidden-layer units a multilayer 

perceptron should have or how wide the basis units of an RBF network should be.  

Additionally, since the multilayer feedforward network does a better job of global 

generalization than the RBF network does, it is more robust with respect to novel 

operating conditions. 
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6 Simulation Results 
 

This chapter focuses on two groups of simulation results.  The first group, 

discussed in Section 0, is a test of the interpolated least squares algorithm.  In 

Chapters 3 and 4, three major assumptions were made.  First, it was assumed that the 

relationship between the aperture plane and focal plane scalar fields can be 

approximated by a two-dimensional Fourier transform, which is true for ideal 

paraboloid-hyperboloid antennas [57] but is not strictly true for the antenna under 

consideration since this antenna is a shaped-reflector system [2,22,23,39].  Second, it 

was assumed that the horns can be approximated by point sampling.  The earlier 

analysis by Zohar and Vilnrotter was based upon the first two assumptions [57], and 

these assumptions played a key role in our analysis.  Accordingly, a group of 

simulations aimed at examining the effects of the first two assumptions on algorithm 

performance is discussed in Section 0, which also tests the quality of quadratic 

interpolation vis-à-vis other interpolation methods.  Third, the effects of subreflector 

movement along the z-axis were modeled entirely by the concept of an equivalent 

parabolic deformation of the main reflector, but higher order phase changes also exist 

to a lesser extent.  For this reason, real-world experiments provide an important 

“sanity-check” on subreflector position estimation and control.  The simulations 

described in Section 0 are based on a “test grid” methodology which will be described 

in that Section. 
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Section 6.2 is closely related to the real-world experimental results obtained in 

Chapter 7.  The methodology differs from that of Section 0 since we now focus not 

on RMS accuracy obtained over a test grid of points in (XEL,EL,P) space but on RMS 

accuracy obtained while simulating the acquisition and tracking process.  This is a 

much more relevant performance measure because it directly corresponds to real-

world SNR maximization.  While the test grid methodology measures the validity of 

the point sampling and Fourier transform assumptions made in earlier chapters, the 

simulation of acquisition and tracking operations is meant to provide a measure of 

how these algorithms would perform in the real-world.  Comparison of these results 

to the results of Chapter 7 yields insight into the accuracy of some of our modeling 

assumptions and of the overall physical optics simulation model. 

In the case of acquisition and tracking simulations, very good RMS tracking 

performance may be obtained even if performance over a test grid is seemingly poor.  

This stems from the fact that during acquisition, it is not essential to determine the 

exact error offset.  As long as the direction of the error offset is accurately determined 

and the magnitude of the estimate is not excessively large, it is possible for the 

algorithm to pull the antenna toward the optimal operating point in a series of steps.  

Then accuracy near the origin of the test grid proves crucial in obtaining accurate 

tracking and good SNR maintenance after acquisition.  A discussion of this was 

presented in Section 4.6. 
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6.1 RMS errors over a test grid 
 
The results of this section focus on estimation of (XEL,EL,P) over a test grid of points 

similar to that shown in Figure 4.1.  Due to the architecture of the physical optics 

simulation software, all focal errors were simulated by adjusting P, the parabolic 

deformation parameter defined in Section 4.3.2.  For this reason, although our 

discussion in Chapters 1 through 4 focused on the ordered tripled (XEL,EL,Z), we will 

focus on the ordered triple (XEL,EL,P) in this chapter.  Note that a +1.0-millimeter 

change in P is equivalent to a -2.63-millimeter change in Z, the z-axis position of the 

subreflector, for the case of the 70-meter antenna as shown in Section 4.3.2.  The 

parameter P is the defocus parameter of interest in all simulation results in the current 

Chapter. 

6.1.1 Characterizing the Interpolated Least squares Algorithm Part 
I: Testing the Physical Assumptions 

 
Simulations in this group were run under three broad sets of conditions.  In set 

1, a simulated focal plane field was generated in the following manner.  First, actual 

dish deformation data obtained via holography [22,37,40-42] were taken as being 

samples of the deformation function .  Equation (0.0.34) was then applied to 

obtain the effective aperture field .  The resulting aperture field was 

transformed, using a two-dimensional FFT with appropriate scaling, to obtain the 

focal plane field matrix.  The focal plane field matrix was sampled at seven points 
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corresponding to the seven horn centers based on the pointing offset being simulated 

to obtain AFCS voltage vectors.  Both reference tables for the interpolated least 

squares algorithm and simulated input vectors to test estimation accuracy were 

generated in this manner.  In set 2, the manner of sampling the focal plane field was 

changed from the point sampling method of set 1 to realistic horn sampling.  A 

comparison of these two sets yields one method of testing the point sampling 

assumption made in Chapter 3.  In set 3, the manner of focal plane field generation 

was changed from Fourier transforms to physical optics simulations. The comparison 

between Fourier-transform based results and physical optics simulation based results 

helps in judging the quality of the Fourier-transform based model as it relates to the 

given estimation problem. 

The reference table was a three-dimensional table similar to that illustrated in 

Figure 4.1.  Data points were taken at offsets spaced 1-millidegree apart in both XEL 

and EL ranging from -3.0-millidegrees to +3.0-millidegrees in both pointing 

directions.  Sampling was carried out at 1.0-millimeter intervals in P with parabolic 

deformation coordinate P ranging from -5.0-millimeters to +5.0-millimeters.  This is 

the equivalent of having the subreflector range from Z = +13.15-millimeters to Z = -

13.15 millimeters in -2.63-millimeter increments.  The test pattern, or test grid, is the 

set of points in (XEL,EL,P) spaced used for testing purposes.  In this case, it was also 

a three dimensional rectangular grid whose form is similar to that of Figure 4.1.  Test 

offsets ranged from -1.50- to +1.50-millidegrees in both XEL and EL in steps of 0.50-

millidegrees.  The parabolic deformation parameter P ranged from -2.5-millimeters to 
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+2.5-millimeters in 0.5-millimeter steps, which means that the equivalent subreflector 

position Z ranged from +6.575-millimeters to -6.575-millimeters in -1.315-millimeter 

steps.  We note that five of the parabolic deformation parameters: -2.0, -1.0, 0.0, 1.0, 

and 2.0-millimeters, were defocus parameters previously seen in the reference set.  

These are referred to as previously seen defocus parameters.  The six defocus 

parameters: -2.5, -1.5, -0.5, 0.5, 1.5, and 2.5-millimeters, were defocus parameters 

that were not included in the reference table, and these are referred to as previously 

unseen defocus parameters. 

Although quadratic interpolation was described in Section 4.4, cubic spline 

interpolation was also used in order to determine whether better interpolation 

accuracy could have been achieved.  Results labeled with “cubic” refer to those 

obtained with the interpolated least squares algorithm of Section 4.4 using cubic 

spline interpolation.  Results labeled with “quad” refer to those obtained with the 

quadratic interpolation method of that section.  Furthermore, the label “FP” means 

“Fourier point”.  It refers to Fourier-transform generated focal plane fields with point 

sampling, or set 1 data.  The label “FH” means “Fourier horn”.  It refers to Fourier-

transform generated focal plane fields with realistic horn sampling, or set 2 data.  The 

label “PO” means “physical optics”.  It refers to focal plane fields generated using a 

physical optics simulation, or set 3 data. 

RMS errors in pointing are illustrated from Figure 6.1 through Figure 6.3.  

RMS errors in estimating parabolic deformation, or P, are illustrated from Figure 6.4 

through Figure 6.6.  These figures illustrate several interesting points.  First, cubic 
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spline interpolation yields accuracy similar to that of simpler quadratic interpolation 

in estimating pointing errors, while quadratic interpolation appears to be more robust 

in the problem of defocus estimation (for the Fourier transform cases).  Second, in the 

problem of defocus estimation, RMS errors were lower for the most realistic case, 

corresponding to a physical optics simulation with horn sampling, than they were for 

the two Fourier transform cases even though the same parameters were applied to all 

three simulation data sets.  Third, RMS pointing estimation errors are slightly higher 

for the physical optics case than for the two Fourier transform cases.  While the 

results of this section would seemingly suggest that simple quadratic interpolation is 

slightly better than cubic spline interpolation in certain cases, cubic spline 

interpolation achieves its best accuracy near the origin of (XEL,EL,P)-space due to 

the presence of many neighboring points.  By contrast, cubic-spline interpolation also 

yields its weakest estimation performance as we approach the edges of the reference 

table in (XEL,EL,P)-space.  Quadratic interpolation will yield similar performance 

throughout most of (XEL,EL,P)-space since it always relies only on immediate 

neighbors.  This issue is mentioned again in Section 6.2 where cubic-spline 

interpolation yields better performance near the origin of (XEL,EL,P)-space than does 

quadratic interpolation. 
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Figure 6.1: RMS Pointing Errors in Millidegrees at 15-degrees Elevation 

 
Figure 6.2: RMS Pointing Errors in Millidegrees at 45-degrees Elevation 
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Figure 6.3: RMS Pointing Errors in Millidegrees at 75-degrees Elevation 

 
Figure 6.4: RMS Defocus Errors (P) in Millimeters at 15-degrees Elevation 
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Figure 6.5: RMS Defocus Errors (P) in Millimeters at 45-degrees Elevation 

 
Figure 6.6: RMS Defocus Errors (P) in Millimeters at 75-degrees Elevation 

 
Results at 40 dB-Hz are summarized in Table 10 and in Table 11.  From these 

tables, we note that pointing accuracy typically exceeds the DSN’s 0.8-millidegree 

requirement in all cases but one: 45 degrees elevation using a physical optics 

simulation.  Here, pointing accuracy lies within the 0.8-millidegree requirement with 

quadratic interpolation but is worse than it was for the Fourier-transform cases. 
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The differences in defocus estimation accuracy indicate that the interpolated 

least-squares algorithm is more robust in the realistic physical optics simulations than 

it was in the Fourier-transform based simulations.  This algorithm is, however, less 

robust in the physical optics pointing case, although its performance with physical 

optics simulations is close to its performance with Fourier-transform based 

simulations at 15 degrees and at 75 degrees.  Note that we provide focal errors in both 

P (parabolic deformation coordinate) and in Z (subreflector offset coordinate).  The 

two are related since a 1.0-millimeter movement in P is equivalent to a 2.63-

millimeter movement in Z in the opposite direction.  We have provided both since 

much of our discussion in Chapters 1 through 4 focused on the Z-coordinate, which is 

a controllable parameter (unlike P which refers to main reflector deformation). 

Table 10: RMS Pointing Errors in Millidegrees at 40 dB-Hz 

Antenna Elevation 
(deg) 

PO 
Cubic 

PO 
Quad 

FH 
Cubic 

FH 
Quad 

FP 
Cubic 

FP 
Quad 

15 0.3527 0.3065 0.2204 0.2229 0.1832 0.1903 
45 0.8264 0.7386 0.3488 0.3515 0.2824 0.2804 
75 0.3566 0.3000 0.3526 0.3278 0.4203 0.3421 
 
Table 11: RMS Defocus Errors (P) in Millimeters at 40 dB-Hz 

Antenna Elevation 
(deg) 

PO 
Cubic 

PO 
Quad 

FH 
Cubic 

FH 
Quad 

FP 
Cubic 

FP 
Quad 

15 0.0840 0.0867 0.1609 0.1685 0.2441 0.2036 
45 0.1313 0.1500 0.6396 0.2555 0.7878 0.2525 
75 0.1142 0.1376 0.8598 0.3971 2.0177 0.4632 
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Table 12: Equivalent RMS Subreflector Errors (Z) in Millimeters at 40 dB-Hz 

Antenna Elevation 
(deg) 

PO 
Cubic 

PO 
Quad 

FH Cubic FH 
Quad 

FP 
Cubic 

FP 
Quad 

15 0.2209 0.2280 0.4232 0.4432 0.6420 0.5355 
45 0.3453 0.3945 1.6821 0.6720 2.0719 0.6641 
75 0.3003 0.3619 2.2613 1.0444 5.3066 1.2182 
 

In summary, the underlying physical assumptions: point sampling and a 

Fourier transform approximation, are good but not perfect modeling assumptions.  

Estimation of focal errors can be performed with greater accuracy in the most 

realistic case involving physical optics and horn sampling.  Even if pointing 

performance at previously unknown defocus is relatively poor, good estimation of 

focal errors often makes it possible to return P to a point close to 0.0-millimeters.  

The pointing correction problem is easier to solve once this is achieved. 

Actual analysis of a shaped-reflector system very often involves running 

physical optics simulations or performing extensive physical optics analysis (just a 

few examples are in [2,23,37]), and the Fourier transform approximation used by 

Zohar and Vilnrotter [57] as well as in this work provides a more tractable but less 

accurate analytical model.  Nevertheless, simulation results for Fourier transform 

models are similar to those for physical optics models in the majority of cases except 

for the 75-degree defocus estimation case (and, to a lesser extent, the 45-degree 

defocus estimation case although quadratic interpolation still yielded good 

performance even here).  The similar performance of the interpolated least squares 

algorithm under Fourier transform and physical optics models suggests that the 
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Fourier transform model is still a good model for pointing analysis, but its behavior 

under severe deformation conditions at 75-degrees is a topic of future research. 

6.1.2 Interpolation Issues 
 

One possible criticism of our interpolated least squares estimator is that 

quadratic interpolation is suboptimal.  It could be argued that better interpolation 

methods would yield better results.  In this section, we compare three interpolation 

methods: sinc-function interpolation, cubic-spline interpolation, and quadratic 

interpolation. 

The following tables present pointing errors and defocus estimation errors at 

15, 45, and 75 degrees elevation with an SNR of 40 dB-Hz for the following three 

interpolation algorithms: sinc-function interpolation, cubic-spline interpolation, and 

quadratic interpolation. 

Table 13: Pointing estimation errors in millidegrees over all defocus levels 

Algorithm 15 degrees 45 degrees 75 degrees 
Sinc-interpolation 0.6527 0.8348 0.6502 
Cubic-spline interpolation 0.3527 0.8264 0.3566 
Quadratic interpolation 0.3065 0.7386 0.3000 
 
 
Table 14: Pointing estimation errors in millidegrees with previously seen defocus 

Algorithm 15 degrees 45 degrees 75 degrees 
Sinc-interpolation 0.6072 0.6281 0.6014 
Cubic-spline interpolation 0.2290 0.3172 0.2875 
Quadratic interpolation 0.1633 0.2570 0.2177 
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Table 15: Pointing estimation errors in millidegrees with previously unseen defocus 

Algorithm 15 degrees 45 degrees 75 degrees 
Sinc-interpolation 0.6887 0.9748 0.6886 
Cubic-spline interpolation 0.4298 1.0816 0.4057 
Quadratic interpolation 0.3876 0.9729 0.3546 
 

From Table 14 it is clear that for previously seen defocus levels pointing 

accuracy lies very much within the DSN 0.8-millidegree requirement.  For previously 

unseen defocus, however, Table 15 shows us that the pointing accuracy requirement 

is not met at 45 degrees although it is certainly met at 15 degrees and at 75 degrees.  

Referring back to Table 10 where the DSN’s 0.8-millidegree requirement was 

violated at 45 degrees with cubic spline interpolation, we now understand the 

problem: the interpolated least squares estimator does not always perform well with 

previously unseen defocus values. 

Table 16: Defocus estimation errors (P)  in millimeters over all defocus levels 

Algorithm 15 degrees 45 degrees 75 degrees 
Sinc-interpolation 0.2052 0.2015 0.1734 
Cubic-spline interpolation 0.0840 0.1313 0.1142 
Quadratic interpolation 0.0867 0.1500 0.1376 
 
Table 17: Defocus estimation errors (P) in millimeters with previously seen defocus 

Algorithm 15 degrees 45 degrees 75 degrees 
Sinc-interpolation 0.1927 0.1905 0.1739 
Cubic-spline interpolation 0.0147 0.0209 0.0232 
Quadratic interpolation 0.0890 0.1249 0.1264 
 
Table 18: Defocus estimation errors (P) in millimeters with previously unseen defocus 

Algorithm 15 degrees 45 degrees 75 degrees 
Sinc-interpolation 0.2152 0.2104 0.1730 
Cubic-spline interpolation 0.1130 0.1768 0.1532 
Quadratic interpolation 0.0848 0.1682 0.1463 
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Table 19: Equivalent subreflector errors (Z) in millimeters over all defocus levels 

Algorithm 15 degrees 45 degrees 75 degrees 
Sinc-interpolation 0.5397 0.5299 0.4560 
Cubic-spline interpolation 0.2209 0.3453 0.3003 
Quadratic interpolation 0.2280 0.3945 0.3619 
 
Table 20: Equivalent subreflector errors (Z) in millimeters with previously seen defocus 

Algorithm 15 degrees 45 degrees 75 degrees 
Sinc-interpolation 0.5068 0.5010 0.4574 
Cubic-spline interpolation 0.0387 0.0550 0.0610 
Quadratic interpolation 0.2341 0.3285 0.3324 
 
Table 21: Equivalent subreflector errors (Z) in millimeters with previously unseen defocus 

Algorithm 15 degrees 45 degrees 75 degrees 
Sinc-interpolation 0.5660 0.5534 0.4550 
Cubic-spline interpolation 0.2972 0.4650 0.4029 
Quadratic interpolation 0.2230 0.4424 0.3848 
 

In the pointing case the quadratic interpolated algorithm’s performance is 

almost identical to that of the cubic spline interpolated version, but the sinc-function 

interpolated version yields the worst performance.  The main problem observed in the 

pointing and defocus cases is this: there is a systematic bias in the sinc-interpolated 

version of the algorithm.  The sinc-function case deserves further examination as it is 

very important: for an infinite lookup table with Nyquist spacing, sinc-function 

interpolation is optimal [4,56]. 

Consider the use of sinc-function interpolation in the pointing-only case 

without defocus.  If a modified table, which measures from -8.0- to +8.0-millidegrees 

in both XEL and EL in 1.0-millimeter steps, is used, we obtain the “extended table” 

results.  The “standard table” results are obtained using a table from -3.0- to +3.0-

millidegrees in both XEL and EL.  A comparison is shown in the table below. 
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Table 22: Comparison of pointing estimation quality in the no-defocus case with two lookup 
table sizes at 45 degrees using sinc-function interpolation 

Table size XEL (mean/std) EL (mean/std) Total (rms) 
Extended (17x17) 0.4380/0.1267 0.4472/0.1349 0.6527 
Standard (7x7) 0.4015/0.2007 0.4004/0.2054 0.6356 
 

The use of the extended lookup table results in a reduction in random error 

(standard deviation) as expected, but there is always a systematic error of over 0.4-

millidegrees.  Although RMS error performance lies within DSN requirements, we 

note that it can be improved by calculating and subtracting out the systematic (mean) 

error.  In that case, the sinc-function interpolation method would yield errors 

comparable to those of the other two algorithms.  The exact cause of this error is not 

fully understood, however, and we regard this as a topic for future research.  We note, 

from Section 4.2, that the function  defined by equation (0.0.64) has 

unknown frequency content.  This is one reason why sinc-function interpolation may 

not yield better performance than the cubic-spline and quadratic interpolation 

methods.  The true Nyquist interval may be smaller, or there may be tail effects that 

are not accounted for in the use of sinc-functions since sinc-function based 

reconstruction is based on the ideal case of an infinite lookup table.  The reduction in 

random pointing error with a larger lookup table in Table 22 suggests that lookup 

table size must be increased to compensate for this “tail effect. 

A practical limitation prevents the gathering of very large lookup tables.  If 

the table is made too long along the XEL and EL dimensions, we will reach a point 

where much of the power of the focal plane field will no longer be in the horns.  At 

this point, received SNR will be low, and there will be considerable errors in any 
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lookup table points at the edges.  This will cause degradation of lookup table 

accuracy and a loss of performance.  Sinc-function interpolation will not be 

considered further in this dissertation. 

 
Figure 6.7: RMS Pointing Errors with Previously Seen Defocus at 15-degrees Elevation 

 
Figure 6.8: RMS Pointing Errors with Previously Seen Defocus at 45-degrees Elevation 
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Figure 6.9: RMS Pointing Errors with Previously Seen Defocus at 75-degrees Elevation 

 
Figure 6.10: RMS Defocus Estimation (P) Errors with Previously Seen Defocus at 15-degrees 
Elevation 
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Figure 6.11: RMS Defocus Estimation Errors (P) with Previously Seen Defocus at 45-degrees 
Elevation 

 
Figure 6.12: RMS Defocus Estimation Errors (P) with Previously Seen Defocus at 75-degrees 
Elevation 
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Figure 6.13: RMS Pointing Errors with Previously Unseen Defocus at 15-degrees Elevation 

 
Figure 6.14: RMS Pointing Errors with Previously Unseen Defocus at 45-degrees Elevation 
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Figure 6.15: RMS Pointing Errors with Previously Unseen Defocus at 75-degrees Elevation 

 
Figure 6.16: RMS Defocus Estimation Errors (P) with Previously Unseen Defocus at 15-degrees 
Elevation 
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Figure 6.17: RMS Defocus Estimation Errors (P) with Previously Unseen Defocus at 45-degrees 
Elevation 

 
Figure 6.18: RMS Defocus Estimation Errors (P) with Previously Unseen Defocus at 75-degrees 
Elevation 

 
In summary, the quadratic interpolated least squares algorithm yields 

estimation accuracy over a test grid comparable to that of the cubic-spline 

interpolated version and superior to that of the sinc-interpolated version.  This 

algorithm was used as the benchmark against which neural networks were compared 

during the course of experiments detailed in Chapter 7. The cubic-spline interpolated 
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least squares algorithm is included in acquisition and tracking simulations (Section 

6.2) but, due to time constraints, was not tested in real-world experiments (Chapter 

7). 

6.1.3 A comparison between the quadratic interpolated least 
squares algorithm and neural networks 

 
A set of neural networks had been trained using reference tables based on 

physical optics simulations with horn sampling.  Both multilayer feedforward and 

RBF neural networks were trained under these conditions, and the results are 

presented below.  We note that these results were taken using neural networks that 

had not been adapted in response to data gathered during real-time operation, and 

adaptive tracking results are deferred until Section 6.2.  For this reason, the results 

presented here do not illustrate a primary advantage of neural networks: adaptability.  

Nevertheless, these results do provide an indication of how a neural network’s 

performance compares to that of the interpolated least squares algorithms when 

neural networks are trained using the same data used in the interpolated least squares 

lookup tables. 

In all simulations discussed in this Chapter, the following neural network 

designs were used.  Multilayer feedforward networks were designed with 30 hidden 

layer neurons and three outputs for XEL, EL, and P.  RBF networks were generated 

using the OLS algorithm [5].  All RBF networks had three outputs, as did the 

multilayer feedforward networks.  We note that while RBF networks yielded relative 

computational simplicity in the pointing-only case (see Section 5.1 and [31]), 
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complexity rises when defocus estimation is added to the problem, possibly due to the 

fact that these networks generate highly localized approximations to the desired 

pointing and defocus estimator [17]. 

Table 23: RBF Network Design Parameters 

Elevation (deg) Number of Basis Units Basis Unit Spread 
15 184 1.0 
45 258 1.0 
75 255 1.0 
 

Although a brief complexity analysis had been given in Section 5.1, we 

believe it is useful to present actual running times in MATLAB.  These running times 

may not be representative of actual performance with compiled language code, but 

they do provide a rough indication of one key neural network advantage: low 

computational complexity. 

Before we give running times, we state the conditions under which the 

simulation was run. 

1. The running times are the total CPU time spent computing estimates over the 

entire test grid, not just at one point of the test grid. 

2. The simulated antenna pointing elevation was 75 degrees. 

3. The table lookup for the interpolated least squares algorithms was performed 

just once.  After this lookup was performed, each of the three interpolation 

methods was run, yielding three sets of results.  

4. In addition, both a multilayer feedforward network and a RBF network were 

run. 
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5. The first running time given for the table lookup is required for all three 

versions of the interpolated least squares algorithm regardless of interpolation 

method.  In all three cases, it is necessary to compare the input vector to each 

of the reference vectors. 

6. So the interpolation running time is in addition to the table lookup running 

time. 

 
The run times are presented below.  Here, the terms “sinc”, “cubic”, and 

“quad” refer to the three versions of the interpolated least squares algorithm discussed 

previously.  The terms “FF” and “RBF” refers to multilayer feedforward networks 

and to RBF networks, respectively.  All times presented in Table 24 are total 

simulation times over the entire test grid.  From this table, we see that the table 

lookup step is the step that causes the greatest performance loss for two of the three 

interpolated least squares algorithms.  All times were found using the MATLAB 

profiler in MATLAB 6.5. 

Table 24: Running times of estimation algorithms 

Algorithm Table Lookup Time 
(sec) 

Interpolation Time 
(sec) 

Total Time 
(sec) 

Sinc 145.308 1313.957 1459.265 
Cubic 145.308 33.342 178.65 
Quad 145.308 14.905 160.213 
FF N/A N/A 29.210 
RBF N/A N/A 32.459 
 

An unexpected result is the fast running time of the RBF network.  This 

network contains 255 hidden layer units, implying a total of 255 Euclidean distance 

calculations in addition to 255 exponentiations.  One expects this complexity to be 
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about one-half of the complexity of 539 Euclidean distance calculations 

corresponding to the lookup table’s 539 entries.  There is a possibility this is an 

implementation-dependent issue, and readers are cautioned that alternate 

implementations of the Euclidean distance calculations in the table may yield better 

interpolated least squares performance. However, this implementation had been 

heavily optimized using the MATLAB profiler to eliminate areas of inefficiency.  

Nevertheless, interpolation times rival the total running times of neural networks for 

both sinc-interpolated and cubic-spline interpolated versions of the interpolated least 

squares algorithm, with only quadratic interpolation time being faster than neural 

network total running times. 

Even more interesting is the fact that the RBF network, despite having a much 

larger number of hidden layer units than the multilayer feedforward network, has a 

running time that is only 11.1% longer than that of the multilayer feedforward 

network.  Based upon calculations of the type performed in Chapter 5, one expects 

the RBF network to have a much longer running time given the large number of 

hidden layer units.  Each of the 30 hidden layer units in the multilayer feedforward 

network needs to compute both a vector dot product and a hyperbolic tangent, so the 

complexity of each hidden layer unit of a multilayer feedforward network is expected 

to be on par with that of a radial basis unit.  We believe this effect is implementation 

dependent, and readers are cautioned that MATLAB-based performance profiles may 

not reflect performance achieved in the real-world using compiled code or highly 

optimized assembly language implementations.  The results still agree qualitatively 
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with the claim made in Chapter 5 that neural networks offers notably lower running 

times in real-world implementations. 

The neural networks’ accuracy at 40 dB-Hz is compared to that of the 

quadratic interpolated least squares algorithm in both Table 25 and Table 26.  At this 

high SNR, neural networks typically outperform the quadratic interpolated least 

squares algorithm in most cases except for pointing at 45 degrees antenna elevation.  

However, even in this case, multilayer feedforward networks still outperform 

interpolated least squares algorithms although RBF networks do not. 

Table 25: Comparison of RMS Pointing Errors in Millidegrees at 40 dB-Hz 

Elevation (deg) Quadratic 
Interpolated Least 
squares 
(mdeg) 

Multilayer 
Feedforward 
Neural Network 
(mdeg) 

RBF Neural 
Network (mdeg) 

15 0.3065 0.2206 0.1974 
45 0.7386 0.5431 1.0765 
75 0.3000 0.1731 0.1798 
 
Table 26: Comparison of RMS Defocus Estimation Errors (P) in Millimeters at 40 dB-Hz 

Elevation (deg) Quadratic 
Interpolated Least 
squares (mm) 

Multilayer 
Feedforward 
Neural Network 
(mm) 

RBF Neural 
Network (mm) 

15 0.0867 0.0522 0.0274 
45 0.1500 0.1536 0.0626 
75 0.1376 0.0941 0.1112 
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Table 27: Comparison of RMS Equivalent Subreflector Position Errors (Z) in Millimeters at 40 
dB-Hz 

Elevation (deg) Quadratic 
Interpolated Least 
squares (mm) 

Multilayer 
Feedforward 
Neural Network 
(mm) 

RBF Neural 
Network (mm) 

15 0.2280 0.1373 0.0721 
45 0.3945 0.4040 0.1646 
75 0.3619 0.2475 0.2925 
 

Although the above tables show that neural networks typically have an 

advantage over interpolated least squares algorithms at high SNR in terms of 

estimation accuracy, it is also true that the interpolated least squares algorithms yield 

an advantage in performance at lower SNR which is illustrated from Figure 6.19 

through Figure 6.24. 

 
Figure 6.19: RMS Pointing Errors at 15-degrees Elevation 
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Figure 6.20: RMS Pointing Errors at 45-degrees Elevation 

 
Figure 6.21: RMS Pointing Errors at 75-degrees Elevation 
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Figure 6.22: RMS Defocus Estimation (P) Errors at 15-degrees Elevation 

 
Figure 6.23: RMS Defocus Estimation (P) Errors at 45-degrees Elevation 
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Figure 6.24: RMS Defocus Estimation (P) Errors at 75-degrees Elevation 

 
The figures above clearly show that the interpolated least squares algorithm 

often has an advantage under noisier operating conditions.  We also note that the 

Universal Approximation Theorem states that multilayer feedforward networks can 

approximate any smooth, continuous, bounded function over a bounded domain with 

arbitrarily high accuracy.  This implies that there exists a multilayer feedforward 

network of unknown design (the Universal Approximation Theorem is strictly an 

existence theorem) that can achieve better estimation accuracy than that of the 

interpolated least squares algorithm, and this is reflected in the superior high SNR 

performance of the multilayer feedforward network. 

6.2 Acquisition and Tracking Simulations 
 

Acquisition is relatively robust with respect to estimation errors away from 

the origin, but tracking is sensitive to errors in estimation near the origin.  This set of 

simulations, based upon the experimental methods used in obtaining the real-world 
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results of Chapter 7, is based on simulated acquisition and tracking operations.  While 

the results of Section 0 are important if one uses a “single-shot” method of correcting 

pointing and focus, the discussion of Section 4.6 gives us reasons to apply only partial 

corrections, effectively computing a weighted time average that is more robust with 

respect to estimation errors.  All acquisition and tracking simulation results presented 

in this section are based on focal plane fields generated using physical optics 

simulation code, and all sampling of the focal plane field is performed using horn 

functions as opposed to point sampling.  Both cubic-spline and quadratic interpolated 

versions of the interpolated least squares algorithm were tested alongside RBF and 

multilayer feedforward neural networks. 

In each simulation, an offset was applied to the antenna in (XEL,EL,P)-space.  

A simple example of this procedure was illustrated in Section 4.6.  On each iteration, 

the following steps were performed: 

1. An algorithm (interpolated least squares or neural network) was used to 

estimate the offset. 

2. The estimate was multiplied by a pointing gain variable , which was 0.7 in 

this case.  The result was then subtracted from the antenna’s current absolute 

offset. 

3. Either return to step 1 or stop if the target number of iterations has been 

reached. 

 
Eight initial offsets were used at each of three antenna pointing elevations.  

Each of the following offsets is in units of millidegrees for pointing and millimeters 
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for parabolic deformation P.  Note that the 2.5-millimeter offsets in P translate to 

6.58-millimeter offsets in subreflector position coordinate Z. 

1. (-3,-3,-2.5) 

2. (-3,-3,+2.5) 

3. (-3,+3,-2.5) 

4. (-3,+3,+2.5) 

5. (+3,-3,-2.5) 

6. (+3,-3,+2.5) 

7. (+3,+3,-2.5) 

8. (+3,+3,+2.5) 

 
Here in Section 6.2 only, we did not make (0,0,0) the point of maximum SNR 

as is done in all other parts of this dissertation.  Instead, the reference tables had their 

(0,0,0) point slightly away from the true maximum, and all simulations were 

normalized so that (0,0,0) would be the 40 dB-Hz point.  Hence, the interpolated least 

squares algorithms would tend to track toward this point even though it is slightly 

suboptimal.  We wish to examine the behavior of both neural networks and the 

interpolated least squares algorithm under realistic conditions, and we also wish to 

illustrate the main advantage of neural networks: adaptability.  The ability to learn 

from real-time experience without having to gather an entire new raster scan is a key 

advantage of neural networks.  The retraining procedure used for neural networks is 

as follows: 
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1. The neural network is permitted to perform acquisition and tracking 

operations starting from each of the eight offsets listed above.  In each case, 

30 data points are gathered for a total of 240 data points. 

2. The 240 data points are organized according to SNR achieved at each point, 

and the point with the highest SNR is designated as the new (0,0,0) point.  

Then all  tracking data are re-centered relative to this point. 

3. The network undergoes 100 epochs of backpropagation training using the 

real-time training set.  Here, an “epoch” is defined to be the presentation of 

each of the 240 training points, in random order, to the network exactly once 

during the backpropagation process.  In the case of RBF networks, only the 

linear combiner is retrained (using LMS) [13,16-18,31]. 

4. The retrained network is again allowed to acquire and track from the same 

eight offsets, and the procedure may be repeated as often as desired 

 
Note that although many iterations may be used in retraining, these can be 

multitasked alongside real-time tracking.  By creating an identical copy of the 

tracking network for training purposes, we can be retraining one copy while 

performing acquisition and tracking operations with the other.  This is more efficient 

than gathering more raster scan data, which is a time-consuming process.  

Furthermore, tracking with a neural network while retraining another copy of that 

network is not a difficult task for most modern computers. 



 115 

6.2.1 Example at 75-degrees Antenna Elevation 
 

This example highlights the learning capabilities of neural networks.  We 

recall that at 75 degrees, severe main reflector deformation causes major focal plane 

field distortion as shown in Figure 1.6.  As a result, the (0,0,0) point, which 

corresponds to the point of maximum received SNR, will be shifted in pointing and 

defocus space.  Although we used the original (0,0,0) point for the undistorted case as 

the reference point in our interpolated least squares reference set, which was also used 

as the training set for the neural networks, this is not the point of maximum SNR.  

The challenge here is this: the neural network must learn the true (0,0,0) point by 

retraining with data gathered during real-time acquisition and tracking operations. 

For comparison purposes, we first present the performance of the interpolated 

least squares algorithm using cubic spline interpolation.  The SNR at (0,0,0) was 40 

dB-Hz, and the starting offset was (3,3,2.5) in -space (in millidegrees 

and millimeters).  The performance of the interpolated least squares algorithm using 

cubic spline interpolation is shown from Figure 6.25 through Figure 6.27.  The 

performance of a multilayer feedforward network prior to retraining is shown from 

Figure 6.28 through Figure 6.30.  The performance of the same multilayer 

feedforward network after retraining is illustrated from Figure 6.31 through Figure 

6.33.  In all cases, 30 iterations were used for acquisition and tracking.  The first 10 

iterations are considered to be the acquisition stage, while the last 20 iterations are 

regarded as the tracking stage. 
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Figure 6.25: Acquisition and Tracking in Pointing Space with Cubic Spline Interpolated Least 
squares Algorithm 

 

 
Figure 6.26: Defocus P in millimeters 
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Figure 6.27: SNR as a Function of Time with Cubic Spline Interpolated Least squares Algorithm 

 

 
Figure 6.28: Acquisition and Tracking in Pointing Space with a Multilayer Feedforward 
Network Prior to Retraining 
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Figure 6.29: Defocus Correction with a Multilayer Feedforward Network Prior to Retraining 

 

 
Figure 6.30: SNR as a Function of Time with a Multilayer Feedforward Network Prior to 
Retraining 
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Figure 6.31: Acquisition and Tracking in Pointing Space with a Multilayer Feedforward 
Network after Two Retraining Sessions 

  

 
Figure 6.32: Defocus Correction with a Multilayer Feedforward Network after Two Retraining 
Sessions 
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Figure 6.33: SNR as a Function of Time with a Multilayer Feedforward Network after Two 
Retraining Sessions 

 
In this example, the neural network’s adaptability proves to be a key 

advantage, resulting in a gain in SNR in excess of 2.6 dB-Hz versus the interpolated 

least squares algorithm.  The neural network’s adaptability during the course of 

operation is one of its key advantages over the interpolated least squares algorithm. 

6.2.2 Statistical Summary of Acquisition and Tracking Simulations 
 
The true points of maximum SNR at each of the three test elevations are: 

1. 15-degrees: (0.50,-0.55,0.20) 

2. 45-degrees: (0.20,-0.60,0.70) 

3. 75-degrees: (-0.05,1.50,1.15) 

 
The above numbers are accurate to within 0.05-millidegrees in XEL/EL and to 

within 0.05-millimeters in P.  Using these offsets, we can calculate mean, standard 

deviation, and total RMS errors during the tracking process.  All tracking tests were 
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performed with the point (0,0,0) set to 40 dB-Hz.  In each case, 30 points were taken.  

In each case, the last 20 points were used to compute statistical errors in steady-state.  

There is one important note regarding the 75-degree case: due to the severely 

distorted nature of the focal plane field, it is sometimes possible to find local SNR 

maxima that are nearly optimal at points away from the global maximum point.  This 

phenomenon will be discussed later in this section. 

Table 28 below shows SNR information gathered during the tracking phases, 

and the true peak SNR is shown in the far right column.  It is observed that both 

multilayer feedforward networks and RBF networks come close to achieving the true 

SNR peak, often within 0.2 dB-Hz of the peak after retraining at 15 degrees and at 45 

degrees .  The cubic spline interpolated least squares algorithm achieves similar 

performance, but the quadratic interpolated version exhibits greater errors near the 

optimal point and thus fails to achieve the peak.  Although the results of Section 0 

indicate that cubic-spline interpolation yields results comparable to quadratic 

interpolation over a test grid, we see from tracking results that cubic-spline 

interpolation is the superior method near the origin.  At 75 degrees elevation, 

however, only multilayer feedforward networks with retraining based on real-time 

data come close to the SNR peak.  RBF networks with retraining outperform both 

interpolated least squares algorithms, but they still fail to achieve the performance of 

multilayer feedforward networks. 
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Table 28: Steady-State SNR in dB-Hz 

     15-DEG     
 Cubic Quad FF 0 FF 1 FF 2 RBF 0 RBF 1 RBF 2 TRUE 

Mean 40.00 38.71 39.98 40.07 40.08 39.99 40.08 40.12 40.16 
Std 0.05 0.36 0.09 0.03 0.02 0.06 0.04 0.03  
Low 39.95 38.36 39.88 40.04 40.06 39.94 40.05 40.09  
High 40.04 39.07 40.07 40.10 40.09 40.05 40.12 40.15  

          
     45-DEG     
 Cubic Quad FF 0 FF 1 FF 2 RBF 0 RBF 1 RBF 2  

Mean 39.92 35.39 40.22 40.64 40.76 39.87 40.16 40.48 40.85 
Std 0.22 0.17 0.27 0.05 0.04 0.22 0.35 0.25  
Low 39.70 35.21 39.95 40.59 40.72 39.64 39.80 40.23  
High 40.14 35.56 40.48 40.69 40.80 40.09 40.51 40.73  

          
     75-DEG     
 Cubic Quad FF 0 FF 1 FF 2 RBF 0 RBF 1 RBF 2  

Mean 39.97 39.55 39.96 42.34 42.35 39.99 40.30 41.26 42.87 
Std 0.23 0.59 0.13 0.03 0.03 0.10 0.40 0.07  
Low 39.73 38.96 39.83 42.31 42.33 39.90 39.89 41.19  
High 40.20 40.14 40.09 42.37 42.38 40.09 40.70 41.32  
 

SNR performance is illustrated graphically from Figure 6.34 through Figure 

6.36.  Here, the neural networks are observed to have a minor performance 

advantage, due to adaptability, over both versions of interpolated least squares at 15 

degrees and at 45 degrees.  This advantage becomes significant at 75 degrees 

elevation as shown in Figure 6.36. 



 123 

 
Figure 6.34: SNR Comparison during Tracking at 15 Degrees Elevation 
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Figure 6.35: SNR Comparison during Tracking at 45 Degrees Elevation 
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Figure 6.36: SNR Comparison during Tracking at 75 Degrees Elevation 

 
At this stage, it could be argued that the advantage of adaptability in neural 

networks is a moot advantage.  One could argue that the interpolated least squares 

algorithm could be improved by adding a bias to its output based upon previous 

experience.  This would lead to a change in the nominal center point, the point of 

highest SNR.  Although such a bias scheme can work, it introduces another weakness.  

Here, we are assigning new ordered triples to each of the points in the lookup table 

with a bias value added to each of the three coordinates.  While this can bias the 

system toward the true optimal point found during real-time tracking, it also means 

that we are operating closer to the edges of the lookup table.  Operating near the edge 

can result in reduced interpolation accuracy, especially in the case of cubic spline 
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interpolation.  It is desirable instead to have the system learn the region surrounding 

the true optimal point, and neural networks offer such a capability. 

Pointing and defocus correction capability are both shown in Table 29 and 

Table 30.  Multilayer feedforward networks do very well at 15-degrees and at 45-

degrees.  However, at 75-degrees, there is a large amount of systematic error and 

relatively little random error.  This is especially true of defocus.  Here, the mean 

(systematic) errors exceed 1.0-millimeter while the error standard deviations are low.  

Although multilayer feedforward networks achieve high SNR performance they still 

fall short of the true peak.  Since the systematic error in defocus is so large, it is 

reasonable to say that this error is due to the presence of a local maximum that is 

close, in terms of SNR in dB-Hz, to the true maximum.  The result is that the system 

has taken a strong (almost optimal) local peak to be the global peak and the neural 

network has been retrained using this spurious peak as its (0,0,0) location. 

Table 29: Pointing Errors in Millidegrees during Steady-State Tracking 

15-DEG Cubic Quad FF 0 FF 1 FF 2 RBF 0 RBF 1 RBF 2 
Mean XEL -0.4908 -0.6265 -0.4849 -0.2620 -0.2368 -0.5009 -0.3262 -0.1242 
Mean EL 0.5379 0.5684 0.4863 0.1143 -0.0449 0.5128 0.1071 0.1670 
Std Dev 0.0599 0.1135 0.1685 0.1839 0.1864 0.1815 0.1909 0.1868 
Total RMS 0.7306 0.8535 0.7071 0.3399 0.3047 0.7395 0.3928 0.2797 

45-DEG         
Mean XEL -0.2599 -0.1132 -0.0132 -0.0218 0.0049 -0.1674 -0.1169 0.0320 
Mean EL 0.5738 0.5363 0.4735 0.2693 0.3910 0.4307 0.7701 -0.2981 
Std Dev 0.2176 0.0883 0.2778 0.3177 0.2969 0.9335 0.8627 1.0091 
Total RMS 0.6664 0.5551 0.5491 0.4170 0.4910 1.0416 1.1623 1.0527 

75-DEG         
Mean XEL 0.0446 0.0078 0.0376 0.8875 0.7927 0.0558 0.1253 0.1654 
Mean EL -1.4602 -1.5674 -1.5549 -0.6742 -0.5653 -1.5041 -1.3527 -1.2285 
Std Dev 0.0882 0.2111 0.0667 0.0609 0.0610 0.0923 0.0956 0.0869 
Total RMS 1.4635 1.5816 1.5567 1.1162 0.9755 1.5080 1.3618 1.2426 
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Table 30: Parabolic Deformation in Millimeters (P) 

15-DEG Cubic Quad FF 0 FF 1 FF 2 RBF 0 RBF 1 RBF 2 
Mean -0.2600 -1.4785 -0.6001 0.1451 0.5580 -0.5808 0.2924 0.3790 
Std 0.3813 0.2403 0.0673 0.1796 0.0501 0.0559 0.0743 0.0891 
Total RMS 0.4615 1.4979 0.6039 0.2309 0.5603 0.5835 0.3017 0.3894 

         
45-DEG Cubic Quad FF 0 FF 1 FF 2 RBF 0 RBF 1 RBF 2 

Mean -0.8270 -2.6412 -0.2530 0.0451 0.3222 -0.9440 -0.1792 0.0483 
Std 0.3409 0.0455 0.1460 0.0858 0.0755 0.1323 0.0834 0.0610 
Total RMS 0.8945 2.6416 0.2921 0.0969 0.3310 0.9532 0.1977 0.0778 

         
75-DEG Cubic Quad FF 0 FF 1 FF 2 RBF 0 RBF 1 RBF 2 

Mean -1.2959 -1.6116 -1.1756 1.3957 1.6037 -1.4638 -0.7526 -0.4416 
Std 0.3015 0.0846 0.3534 0.0313 0.0369 0.1044 0.1432 0.0394 
Total RMS 1.3305 1.6139 1.2275 1.3960 1.6042 1.4676 0.7661 0.4434 
 
Table 30: Equivalent subreflector position in Millimeters (Z) 

15-DEG Cubic Quad FF 0 FF 1 FF 2 RBF 0 RBF 1 RBF 2 
Mean 0.6838 3.8885 1.5783 -0.3816 -1.4675 1.5275 -0.7690 -0.9968 
Std 1.0028 0.6320 0.1770 0.4723 0.1318 0.1470 0.1954 0.2343 
Total RMS 1.2137 3.9395 1.5883 0.6073 1.4736 1.5346 0.7935 1.0241 

         
45-DEG Cubic Quad FF 0 FF 1 FF 2 RBF 0 RBF 1 RBF 2 

Mean 2.1750 6.9464 0.6654 -0.1186 -0.8474 2.4827 0.4713 -0.1270 
Std 0.8966 0.1197 0.3840 0.2257 0.1986 0.3479 0.2193 0.1604 
Total RMS 2.3525 6.9474 0.7682 0.2548 0.8705 2.5069 0.5200 0.2046 

         
75-DEG Cubic Quad FF 0 FF 1 FF 2 RBF 0 RBF 1 RBF 2 

Mean 3.4082 4.2385 3.0918 -3.6707 -4.2177 3.8498 1.9793 1.1614 
Std 0.7929 0.2225 0.9294 0.0823 0.0970 0.2746 0.3766 0.1036 
Total RMS 3.4992 4.2446 3.2283 3.6715 4.2190 3.8598 2.0148 1.1661 
 

In summary, the adaptability of neural networks permits them to achieve 

nearly optimal SNR performance even in the presence of a systematic error in the 

training set.  A neural network based system has the ability to use data acquired 

during real-time operation in order to retrain itself, and this capability enables higher 

SNR operation to be achieved.  The system in present form is not perfect: at 75-

degrees it retrained itself to aim for a local peak that was nearly as strong as the 



 128 

global peak, resulting in high systematic errors.  Nevertheless, performance is still 

better than that of the interpolated least squares algorithms in the case of a flawed 

reference or training set. 

6.2.3 The case of excessively large spacing in P in the training set 
 

To illustrate the adaptability of multilayer feedforward networks under 

difficult conditions, we have created a training set with 2.0-millimeter spacing in the 

parabolic deformation parameter P (i.e. 1.0-millimeter spacing in ).  This causes 

severe performance degradation with the interpolated least squares algorithm.  

Although a multilayer feedforward network trained on such a flawed set initially fares 

no better, retraining based on real-time data is seen to yield improved performance.  

This is another illustration of the usefulness of adaptability.  It also illustrates the 

difficulties encountered by the cubic-spline interpolated least squares algorithm if 

excessively large table spacings are used. 

This simulation example is based on an antenna pointing elevation of 45 

degrees.  Assume that the antenna starts at the point (+3,-3,-2.5) in (XEL,EL,P)-space, 

which is (+3,-3,+6.58) in (XEL,EL,Z)-space, with pointing given in millidegrees and 

defocus given in millimeters.  Performance of the cubic spline interpolated least 

squares algorithm is shown from Figure 6.37 through Figure 6.39, and the algorithm 

exhibits oscillatory behavior and poor performance.  The performance of the neural 

network prior to retraining is also poor (Figure 6.40 through Figure 6.42) but there is 

improvement after the retraining session (Figure 6.43 through Figure 6.45).  Although 
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the final 37 dB-Hz SNR in Figure 6.45 is not the 40 dB-Hz we seek, it is also better 

than the 24- to 26-dB-Hz SNR that the interpolated least squares algorithm (cubic 

spline version) reached in Figure 6.39.  Once the retrained neural network converges, 

it maintains steady (but suboptimal) tracking, which is better that the oscillatory 

behavior exhibited by the cubic spline interpolated least squares algorithm. 

 
Figure 6.37: Pointing plot at 45 degrees elevation: Interpolated least squares algorithm with 
cubic spline interpolation 
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Figure 6.38: Defocus plot at 45 degrees elevation: Interpolated least squares algorithm with cubic 
spline interpolation 

 

 
Figure 6.39: SNR plot at 45 degrees elevation: Interpolated least squares algorithm with cubic 
spline interpolation 

 

 
Figure 6.40: Multilayer feedforward network pointing at 45 degrees elevation without retraining 

 



 131 

 
Figure 6.41: Multilayer feedforward network defocus performance at 45 degrees elevation 
without retraining 

 

 
Figure 6.42: Multilayer feedforward network SNR performance at 45 degrees elevation without 
retraining 
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Figure 6.43: Multilayer feedforward network pointing at 45 degrees elevation after first 
retraining session 

 

 
Figure 6.44: Multilayer feedforward network defocus performance at 45 degrees elevation after 
first retraining session 
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Figure 6.45: Multilayer feedforward network SNR performance at 45 degrees elevation after 
first retraining session 

 

The preceding is an example of the performance improvement possible with 

neural network retraining using real-time data.  Adding biases to the output of the 

interpolated least squares algorithm would have yielded a performance improvement 

in the example illustrated in Section 6.2.1.  Here, however, Figure 6.37 shows that 

there is a notable random variation in interpolated least squares pointing, and this 

problem is not solved by simply using an additive bias.  To correct the interpolated 

least squares algorithm’s behavior, a new, non-aliased raster scan would be necessary.  

To correct the neural network, by contrast, real-time tracking data can be used 

without having to gather an entire raster scan. 

One possible criticism of this example is that no actual raster scan would 

involve such large spacing in P.  This example does not aim at realism: it aims to 

illustrate neural network adaptability.  Here, we observe that neural networks adapt 

well even if they had originally been trained on a defective training set.  Even though 
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excessive spacing is not an issue with a properly designed raster scan pattern, there 

are other potential imperfections in any raster scan set.  By using a severely distorted 

set as an example, we have illustrated the adaptability advantage of neural networks 

even under very severe operating conditions. 

6.3 Summary of simulation results and discussion 
 

Static tests of interpolated least squares and neural network estimators reveal 

that overall estimation performance at high SNR is comparable, with neural networks 

having a minor advantage in static grid tests.  At lower SNR, neural network 

performance falls beneath that of interpolated least squares algorithms in these 

simulations and in simulations carried out in previous, pointing-only research [28-31]. 

Acquisition and tracking simulations illustrate two things.  With regard to the 

interpolated least squares algorithm, cubic spline interpolation yields superb accuracy 

near the origin of pointing-defocus space, but quadratic interpolation does not show 

large changes in accuracy as we move away from the center as cubic spline 

interpolation does.  This means that while the two have similar accuracy over static 

test grids, cubic-spline interpolation yields better tracking accuracy in practice and is 

a good benchmark against which neural networks can be compared.  With regard to 

neural networks, accuracy near the center of training space is also high, and this is 

likely due to the fact that the center is surrounded by many neighboring points used in 

training.  With a greater variety of neighboring training examples near the center, a 

neural network can often achieve better accuracy near the center than at the edges of 

the training region.  Indeed, tracking tests show accuracy that is almost identical to 
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that achieved by cubic-spline interpolated least squares algorithms.  As stated in 

Section 4.6, acquisition and tracking are relatively robust with respect to estimation 

errors under most conditions, and estimation accuracy near the origin is most 

important.  This is reflected in the acquisition and tracking simulation results 

presented in this chapter.  We now turn our attention to real-world experimental 

results. 
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7 Real-World Experimental Results 
 

A number of real-world experiments involving the quadratic-interpolated least 

squares algorithm and neural networks were performed at Goldstone, CA.  While the 

experiments at the 70-meter antenna at DSS-14 involved only pointing correction and 

are also documented in [31] along with some pointing only simulations, the 

experiments at the 34-meter antenna at DSS-13 involved both pointing and defocus 

correction.  As stated in [31], RBF networks achieve accuracy close to that of the 

interpolated least squares algorithms in the pointing-only case.  Multilayer 

feedforward networks were used in the subsequent pointing and defocus tests at the 

34-meter antenna at DSS-13.  At both antennas, the quadratic interpolated least 

squares algorithm was used as a “benchmark” for comparison. 

Before we proceed, we note that in Section 7.2 the defocus parameter of 

interest is not P (parabolic deformation) as it was in Chapter 6 but is rather Z, the 

subreflector’s position along the z-axis.  This is a parameter over which we had direct 

control and, in real-world situations, it is the parameter of interest.  Although most of 

our results are quoted in terms of Z, we present them in equivalent terms of parabolic 

deformation P in the summary table at the end of Section 7.2.  In the case of the 34-

meter antenna, we note that a +1.0-millimeter change in P is equivalent to a -1.89-

millimeter change in Z. 
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7.1 Experimental Data from the 70-meter antenna at DSS-14 

7.1.1 RBF Network Pointing Results 
 

Reference data sets were collected for the pointing-only case on days 52 and 

62 of the year 2001.  Each data set consisted of 49 points in the (XEL,EL)-plane 

spaced 1.0-millidegree apart and ranging from -3.0 to +3.0-millidegrees in both XEL- 

and EL-directions.  These data were used both as reference tables for the interpolated 

least squares algorithm and as training sets for RBF networks. 

Acquisition and tracking were performed using RBF networks on day 68 of 

2001 at DSS-14.  In each case, a pointing offset was intentionally applied to the 

antenna, and RBF networks were used to correct the pointing offset and to maintain 

steady-state pointing. 

 

 
Figure 7.1: Day 68 acquisition and tracking example. 
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Figure 7.2: Day 68 acquisition and tracking example.  © 2002 IEEE.  Reprinted with permission 
from Mukai, R., Vilnrotter, V.A., Arabshahi, P., and Jamnejad, V., “Adaptive Acquisition and 
Tracking for Deep Space Array Feed Antennas”, IEEE Transactions on Neural Networks, vol. 13, 
no. 5, pp. 1149-1162, Sep, 2002 

 
As seen from Figure 7.1 and Figure 7.2, RBF networks are able to both 

correct pointing errors and maintain steady-pointing, keeping RMS errors within 

DSN requirements.  In these two figures, the antenna was descending in pointing 

elevation from 62.7 degrees to 59.2 degrees.  As shown in Figure 7.2, four different 

pointing offsets were applied to the antenna.  In each case, the RBF networks were 

able to bring the antenna back on point quickly, recovering SNR losses due to the 

intentionally applied pointing errors as shown in Figure 7.1.  In Figure 7.2, the long-

term trend lines describing spacecraft position in (XEL,EL)-space relative to the 

antenna’s pointing predict model are shown. Here the point (0,0) is taken relative to 

the antenna’s pointing predict model and not relative to the spacecraft’s position.  

RMS pointing errors for the steady-state portions of the track without RMS trend-line 

subtraction were 0.8104-millidegrees.  If the linear trend-line is properly subtracted, 
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then steady-state RMS pointing errors are just 0.3179-millidegrees, which is within 

DSN pointing accuracy requirements.  The strongest evidence for the validity of the 

trend-line comes from the fact that points along the trend-line yield the maximum 

SNR achieved during the course of operations even though a wide range of pointing 

offsets surrounding the source had been tested. 

One of the four acquisition and tracking examples from this set is shown in 

Figure 7.3 and in Figure 7.4.  These two figures focus on the second acquisition and 

tracking run illustrated in Figure 7.1 and Figure 7.2.  In Figure 7.4 we have taken the 

point (0,0) relative to the spacecraft and not relative to the antenna’s pointing predict 

model as was done in Figure 7.2.  For the steady-state portion of this track, we found 

RMS pointing errors of 0.4219-millidegrees without trend-line subtraction.  If the 

linear trend-line is subtracted, steady-state pointing errors are 0.3074-millidegrees.  

Figure 7.3 shows that the central channel recovers approximately 3-dB as a result of 

pointing correction.  The combined channel, which is more robust with respect to 

pointing errors due to the presence of the outer horns, shows an SNR recovery of 

approximately 2-dB.  SNR is seen to remain steady, within measurement error, once 

the RBF networks have acquired the source. 
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Figure 7.3: Day 68 acquisition and tracking example. 

 
Figure 7.4: Day 68 acquisition and tracking example. 

 
On day 124, RBF acquisition and tracking tests were performed again.  The 

track illustrated from Figure 7.5 through Figure 7.7 shows a steady-state tracking 

accuracy of 0.3775-millidegrees with the linear trend-line removed and 0.4441-

millidegrees without linear trend removal.  All plots of offsets for this track were 

generated relative to the spacecraft.  Here, the antenna was descending in elevation 
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from 40.3 degrees to 39.0 degrees.  Figure 7.7 illustrates the steadiness of the 

received SNR once acquisition was complete, with only a small dip occurring during 

that period.  The same figure illustrates a gain of approximately 5-dB due to pointing 

correction during the initial acquisition phase from a large pointing offset of over 5-

millidegrees.  While the RBF networks were originally trained over a range of -

millidegrees they were able to perform successful acquisition well outside of the 

original training range, indicating their ability to generalize well to novel conditions.  

A second RBF example from day 124 is illustrated by Figure 7.8 and Figure 7.9.  In 

those two figures, the antenna is descending from 36.0 to 34.6 degrees in pointing 

elevation.  Without linear trend-line removal RMS pointing errors were measured at 

0.5154-millidegrees.  With linear trend-line removal, RMS pointing errors were 

measured at 0.4784-millidegrees. 

 
Figure 7.5: Day 124 RBF acquisition and tracking example.  
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Figure 7.6: Day 124 acquisition and tracking from 40.3 down to 39.0 degrees elevation.  

 
Figure 7.7: Day 124 illustration of SNR recovery as a result of pointing correction. 
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Figure 7.8: Day 124 RBF acquisition and tracking test.  The antenna was descending from 36.0 
to 34.6 degrees in elevation.  We observe an SNR recovery of approximately 5-dB as a result of 
pointing correction. 

 

 
Figure 7.9: Day 124 track with RBF networks.  This is the same track as that illustrated by 
Figure 7.8.  

 
Figure 7.10 and Figure 7.11 illustrate an acquisition and tracking test 

performed on day 171.  The antenna was descending from 41.0 to 39.4 degrees in 

elevation.  Pointing correction yielded SNR recovery of approximately 2.5 to 3.0 dB.  
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In addition, steady-state tracking accuracy was 0.6428-millidegrees RMS without 

linear trend-line removal and 0.6334-millidegrees RMS with linear trend-line 

removal.  As with day 124, a pointing offset larger than that used in training was 

applied in order to test the RBF network’s generalization capabilities. 

 
Figure 7.10: Day 171 acquisition and tracking SNR plot. 

 
Figure 7.11: Acquisition and tracking plot corresponding to the SNR plot of Figure 7.10 for day 
171. 
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Another day 171 acquisition and tracking test, with the antenna descending 

from 39.3 to 37.8 degrees in pointing elevation, is shown in Figure 7.12 and Figure 

7.13.  RMS pointing errors were 0.6521-millidegrees RMS without trend-line 

removal and 0.5798-millidegrees with trend-line removal. 

 
Figure 7.12: Acquisition and tracking SNR plot for day 171.  The antenna was descending from 
39.3 to 37.8 degrees.  This track took place immediately after the track illustrated in Figure 7.10 
and Figure 7.11. 

 
Figure 7.13: The acquisition and tracking plot corresponding to the track of Figure 7.12 (day 171 
with the antenna descending from 39.3 degrees to 37.8 degrees elevation).  
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The first day 195 example illustrates performance with the antenna rising 

from 35.3 to 37.0 degrees in pointing elevation as illustrated in Figure 7.14 through 

Figure 7.16.  Without trendline removal the RMS pointing error is 0.6242-

millidegrees.  With trend-line removal, this becomes 0.5006-millidegrees.  There is 

an SNR gain of approximately 1.5 dB-Hz in Figure 7.16 due to pointing correction. 

 
Figure 7.14: Day 195 RBF track with the antenna rising in elevation from 35.3 to 37.0 degrees.  
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Figure 7.15:  Day 195 RBF track with the antenna rising in elevation from 35.3 to 37.0 degrees.  
This is a time-series plot of the data in Figure 7.14. 

 
Figure 7.16:  Day 195 RBF track with the antenna rising in elevation from 35.3 to 37.0 degrees.  
This is the same track as illustrated in both Figure 7.14 and Figure 7.15.  

 
Another Day 195 track, illustrated from Figure 7.17 through Figure 7.19 was 

performed with the antenna rising in elevation from 39.5 degrees to 41.6 degrees.  No 

acquisition from a pointing offset was performed, but steady-state tracking 

performance was observed over a period of roughly ten minutes.  Here, pointing 
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accuracy is very impressive.  Even without trend-line removal, errors were only 

0.3349-millidegrees RMS, and trend-line removal yielded RMS errors of 0.3179-

millidegrees.  Figure 7.18 illustrates steady SNR performance during the course of the 

track. 

 
Figure 7.17: Day 195 RBF network track with the antenna rising from 39.5 to 41.6 degrees 
pointing elevation. 
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Figure 7.18:  Day 195 RBF network track.  Antenna was rising in pointing elevation from 39.5 to 
41.6 degrees.  © 2002 IEEE.  Reprinted with permission from Mukai, R., Vilnrotter, V.A., 
Arabshahi, P., and Jamnejad, V., “Adaptive Acquisition and Tracking for Deep Space Array 
Feed Antennas”, IEEE Transactions on Neural Networks, vol. 13, no. 5, pp. 1149-1162, Sep, 2002 

 
Figure 7.19:  Day 195 RBF network track.  Antenna was rising in pointing elevation from 39.5 to 
41.6 degrees.  RMS pointing error, with no long-term trend-line removed, is 0.3349-millidegrees 
total.  If a trend-line is removed, the RMS error estimate is 0.3179 millidegrees total, which is 
essentially the same. 
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Another RBF network example, illustrated in Figure 7.20 and Figure 7.21, is 

an acquisition and tracking example with the antenna rising in elevation from 43.4 to 

46.3 degrees.  An SNR recovery of approximately 2 dB can be seen in Figure 7.20, 

with steady tracking SNR maintained after the initial acquisition stage.  Steady-state 

tracking accuracy, illustrated in Figure 7.21, is 0.4984-millidegrees RMS without 

trend-line removal.  With trend-line removal, it is 0.4157-millidegrees RMS. 

 
Figure 7.20: Day 195 RBF network track.  Antenna was rising in elevation from 43.4 to 46.3 
degrees.  
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Figure 7.21:  Day 195 RBF network track with the antenna rising from 43.4 to 46.3 degrees.   

 
The last RBF network example is a steady-state tracking example without 

acquisition.  The antenna was rising in elevation from 47.9 to 49.9 degrees.  RMS 

pointing errors were 0.7007-millidegrees without trend-line removal and 0.6281-

millidegrees with trend-line removal.  SNR performance is illustrated in Figure 7.22, 

and pointing performance is illustrated in Figure 7.23.  



 152 

 
Figure 7.22: Day 195 RBF network track with the antenna rising from 47.9 to 49.9 degrees in 
elevation.  

 
Figure 7.23: Day 195 RBF network with the antenna rising from 47.9 to 49.9 degrees.  

 

7.1.2 Interpolated Least Squares Pointing Results 
 

The quadratic interpolated least squares algorithm was also tested for the 

pointing only case at DSS-14.  Data gathered on days 52 and 62 were used to create 
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the two-dimensional lookup tables used by this algorithm, and the first acquisition 

and tracking experiments were carried out on day 107. 

A series of acquisition tests, combined with brief tracking, were performed on 

day 107 as shown from Figure 7.24 through Figure 7.27.  In this set of five 

acquisition and tracking tests, the antenna was descending from 41.1 to 39.2 degrees 

in pointing elevation.  An overview of SNR recovery is illustrated in Figure 7.24 and 

in Figure 7.25, where we see that much of the SNR lost due to intentionally applied 

pointing errors is quickly recovered.  We note changes in the distribution of power in 

the six outer horns, particularly in the fifth acquisition and track test illustrated in 

Figure 7.25.  In that case, a significant amount of power was captured in one of the 

outer horns.  Correction of antenna pointing resulted not only in a gain in SNR for 

both the central and combined channels but also a drop in the SNR of that outer horn, 

indicating a shift of the power to the central horn as desired. 

From Figure 7.24, the central channel at the start of the fifth acquisition and 

tracking test in the figure has lost about 10 dB of SNR due to the pointing error.  The 

loss in the combined channel is less severe and is consistent with the fact that the 

combined channel would include input from the six outer horns, including an outer 

horn with a relatively high SNR as shown in Figure 7.25.  The centering of the power 

that is illustrated in Figure 7.25 is good evidence of the accurate re-pointing of the 

antenna from a large pointing offset in excess of five millidegrees shown in Figure 

7.26.  Figure 7.26 shows pointing offsets relative to the antenna’s pointing predict 

model.  By contrast, Figure 7.27 shows pointing offsets relative to the mean position 
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of the spacecraft during the tracking phases and thus has its coordinate axes centered 

on the spacecraft’s mean position.  The tracking-only phases yield an RMS pointing 

error of 0.6671-millidegrees without removal of the linear trend line.  With trend line 

removal, RMS pointing accuracy is 0.6505-millidegrees. 

 
Figure 7.24: Day 107 acquisition and tracking series SNR plot for central and combined 
channels. 

 
Figure 7.25: Day 107 acquisition and tracking series with the antenna descending from 41.1 to 
39.2 degrees in elevation showing SNR of all seven horns plus the combined channel. 
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Figure 7.26: Day 107 acquisition and tracking series.   Pointing offsets are shown relative to the 
antenna’s pointing predict model.  © 2002 IEEE.  Reprinted with permission from Mukai, R., 
Vilnrotter, V.A., Arabshahi, P., and Jamnejad, V., “Adaptive Acquisition and Tracking for Deep 
Space Array Feed Antennas”, IEEE Transactions on Neural Networks, vol. 13, no. 5, pp. 1149-
1162, Sep, 2002 

 
Figure 7.27: Day 107 acquisition and tracking sequence with the antenna descending from 41.1 
to 39.2 degrees elevation.  These are the pointing offsets illustrated with respect to the spacecraft 
itself. 

 
An interpolated least squares track from day 167 of 2001 further illustrates the 

performance of this algorithm.  This acquisition and tracking test was carried out with 
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the antenna rising from 34.8 to 37.3 degrees in elevation and is illustrated from Figure 

7.28 through Figure 7.31.  SNR recovery of 2.5-3.0 dB in the central and combined 

channels is shown in Figure 7.28.  By looking at side-horn SNR data in Figure 7.29, 

we see that horn 4 has a relatively high SNR while horn 6 has a relatively low SNR at 

the start of the acquisition period.  The SNR becomes somewhat more balanced once 

acquisition completes, indicating that the power in the focal plane field is better 

centered on the central horn after acquisition.  Pointing performance is illustrated in 

Figure 7.30 and Figure 7.31.  RMS pointing errors are 0.4230-millidegrees without 

trend-line removal.  With trend-line removal, we obtain RMS pointing errors of 

0.4141-millidegrees. 

 
Figure 7.28: Day 167 interpolated least squares track with the antenna rising from 34.8 to 37.3 
degrees elevation.  SNR recovery of approximately 2.5-3.0 dB is in evidence. 
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Figure 7.29: Day 167 interpolated least squares track with the antenna rising from 34.8 to 37.3 
degrees elevation.  Here, the SNR of each of the channels (and of the combined channel) is 
plotted as a function of time. 

 
Figure 7.30:  Pointing offsets during day 167 interpolated least squares track with the antenna 
rising from 34.8 to 37.3 degrees elevation.  
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Figure 7.31: Day 167 track with the antenna rising from 34.8 to 37.3 degrees elevation.  This 
illustrates acquisition and tracking in the (XEL,EL)-plane. 

 
We also include an interpolated least squares track from Day 195, the last day 

of experiments at DSS-14.  Although no acquisition was performed here, steady-state 

tracking performance was good, as illustrated from Figure 7.32 through Figure 7.34.  

Elevation was rising from 49.9 degrees to 51.4 degrees, and this was performed on a 

warm summer day although the reference table data were gathered on a cold winter 

night.  RMS pointing errors were 0.7648-milldegrees with no trend line subtraction 

and 0.6380-millidegrees with the trend line subtracted. 



 159 

 
Figure 7.32: Day 195 interpolated least squares track SNR plot. 

 
Figure 7.33: Day 195 interpolated least squares track from 49.9 to 51.4 degrees elevation 
pointing offset plot. 



 160 

 
Figure 7.34: Day 195 track with elevation rising from 49.9 to 51.4 degrees.  This is a two-
dimensional plot of the track in (XEL,EL)-space. 

 

7.1.3 Summary and Discussion of DSS-14 results 
 

The results obtained at DSS-14 are summarized in Table 31.  Both RBF 

networks and interpolated least squares algorithms meet and exceed the DSN’s 

pointing accuracy requirements.  These results provide an important confirmation of 

our simulation results, particularly since this antenna is a 70-meter antenna of the 

same type simulated in Chapter 6.  They do not confirm any of our results regarding 

performance in the presence of focal errors since no such experiments were 

performed at DSS-14 owing to time constraints. 

Table 31: RMS pointing error summary at DSS-14 

Day of 
Year 

Elevation 
Range (deg) 

Algorithm RMS Pointing 
Errors (mdeg) 
(No trend line 
removal) 

RMS Pointing 
Errors (mdeg) 
(With trend 
line removal) 

68 62.7 to 59.2 
descending 

RBF Network 0.8104 0.3179 
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68 
*part of 
track 
above 

62.7 to 59.2 
descending 

RBF Network 0.4219 0.3074 

124 40.3 to 39.0 
descending 

RBF Network 0.4441 0.3775 

124 36.0 to 34.6 
descending 

RBF Network 0.5154 0.4784 

171 41.0 to 39.4 
descending 

RBF Network 0.6428 0.6334 

171 39.3 to 37.8 
descending 

RBF Network 0.6521 0.5798 

195 35.3 to 37.0 
ascending 

RBF Network 0.6242 0.5006 

195 39.5 to 41.6 
ascending 

RBF Network 0.3349 0.3179 

195 43.4 to 46.3 
ascending 

RBF Network 0.4984 0.4157 

195 47.9 to 49.9 
ascending 

RBF Network 0.7007 0.6281 

107 41.1 to 39.2 
descending 

Interpolated 
Least squares 

0.6671 0.6505 

167 34.8 to 37.3 
ascending 

Interpolated 
Least squares 

0.4230 0.4141 

195 49.9 to 51.4 
ascending 

Interpolated 
Least squares 

0.7648 0.6380 

 
Since the performance of the interpolated least squares algorithm is affected 

by the accuracy and applicability of the underlying lookup table, which is a partial 

model of the relationship between antenna pointing and focal plane field 

characteristics, there is reason to believe that the relationship between antenna 

pointing and focal plane fields as a function of elevation may not change significantly 

enough to affect these pointing algorithms even when the following parameters are 

varied: 

1. Outside temperature. 
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2. Day vs. night.  Sunlight striking the main reflector causes thermal gradients 

that can cause thermal expansion to affect main reflector deformation. 

3. Ascending in elevation vs. descending in elevation.  Although differences in 

antenna characteristics have been noted during these two distinct phases of 

operation while tracking spacecraft [47], the applicability of a descending 

model to an antenna during the ascent phase would suggest that the 

differences may not be significant for pointing purposes. 

The robustness of pointing in the face of these changes is a good result, but it 

is also unexpected.  The following are a few reasons why this result was not expected.  

In the joint AFCS/DFP experiments of 1999, Vilnrotter and Fort noted a change in 

array feed combining gain depending on whether the antenna was ascending or 

descending, and this is indicative of a change in focal plane field characteristics 

depending on whether the antenna was ascending or descending in pointing elevation 

[47].  The interpolated nearest neighbor lookup tables, which also served as training 

sets for the RBF networks, were gathered with the antenna descending on days 52 and 

62.  Yet tracking operations on days 167 and 195, with the antenna ascending rather 

than descending, showed good performance of both the interpolated least squares and 

RBF network algorithms. 

Concerning the difference between ascending and descending behavior of the 

antenna’s focal plane field, Imbriale et al. did not find any significant difference in 

main reflector shape during rising and setting: no evidence of main reflector 

hysteresis with respect to rising or setting could be detected by theodolite 
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measurements [22].  Yet Imbriale et al. do point out that differences in antenna 

efficiency have been observed during rising and setting modes [22], and this agrees 

with differences in combining gain during rising and setting observed by Vilnrotter 

and Fort [47].  This effect is not fully understood at the time of this writing, but the 

consistency of pointing algorithm performance from descending to ascending modes 

appears to agree with the observation that the main reflector’s shape apparently does 

not exhibit hysteresis. 

The pointing algorithms maintained consistent behavior even in the presence 

of significant thermal changes.  Although training data and early tracks were carried 

out under cold night conditions, the day 195 tracks were carried out on a warm 

summer day.  The fact that performance on warmer days remained comparable to 

cold night performance is a surprise since Imbriale et al. had stated that there is 

evidence for focal length changes caused by different thermal conditions during day 

and night operations, with changes potentially being larger than 6-millimeters, 

possibly causing losses between 5 and 6 db [22].  However, Imbriale et al. have also 

pointed out that changes in focal length may be partly compensated for by movement 

of the subreflector due to thermal expansion of the quadripod that attaches the 

subreflector to the main reflector body, thus reducing such losses [22].  The fact that 

pointing performance remains almost the same even under daytime conditions even 

though the reference data were gathered at night may provide limited evidence for the 

speculation that focal length changes are partly compensated by expansion of the 

quadripod.  It is also possible that the pointing model implied by the lookup table data 
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is robust even in the face of focal errors.  Such robustness would seemingly contradict 

the simulation results of Chapter 6, however, in which it was found that pointing 

accuracy deteriorated noticeably in the face of previously unseen defocus.  This issue 

has not been fully resolved. 

Since the underlying model of the relationship between antenna pointing and 

the focal plane field as a function of pointing elevation does not appear to change 

significantly over a long period of time and under varying temperature and sunlight 

conditions, both interpolated least squares and neural network algorithms that operate 

with training data gathered under one set of conditions will remain applicable under 

many other operating conditions as shown by examples from days 167, 171, and 195.  

This suggests a high degree of robustness of the model itself, which would help to 

explain the robust performance of RBF networks discussed in Section 7.1.1.  Day 124 

data illustrate good acquisition performance even with error offsets exceeding those 

used during training, while day 171 data and day 195 data illustrate the networks’ 

ability to maintain high pointing accuracy and strong SNR recovery performance 

even under conditions differing from those encountered when the training data were 

gathered.  The set of results from DSS-13 covers focal errors, but caution will have to 

be exercised in comparing it to the set of 70-meter results and to the simulation 

results of Chapter 6 due to the fact that the beamwidth is twice as wide at DSS-13 

[57]. 
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7.2 Experimental Data from the 34-meter antenna at DSS-13 
 

While a four-millidegree pointing error results in approximately 3-dB of SNR 

loss on the 70-meter antenna, it would take approximately twice that error to cause 

the same 3-dB loss at DSS-13 [57].  In this dissertation, it will be assumed that twice 

the pointing error is considered tolerable for a 34-meter antenna. 

Although experiments at the 70-meter antenna at DSS-14 focused exclusively 

on pointing, experiments at the 34-meter antenna at DSS-13 involved compensation 

for both pointing and defocus.  The DSS-13 experiments used offsets in subreflector 

position to model defocus errors.  In addition, the DSS-13 neural network 

experiments involved a different type of neural network: the multilayer feedforward 

network.  Our objective was that of evaluating this type of network for DSN use as 

well.  Since the experimental procedure was a lengthy one, which involved three-

dimensional raster scans, fewer trials were performed.  The resulting data set is 

smaller than that gathered at DSS-14, but it does provide evidence of the ability of 

both interpolated least squares and multilayer feedforward network algorithms to 

correct pointing and focal errors. 

7.2.1 Interpolated Least squares Results 
 

The reference table used for interpolated least squares tests was also used as a 

neural network training set.  Since testing on large subreflector position errors (as 

large as 10-millimeters in some cases) was desired, and since it was necessary to 

gather raster scan data within a reasonable period of time to avoid excessive elevation 
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changes within a raster scan, the spacing in Z was from -6.0-millimeters to +6.0-

millimeters in 2.0-millimeter increments.  In pointing, the raster scan points ranged 

from -4.0-millidegres to +4.0-millidegrees in 2.0-millidegree increments.  The 

spacing of 2.0-millimeters in Z is, using the conversion factors from Section 4.3.2, 

approximately 1.06-millimeters in the parabolic deformation parameter P. 

A set of tests were performed using the interpolated least squares algorithm to 

correct both subreflector position and antenna pointing.  These tests verify the ability 

of the interpolated least squares algorithm to provide SNR recovery by correcting 

simultaneous focal and pointing errors and help to verify that this algorithm is a good 

baseline against which neural networks may be compared.  Lookup table data for 

days 178 and 179 were gathered on day 178. 

The first example involves a subreflector-only test, illustrated in Figure 7.35.  

Here, the antenna was pointed accurately on source, and the resulting SNR was 

measured.  Once the correct pointing offset was known, the subreflector was moved 

+6.0 mm along the z-axis, causing a loss of SNR due to a focal error as illustrated by 

the second SNR measurement.  The interpolated least squares algorithm was then 

used to bring the subreflector back on focus, and the rise in SNR is visible in the 

figure.  SNR returns to its original value, within measurement error.  The antenna was 

rising in elevation from 54.9 to 55.6 degrees.  Since pointing was kept on-source the 

entire time, no RMS pointing error data were generated.  Baseline SNR was 

 dB-Hz in the central channel and  dB-Hz in the combined 

channel, and the SNR after subreflector position correction was, within experimental 
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error, identical to the baseline.  In experiments involving pointing, there was usually a 

slight loss of SNR from the baseline to the tracking phase, although error bars 

typically overlapped. 

 
Figure 7.35: Day 178 subreflector-only test. 

 
The second example from day 178, which consists of a combined pointing 

correction and subreflector correction, is shown in Figure 7.36.  The antenna was 

rising from 74.1 to 74.5 degrees in pointing elevation during this test.  The first 

cluster of points, which completes before the one-minute mark, represents the 

“baseline” SNR with the antenna pointed and focused properly.  The second cluster, 

just after the two-minute mark, represents an offset of (-4,-4,-8) in (XEL,EL,Z) space, 

with pointing in millidegrees and Z in millimeters.  Here, the pointing correction is 

started first, and the third cluster of points crossing the three-minute mark shows a 

small improvement in SNR.  The main improvement occurs when subreflector 

tracking is turned on, permitting the antenna to return to proper focus and return to 
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the baseline SNR.  Here, we have an example of two things: 1. pointing correction 

and a small SNR gain without focus correction and 2. a return to baseline SNR with 

focus correction and continued tracking by the pointing algorithm.  Steady-state 

pointing errors were 0.6541-millidegrees RMS.  However, since pointing updates 

were applied only once every 15 seconds due to the relatively slow speed of the least 

squares algorithm and due to the fact that updates of the antenna are slower at high 

pointing elevation, the RMS pointing data are not completely reliable.  RMS 

subreflector errors were 1.1929-millimeters.  Baseline SNR was  dB-Hz for 

the central channel and  dB-Hz for the combined channel.  SNR after 

recovery was  dB-Hz for the central channel and  dB-Hz for the 

combined channel. 

 
Figure 7.36: Pointing and subreflector correction. 

 
A day 179 example illustrates true simultaneous correction of both a pointing 

offset and a subreflector offset.  Here, the antenna was rising in elevation from 29.8 to 
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30.5 degrees.  As in previous tests carried out at DSS-13, we initially measured SNR 

with the antenna both in focus and on point.  The antenna, in this case, was then sent 

to point (-4,-4,-10) in (XEL,EL,Z)-space, and SNR data were gathered again to 

establish the severity of the SNR drop.  In the third phase, the interpolated least 

squares algorithm was used to apply simultaneous pointing and focus corrections.  

This is illustrated in Figure 7.37.  As with the previous two examples, SNR was 

returned to nearly its original value within measurement error.  Steady-state RMS 

pointing error during tracking was 1.0136-millidegrees without trend-line removal 

and 0.9108-millidegrees with trend-line removal.  RMS subreflector position error 

was 1.0571-millimeters.  Baseline SNR was  dB-Hz for the central channel 

and  dB-Hz for the combined channel.  Recovered SNR was  dB-

Hz in the central channel and  dB-Hz in the combined channel. 

 
Figure 7.37: Day 179 example 1.  Correction of both pointing and focus is shown. 
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Similar tests are shown in Figure 7.38 (31.8 through 32.7 degrees elevation) 

and Figure 7.39 (34.7 through 35.9 degrees elevation).  The error offsets, in 

(XEL,EL,Z)-space, were (4,-4,-10) in Figure 7.38 and (-4,-4,+6) in Figure 7.39.  In 

each case, the interpolated least squares algorithm was able to return SNR close to the 

baseline level.  RMS pointing errors without trend line removal were 1.1953-

millidegrees and 1.4637-millidegrees for Figure 7.38 and Figure 7.39, respectively.  

With the trend line subtracted, RMS pointing errors are 1.1137-millidegrees and 

1.3873-millidegrees, respectively.  The RMS subreflector position errors, in steady 

state, were 0.2281-millimeters and 0.5445-millimeters, respectively.  In the test 

illustrated in Figure 7.38, baseline SNR was  dB-Hz in the central channel 

and  dB-Hz in the combined channel.  SNR after recovery was  

dB-Hz in the central channel and  dB-Hz in the combined channel.  In the 

test illustrated in Figure 7.39, baseline SNR was  dB-Hz in the central 

channel and  dB-Hz in the combined channel.  After recovery, measured 

SNR was  dB-Hz in the central channel and  dB-Hz in the 

combined channel. 
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Figure 7.38 

 
Figure 7.39 

 

7.2.2 Multilayer feedforward network results 
 

On day 180, a series of tests using multilayer feedforward networks were 

performed.  The data used to train three networks, with 30 hidden layer neurons each, 
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were gathered on day 178 and were identical to the data used in the interpolated least 

squares lookup tables. 

The first acquisition and tracking test with neural networks was taken with 

pointing elevation rising from 29.9 to 30.8 degrees with a starting offset of (-4,-4,-

10).  As in the interpolated least squares experiments, the “baseline” SNR was found 

by bringing the antenna to the point (0,0,0) prior to the acquisition and tracking test, 

and the baseline SNR data were gathered within the first half minute of operations as 

shown in Figure 7.40.  Next, the offset of (-4,-4,-10) was applied, causing an SNR 

loss shown between 1.5 and 2.0 minutes in the same figure.  Acquisition and tracking 

were performed, leading to the SNR recovery and maintenance of high SNR shown.  

In the figure, central horn baseline SNR was  dB-Hz, and combined 

channel baseline SNR was  dB-Hz at (0,0,0).  After acquisition and during 

tracking, central horn recovered SNR was  dB-Hz while combined channel 

SNR was  dB-Hz.  The error bar of 0.3 dB-Hz is equal to one standard 

deviation, and recovered SNR was equal to baseline SNR within experimental error. 
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Figure 7.40: SNR during the first multilayer feedforward network track of day 180 

 
Pointing accuracy without trendline removal was 1.0511 millidegrees RMS.  

With trendline subtraction, pointing accuracy was 0.8909 millidegrees RMS.  A plot 

of pointing during the tracking portion in (XEL,EL)-space is shown in Figure 7.41.  

RMS subreflector position error was 0.4813 millimeters. 

 
Figure 7.41: Pointing in (XEL,EL)-space relative to the source 
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The next acquisition and tracking test was carried out from a starting offset of 

(-4,4,-10) with the antenna rising in elevation from 31.1 to 31.8 degrees in elevation.  

SNR results are shown in Figure 7.42.  Baseline SNR was  dB-Hz for the 

central channel and  dB-Hz for the combined channel.  SNR during 

tracking after recovery was  dB-Hz for the central channel and  

dB-Hz for the combined channel.  Although the error bars for the baseline and 

recovered SNR values exhibit overlap, indicating they are almost the same within 

experimental error, there appears to be a slight systematic loss. 

 
Figure 7.42: SNR during a multilayer feedforward network track of day 180 

 
RMS pointing errors were 0.5420-millidegrees without trend line subtraction 

and 0.3837-millidegrees with trend line subtraction.  RMS subreflector position error 

was 0.4315-millimeters.  A plot of tracking offsets relative to the source is shown. 
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Figure 7.43: Pointing in (XEL,EL)-space relative to the source 

 
The next test was performed with the antenna rising in elevation from 32.0 to 

32.7 degrees.  Baseline SNR was  dB-Hz in the central channel and 

 dB-Hz in the combined channel.  After recovery, SNR was  dB-

Hz in the central channel and dB-Hz in the combined channel.  The error 

bars overlap, indicating that these numbers are close within experimental error.  

Nevertheless, the recovered SNR is slightly lower than the original, signifying that 

recovery was not perfect.  Pointing accuracy was 0.6065-millidegrees RMS without 

trend line removal and 0.4387-millidegrees with trend-line removal.  Subreflector 

RMS position error was 0.5051-millimeters. 

Another test, with a starting offset of (-4,4,6) was conducted with the antenna 

rising in elevation from 36.5 to 37.1 degrees elevation.  Baseline SNR was 

dB-Hz for the central channel and  dB-Hz for the combined 

channel.  After recovery, SNR was  dB-Hz for the central channel and 
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 dB-Hz for the combined channel.  Here, the “one-sigma” (one standard 

deviation) error bars do not overlap, and not all of the SNR was recovered in this 

case. 

 
Figure 7.44: SNR during a multilayer feedforward network track of day 180 

 
RMS pointing errors were 0.6993-millidegrees without trend-line subtraction 

and 0.4801-millidegrees with trend line subtraction.  RMS subreflector position error 

was 0.4187-millimeters. 
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Figure 7.45: Pointing in (XEL,EL)-space relative to the source 
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7.2.3 Summary of experimental results at DSS-13 
 
The following table presents key results from DSS-13. 
 
Table 32: RMS pointing and subreflector Z-position errors at DSS-13 

Elevation Algorithm Pointing 
RMS 
(mdeg) 
No trend 
removed / 
trend 
removed 

Z RMS 
(mm) 

P RMS 
(mm) 

Baseline SNR 
(central/ 
combined) 
 (dB-Hz) 

Tracking 
SNR (central/ 
combined) 
 (dB-Hz) 

54.9 to 55.6 Least 
squares 

N/A 0.4351 0.2302 /
 

/
 

74.1 to 74.5 Least 
squares 

0.6541 
N/A 

1.1929 0.6312 /
 

/
 

29.8 to 30.5 Least 
squares 

1.0136 / 
0.9108 

1.0571 0.5593 /
 

/
 

31.8 to 32.7 Least 
squares 

1.1953 / 
1.1137 

0.2281 0.1207 /
 

/
 

34.7 to 35.9 Least 
squares 

1.4637 / 
1.3875 

0.5445 0.2881 /
 

/
 

29.9 to 30.8 Neural 
Network 

1.0511 / 
0.8909 

0.4813 0.2547 /
 

/
 

31.1 to 31.8 Neural 
Network 

0.5420 / 
0.3837 

0.4315 0.2283 /
 

/
 

32.0 to 32.7 Neural 
Network 

0.6065 / 
0.4387 

0.5051 0.2672 /
 

/
 

36.5 to 37.1 Neural 
Network 

0.6993 / 
0.4801 

0.4187 0.2215 /
 

/
 

 
From Table 32, we note that under similar conditions (elevation rising from 

29.8 to 37.1 degrees) neural networks appear to yield somewhat lower RMS pointing 

errors than the interpolated least squares algorithm.  In one case, the interpolated least 

squares algorithm yielded somewhat better focal error performance than did the 

neural networks, but in most cases neural network performance was either the same 

or better. 
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In summary, real-world experiments at both DSS-14 and DSS-13 show that 

neural networks achieve performance at least as good as that achieved by the 

interpolated least squares algorithm, in agreement with simulation results.  Both 

interpolated least squares algorithms and neural networks achieve excellent SNR 

recovery and high pointing accuracy that exceeds DSN requirements, and both are 

strong candidates for actual implementation. 
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8 Conclusions and Future Directions  
 

Real world experimental results from Chapter 7 provide the strongest 

evidence that both interpolated least squares algorithms and neural networks can meet 

and exceed DSN pointing accuracy requirements and achieve excellent SNR recovery 

in the face of both pointing errors and focal errors.  In agreement with simulation 

results, neural networks yield performance that is as good as that achieved by 

interpolated least squares algorithms.  Neural networks offer the additional 

advantages of computational efficiency and, more importantly, adaptivity in the face 

of changes in the antenna.  Experiments show that the algorithms presented in this 

dissertation can already meet the SNR recovery and tracking accuracy goals of the 

DSN. 

In future research, a maximum likelihood approach could be taken to the 

development of estimators for pointing and focal errors.  Present interpolated least 

squares algorithms are based on constrained minimization of an objective function, 

but maximum likelihood architectures based on the Fourier transform and point-

sampling approximations could be tested, as was done earlier by Zohar and Vilnrotter 

[57].  This area of research could lead to the development of an estimator that does 

not rely on the large lookup tables used in the interpolated least squares algorithms 

but would be very mathematically intensive.  An even more realistic model that 

avoids the point-sampling approximation and that relies on antenna geometry and 



 181 

physical optics in the place of Fourier transforms may be feasible in principle, but the 

intensive mathematical development required was not pursued in this dissertation. 

Although development of maximum likelihood pointing and focal error 

estimators represents one possible direction, it is not the only direction for future 

research.  Simulation results suggest that for combined focal error and pointing error 

correction on 70-meter antennas, the multilayer feedforward network architecture is 

promising.  In all cases, this network had been trained using the resilient 

backpropagation method [16,17] which relies on the sign of the backpropagated 

gradient information rather than on both sign and magnitude in performing weight 

updates.  This algorithm has yielded faster, more reliable convergence for this case 

than traditional backpropagation or backpropagation with momentum [16,17], but 

other training algorithms may yield better networks. 

Some of the neural network design and training issues that represent 

directions for future research include: 

1. The effects of different training methods.  This issue was touched upon above 

but has not been systematically investigated for this problem. 

2. The number of hidden-layer units to be used.  Although simulation evidence 

suggests as many as 30, computational complexity may be reduced by using 

fewer hidden layer units and/or combining functions into a single network 

with multiple outputs.  Time constraints prevented testing of such networks at 

DSS-13 under focal error estimation conditions, although such networks were 

tested in simulations. 
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3. The manner of real-time updating of network weights and biases.  Resilient 

backpropagation had been used for the purpose of updating network weights 

in Chapter 6, resulting in improved performance or “learning through 

experience”.  While this avoids the need for extra raster scans, there is still a 

need to perform periodic retraining of the system by briefly (for a few 

minutes) taking a copy of the neural network offline and generating a 

retrained copy.  This can be done while tracking is going on in real-time.  

However, the LMS algorithm for adaptive linear filters and for decision-

feedback equalizers is used to adapt linear combining weights in real-time 

without the need to gather blocks of training data [13,18,34], and this could be 

adapted to real-time retraining of neural networks via backpropagation as well 

[16-18]. 

 
Another promising future research direction involves correction of errors 

using the Deformable Flat Plate, or DFP [11,21,24].  In this case, a deformable metal 

plate, which acts as an RF mirror, is placed in the path of RF waves as they travel to 

the focal plane.  Experiments involving the DFP indicate its potential to achieve good 

SNR gains and to correct for even more errors beyond pointing and defocus.  At 

present, the DFP can be used for correcting systematic deformation errors that are 

discovered through holographic measurements [38], but research into using it for real-

time correction has only begun.  Optical errors such as coma, astigmatism, and trifoil 

distortion also affect received SNR and were considered a part of , the 
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uncorrectable deformation, in our discussion in Chapter 3.  Since the AFCS yields a 

total of seven complex numbers, which are reduced to six if all outputs are 

normalized by the central horn as we have done here, it should be possible to detect 

and correct at least some higher order distortions (at least astigmatism) resulting from 

main reflector deformation using the DFP.  In addition, alternate array geometries for 

the AFCS with closer horn spacing and/or a greater number of horns may permit even 

better reconstruction of the focal plane field, allowing even more sophisticated 

algorithms to be used to reconstruct aperture plane phases and gather even more 

aperture-plane information [7]. 

The research presented here is thus a starting point.  Algorithms that achieve 

both DSN pointing accuracy requirements and excellent SNR recovery have been 

designed, simulated, and demonstrated on actual DSN antennas experimentally.  

Future developments both along the above-mentioned directions and along many 

other possible directions will achieve greater SNR recovery performance and better 

robustness under a wider range of operating conditions, but the DSN’s key objectives 

are achievable with the algorithms developed here. 
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Appendices 
 

Appendix A: The Orthogonal Least Squares Algorithm for 
Radial Basis Function Networks 

 

The treatment in this Appendix closely follows the paper by Chen, et al. who 

developed this algorithm [5].  We begin with a set of definitions. 

1. Let  be the set of p-dimensional input vectors for .  

These are the M input vectors in the training set.  In the OLS algorithm, the set 

of radial basis centers  is a subset of .  The algorithm seeks to 

choose a parsimonious set of input vectors as the set of radial basis centers for 

the network. 

2. Corresponding to the M input vectors, there are M desired outputs given by 

the vector  

3. Let the set of radial basis centers be denoted by , and let .  

Let N denote the number of radial basis centers.  Then . 

4. Let  be the set of actual RBF network responses corresponding to the 

input vector set  for .  Define  to 

be the vector of these responses. 
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5. Let  be the set of errors defined by  for .  Define 

 to be the vector of errors over the data set. 

6. Let  be the set of weights in the linear combiner for .  

These weights are used to multiply the outputs of the radial basis units (except 

for , which acts as a bias term).  Define . 

7. Let .  Define , a 

vector that contains all of the nth radial basis unit’s responses to the vectors in 

the data set.  Also define the  column vector . 

8. Define . 

9. Define the squared error: . 

10. Let .  This is the response of a radial basis 

unit whose center vector is  to the input vector .  Then define 

.  Note that the vectors in  are ultimately 

chosen from the set of candidates  in OLS.  This is equivalent to saying 

that the center vectors in  are ultimately chosen from the input vectors 

. 

 
Given the above definitions, we can write: 
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  (A.1.1) 
 
We can write the error vector as: 

  (A.1.2) 

 
Since our goal is that of reducing the squared error E below a given threshold 

with the minimum number of basis units, we would like to know the contribution of 

each of the N basis units toward this squared error reduction.  We note that the 

minimum squared error is achieved if and only if  is orthogonal to all of the vectors 

in  [5,17,18].  Equivalently, this means  is the projection of  into the 

subspace spanned by  [5]. 

Since the vectors in the set  are not, in general, orthogonal, we can 

perform Gram-Schmidt orthogonalization, which is summarized by two equations. 

  (A.1.3) 
 
and 

  (A.1.4) 

 
where equation (A.1.4) is used for .  Define: 

  (A.1.5) 
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and 

  (A.1.6) 

 
we can write: 

  (A.1.7) 
 
Where .  Since the sets  and  are sets of vectors 

spanning exactly the same subspace,  must be orthogonal to all vectors contained in 

 as well. 

Combining equations (A.1.2) and (A.1.7), we have: 

  (A.1.8) 

 
where .  Letting  be the nth component of , we can use equation (A.1.8) 

and write the following: 

  (A.1.9) 
 
which then gives us: 
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  (A.1.10) 

 
The move from the third line to the fourth line in equation (A.1.10) is possible 

because  is orthogonal to all vectors contained in .    The move from the fourth 

line to the fifth is possible because of the orthogonality of the vectors in . 

At this stage, we note that since  is a constant, each additional vector in 

the set  causes a reduction in the total squared error E.  If we set N, the number of 

vectors in , equal to M, the number of input data vectors, it becomes possible to 

reduce E to zero.  This normally results in an excessively large RBF network and in 

overfitting of the data [5,17], which must be avoided.  Instead, we seek to choose the 

smallest set  (equivalently, the smallest set ) that will bring the squared error 

E sufficiently low to meet the squared error threshold. 

The procedure to do this involves the use of modified Gram-Schmidt 

orthogonalization.  In the first step, we try all M prospective vectors , finding the 
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one that will yield the maximum value of  when we set .  This yields 

the greatest possible reduction in squared error E for the given added vector.  This 

entails adding the corresponding input data set vector as a radial basis center.  Instead 

of simply choosing the first vector for  as was done in the standard Gram-Schmidt 

procedure, we choose the vector such that , with  defined as in 

equations (A.1.8) through (A.1.10) for N=1, is maximized.  This produces the 

smallest E as seen in equation (A.1.10). 

On the next step, we continue with the modified Gram-Schmidt procedure.  

Since we have found , we invoke equation (A.1.4) using the remaining vectors of 

 as candidates for .  For each candidate, we must compute , and 

we select the candidate which maximizes  in order, once again, to 

minimize E.  The modified Gram-Schmidt process is repeated until E is less than or 

equal to the desired squared error threshold, at which time the process stops and the 

set of vectors  is complete.  The corresponding input data vectors are taken as the 

centers of the basis functions of the new RBF network, and the optimal weights, 

computed in the process of obtaining  at each step, will be used as the linear 

combiner weights.  The final equations used in the modified Gram-Schmidt iterations 

are given in the paper by Chen et al. [5] in which this algorithm was first proposed. 



 190 

 

Appendix B: Backpropagation Learning 
 

Backpropagation learning is a generalization of the LMS algorithm in that it is 

also based on the concept of steepest descent.  Our treatment of backpropagation very 

closely follows Hagan, et al. [16] to which we refer the reader. 

As in the LMS algorithm, we use a squared-error performance measure, with 

our objective being that of minimizing the squared error.  The network is provided 

with a set of examples of proper behavior  where: 

  (B.1.1) 
 
for all n=1,2,…,Q.  The objective is to get the network to approximate the function of 

equation (B.1.1) as accurately as possible.  The mean-squared error is approximated 

by the instantaneous squared error, which is: 

  (B.1.2) 
 
where  is the current desired output corresponding to the current input,  is the 

network’s output in response to the current input, and  is the error vector. 

Consider the (i,j)-th element of the synaptic weight matrix  in the mth 

layer.  The weight update equation for this element is [16]: 

  (B.1.3) 

 
where  is the learning rate parameter.  Similarly, for bias elements, we have [16]: 
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  (B.1.4) 

 
The internal activation of each neuron in the layer is the input to the non-linearity, 

which is [16,17]: 

  (B.1.5) 

 
where  is the number of neurons in the previous layer or, equivalently, the length 

of the column vector of inputs to the current layer m. 

Computing partial derivatives is the key to performing approximate steepest 

descent, and the backpropagation procedure operates by computing these derivatives.  

It is useful to decompose the partial derivatives in equations (B.1.3) and (B.1.4) as 

follows [16]: 

  (B.1.6) 

  (B.1.7) 

 

Equations (B.1.6) and (B.1.7) both contain the term .  This term is 

referred to as the sensitivity by Hagan et al. [16], and it can be computed by the 

backpropagation procedure. 

Using equation (B.1.5), we obtain: 

  (B.1.8) 

 
and 



 192 

  (B.1.9) 

 
By combining results from equations (B.1.6), (B.1.7), (B.1.8), and (B.1.9) we obtain: 

  (B.1.10) 

  (B.1.11) 

 
From equations (B.1.10) and (B.1.11) we see that the primary challenge in 

computing weight updates lies in computing the sensitivities.  The chain rule from 

calculus provides the foundation of backpropagation. 

It will be useful to compute the following Jacobian matrix that relates the 

internal activations of two adjacent layers in the network[16]: 

  (B.1.12) 

 
Using equation (B.1.5), we can write: 

  (B.1.13) 

 
Using equation (B.1.13) to write each element of the Jacobian matrix of equation 

(B.1.12) gives us [16]: 
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 (B.1.14) 

 
where 
  

 (B.1.15) 

 
Summarizing, we can write: 

  (B.1.16) 
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By relating the internal activations in adjacent layers, we can now compute 

sensitivities in each of the layers using the chain rule of calculus.  Assume that we 

already know the sensitivities for layer (m+1) given by: 

  (B.1.17) 

 
By the chain rule, we have [16]: 

  (B.1.18) 

Equation (B.1.18) shows us how to use knowledge of the sensitivities in one 

layer to compute the sensitivities in the preceding layer, and this permits sensitivity 

information to be backpropagated in the neural network, leading to the term 

backpropagation learning [16].  Once the sensitivities of the neurons of the output 

layer have been computed, one can repeatedly use equations (B.1.10), (B.1.11), 
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(B.1.16), and (B.1.18) to update the weights and biases in all layers.  It now remains 

to obtain sensitivities in the output layer, which is the layer of neurons whose outputs 

constitute the outputs of the network as a whole. 

Let the Mth layer of the network be the output layer.  We start with: 

  (B.1.19) 
 

This leads to: 

  (B.1.20) 

 

Furthermore, we can write: 

  (B.1.21) 

 
The chain rule gives us: 

  (B.1.22) 

 
We can write the vector of sensitivities for the output layer by converting equation 

(B.1.22) to vector form.  Doing so yields: 

  (B.1.23) 
 

Note that for the case of a linear output layer, , and this gives us 

.  Using the output layer sensitivities given by equation (B.1.23), we 
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can compute the sensitivities in all of the hidden layers and compute the appropriate 

weight updates on each iteration. 

Summarizing the backpropagation learning algorithm, we compute the 

network’s output vector  first.  The error vector  is then computed, and 

equation (B.1.23) is used to obtain the sensitivities for the output layer.  These 

sensitivities are backpropagated using equation (B.1.18) to obtain the sensitivities for 

the hidden layers.  All updates of weights and biases are then performed using 

equations (B.1.10) and (B.1.11).  Some intermediate equations must be evaluated in 

the process of computing the Jacobian used in equation (B.1.18) as shown earlier, but 

the backpropagation algorithm is an elegant application of the chain rule of calculus 

to the problem of neural network learning. 
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