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ABSTRACT OF THE DISSERTATION

Robust Modeling through Causal Priors

and Data Purification in Machine Learning

by

Sunay Gajanan Bhat

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2024

Professor Gregory J. Pottie, Chair

The continued success and ubiquity of machine learning techniques, particularly Deep Learning,

have necessitated research in robust model training to enhance generalization capabilities

and security against incomplete data, distributional shifts, and adversarial attacks. This

thesis presents two primary sets of contributions to robust modeling in machine learning

through the use of causal priors and data purification with generative models such as the

Variational Autoencoder (VAE), Energy-Based Model (EBM), and Denoising Diffusion

Probabilistic Model (DDPM), focusing on image datasets. In the first set of contributions,

we use structural causal priors in the latent spaces of VAEs. Initially, we demonstrate

counterfactual synthetic data generation outside the training data distribution. This technique

allows for the creation of diverse and novel data points, which is critical to enhancing

model robustness and generalization capabilities. We utilize a similar VAE architecture to

compare causal structural (graphical) hypotheses, showing that the fit of generated data from

various hypotheses on distributionally shifted test data is an effective method for hypothesis

comparison. Additionally, we explore using augmentations in the latent space of a VAE

ii



as an efficient and effective way to generate realistic augmented data. The second set of

contributions focuses on data purification using EBMs and DDPMs. We propose a framework

of universal data purification methods to defend against train-time data poisoning attacks.

This framework utilizes stochastic transforms realized via iterative Langevin dynamics

of EBMs, DDPMs, or both, to purify poisoned data with minimal impact on classifier

generalization. Our specially trained EBMs and DDPMs provide state-of-the-art defense

against various poisoning attacks while preserving natural accuracy. Preprocessing data with

these techniques pushes poisoned images into the natural, clean image manifold, effectively

neutralizing adversarial perturbations. The framework achieves state-of-the-art performance

without needing attack or classifier-specific information, even when the generative models are

trained on poisoned or distributionally shifted data. Beyond defense against data poisoning,

our framework also shows promise in applications such as the degradation and removal of

unwanted intellectual property. The flexibility and generality of these data purification

techniques represent a significant step forward in the adversarial model training paradigm.

All of these methods enable new perspectives and approaches to robust machine learning,

advancing an essential field in artificial intelligence research.
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CHAPTER 1

Thesis Overview

1.1 Motivation

Machine learning progress in recent years has been rapid, with unprecedented levels of

performance achieved in various tasks such as image recognition, natural language processing,

planning, and navigation. The public release of large-language and image-generative models

was a clear inflection point. State-of-the-art models surpassed what many researchers believed

possible from current techniques and made the broader public aware of the possibilities

of machine learning and deep learning methods. However, as these models become more

complex and are applied to increasingly critical domains, concerns about their interpretability,

robustness, and generalizability have grown. The lack of transparency in deep learning models,

often referred to as "black boxes," presents numerous challenges in fields where explainability

and reliability are crucial, such as healthcare, finance, human interaction, and autonomous

systems.

Researchers have investigated these challenges using techniques from multiple other fields,

from classical artificial intelligence techniques to communications and information theory,

to increase our understanding and trust in deep learning models. Causal inference and

modeling have gained traction as one set of techniques to enable more interpretable and

generalized model performance. Causal reasoning allows for a deeper understanding of the

underlying mechanisms that generate data and can enable generalization beyond the training

data domain, which remains a crucial challenge in data-sparse domains. Furthermore, by
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incorporating causal knowledge, researchers aim to develop models that are accurate and

aligned with human intuition.

Another major challenge is the presence of biases and spurious correlations in the training

data of machine learning models. Models trained on biased data can learn to perpetuate or

amplify these biases, leading to inaccurate predictions. Therefore, it is essential to develop

techniques to identify and mitigate biases in data and models, particularly in areas where

large and diverse datasets might not exist to counteract biases.

As large and powerful models are deployed in increasingly critical applications, the risk

of adversarial attacks on such models is simultaneously increasing. These attacks can cause

poor performance or undetectable backdoors, producing unwanted or dangerous behavior.

Our poor ability to interpret deep learning models, the massive datasets required for training,

and the large parameter spaces of such models combine to create a large attack surface area

for adversaries.

The promise of machine learning applications has generated considerable interest in solving

these critical challenges. Entire subfields are dedicated to causal machine learning, model

robustness, and defense against attacks to ensure generalization and performance despite

biases, distributional shifts, or adversarial activity.

1.2 Research Objectives and Contributions

The primary objective of this thesis is to explore and develop methods for incorporating causal

priors and data purification techniques into machine learning models, particularly generative

architectures, to enhance their robustness, interpretability, and performance. Specifically, the

research investigates the integration of causal knowledge into a popular generative architecture

to enable the generation of counterfactuals and de-bias models even when bias-free data

might not be present. We further look at methods for testing and comparing structural

causal hypotheses using generative architectures and how augmentation can be performed in

2



a model’s latent space to enhance the generation of diverse, high-quality samples. Finally,

we address the critical challenge of train data poisoning attacks and undesired content with

generative model dynamics.

The main contributions of this thesis are:

• CCGM: A counterfactual-based method for de-biasing generative models with causal

priors, enabling the generation of out-of-distribution samples from the training dataset.

• CSHTest: A causal structural hypothesis testing framework for comparing and eval-

uating structural causal models using generative deep learning and out-of-distribution

data generalization.

• LAVAE: A latent space augmentation technique for generative models that allows for

the composable generation of diverse and high-quality augmented samples efficiently.

• PureEBM: A robust data-purification defense mechanism against train-time data

poisoning attacks that uses the stochastic dynamics of energy-based models.

• PureGen: A set of universal data-purification methods against attacks and undesired

perturbations that uses the stochastic dynamics of energy-based models and diffusion

models separately and in combination.

1.3 Thesis organization

This thesis is organized as follows. Chapter 2 provides a review of the literature, providing

background in causality, causal modeling in machine learning, generative models, data

poisoning attacks, energy-based models, and diffusion models, along with initial work on

combining structural models with deep learning. Chapters 3 and 4 cover the main contributions

of causal priors in deep learning. Chapter 5 explores latent augmentation research, and

Chapters 6 and 7 discuss a new set of methods for data purification as a universal poison
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defense and extensions to other modalities and potential applications. Finally, Chapter 8

concludes the thesis, summarizing the main findings and outlining future research directions.
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CHAPTER 2

Background

2.1 Causality and Causal Machine Learning

2.1.1 Origins of Causality and Structural Equation Modeling

Causality has a long philosophical history, with the first formal theory coming from Aristotle’s

Physics and Metaphysics, and a more modern treatment coming from 18th century philosopher

David Hume. Hume describes causation as a regular connection between two events, A and

B, such that B always follows A, but further, that A is always temporally antecedent to B, A

and B are close in space and time, and A is necessary for B [Kle12]. Counterfactuals are a

consequential aspect of causal theory, in which unobserved worlds are posited with alternate

outcomes based on causal relationships (and the arguments we make for sufficient proxies

to these counterfactual worlds). While it is tempting to describe causality in terms of pure

probabilities, a purely probabilistic approach neglects the directionality inherent in causality,

which Hume himself implicitly posited: A is necessary for B, but B is not necessary for A.

In the 1920s, Sewall Wright first used path coefficients (linear weights) with a directed

graphical model while studying genetics in guinea pigs [Wri21]. Although he only used linear

relationships between variables, his key insight was combining mathematical modeling with a

directional, graphical model, or Structural Equation Models (SEMs).
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2.1.2 Structural Causal Modeling

There are numerous modern treatments of causality, but Judea Pearl’s generalization of

SEMs from linear to non-parametric models, known as Structural Causal Models (SCMs), is

a key aspect of causal machine learning. In Pearl’s framework, we draw causal models as

Directed-Acyclic Graphs (DAGs) and pair them with a set of equations for each variable or

node in the graph. Unlike non-graphical approaches, we can operate on the graph directly,

determining independence relationships - as well as corresponding dependencies - with no

other assumptions but the graphical model itself.

Z1 Z2

Z3

X Y

Figure 2.1: Directed Acyclic Graph Example (from [Pea10])

Take the DAG example in Figure 2.1 in which we have 5 model variables. From the graph

alone, we can write a truncated factorization of the joint distribution as

P (X,Z1, Z2, Z3, Y ) = P (Z1)P (Z2)P (Z3|Z1, Z2)P (X|Z1, Z3)P (Y |Z2, Z3, X) (2.1)

based on the graphical understanding that endogenous nodes are dependent only on their

parent variables. Conditioning on variables in the path between two variables breaks their

dependence. These simple rules give rise to powerful graphical theory such as the Backdoor

Criterion, which tells us what is an admissible set of variables to condition on to measure a

direct effect, an effect through the direct, forward path. Also of note is the Markov Boundary,

which is the minimal admissible set that satisfies the Backdoor Criterion, which can be

important when dealing with practical data limitations and the statistically expensive nature

of conditioning [Pea09]. For instance, we see that the direct effect of X on Y can be measured
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by conditioning on a set S = {Z3, Z1} or S = {Z3, Z2}. Conditioning on Z3 is needed as it

is a confounder, but doing so opens a spurious correlation which must be blocked by also

conditioning on either Z1 or Z2.

Graphical connections do not necessarily mean that an obvious correlation will exist in the

data. Such measurements from data are subject to the functional relationships themselves,

noise, sampling constraints, and, of course, the certainty in the model itself. From this comes

a powerful intuition of information asymmetry, it is the absence of connection in an SCM

that provides us with the most information at the graphical level, but this absence is also the

hardest to prove or justify. Or, stated another way, a DAG could always be described as fully

connected (still satisfying acyclicity) with weights of zeros where connections were previously

absent. Having the confidence to remove a connection usually requires overwhelming and

domain-invariant information.

2.1.3 Causality and Machine Learning

We can broadly categorize causal research into two categories: causal discovery and causal

inference. Causal discovery involves extracting the graphical structure and estimating

structural equations from observational data, while causal inference is concerned with the

impact of changing a model variable on an outcome [NPR22]. Both have seen tremendous

progress in the AI and deep learning community in recent years.

Causal discovery is arguably the more difficult problem, as there are numerous limitations

to learning a DAG solely from observational data, and even in the best case, one can usually

only learn a Markov Equivalence Class [HJY15]. This is the set of DAGs that encode the

same set of conditional independences, effectively providing the skeleton, or the undirected

graph. The absence of certain connections is still powerful information, but directionality is

one of the key aspects of causal priors. Deep learning has also been applied to this problem

space with some interesting and influential results. Perhaps the most notable contribution is

a paper that suggested a function of a DAG adjacency matrix G [ZAR18]. The main use is
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that G is a DAG if and only if

H(G) := tr [(I+G ◦G)n]− n = 0 (2.2)

So we can take what was previously a discrete, non-differentiable problem and apply the

continuous differentiable loss function (2.3) via an augmented Lagrangian for learning the

DAG

ℓh = λH(G) +
c

2
|H(G)|2 (2.3)

balancing between the need to preserve acyclicity while ensuring we don’t degenerate

down to the identity matrix. This core idea of learning the DAG adjacency matrix via a

differentiable loss function has been used in numerous follow-up works, including our own, as

covered in Chapters 3 and 4.

Causal inference also has a growing body of research, largely concerned with estimating a

causal effect once the model has been identified. Perhaps the most common and simplest

is the Average Treatment Effect (ÂTE), which is simply the difference of means between

a population’s (index = i) treated and untreated groups, assuming a binary intervention

variable (D), and an outcome variable (Y ) as in equation (2.4).

ÂTE = E[Yi|Di = 1]− E[Yi|Di = 0] (2.4)

This naïve method does not consider any confounding variables. One common way to

adjust for such confounding bias is to use propensity scores (π̂(Xi)), which is a model for

how likely a sample is to receive the treatment based on the measured covariate factors.

The inverse of the propensity score (Inverse Propensity Weighting - IPW) can then be used

to weight each sample as in equation (2.5) and thus adjust for the bias of any measured

confounders.

ÂTEIPW =
1

N

N∑
i=1

[
DiYi

π̂(Xi)
− (1−Di)Yi

1− π̂(Xi)

]
(2.5)
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More recent developments introduce double-robust methods which specify both an outcome

model and an exposure/propensity score model, which can provide accurate estimation if

either one of the models is misspecified. Augmented IPW (AIPW) is a specific method that

extends IPW with a set of outcome models that estimate the outcome variable as a function

of the intervention and all covariates [GQ10a]. Both the exposure/propensity score model

and the outcome model can be trained as deep neural networks.

2.2 Deep Learning

Deep learning is a sub-field of machine learning that deals with the training of artificial neural

networks with many layers [LBH15]. The addition of multiple layers enables the learning of

complex, hierarchical representations of data. The origins of deep learning come from the

single-layer perceptron, which is effectively a linear transform via a matrix multiplication

along with a summation and an ’activation’ function to compute some non-linear output

value (for a given intermediate or output node). The invention of back-propagation enabled

multi-layer perceptron training and the ability to train arbitrarily large artificial neural

networks as universal function approximators [RHW86].

Deep learning tasks typically fall into classification, regression/prediction, or generation.

Model training can occur in a supervised, unsupervised, or mixed (semi-supervised) setting

in which data exist with (supervised) or without (unsupervised) labeling or categorization.

Fundamentally, training data is utilized to fit a model for some task, optimized for a loss

function. Formally, consider the empirical risk minimization formula

θ̂ = argmin
θ
L(θ) = argmin

θ

1

|Dtrain|
∑

(x,y)∈Dtrain

l(y, f(x; θ)) (2.6)

Loss(θ,Dtest) =
1

|Dtest|
∑

(x,y)∈Dtest

l(y, f(x; θ)) (2.7)

in which we minimize a loss function 2.6 with respect to our model parameters θ using
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training data. The true goal is to minimize an identical loss 2.7 on an unseen test data

set [Mur22]. This is generalization in a classical machine learning sense, but this presents

challenges, as the test data is likely limited with respect to a vast or distributionally shifted

intended domain.

Specific architectures were developed to better process certain patterns in data such

as Convolutional Neural Networks (CNNs) for images and Recurrent Neural Networks

(RNNs) and Transformers on sequential data and language [KSH12, VSP17]. Although such

architectures have represented major performance milestones, a consistent theme in deep

learning has been large performance gains from increasing model and data set size, typically

following power law scaling [HKK20, KMH20]. Today’s state-of-the-art (SoTA) models,

exceeding trillions of parameters, consuming petabytes of data and exa-FLOPs of specialized

compute, have achieved remarkable success in various domains, such as computer vision,

natural language processing, and speech recognition, often exceeding human performance

[HPB24, SHM16, HZR15, Len24].

Despite their impressive performance, deep learning models are often criticized for their

lack of interpretability and robustness, particularly when adversarial attacks are involved

[RHC23, LXG23]. The complex, non-linear nature of deep neural networks makes it dif-

ficult to understand how they predict or generate, which can be problematic in high-risk

applications such as healthcare and autonomous driving. Deep learning models are highly

over-parameterized, and can behave like non-parametric models with a tight fit to data

[FC19]. They can pick up spurious correlation or noise despite regularization, which might

generalize to the highly-overlapping test distribution, but is less applicable to a broader

domain of interest. This makes high-performing models "fragile" or readily susceptible to

adversarial attacks, where small, often imperceptible, perturbations of the input can cause

the model to make incorrect predictions or undesired generations [RKH22, XML19]. These

drawbacks inspired numerous research fields to make classical deep learning approaches more

robust and easier to interpret while maintaining performance.
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2.3 Preliminary Work on Structural Causal Neural Networks

2.3.1 Introduction

In this section, we explore Structural Causal Neural Networks (SCNNs), an early framework

for modeling that combines the expressive power and function approximation capabilities of

neural networks with causal information and priors expressed in Structural Causal Models

(SCMs). As discussed, there is a growing desire for research in interpretability, modularity,

and generality for reasons ranging from ethics to data efficacy [OCS20, OSJ18, LPK20,

RGG, OSJ18]. SCNNs integrate causal information and insight into modeling offering a

compelling path to more robust and data-efficient models. We explore the usage of SCNNs

on toy models with a novel method for utilizing global and local gradient information where

endogenous/latent variables might be observable.

A simple two-layer DNN architecture is shown in Figure 2.2. Besides high-level hyper-

parameter and design choices, the parameters of the hidden nodes - often in the mil-

lions of billions for state-of-the-art models - have few constraints. The result is often

an over-parameterized models that can achieve high loss performances but have com-

plex,uninterpretable substructure, giving neural networks their nickname as "black-boxes".

In contrast to deep learning methods, causality has largely been researched in the symbolic

and graphical context. Structural Causal Models [Pea00, Pea10] provide a systematic way to

analyze causal Directed Acyclic Graphs (DAGs), independently of the functional relationships

of the variables. Figure 2.2 on the right shows an example of the graphical portion of an

SCM where the arrows represent a known causal relationship and, more importantly, the lack

of arrows represents the absence of functional relationships (that is, independent variables).

Paired with structural equations or functional relationships between variables, the SCM is a

concise and highly interpretable representation of a system.
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DNN
Hidden Layers

Inputs

Output

SCM
Endogenous
Variables

Inputs Output

Figure 2.2: DNN (left) vs. SCM DAG only (right)

2.3.2 Structural Causal Neural Networks (SCNNs)

Structural Causal Neural Networks combine SCMs with neural networks and deep learning

training methods to attempt to maintain invariances in the causal model with a more flexible

training process, utilizing local and global gradient information based on the observability of

endogenous variables. This is done by using "sub-neural-networks" as function approximators

of the structural equations (functional relationships). Figure 2.3 visualizes an SCNN with

many small neural networks placed at the inputs of each endogenous variable in the SCM.

In the circumstance where the DAG of a causal model might be known or hypothesized, we

can now use backpropagation to train the SCNN after selecting appropriately sized neural

networks.

SCNN
Sub-Neural Networks

and Endogenous Variable

Inputs
Output

Figure 2.3: Structural Causal Neural Network (SCNN)
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2.3.3 Experiments

2.3.3.1 Synthetic Data Model

Analysis is done on two simulated data models, one linear and one nonlinear, both of which

share the same causal DAG but have different structural equations. The variables in the

simulated toy model are labeled to represent a student taking an oral exam.

Student Oral Exam SCM

Communication (C)

Technical Skills (T)

Presentation (P)

Explanatory
Ability (E)

Technical
Questions (TQ)

Score (y)

Figure 2.4: Prelim Exam Structural Model: DAG and Equations

The data model has initial inputs from a Gaussian distribution and additive Gaussian

noise in all structural equations, where samples N = 14000 times for dataset sizes train ∼

10000, val ∼ 2000, test ∼ 2000. The inputs are given by C = N (0, 0.1) and T = N (0, 0.1)

and the linear and nonlinear equations are given in equations 2.8 and 2.9.

E = 2C + T +N (4, 0.1)

TQ = 2T +N (0, 0.1)

P = 1.5E + 0.5C +N (0.5, 0.1)

Y = 1.5P + 3E + TQ+N (0, 0.1)

(2.8)

E = 2C3 + T 2 +N (0, 0.1)

TQ = 2T +N (0, 0.1)

P = 1.5 sin(E) + 0.5 sin(C) +N (0.5, 0.1)

Y = 1.5P 3 + 3eE + 2.5TQ+N (0, 0.1)

(2.9)
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2.3.3.2 Trained Models and Optimization

A Fully Connected neural network (FCNN) was used for our baseline DNN for performance

comparison. The FCNNs were optimized across the learning rate, width, and depth of the

network - for the linear and nonlinear models. We developed a new class for the SCNNs which

initializes and handles an SCNN object with a ’meta-level’ of forward and back propagation

between the sub-neural-networks. The SCNNs were also optimized across learning rate, width,

and depth of the sub-neural-network for validation loss performance.

2.3.3.3 Multi-Gradient Optimization

We introduce a gradient local/global weight parameter η which allows us to slide between a

weighted combination of the local and global gradients for each sub-neural-network NN sub
i as

in equation 2.10. If the latent/endogenous variables in the SCNN are unobserved, we resort

to training as if it was a standard, sparsely connected NN (η = 0). On the other hand, if

the observed variables are known, we could utilize that as a local loss/gradient for the latent

variables. If we fully trusted the observed data, we could train only on the local loss (η = 1),

which is equivalent to training each sub-neural-network independently.

∇NNsub
i

= (1− η) · ∇NNsub
i
Lglobal + η · ∇NNsub

i
Llocal∀i (2.10)

2.3.3.4 Ground Truth Analyses

To measure the ground truth approximation capability of each sub-neural-network, we forward

propagate a verification vector which is an evenly spaced set of eleven values spanning the

domain of the two inputs Cverify, Tverify = [−0.4 : 0.08 : 0.4], with the values based on

the generative input distribution N (0, 0.1). We compute the mean squared error difference

between the verification values from the original structural equations (without additive noise)

and the values of the equivalent nodes in the SCNN. We sum across the four hidden nodes to
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compute the total ’ground truth loss’ LGT . All experiments are run 10 times to get the mean

and standard deviation of the losses.

LGT =
∑
latent

1

n
×

n∑
i=1

(SCNN [latenti]− latentiverify)
2 (2.11)

2.3.4 Experimental Results

2.3.4.1 Basic Results (η = 0)

In Table 2.1 we show the test losses and final validation losses for both SCNNs, with

(SCNN) and without (SCNN∗) convergence checks. Convergence checks include results

with validation loss < 0.7 and < 2 for linear and nonlinear, respectively. The two FCNN

baselines that performed best on validation data are shown with the dimensions of the hidden

layer(s) given in parentheses. These results, when η = 0 (no information about endogenous

variables is known or used), indicate that SCNNs, when naively trained and optimized with

a convergence check, produce results comparable to FCNNs (and marginally better in the

linear case). But SCNNs are prone to divergence, or catastrophic failure, and without the

convergence checks the divergent training runs dramatically increase error.

Table 2.1: Validation and Test Losses for SCNN and Baseline FCNNs showing comparable

performance with convergence checks but not without checks (SCNN*) in both linear and

nonlinear datasets

Linear Nonlinear

Validation Test Validation Test

SCNN 0.34 ± 0.02 0.34 ± 0.03 1.74 ± 0.08 1.67 ± 0.07

SCNN* 97.27 ± 155.11 97.81 ± 155.95 3.45 ± 2.47 3.30 ± 2.38

FCNN [4] 0.38 ± 0.01 0.37 ± 0.01 1.63 ± 0.04 1.61 ± 0.03

FCNN [6, 6] 0.38 ± 0.02 0.38 ± 0.02 1.64 ± 0.05 1.63 ± 0.05
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2.3.4.2 η vs. Performance

We further explore training with observable endogenous variable loss and using local and

global loss information as in Equation 2.10. In Table 2.2 and Figure 2.5 we see the results of

moving the weight η from 0 where we use only global gradient information to 1 where we use

only local gradient information. As expected, utilizing local information greatly decreases

local loss with a very marginal sacrifice of global loss (on the final Pass/Fail output Y ). If

all the data is observed, we could allow η to be a trainable parameter, which might tell our

confidence in the local vs. global data, or confidence in the structural model itself.

Table 2.2: Test losses showing how endogenous variable loss goes down as we utilize more

local gradients (higher η), but sometimes at a marginal loss of global accuracy (prediction of

pass variable Y)

Linear Nonlinear

E TQ P Y E TQ P Y

0.00 3.9045 ± 2.95 0.9858 ± 0.91 6.4518 ± 7.70 0.0453 ± 0.00 0.2777 ± 0.35 0.1849 ± 0.08 1.6961 ± 3.03 0.2479 ± 0.00

0.01 0.3857 ± 0.24 0.3924 ± 0.22 1.5012 ± 1.66 0.0450 ± 0.00 0.1033 ± 0.08 0.0955 ± 0.05 0.0912 ± 0.08 0.2483 ± 0.00

0.10 0.5255 ± 0.35 0.2620 ± 0.19 0.2337 ± 0.26 0.0461 ± 0.00 0.0102 ± 0.01 0.0192 ± 0.01 0.0085 ± 0.00 0.2449 ± 0.00

0.33 0.0749 ± 0.06 0.1253 ± 0.03 0.2606 ± 0.78 0.0452 ± 0.00 0.0033 ± 0.00 0.0055 ± 0.00 0.0064 ± 0.00 0.2494 ± 0.01

0.70 0.0041 ± 0.00 0.0185 ± 0.01 0.3466 ± 0.72 0.0474 ± 0.00 0.0016 ± 0.00 0.0017 ± 0.00 0.0053 ± 0.00 0.2510 ± 0.01

1.00 0.0014 ± 0.00 0.0026 ± 0.00 0.0050 ± 0.00 0.0516 ± 0.01 0.0015 ± 0.00 0.0014 ± 0.00 0.0049 ± 0.00 0.2556 ± 0.00

2.3.5 Discussion

SCNNs are an interesting exercise in integrating causal knowledge and structure into a

deep learning paradigm. The results offer us some intuitions, such as how causal priors can

often result in better performance but might be harder to optimize and offer less consistent

convergence. Although such a naive approach had some promising results, having such

complete causal information - an accurate DAG and/or observability of all endogenous

variables - is impractical. Further, even with such information, optimization is sporadic and

subject to non-convergene at a high rate, which is likely to be a persistent issue as we increase
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Figure 2.5: SCNN test losses vs η showing a decrease in endogenous loss as we skew more to

local gradients, with very moderate sacrifice of final output loss

the scale of the data and models. Later research covered in subsequent chapters makes use of

far more complex deep learning architectures integrated with more realistic causal priors, but

the basic intuition of embedding structural prior information into deep learning models is

maintained.

2.4 Generative Modeling and Causality

2.4.1 Generative Models

Generative models have been crucial to solving many problems in modern machine learning

and creating useful synthetic datasets. Two of the early and most influential models include

Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) [GPM14,

KW13a], used primarily for image modeling. Much of the recent progress in generative

language models is due to the Transformer architecture [VSP17, RWC19]. More recently,

increasing development has occurred on diffusion models (DMs) and energy-based models

(EBMs), which use recursive stochastic dynamics to generate or modify data, showing

tremendous progress in a wide variety of image generation tasks [HJA20, DM20, RBL22b].
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2.4.1.1 Variational Autoencoders (VAEs)

Most of our work integrating causal priors in generative models focuses on VAEs. VAEs are a

powerful extension of the vanilla Autoencoder, which is an information bottleneck architecture.

A VAE architecture, as seen in Figure 2.6, differs from the Autoencoder by parameterizing

the latent space as a Gaussian distribution that can be sampled via a reparameterization trick

that allows gradients to still flow[KW13a]. This forces a more continuous, tightly distributed

latent space, usually via a Kullback-Leibler divergence loss, in which one can interpolate

between training samples in the latent space to get new outputs that differ from any training

data or inputs.

µ

σ

sample
x1 x̂1

x2 x̂2

x3 x̂3

x4 x̂4

x5 x̂5

Figure 2.6: Variational Autoencoder Architecture with encoder, decoder, and a mean/variance

parameterizing a latent space.

The VAE framework is based on the principle of maximum likelihood estimation, where

the goal is to maximize the likelihood of the training data under the model. However, in

order to make the optimization tractable, the VAE introduces a variational lower bound on

the log likelihood, which can be written as:
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L(θ, ϕ;x(i)) = Eeϕ(z|x(i))

[
log dθ(x

(i)|z)
]
−KL

(
eϕ(z|x(i))||mθ(z)

)
(2.12)

= Eeϕ(z|x(i))

[
log dθ(x

(i)|z)
]
−
∫

eϕ(z|x(i)) log
eϕ(z|x(i))

mθ(z)
dz

where x(i) is a single training example, and θ and ϕ are the parameters of the decoder and

encoder, respectively. The first term in the lower bound, Eeϕ(z|x(i))

[
log dθ(x

(i)|z)
]
, is known

as the reconstruction loss, and it measures the difference between the reconstructed data and

the original data. The second term, KL
(
eϕ(z|x(i))||mθ(z)

)
, is known as the KL divergence,

and it measures the difference between the approximate posterior distribution and the latent

distribution. The first term is the decoding error (the classic rate-distortion theory), and the

second term is the extra rate for coding z assuming marginal pdf mθ(z).

2.4.1.2 Energy-Based Models (EBMs)

Energy-based models are a class of generative models that define a probability distribution

over the input space by assigning an unnormalized scalar "energy" value to inputs. EBMs are

typically formulated as a Gibbs-Boltzmann density, as introduced in [XLZ16]. This model

can be mathematically represented as:

pθ(x) =
1

Z(θ)
exp(−Gθ(x))q(x), (2.13)

where x ∈ X ⊂ RD denotes an image signal, and q(x) is a reference measure, often a

uniform or standard normal distribution. Here, Gθ signifies the energy potential, parameterized

by a nerual network with parameters θ. The normalizing constant, or the partition function,

Z(θ) =
∫
exp{−Gθ(x)}q(x)dx = Eq[exp(−Gθ(x))], while essential, is generally analytically

intractable. In practice, Z(θ) is not computed explicitly, as Gθ(x) sufficiently informs the

Markov Chain Monte Carlo (MCMC) sampling process.

Inputs with lower energy are considered higher probability under the trained model’s
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distribution. Training an EBM is often achieved by minimizing a contrastive loss function

that pushes down on the energy of training data points while pulling up on the energy of

sampled negative examples. We can formulate this as an optimization problem.

∇L(θ) = Epdata [∇θGθ(x)]− Epθ [∇θGθ(x)]
.
=
∑
∇θGθ(x+

i )−
∑
∇θGθ(x−

i ) (2.14)

where,

• L(θ) is the negative log-likelihood loss function

• Epθ[·] is the expectation over the model distribution

• Gθ(x) is the negative energy function, equivalent to the unnormalized log probability,

parameterized by θ

• x+
i denotes a positive sample from the true data distribution

• x−
i denotes a negative sample from the model distribution

Since computing the probability requires integrating over the entire input space, which

is intractable for high-dimensional data, approximate sampling techniques such as Markov

Chain Monte Carlo (MCMC) methods are commonly used. While difficult to train, some

advantages of EBMs are their flexibility in architecture and ability to learn complex, multi-

modal distributions. Influential work on EBMs includes the Deep Energy Model and Joint

Energy-Based Models [KY22, GWJ20].

2.4.1.3 Denoising Diffusion Probabilistic Models

Diffusion models are a class of generative models inspired by thermodynamics where the

key idea is to define a forward diffusion process that adds noise and then learn a reverse

process that removes the noise to generate samples [HJA20]. The forward process successively
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adds noise over a sequence of time steps, eventually resulting in values that follow a prior

distribution, typically a standard Gaussian. The reverse process is defined as the conditional

distribution of the previous variable at a timestep, given the current one. This reverse process

is parameterized by a neural network and trained to de-noise a variable from the prior to

match the real data distribution. Thus, sampling from a trained diffusion model involves

first drawing a sample from the prior distribution, and then running the learned de-noising

process to gradually remove noise and yield a final sample.

Formally, let x0 ∼ q(x0) be a clean image sampled from the data distribution. The

forward process is defined by a fixed Markov chain with Gaussian transitions for a sequence

of timesteps t = 1, . . . , T :

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (2.15)

where βt ∈ (0, 1) is a variance schedule. After T steps, xT is nearly an isotropic Gaussian

distribution.

The reverse process is defined as a Markov chain with learned Gaussian transitions:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2.16)

The mean µθ(xt, t) and covariance Σθ(xt, t) are learned using a neural network parame-

terized by θ. The reverse process is trained to maximize the variational lower bound on the

log-likelihood of the data distribution.

Diffusion models have shown remarkable performance in high-fidelity image generation,

often outperforming GANs in terms of sample quality and diversity. They have also been

successfully applied to audio and video generation. Some milestone diffusion model archi-

tectures include Denoising Diffusion Probabilistic Models (DDPMs) and Latent Diffusion

Models (LDMs) [RBL22b].
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2.4.2 Reformulating Generalization

Causality ideally encodes invariances that exist outside of the train/test dataset domain.

Causal priors might also restrict a model’s parameters from over-fitting to noise/spurious

relationships within the train/test domain to better generalize to out-of-distribution (OOD)

data. Let’s define an abstract set of causal priors Ĉ, which might be a DAG or full SCM, and

a model or method that utilizes those priors mĈ, which might be an architectural choice or

partially fixed parameterization. In order to measure this, we might discuss a new formulation

θ̂ = argmin
θ
L(θ) = argmin

θ

1

|Dtrain|
∑

(x,y)∈Dtrain

l(y,mĈ(x; θ)) (2.17)

Loss(θ,DOOD) =
1

|DOOD|
∑

(x,y)∈Dtest

l(y,mĈ(x; θ))

s.t. d(Dtrain,DOOD) >> d(Dtrain,Dtest)

(2.18)

where d(Di,Dj) is some statistical distance metric (like a Kullback-Leibler Divergence

or Wasserstein Distance) and our constraint is such that the OOD data distribution we

wish to generalize to is some meaningful distance away from the standard test distribution,

representing either a large distributional shift or a counterfactual. In practice, OOD data

are usually a more discrete or heuristic-based change, such as generalizing images of actual

objects to a similar database of sketched versions or moving between games with similar

rules but certain modifications [DGB22, WGL19]. In our research, we similarly often show

OOD generalization be either visualizing counterfactuals which explicitly never appear in a

training dataset or by splitting data in some non-random manner.

2.4.3 Causality and Generative Modeling

The integration of causality and generative modeling is in its early days, but not without

some important attempts. Although GANs are difficult to train, one work utilized plausible
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structural causal knowledge within a GAN architecture, allowing explicit interventions and

counterfactual generation [KSD17]. There has also been work attempting to enforce causal

structure in the latent space of a VAE, which some of our work is based on [YLC20].

Contemporary work has been done on causal diffusion models for counterfactual generation

[ST22].

One consistency among this research is that causal structure or structural priors are

usually learned or utilized, while the functional relationships themselves are parameterized as

neural networks. Our causal priors are typically graphical, while the functional relationships

are rarely known outside of domains like physics. Thus, many of these models utilize one of the

fundamental promises of deep learning architectures, the universal functional approximation,

within the bounds of causal priors instead of on the whole problem space or domain. This

perspective informs much of our work.

2.5 Adversarial Training and Data Purification

Research on adversarial examples for deep learning models shows that examples can be

"crafted" to be imperceptible to humans such that those "poisons" can generalize quite

broadly across training paradigms and architectures, sometimes requiring limited or no

understanding of the model details itself during crafting [SZS14, GSS15]. Such adversarial

attacks can be broadly categorized into inference-time evasion attacks, which manipulate

test inputs to cause misclassification, and poisoning attacks, which inject modified data into

the training set to degrade model performance or insert hidden backdoors [GTX21]. Data

poisoning attacks are particularly concerning, as they can be difficult to detect since they

require modifying only a small percentage of training data and have a lasting impact on the

trained model [WXS23].
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2.5.1 Adversarial Optimization

Fundamentally, an attacker is solving a bi-level optimization problem:

argmin
δi∈C

∑
(xπ ,yπ)∈Π

L(F (xπ + ρ;ϕ(δ)), yadv)

s.t. ϕ(δ) = argmin
ϕ

∑
(x,y)∈D

L(F (x+ δi;ϕ), y)
(2.19)

The primary objective is to minimize the adversarial loss on a set of target examples

Π. The goal of adding these poisons is to change the prediction of a set of target examples

Π = {(xπ, yπ)} ⊂ Dtest or triggered examples {(x + ρ, y) : (x, y) ∈ Dtest} to an adversarial

label yadv. The constraint, utilized for backdoor attacks, ensures that the classifier parameters

ϕ are obtained by training on the poisoned dataset, and thus minimally impact classifier

performance as the poison percentage is usually low (whereas this constraint might be reversed

for untrainable/availability attacks since the goal is to collapse model performance). Typically,

additional constraints
∑n

i=0 1δi ̸=0 ≤ αn limit the number of poisoned samples to a fraction

α of the total training set (0.1-10% of the data) and C = {δ ∈ RD : ∥δ∥∞ ≤ ξ} limits the

perturbations to be within some imperceptible bound (8/255 in PNG images for example).

2.5.2 Adversarial Defense

To defend against these threats, researchers have proposed various techniques, such as

adversarial training, which augments the training data with adversarial examples to improve

robustness [BLZ21, BGC21]. However, these methods often come at the cost of reduced

accuracy on clean data and can be computationally expensive. More performant techniques

typically use filtering methods that identify and remove malicious data points or robust

training techniques that modify the learning algorithm to mitigate the impact of poisoned

data [PGH20, BLZ21]. In chapters 6 and 7f, we explore our own contributions to a universal

poison defense that does not require train-time information and achieves SoTA results in
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both poison defense and preserved natural accuracy.

2.5.3 Connecting Adversarial Training and Causal Machine Learning

As we shall see, integration of causal priors and adversarial defense share many similar

properties around ensuring robustness and trustworthiness in models with hard-to-predict

behavior that, even while achieving superhuman results, can baffle us with seemingly obvious

failures [BMC23]. Ultimately, modern deep learning operates in high-dimensional spaces,

where our ability to directly interpret the relevant feature spaces is difficult. However, the

integration of defense techniques and priors can serve as useful stepping stones in the journey

to better understand and align machine learning models with our own intelligence and

understanding of the world.
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CHAPTER 3

De-Biasing Generative Models using Counterfactual

Methods

3.1 Introduction

In many fields such as medicine and economics, an explainable model, in particular a causal

model, is needed to elicit the effectiveness of interventions. This process makes diligent use of

prior knowledge, usually in a structural causal model (SCM) that instantiates unidirectional

relationships between the variables using a Directed Acyclic Graph (DAG) [Pea10]. The

confidence needed in a causal model needs to be much higher than in a statistical model as

one needs to instantiate beliefs that are invariant and exist outside the domain of the data.

Traditionally, this knowledge comes from experimentally derived results, or domain experts

with experimental level knowledge. As such, there is a strong interest in the deep learning

community to integrate causal methods and information more directly with traditional

deep learning architectures. Although recent results show progress in causal deep learning,

most methods focus on either causal discovery or the use of prior causal information alone

[ZNC19, KSD17, YCG19].

Generative models have been crucial to solving many problems in modern machine

learning [KW13b]. Since the VAE’s inception, many have found that the disentanglement of

latent spaces can lead to better performance in generalizability and fine-tuned control over

disentangled features. In addition, many techniques have been proposed in recent years as to

how to improve disentanglement, largely based on factorization and independence techniques
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[HMP17, CLG18].

Recently, an effective approach that blends the space of causal models with generative

neural networks was presented with the CausalVAE, which allowed the decoder to learn

a causally disentangled representation of latent space variables [YLC20]. One of the key

contributions in that paper was the inclusion of a Causal Layer. Most impressively, the

CausalVAE enforced a causal structure on generating images to noticeably disentangle

intentionally dependent latent variables via the use of a causal layer. The disentanglement

of this causal layer allows CausalVAE to generate causal interventions. Specifically, when

intervening on endogenous variables, the CausalVAE is able to generate images that are

outside the normal bounds of the training dataset, as the intervention does not affect the

exogenous variables.

Here, we combine the ideas of counterfactual causal reasoning and generative modeling

by focusing on the causal layer of the CausalVAE. We modify the objective to learn a more

refined, isolated causal structure that the latent space must go through, which we call Causal

Counterfactual Generative Model (CCGM). This allows us to expand the use of the causal

layer to more than just single interventions and to also hypothesize and synthesize datasets

of counterfactual causal models in interesting and useful ways.

3.2 Related Work

Causal discovery has increasingly been the focus of deep learning methods which seek to reduce

the combinatorial complexity of brute force searches for causal models from observational data.

Progress in DAG search using continuously differentiable loss functions and reinforcement

learning for score functions has started to integrate deep learning methods with causal

discovery and identification [ZAR18][ZNC19].

Building on initial deep causal discovery, causal generative models learn or use causal

information for generating data and interventions. CausalGAN is a generative model that
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learns a prior Structural Causal Model (SCM) for images and label spaces and demonstrates

how interventions in the latent space can generate causally intervened images [KSD17].

DAG-GNN uses graph neural networks with a VAE architecture to extend causal discovery

methods to more use-cases [YCG19]. CausalVAE uses a causal layer in the middle of a VAE

architecture to learn an implicit causal model that can also generate unseen images with

latent space interventions [YLC20]. Causal discovery with generative models capitalize on

recent work in disentanglement to ensure the latent space has the necessary variable structure

for causal identification [HMP17]. Finally, causal generative models have been used to address

the issue of fair or “de-biased" data sets such as DECAF, a causally aware GAN architecture

applied explicitly to tabular data [BKB21].

When causal models are known or hypothesized to contain measured confounders, statis-

tical adjustment techniques have long been used to estimate causal effects when the structure

is known or identifiable. Inverse Propensity Score Weighting (IPW), or advanced methods

like Augmented IPW provide robust or doubly-robust ways to adjust for confounding bias

[GQ10b].

3.3 Background

3.3.1 Counterfactuals and Interventions

The SCM literature has long explored the benefits of interventions and counterfactual modeling

once a causal model is known. Extensive background on causality and causal models can be

found in section 2.1. Pearl introduces interventions using ‘do-calculus’ or the explicit setting

of a variable to a specific value and calculating the resulting outputs [Pea10]. In Figure 3.1

below, we introduce a 4-variable DAG with two exogenous and two endogenous variables.

An intervention on the right shows how this is effectively breaking the parent nodes into the

variable being intervened on, and explicitly setting it to a desired value (x), written using

do-calculus notation do(x). This operation allows us to directly fix the value of a latent
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variable and asymmetrically propagate its value to other variables. Intervened parents should

have their adjusted values impact child nodes, but intervened children should not adjust

parent values.

do(x)

Figure 3.1: Example of a DAG on the left and a mutated counterfactual model on the right

with an intervention setting the target variable to an explicit value x.

3.3.2 Counterfactual Models

Extending from the idea of interventions on instances of data, we define counterfactual models

as a new model formed by removing a path deemed undesirable or a source of bias as seen in

Figure 3.2. This could be a known bias present in the data generating process, or a desire

to envision a new data distribution outside the training dataset with a specific graphical

modification. Notice, unlike an intervention as in Figure 3.1, the target variable need not

be set explicitly but still is a function of the other parent variables. This allows a data

distribution to be generated in which the target is still a function of the remaining parent

nodes, possibly simulating a “de-biased" or counterfactually constructed dataset, as opposed

to explicit instantiations of the intervened variable.

θ xsun

wshadow xshadow

θ xsun

wshadow xshadow

x =

f(θ)

Figure 3.2: Example of a counterfactual model in which a single path is removed to simulate

a new distribution of generated data.
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3.3.3 Constructing a Causal Generative Model

Following the classic VAE model, given inputs x, we encode into a latent space z with

distribution qϕ where we have priors given by p(·) [KW13b].

ELBO = EqX

[
Ez∼qϕ [log pθ(x|z)]−D(qϕ(z|x)∥pθ(z))

]
(3.1)

In [YLC20], the causal layer is described as a noisy linear SCM:

z = ATz+ ϵϵϵ (3.2)

which finds some causal structure of the latent space variables z with respect to a matrix A.

By itself, A functions as the closest linear approximator for the causal relationships in the

latent space of z.

A non-linear mask can be applied to the causal layer so that it can more accurately

estimate non-linear situations as well. Suppose A is composed of column vectors Ai. For

each latent space concept i, define a non-linear function gi : Rn → R and modify equation

(3.2) such that

zi = gi(Ai ◦ z) + ϵϵϵ (3.3)

where ◦ is the Hadamard product. In this formulation, the view of A changes from one

of function estimation to one of adjacency. That is, if A is viewed as a binary adjacency

matrix, the gi functions take the responsibility of reconstructing z given only the the parents,

dictated by Ai ◦ z. In the simplest case, if gi(v) =
∑

j vj, the summation of all the values of

v, then Equation (3.3) degenerates back to Equation (3.2) [NZF19].

Including the causal layer introduces many auxiliary loss functions that we mostly adopt

[YLC20]. First is a label loss (3.4), where the adjacency matrix A should also apply to the

labels u. This loss is used in pre-training in its linear form to learn a form of A prior to

learning the encoder and decoders. After pre-training, we apply a nonlinear mask fi that
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functions similarly to gi, but operates on the label space directly, but with the same A.

ℓu = EqX

[
n∑

i=1

∥ui − fi(Ai ◦ u)∥2
]

(3.4)

The latent loss tries to enforce the SCM, described by Equation (3.3).

ℓz = Ez∼qϕ

[
n∑

i=1

∥zi − gi(Ai ◦ z)∥2
]

(3.5)

Further enforcing the label spaces, we can define a prior p(z|u). We use the same

conventions as in [YLC20] and say that

p(z|u) ∼ N (un, I)

where un ∈ [−1, 1] are normalized label values. This translates to an additional KL-loss.

Finally, we apply the continuous differentiable loss function (3.6) and apply a scheduling

technique to enforce the DAG [ZAR18, YCG19]. The main use is that G is a DAG if and

only if

H(G) := tr [(I+G ◦G)n]− n = 0 (3.6)

The scheduling is done via the augmented Lagrangian

ℓh = λH(G) +
c

2
|h(G)|2 (3.7)

where at the end of every epoch, the scheduling update is

λt+1 = λt + ctH(Gt) (3.8)

ct+1 =


ηct |H(Gt)| > γ |H(Gt−1)|

ct else

where we set η = 2 and γ = 0.9.
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3.3.4 Causal Estimation

There are numerous ways to estimate a causal effect once the model has been identified.

Perhaps the most common and simplest is the Average Treatment Effect (ÂTE), which is

simply the difference of means between a population (index = i) treated and untreated group,

assuming a binary intervention variable (D), and an outcome variable (Y ) as presented in

equation (2.4) in background section 2.1.3.

This naïve method does not consider any confounding variables. One common way to

adjust for such confounding bias is to use propensity scores (π̂(Xi)), which is a model for

how likely a sample is to receive the treatment based on the measured covariate factors. The

inverse of the propensity score can then be used to weight each sample as in equation (2.5)

from background section 2.1.3 and thus adjust for the bias of any measured confounders.

Finally, more recent developments in double-robust methods specify both an outcome

model and an exposure/propensity score model which can provide accurate estimation if

either one of the models is misspecified. Augmented IPW (AIPW) is a specific method

that extends IPW below with a set of outcome models estimating the outcome variable as a

function of the intervention and all covariates as introduced in [GQ10b].

3.4 Problem Setting

3.4.1 Sun Pendulum Image Dataset

A toy pendulum image dataset is introduced in [YLC20]. This dataset is generated by

sweeping sun positions (xsun) and pendulum angles (θ) to produce realistic shadow width

(wshadow) and shadow locations (xshadow) from deterministic non-linear functions. Figure

3.3 shows the DAG for this model and an example generated image, in which the sun and

pendulum variables are exogenous, and the shadow variables are endogenous. Thus any

causal model will learn to reconstruct the shadow variables from the sun and pendulum

32



variables. Such relationships in observational studies are often invertible as correlation has

no directionality. Thus, without causal disentangling, an intervention on shadow position

would likely adjust the sun position to match.

θ xsun

wshadow xshadow

Figure 3.3: Pendulum toy image dataset DAG and example image

This dataset is used to demonstrate causal generative model quality through reconstruc-

tion fidelity as well as causal learning by intervening on parent and child nodes, showing

interventions only propagate forward from parents to children and not vice-versa [YLC20].

3.4.2 Tabular National Study of Learning Mindsets Data

To analyze our methods in a tabular setting, we use a simulated dataset based on The

National Study of Learning Mindsets [min21]. This was a randomized study conducted in

U.S. public high schools, the purpose of which was to evaluate the impact of a nudge-like

intervention designed to instill students with a growth mindset on student achievement. We

use a simulated subset of the data based on a model fit to the statistics of the original dataset

(the actual dataset was not publicly released). The study includes measured outcomes via an

achievement score, a binary treatment of a growth mindset educational intervention (not to

be confused with a causal intervention), and 11 other potential confounding factors that could

be parents of both the treatment and outcome. We select two of these confounding variables:

an average measure of the fixed mindset at each student’s school (inversely correlated with

achievement and educational intervention) and the students’ self-reported expectations of

their own success (positively correlated with achievement and educational intervention). The
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correlations between all four variables can be seen in Table 3.1.

Table 3.1: Correlation of Mindset Variables

SM SE D Y

School Mindset (SM) 1 -0.054 -0.046 -0.111

Success Expectation (SE) -0.054 1 0.059 0.439

Intervention (D) -0.046 0.059 1 0.221

Achievement Score (Y) -0.111 0.439 0.221 1

Thus we maintain a hypothesized DAG structure as in Figure 3.4 identical to the pendulum

model. Note that our interest is in regenerating the dataset with the treatment and targets as

functions of the confounders, so we do not learn the effect of the intervention on the outcome.

We will use our methods to generate datasets in which we can estimate the ATE to estimate

our causal effect using a simple difference of means.

School Mindset Success Expectation

Intervention Achievement Score

Figure 3.4: School Mindset DAG

The intuitive belief is that a naive estimate of the ATE, calculated as the difference of

means as in equation (2.4), would contain a positive bias due to the confounding variable of a

student’s own expectation. Students with higher expectations are more likely to participate in

the growth mindset course (self-selection bias) but are also likely to have higher achievement

anyway. Statistical adjustment techniques, such as Inverse Propensity Weighting (IPW),

attempt to control for such confounders by measuring and weighting the effect based on the
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propensity to be treated. We will use such methods as a baseline for comparison, as we will

first generate a dataset approximating the existing data distribution while learning some

causal features. We will then employ a counterfactual model removing a confounding link

and demonstrate a simulated dataset in which the naive ATE aligns with the ATE measure

using the statistical adjustment methods.

3.5 Causal Counterfactual Generative Model

We start from many of the same concepts as the original CausalVAE but begin by changing

the enforced structure of the causal layer, allowing us to make direct modifications to the

layer after training.

3.5.1 Limits of the CausalVAE for Counterfactuals

The causal layer in [YLC20] has a purpose of passing some causal information about the

latent space through from parents to children. However, there is a fundamental difference in

how we would like to interpret our problem. Reiterating (3.2),

z = ATz+ ϵϵϵ

Whatever causal structure is learned by A, there will always be a “leakage" of information

via ϵϵϵ. This ϵϵϵ can be viewed as the output of a vanilla VAE, meaning that theoretically it

can contain contribute everything for image generation. This leakage informs z without

passing through the causal layer, so it weakens the need for A to learn all the causal structure

of the problem. In the image space, this leakage of information improves generation and

reconstruction and hence is desirable. However, it does not align with our objective of finding

a good underlying causal structure. In the most extreme case, we could, in theory, find

A = 0, which is still a valid DAG. In this case, no remaining causal information remains in

the layer and the entire CausalVAE reverts back to a normal β-VAE.
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3.5.2 Envisioning Bias-Free Models with CausalVAE

Here, we introduce CCGM as a modified and extended version of the CausalVAE, allowing

for counterfactual models. In particular, we can directly manipulate the causal layer so that

undesirable causal links learned from the data can be broken.

In CCGM, the encoder directly generates the output z, which is enforced to be standard-

normally distributed. We pass this through our causal layer as one final mutatable bottleneck

z = ATz (3.9)

That is, it instantiates a linear SCM. One main distinction is that we solidify the structure of

A by having exogenous and endogenous priors. This way, A can be split into a DAG term

and a diagonal term:

A = G︸︷︷︸
DAG

+ B︸︷︷︸
diag.

(3.10)

where B has 1 on the diagonal for exogenous variables and 0 if endogenous. This ensures

that the trivial solution where A = I is never learned and enforces a causal relationship from

the exogenous variables to the endogenous variables.

Similarly, we add the non-linear mask to the causal layer just as in equation (3.3), but

dropping the leakage.

zi = gi(Ai ◦ z) (3.11)

When separating adjacency and estimation, we necessarily want to have a pre-training step

for 5 epochs, where we train A to recognize the adjacency of the labels before applying the

non-linear mask. After the pre-training, we apply training on both the A matrix and the

non-linear mask, but there should be fewer changes as the mask should take care of the

function approximations.

The ultimate goal of our work is to propose counterfactual causal models by directly

manipulating this A matrix. The framework proposed by [YLC20] requires one to retrain

the entire model to generate a counterfactual A while fixing a path in the graph to zero, as
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their intervention method does not deal with the leakage. This is an expensive task in both

time and computing power, making it unscalable for larger A’s. Our method allows us to

generate data about a hypothesized counterfactual space directly by breaking links in the

causal graph, without the need to retrain the neural network.

3.5.3 General Structure of CCGM

While one could work with image-to-image VAEs, in our examples, we leverage as much

tabular data as we can to reduce computational needs. In the pendulum example, we know

the labels can be used as a perfect reconstruction of the data and so the labels that are

provided act as at least a perfect bottleneck, containing more information than needed, in

the reconstruction of images.

Furthermore, the label-to-label structure can be used as a pre-training step in determining

a causal matrix. It then becomes a natural extension to apply the CCGM to tabular data.

We no longer require a VAE setup, although we preserve the mild non-linear networks which

allow for more complex causal functionality. Our experiments section will show a CCGM

capable of generating tabular data with a reasonable representative distribution and a bias

removed distribution. Note that noisy tabular data with hypothesized causal models (no

known ground truth model or guarantee of endogenous/exogenous priors) present a new set

of identification and estimation challenges.

3.6 Experiments

In this section, we evaluate the effectiveness of causal generative models on tabular and

image datasets, by answering the following questions: (1) how does the performance of

CCGM compare to the state of the art methods in reconstruction and causal logic; (2) how

effective is CCGM for eliminating biases in image and and tabular datasets; and (3) how

CCGM generates counterfactual models without extra training allowing for diverse and
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flexible data-generation. We compare the performance of CCGM and CausalVAE to generate

counterfactual samples from a fixed causal model [YLC20]. We further compare CCGM to

advanced statistical adjustment methods for generating “de-biased" datasets vs. controlling

biases statistically.

3.6.1 CausalVAE

Our experiments with the standard CausalVAE found that the model could handle inter-

ventions on specific latent space data, meaning that its decoder could causally disentangle

some of the concepts. However, non-zero interventions did not appear to be working as

intended. Figure 3.5 shows a sweep of interventions on the pendulum and sun position data,

respectively, on the same image. Notice that the first intervention, corresponding to 0, works

as intended. However, the pendulum does not change outside the 0 value, while the sun

changes somewhat in an expected fashion, but the shadow does not respond.

Figure 3.5: A sweep of the pendulum angle (top) and sun position (bottom) in the latent space

for CausalVAE. Values are chosen to attempt to see changes. Outside of the 0 intervention,

other interventions do not seem to make sense, especially with the shadows.

Furthermore, we noticed little to no change in the results of certain interventions when

generating counterfactual models, such as in Figure 3.6 below where a post training removal

on the path from sun location to shadow position did not remove the effect propagation.

These findings reflect that the CausalVAE was not designed to learn the full causal structure
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due to the leakage in ϵϵϵ.

Figure 3.6: Result which still shows effect propagation (shadow moves) after removing the

path from sun location to shadow location in CausalVAE method

3.6.2 Label-to-Label

Our initial experiments pertain to the label-to-label space, where we have four parameters

(labels) that provide perfect information for image reconstruction.

We start with a set of labels u ∈ Rn, where n = 4. These four labels correspond to the

pendulum angle θ, the sun position xsun, the shadow width wshadow, and the shadow position

xshadow, respectively such that u = [θ, xsun, wshadow, xshadow]
T . Then, u passes through an

encoder to generate z ∈ Rn, where we enforce the prior of p(z) ∼ N (0, I). This step allows

us to sample new labels from the latent space drawn from a Gaussian distribution, as we see

in the classic VAE [KW13b].

Now, we subject z to the learned causal layer. Based on our designation of u, we set

diag(A) = [1, 1, 0, 0], representing the exogenous and endogenous variables of u. Equation

3.11 is applied to to z, and the information of z should be preserved through the causal layer,

even though the exact information of the endogenous variables is intentionally dropped.

Finally, this reconstructed latent space vector ẑ is passed into a decoder to reconstruct

the original labels û. For consistency of visualization and easy of human understanding, we

pass these labels into a separate image generator to create all visualized images.

CCGM Generates Clean Label-to-Label Interventions. Since there are few parameters
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in the label-to-label space we are able to generate clean counterfactual models as well as

interventions.

Our primary results for label-to-label are shown in Figures 3.7 and 3.8. The top row of both

figures show interventional sweeps on both θ and xsun, respectively. We take a true image and

apply a range of interventions sampled from the range of the resultant sampling distribution

(N (0, 1)) to generate counterfactual samples. Interventions on exogenous variables shows a

response in the shadow variables, but the other exogenous variable should stay constant.

True 0 1 2 3

0

50

True 0 1 2 3

0

50

Figure 3.7: Label-to-label (Top) Image response to a sweep of the pendulum angle. Notice

that for all interventions, the shadow responds to the pendulum. (Bottom) Image response

after shadow position is debiased from pendulum angle. In particular pay attention to the

right-most image. While subtle, the shadow positions between the top and bottom image are

very noticeable. A quick scan from left to right on all of the intervened images suggests that

the midpoint of the shadow remains constant throughout all of the swept images. However,

it is worth noting that the shadow width still responds as if the shadow had moved to its

location.

Then, we apply the ideas of a counterfactual model. Instead of doing interventions on

specific values, we break the link of xshadow with θ and xsun in A, respectively. Afterward, if

we do the same interventions, the shadow position no longer responds to that intervention.

While some of the results can be subtle, in Figure 3.7, the final image shows a noticeable

difference in position before and after the counterfactual model and in Figure 3.8, the first
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True 0 1 2 3

0

50

True 0 1 2 3

0

50

Figure 3.8: Label-to-label (Top) Image response to a sweep of sun positions. Again, notice

that the shadow responds to the sun’s position. (Bottom) In this case, the changes are more

noticeable in that the shadow position remains constant throughout the row and is very

different than the expected locations given the sun.

and last interventions both show differences. The connection to shadow width remains, and

so the shadow width still responds to the swept variable.

3.6.3 Label-to-Image

We then consider the more challenging problem of generating an entire image from the label

information. Thus, we propose a label-to-image generative model based on the decoder of

a VAE to use the disentanglement granted by the Causal Layer. We can use a pre-trained

version of the A matrix coming from the label-to-label VAE to start our training of the causal

generative model. For the sake of computational power, we keep the dataset in grayscale to

reduce the image size by at least a factor of 3, but the physics aspects are still present.

True 0 1 2 3

Figure 3.9: Interventions in the label-to-image VAE. Note that shadows respond to pendulum

angle and sun position.
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Other than this additional pre-training step to learn the A matrix, the encoding step

and the causal layer steps are still operating exactly the same as in the label-to-label VAE.

We simply attach an image decoder after the causal layer. As in [YLC20], we see that the

images have mostly disentangled the endogenous variables and the encoder is able to create

an image where interventions can happen. These images are displayed in Figure 3.9. Notice

especially in the shadow position intervention that the sun position and pendulum angle have

not changed. With CCGM, we can recreate the results from the label-to-label VAE in the

label-to-image generator. These results are shown in Figures 3.10 and 3.11.

True 0 1 2 3

True 0 1 2 3

Figure 3.10: Label-to-image (Top) Image response to a sweep of the pendulum angle. Notice

that for all interventions, the shadow responds to the pendulum. (Bottom) Image response

after shadow position is debiased from pendulum angle. In this case, both the first and last

intervened images show noticeable differences from the pre-counterfactual images and one

can observe that the shadow midpoint remains consistent across the row.

As in the label-to-label space, the top row of both of the figures shows the sweeps of θ

and xsun in their latent space. With the interventions, the shadow responds accordingly and

the complementary exogenous variable stays relatively consistent. The bottom row shows

that the shadow position no longer responds to the interventions that are being enforced.

In both Figure 3.10 and 3.11, the first and the last interventional images show noticeable

movement from the non-counterfactual interventions.
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Figure 3.11: Label-to-image (Top) Image response to a sweep of sun positions. Again, notice

that the shadow responds to the sun’s position. (Bottom) image response after breaking the

sun position to shadow position link.

3.6.4 Mindset Data

We begin by first training our CCGM method on the original Student Mindset data. In

Figure 3.12, we see the generated achievement score from our model compared to the original

dataset. The model is able to regenerate each of the feature distributions. We take the top

30% as having the intervention (1) and lower 70% as no intervention (0) since this matches

the base rates in the original dataset. The current CCGM operates on continuous variables

and we treat the intervention values generated as a probability of treatment.

The results of an ATE on the generated dataset vs the three baseline measurements on

the original dataset of ATE, IPW, and AIPW are shown in Figure 3.13. The generated

dataset overestimates the ATE bias. We intervene on the path from student expectation to

achievement scores, breaking the strongest positive correlation and see the CCGM “De-Bias"

ATE estimation clearly drop below the advanced adjustment baseline methods. This makes

intuitive sense since we leave the negatively correlated school mindset confounder which likely

plays a small role in underestimating the ATE. Note that the advanced methods themselves

are not necessarily ground truth, but they reflect an approximate ATE we would expect a

“de-biased" dataset to have.
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Figure 3.12: Generated distribution of achievement scores closely matches the distribution in

the original dataset.

Figure 3.13: Bootstrap distribution of ATEs for various methods and baselines sampling the

entire dataset (n=10391) 100 times.

Further, Table 3.2 shows the full results for all models and multiple de-biasing schemes.

It is clear that our generative model is able to produce a "de-biased" dataset accounting for

the positive ATE bias for the Student Expectation confounder. Although removing both

confounders does marginally increase the 95% bounds for out ATE as we would expect for

a negative bias, it does not also do so when we only remove the school mindset. Here it
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Table 3.2: Mindset Average Treatment Effect (ATE) Results showing how CCGM with a

latent intervention can produce "de-baised" or causally separated synthetic data

Mean ATE Std Dev 2.5% 97.5%

Naive 0.468 0.019 0.426 0.507

AIPW 0.405 0.018 0.364 0.441

IPW 0.404 0.018 0.363 0.440

CCGM 0.680 0.015 0.650 0.707

CCGM-De-BiasStudentExpectation 0.240 0.023 0.192 0.283

CCGM-De-BiasBoth 0.242 0.022 0.204 0.282

CCGM-De-BiasSchoolMindset 0.677 0.017 0.647 0.712

becomes clear our model puts very little weight on this negative bias, a possible limitation of

our model with the noisy nature of this dataset and a point of interest for further inquiry.

All results are shown with empirical standard deviations and 95% confidence interval bounds

using bootstrap sampling methods (iters = 100).

3.7 Conclusion

In this chapter, we demonstrate the value of CCGM, an extension of previous causal

generative model work that allows greater flexibility when considering counterfactual models

and generating "out of distribution" data. We demonstrate the benefits of such a model on

a simulated physics image dataset. We show the range of interventions and simulation of

images outside of the training data, and outside of the ground-truth physics, with a simple

adjustment after training the model. We then demonstrate results on a tabular dataset where

ground-truth is not known. We show that we can learn the original data distributions, and

simulate datasets which remove the impact of confounders in ways the make intuitive sense
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based on advanced statistical adjustment baselines. Much work is needed on refining the

precision on noisy datasets, extending the framework to more complex causal models, and

exploring the limitations based on the noise present and the target causal structure if known.

We believe CCGM is a promising start within a growing field of work in causal generative

models.
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CHAPTER 4

Hypothesis Testing using Causal and Causal Variational

Generative Models

4.1 Introduction

In most scientific fields, causal information is considered an invaluable prior with strong

generalization properties and is the product of experimental intervention or domain expertise.

These priors can be in a structural causal model (SCM) form that instantiates unidirectional

relationships between variables using a Directed Acyclic Graph (DAG) [Pea10]. The confidence

in causal models needs to be higher than in a statistical model, as its relationships are invariant

and preserved outside the data domain. In fields such as medicine or economics, where ground

truth is often unavailable, domain experts are relied on to hypothesize and test causal models

using experiments or observational data.

Generative models have been crucial to solving many problems in modern machine

learning [KW13b] and generating useful synthetic datasets. Causal generative models learn

or use causal information for generating data, producing more interpretable results, and

tackling biased datasets [KSD17, YCG19, BKB21]. In the previous chapter 3, Causal

Counterfactual Generative Modeling (CCGM), in which exogeneity priors are included,

extends the counterfactual modeling capabilities to test alternative structures and “de-bias”

datasets [BJP22].

CausalVAE and CCGM focus on causal discovery concurrently with simulation (i.e.

reconstruction error-based training) [YLC20]. But in many real-world applications, a causal
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model is available or readily hypothesized. It is often of interest to test various causal model

hypotheses not only for in-distribution (ID) test data performance, but for generalization to

out-of-distribution (OOD) test data. Thus we propose CSHTest and CSVHTest, which

are causally constrained architectures that forgo structural causal discovery (but not the

functional approximation) for causal hypothesis testing. Combined with comprehensive

non-random dataset splits to test generalization to non-overlapping distributions, we allow

for a systematic way to test structural causal hypotheses and use those models to generate

synthetic data outside training distributions.

4.2 Background

4.2.1 Causality and Model Hypothesis Testing

Causality literature has detailed the benefits of interventions and counterfactual modeling

once a causal model is known. Given a structural prior, a causal model can tell us what

parameters are identifiable from observational data alone, subject to a no-confounders and

conditioning criterion determined by d-separation rules as covered in background section 2.1

[Pea09]. Because the structural priors are not known to be ground truth, we assume a more

deterministic functional form and we can make no assumptions about identifiability [Pea09].

Instead, we rely on deep neural networks to approximate the functional relationships and

use empirical results to demonstrate the reliability of this method to compare structural

hypotheses in low-data environments.

Structural causal priors are primarily about the ordering and absence of connections

between variables. It is the absence of a certain edge that prevents information flow, reducing

the likelihood that spurious connections are learned within the training dataset distribution.

Thus, when comparing our architecture to traditional deep learning prediction and generative

models, we show how hypothesized causal models might perform worse when testing within

the same distribution as the training data, but drastically improve generalization performance
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when splitting the test and train distributions to have less overlap. This effect is seen the

most in small datasets where traditional deep learning methods, absent causal priors, can

“memorize” spurious patterns in the data and vastly overfit the training distribution [AJB17].

Our architectures explore the use of the causal layer, provided with priors, as a hypothesis-

testing space. Both CSHTest and CSVHTest accept non-parametric (structural only, no

functional-form or parameters) causal priors as a binary Structural Causal Model (SCM) and

use deep learning to approximate the functional relationships that minimize a means-squared

reconstruction error (MSE). Our empirical results show the benefits of testing structural

priors using these architectures to establish a baseline for comparison where stronger causal

assumptions cannot be satisfied.

4.3 Causal Hypothesis Gen and Variational Model

4.3.1 Causal Hypothesis Testing with CSHTest

Our model CSHTest, uses a similar causal layer as in both CCGM and CausalVAE [BJP22,

YLC20]. The causal layer consists of a structural prior matrix S followed by non-linear

functions defined by MLPs. We define the structural prior S ∈ {0, 1}d×d so that S is the sum

of a DAG term and a diagonal term:

S = G︸︷︷︸
DAG

+ B︸︷︷︸
diag.

(4.1)

G represents a DAG adjacency matrix, usually referred to as the causal structural model

in literature with the modification from the previous chapter that G ∈ {0, 1}d×d, and B

has 1 on the diagonal for exogenous variables and 0 if endogenous (B ∈ {0, 1}d). Then,

given tabular inputs xxx ∈ Rd, Sij is an indicator determining whether variable i is a parent of

variable j.

From the structural prior S, each of the input variables is “selected” to be parents of
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output variables through a Hadamard product with the features xxx. For each output variable,

its parents are passed through a non-linear η fully connected neural-network. The η networks

are trained as general function approximators, learning to approximate the relationships

between parent & child nodes:

x̂xxi = ηi(Si ◦ xxx) (4.2)

where Si represents the i-th column vector of G, and x̂xxi is the i-th reconstructed output

[NZF19]. In the case of exogenous variable xxxi, a corresponding 1 at Bii, ‘leaks’ the variable

through, encouraging η to learn the identity function while a 0 value forces the network to

learn some functional relationship of its parents. The end-to-end structure, as seen in Figure

4.1, is trained on a reconstruction loss, defined by ℓ(xxx, x̂xx). We use the L2 loss (Mean Squared

Error):

ℓCSHTest = ||xxx− ηi(Si ◦ xxx)||22 (4.3)

CSHTest can be used, then, to operate as a structural hypothesis test mechanism for two

structural causal models S and T. The basic idea is that if ℓS < ℓT, across the majority of

non-random OOD dataset splits for training and testing, then S is a more suitable hypothesis

for the true causal structure of the data than T. In section 4.4.3 we demonstrate the ID, OOD

train/test splits to test this generalization capacity, and our experimental results provide

baselines for this approach.

4.3.2 Causal Variational Hypothesis Testing with CSVHTest

We extend CSHTest to a variational model CSVHTest, that includes sampling functionality

like a VAE [KW13b]. We do this primarily for a more robust model in low Signal-to-Noise

(SNR) regimes and to generate new data points that are not deterministic on the inputs,

allowing for more dynamic synthetic data generation. CSVHTest consists of an encoder, a
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Figure 4.1: Causal Hypothesis Generative Architecture (CSHTest) with an example of

how the Structural Prior Matrix selects for the parents of each variable or identity if it is

exogenous. The η networks approximate the functional relationships in training.

CSHTest causal layer and a decoder. Further details are provided in the appendix B.3.1.

4.4 Problem Setting

4.4.1 Structural Hamming Distance

In causal and graph discovery literature, the Structural Hamming Distance is a common

metric to differentiate causal models by the number of edge modifications (flips in a binary

matrix) to transform one graph to another [YCG19, KCW22], often described as the norm

of the difference between adjacency matrices:

H = |Ai −Aj|1 (4.4)

However, Structural Hamming Distance does not account for the “causal asymmetry.”

The absence of edges is a more profound statement than inclusion, as any edge could have a

weight of zero. Hence we define two types of hypotheses that are incorrect relative to ground

truth, which could have the same Structural Hamming Distances:
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• Leaky hypotheses are causal hypotheses with extra links. In general, having a leaky

hypothesis will produce models that are more prone to overfitting, but with proper

weighting, the solution space of a leaky causal hypothesis includes the ground truth

causal structure.

• Lossy hypotheses are causal hypotheses where we are missing at least one link. Lossy

hypotheses are much easier to detect because a lossy hypothesis results in lost infor-

mation. As such, a lossy hypothesis should never do better than the true hypothesis,

within finite sampling and noise errors.

From these definitions, we define the Positive Structural Hamming Distance and the Negative

Structural Hamming Distance. We define these as, for null hypothesis A0 and alternative A1,

H+(A1,A0) = |A1 > A0|1 H−(A1,A0) = |A1 < A0|1 (4.5)

where H+ counts how leaky the alternative hypothesis is and H− counts how lossy it is. One

remark is that H = H+ +H−, but the “net” Hamming Distance ∆H = H+−H− can also be

a naïve indicator of how much information is passed through the causal layer.

4.4.2 Baseline Models

4.4.2.1 Simulated DAG Baselines

We empirically test our theory that an incorrect hypothesis will result in worse OOD test

error using extensive simulations. We use the same methodology as [ZAR18], simulating

across multiple DAG nodes sizes, edge counts, OOD variable splits (described further in

4.4.3), and Structural Hamming Distance with iterations at the ground truth and modified

DAG levels for robustness. In our experimental results, we calculate the probability a H of 1

closer to ground truth would have a lower OOD test error as the ratio across our simulations:

Pr(ℓCSHTest(Sj) < ℓCSHTest(Si))
∣∣∣ 1 = |Ai −AGT |1 − |Aj −AGT |1 (4.6)
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where GT is ground truth, and so on for differences 2 and 3. In practice, we actually consider

the probability conditional on a tuple of the positive and negative Hamming distances

(H+,H−) thus allowing us to distinguish hypotheses that are leakier, lossier, or the specific

mix of the two. Doing so allows us to better consider the fundamental asymmetry in causality.

Full hyperparameters and test cases can be found in Appendix B.5.

4.4.2.2 Sun Pendulum Image Dataset

A synthetic pendulum image dataset is introduced in [YLC20] and we use it here to produce

a physics-based tabular dataset where we know the ground truth DAG and can test the

abilities of CSHTest and CSVHTest. More about the dataset is described in Appendix

B.2.1.

4.4.2.3 Medical Trauma Dataset

We also analyze our model on a real-world dataset of brain-trauma ground-level fall patients

that includes multiple health factors, with a focus on predicting a decision to proceed with

surgery or not. We used an initial SHAP analysis to select three variables of high prediction

impact: Glasgow Coma Scale/Score for head trauma severity (GCS), Diastolic Blood Pressure

(DBP), the presence of any Co-Morbidities (Co-Morb), one demographic variable Age, along

with the Surgery outcome of interest. Without the ground truth, we test two structural

models shown in 4.2 based on knowledge of the selected variables and how they may interact

to inform the surgery decision.

4.4.3 Train/Test Data Splits

In order to test generalization error, we use a deliberate non-random split of our datasets

(as well as a baseline random split). This is done on a single feature column of the tabular

data at a time, splitting the data on that column at either the 25% or 75% quantile, with the
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Figure 4.2: Two hypothesized structural causal priors for a medical dataset on trauma patients

and the decision to perform surgery, H1 and H2.

larger side (either the upper or lower 75%) becoming the training data. An example of this

train test split is visualized for both datasets in 4.3. We recommend viewing OOD test error

across as many dimensions and split quantiles as possible given the size of the dataset and

the available compute.

Figure 4.3: a) A 75% data-split on the pendulum angle feature (grey is training angle, green

is testing angles b) A 75% data-split on the Diastolic Blood Pressure data.

4.5 Experiments

We test CSHTest and CSVHTest in multiple settings. First, we justify their usage by

comparing their performance on both ID and OOD validation to their non-causal counterparts,
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showing that they operate as normal when trained in ID but perform much better when

trained in OOD. We provide a table of relative loss probabilities to help interpret results

using extensive simulations. Next, we observe the benefits and limitations of the CSHTest

method when we hypothesize several possible causal structures on the pendulum problem.

Finally, we hypothesize and compare to structural priors on the medical dataset, and simulate

new data.

4.5.1 Generalization Ability of CSHTest

Table 4.1: Comparison of Traditional Deep Learning Techniques on a random and deliberate

dataset split with CSHTest and CSVHTest when the ground truth causal structural

information is known.

Pendulum Comparison

Random Split

Method Train Test Train Test

NN 0.02 0.02 0.04 10.27

VAE 0.11 0.06 16.97 89.4

CSHTest 0.03 0.03 0.02 0.26

CSVHTest 0.064 0.51 19.81 38.62

We compare the CSHTest with a similarly sized fully-connected NN and CSVHTest with

a similarly sized VAE. The CSVHTest also has the same causal layers as the CSHTest so

the variational models are larger overall than the CSHTest and NN. Results of the pendulum

are shown in Table 4.1. Against ID (random) data, the CSHTest and CSVHTest effectively

perform the same, suggesting that there is no loss in representation by including the Causal

Layer.

However, the CSHTest and CSVHTest models generalize much better to OOD data
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validation than their respective non-causal comparisons. This demonstrates the use of the

CSHTest and CSVHTest as causal replacements to the NN and VAE. Conversely, as the

out-of-distribution error rate can determine the “close-ness” of our model to the true causal

model, this would enable the use of the OOD loss as a proxy for causal hypothesis testing.

4.5.2 Simulated DAG Hypothesis Testing

Figure 4.4: Probability table for a 4 node 4 edge DAG size with a linear SEM ground truth

model for DAG simulations comparing hypothesis with various Hamming Distance Tuples.

Figure 4.4 shows the type of empirical probability tables we can construct by simulating

DAGs of various sizes under numerous conditions detailed in the appendix B.5. We note how

by comparing the Hamming Distance tuples, we do not see a smooth gradient, but jumps

as the leaky/lossy asymmetry is realized. Instead, by also incorporating the net Hamming
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distance to account for the causal asymmetry, we can explain the jumps. For instance, (2,2,0)

shows a marked drop off compared to any lower Hamming Distance model — like ground

truth (0,0,0) — because it has two edge losses (∆H = −2) which vastly decreases needed

information flow. In general, the upper triangle of this matrix should be below 50% and

decrease as the Hamming Distances grow and get lossier. Within each Hamming distance, the

values typically increase as ∆H increases. Extensive simulations like this, done with similar

assumptions to a comparable real-world problem, can provide baseline probabilities even

if ground truth is not known, based on the relative Hamming Distances of the hypotheses.

Further results DAG size 5x5 can be found in the appendix B.1.

4.5.3 Pendulum Hypothesis Testing

We consider 6 different hypotheses, shown in Figure B.3, detailed in Appendix B.2.2. We

arbitrarily do a 75% OOD split of the pendulum dataset on the sun position (as an exogenous

example) and the shadow position (as an endogenous example) to test causal hypotheses.

The pendulum results are shown in Figure 4.5. We can clearly distinguish two tiers of

results. One tier contains GT, leaky, and 2leaky. This tier has a common H− = 0. All

other DAGs, having H− > 0 show a very clear drop in OOD test performance. Thus, for

hypothesis testing, we are able to distinguish causal hypotheses that are missing paths from

ground truth. We leave it to further research to explore how to compare many hypotheses

that achieve a similar loss, such as a criterion that favors the minimal hypothesized DAG.

Of interest is the leak-loss model, which has ∆H = 0. Its loss is generally lower than

the purely lossy hypotheses, but still achieves a higher loss than the ground truth, despite

graphically being the same level of connectedness. This result has the interesting consequence

of CSHTest being able to reject causal hypotheses with zero net Hamming distance.
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Figure 4.5: Final OOD Test Error Rates of Each Hypothesized DAG structure in the

Pendulum Problem over Two Splits. See Appendix B.2.4 for numerical values and training

trajectories.

4.5.4 Medical Data Hypothesis Testing

In the medical dataset, the second hypothesis from 4.2, which includes a path from Age to

No-Comorbidities generalizes better than without the path, suggesting it is a better causal

model. We use both trained architectures to simulate OOD data, with the causal models

producing higher fidelity results to what we expect ground truth to be based on a holdout

testset over the same distribution 4.6.

4.6 Conclusion

In this chapter, we demonstrate the value of CSHTest and CSVHTest as causal model

hypothesis testing spaces and the implications as generative models. We verify the effectiveness

of our methodology on extensive simulated DAGs where ground truth is known, and we
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Medical Results

Hypothesis Train Test

H1 0.024 0.035

H2 0.017 0.025

Figure 4.6: Medical Dataset Results: Left: Medical results of CSHTest for each of

the hypothesized causal models. Right: The test dataset reconstruction distributions for all

models using medical H1 on the Diastolic BP 75% data

further show performance with ground truth and incorrect causal priors on a physics-inspired

example. We show how CSHTest can be used to test causal hypotheses using a real-world

medical dataset with ground level fall, trauma surgery decisions. CSHTest offers a novel

architecture, along with a deliberate data split methodology that can empower practitioners

and domain experts to improve causally informed modeling and deep learning. There is

extensive further research needed to fully realize the utility of structural causal hypothesis

testing in conjugation with deep learning function approximation. It would be interesting

to differentiate leaky causal models, without constraints on losses, using minimum entropy

properties such as in [CGK22] . Further, one could extend both CSHTest and CSVHTest

to more flexible architecture which can combine recent progress with differential causal

inference and binary sampling to better automate full or partial causal discovery. The results

are a promising start to much further research integrating deep learning causal models with

real-world priors and domain knowledge.
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CHAPTER 5

Towards Composable Distributions of Latent Space

Augmentations

5.1 Introduction

Data augmentation has become an essential technique in deep learning, allowing models

to learn from a diverse set of input images by applying various types of transformations,

such as rotation, flipping, cropping, and color shifting. By artificially increasing the size of

the training dataset, data augmentation can reduce the risk of overfitting and improve the

generalization of the model to new, unseen data.

However, choosing the right set of augmentation techniques for a given task can be

challenging. Some types of augmentations may affect the way an image is interpreted, such as

flipping or rotating digits in handwritten digit recognition tasks. Practitioners must employ

priors on the data to know which augmentations are appropriate.

In this paper, we introduce a novel approach for latent image augmentation using Vari-

ational Autoencoder (VAE) architecture called LAVAE. Our approach allows for the easy

combination of multiple augmentation techniques and provides greater control and inter-

pretability of the latent space. Within the latent space of the VAE architecture, we can

apply, compose, and invert linear transformations to generate augmented versions of the input

images. The key contribution of our work is the use of latent-space linear transforms and a

two-step training method to learn mappings between the original and augmented latent spaces,

with a surprising emergence of composability. We further demonstrate that our approach
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can transfer a trained latent space to a new set of augmentations using a multiple decoder

architecture, enabling practitioners to transfer certain properties and potential performance

improvements dependent on the original augmentations.

Our experiments on the MNIST dataset demonstrate that our proposed approach can

improve the performance of VAEs and provide new insights into the underlying structure of

the data and the relationship between different augmentations. By viewing augmentations as

image-space priors and not data to simply be randomized across, we can constrain the VAE’s

information bottleneck and improve its generalization ability. In essence, our method learns

a low-dimensional, latent-proxy 5.1 for a set of image-space functions, even when the image

space model or transformation process is unknown a priori, as long as training samples exist

of the augmented images.

Image Space
xorig

xAug1 xAug2

xAugComp

Enc

Latent Space
zorig

zAug1 zAug2

zAugComp

Figure 5.1: Approximate model/DAG learned in latent space for known image space augmen-

tations

5.2 Related Work

Control and manipulation of a lower-dimensional latent space in generative modeling is an

area of ongoing research. The Conditional VAE (CVAE) is an initial extension of a vanilla

VAE in which a conditional value or “one-hot” encoding is concatenated to both the Encoder

61



and Decoder inputs [SLY15]. The CVAE does a form of latent space separation by adding

dimensions based on a conditional variable, and it presents the most compelling comparison

to our own work as it allows unique interpretation of the latent space based on a prior

or semantic label. Other extensions of VAEs include the VQ-VAE, which uses a discrete

latent space to model discrete data types such as text, and the Flow-based VAE, which uses

normalizing flows to model complex posterior distributions [OVK17, SW18]. Latent diffusion

models are another approach that iteratively add noise in the training process and can reverse

this process in inference to achieve state of the art text to image and image completion and

synthesis tasks [RBL22a].

The latent space can also be used to apply lower-dimensional modeling or priors. Causal

generative models have seen a variety of success with both learning and utilizing causal

information and structural models to generate counterfactual images and datasets [YLC20,

KSD17, BJP22, BPJ22, BKB21]. Our method looks to also extend interpretability of the

latent space by approximating image augmentations, a priors-based prep-processing approach

in the image-space, in the latent space. This could loosely be thought of as a causal model

proxy to the image space causal model, Figure 5.1.

5.3 Background

5.3.1 Conditional Variational Autoencoders

The VAE and variational lower bound is covered in detail in Section 2.4.1.1. The Conditional

VAE (CVAE) is a natural extension of the VAE framework that adds a conditional input

to both the encoder and decoder networks. In the CVAE, the goal is to learn a conditional

generative model that can generate new samples from a specific class or condition, given

some additional information (additional details in Appendix C.2). By adding the conditional

input to the VAE framework, the CVAE can generate samples conditioned on a specific input,

which is useful in many applications. For example, in image generation, given a class label as
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the conditional input, the CVAE can generate images of that class.

5.3.2 Priors in Pre-processing

Data augmentation is not done naively, or without a strong sense of priors. In image datasets,

typical augmentations might include crops, rotations, flips, scaling, color modifications, masks,

and many more. In order to expand the training domain and learn a more robust model,

only augmentations which are invariant to the classification or interpretation of the resulting

image can be applied, and similarly, negative augmentations which impact classification can

be used to refine the support of a distribution [SAS21]. As a simple example, a left-right flip

is an acceptable transformation for a 0 or 8 digit, but not for a 2 or 9. One can think of

augmentation as a causal model or directed-graph in the image space, in which all augmented

image distributions are the result of applying a transform or function to an parent node of

original images such that the resulting images are still within the same class. Succinctly,

given the original dataset Dorig,

Daug =
⋃
i∈Ac

d∈Dorig

c=class(d)

faugi(d) (5.1)

s.t. Ac = {i : class(d) = class(faugi(d)); d ∈ Dorig} (5.2)

for some pre-defined set of augmentations {faugi}.

This model is typically well known and easily applied in pre-processing, but is not made

explicit. Although these augmented distributions are classified or interpreted similarly at

a high-level, there are functional relationships and structure between them that we look to

make explicit.
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5.4 Latent Augmentation VAE

5.4.1 Architectural Overview

In the Latent Augmentation VAE, as seen in Figure 5.2, we use trainable linear transforms in

the latent space to learn the mappings between original and augmented latent representations

resulting in a linear proxy model of the transformations applied in the image space that can be

used on test data or to generate new original and augmented images. We also utilize multiple

decoder heads such that one can transfer a learned latent space to a new set of augmentations

by training an alternative decoder head, which can preserve certain latent space geometries

and latent transform properties, improving latent augmentation performance.

xOG

xAug

eϕ(z|x)
zOG,Aug

ẑOG,AugLaugi x̂OG

x̂Aug

dθ(x|z)

Inputs/Outputs

Trainable Networks

Latent Vectors

Figure 5.2: Latent Augmentation VAE Architecture

5.4.2 Training LAVAE

For our initial experiments, we focus on pairs of augmentations and their compositions (as in

Figure 5.1). Note there is no theoretic reason why more augmentations can not be used, but

we use two for illustrating geometric properties. We train the LAVAE in three stages:

1. Train the encoder/decoder and populate the latent space with the original, two types

of augmentations, and their composition

2. Learn explicit linear transformations Laugi between original and augmented latent spaces

3. Transfer trained latent space and transformations by training new decoder on any other

set of augmentations
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The respective losses for each of the three stages are as follows:

∑
x∈Daug

ℓBCE(x, x̂) s.t. x̂ = θ(ϕ(x)) (5.3)

∑
x0∈Dorig

∑
k∈A

(ϕ(faugk(x0))− ϕ(x0) · Laugk)
2 (5.4)

∑
x0∈Dorig

∑
g(k)∈AT

k∈A

ℓBCE(faugg(k)(x0), θT (ϕ(x0) · Laugk)) (5.5)

where the trained parameters at each step are highlighted in blue. A,AT are two equal-

length sets of augmentations predefined by {faug} with g : A → AT forming a bijective

pairing between the two sets, thereby allowing the latent structure to be preserved by

the transformations defined by A. θT is an alternative decoder head for each new set of

augmentations AT . In our 2-augmentation case, without loss of generality, we can assign

A = {1, 2}, AT = {3, 4} where g(1) = 3 and g(2) = 4. We can also extend this formulation

to any other sets of augmentations given a new mapping. Note that stage 1 also includes the

KL Divergence loss to constrain the latent distribution, as described in Appendix C.1, with

respective weights on KL and reconstruction λKL = 5 , λrecon = 1.

We performed experiments with non-linear latent augmentation networks, which showed

slightly better performance, but lacked composability and simple invertability. We also

experimented with combining training stages 1 and 2, but this degraded final performance

and reconstruction.

5.4.3 Utilizing LAVAE

Once an LAVAE is trained, there is a wide variety of uses which extend the capabilities

over previous VAE methods. There is basic reconstructions of the original, augmented, or

composed images:
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x̂ = θ(ϕ(x)) ∀x ∈ Daug (5.6)

We can augment the original images in the latent space:

ẑi = ϕ(x0) · Laugi (5.7)

x̂i = θ(ẑi) | i ∈ A

where xi refers to faugi(x0).

We can go from the original images to the composed by multiplying the latent original

vector by both the latent augmentation transforms, despite an explicit composition in the

latent space never being trained.

ˆ̊z = ϕ(x0) · Laug1 · Laug2 (5.8)

ˆ̊x = θ(ˆ̊z)

The reverse composition is also effective with some increased reconstruction error, indi-

cating the latent augmentations are somewhat composable.

ˆ̊zr = ϕ(x0) · Laug2 · Laug1 (5.9)

ˆ̊x ≈ θ(ˆ̊zr)

ˆ̊zr = zLaug2Laug1 ≈ zLaug1Laug2 =
ˆ̊z

where z = ϕ(x0). Note that this latent space property holds true for our tested augmentations

even if the compositions in the image space are not equivalent (such as a 90◦ rotate and flip

will be different depending on the order applied). In this case, we only train the encoder and

decoder, in Stage 1, on one of the compositions (faug1 then faug2), so the reverse composition

in the latent space is not equivalent to the image space reverse composition with this process.

We can also invert the latent space transforms and go from an augmented input image to
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a original image, giving us ‘any-to-any’ functionality:

x̂0 = θ(ϕ(xi) · L−1
augi

) | i ∈ {1, 2} (5.10)

x̂0 = θ(ϕ(̊x) · (Laug1 · Laug2)
−1)

Finally, we can run the model recursively, taking our output and running back through the

network for the same or different augmentations. We find that even for general augmentations

that there is some level of stability in taking the same latent augmentation over and over.

x̂
(k)
0 = θ(ϕ(x̂

(k)
i ) · Laugi) (5.11)

x̂
(k+1)
i = θ(ϕ(x̂

(k)
0 ) · Laugi)

k ∈ [1, n]

We show results on the stability of this use-case as a recursive generator in the next section.

5.5 Experiments

All of the displayed results use the test MNIST dataset with a model trained on the training

dataset.

5.5.1 LAVAE Reconstruction Results

Figure 5.3 shows the basic and augmented reconstruction results for the “Flips” (flip left/right,

flip up/down) augmentation pair. Figure 5.4 shows the inverse reconstruction results for the

Flips augmentation pair.

Figure 5.5 displays two examples of recursive augmentation using flip left/right, where one

sample gradually deviates (from a 2 to possibly an 8), while the 7 remains relatively stable.

Additionally, we illustrate a lower dimensional projection in a 2D space (using Independent

Component Analysis) of the latent vectors and their corresponding “paths” as we repeatedly

67



Figure 5.3: Eight samples of “Flips” latent augmentations with baseline image space augmen-

tations for comparison

apply augmentations using LAVAE. This suggests a radius of stability around certain samples

with the repeated use of augmentations.

It is worth mentioning that the LAVAE can also be applied to sample the latent space

and interpolate between points. To achieve sampling, as the latent space is now divided

based on the augmentation, we constructed a simple bounding box using training samples

and sampled within that subspace to obtain an original image. Interpolation is simpler, as

we only need to provide two test images and sample at regular intervals across all latent

dimensions between the two points (16-D in this instance). Additional examples can be found

in Appendix C.4.

5.5.2 LAVAE Transfer Decoders

LAVAE includes multiple decoder heads to enable the transfer of a trained latent space to

any pair of augmentations. Figure 5.6 shows the transfer reconstruction results from “Flips”
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Figure 5.4: Eight samples of “Flips” latent inverse augmentations with original and augmented

images (inputs) for comparison

to “Nested Mini-Image, shear X-direction”.

This functionality was included because we saw that transferring to a pair of augmentations

could increase the reconstruction performance over training on the augmentation pair originally.

This surprising result leads us to believe certain latent space geometries, based on the choice

of initial augmentations, better allow for latent augmentation reconstruction and properties

such as improved composability. Figure 5.7 shows a heat-map matrix of reconstruction error

(Mean-Squared Error in image space) with initial augmentation pair choice vs. transferred

augmentation pair in which transferring from a “Nested Mini-Image, shear X-direction” to

“Nested Mini-Image, shear X-direction” performs better than training on “Nested Mini-Image,

shear X-direction”. Examples of all the augmentation and more results are in appendix C.3.

5.5.3 Conditional VAE Comparisons

As we discussed, we realized that the Conditional VAE (CVAE) also uses a naïve form of

latent space partitioning so we wanted to see to what extent it can do the same tasks as

the LAVAE. In this case, instead of having the conditional represent the classifications, we

wanted to partition just like with the LAVAE with respect to augmentation.

Thus, we first trained the CVAE in the traditional way where the conditional is the
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Figure 5.5: Two samples latent trajectory (2-D projection) and reconstructions of recursive

flip left/right augmentation. The ‘7’ is stable, but the‘ 2’ diverges both in latent space

trajectory and reconstructions.

augmentation type. Example results are shown in 5.8. The decoder can reconstruct from the

latent with high fidelity, but changing the conditional does not augment the image as expected.

Instead, it produces a plausible image of that augmentation, but it does not preserve the

uniqueness of the original image. Therefore, we can say that the conditional variables and

the latent variables are “entangled." This suggests that the CVAE cannot naively handle

causally-linked images across conditionals.

Fundamentally, a causal view of the CVAE would represent the following idea: any

xi = faugi(x0) causally generated from some x0 should map to the same z. Thus, z should

contain the augmentation-invariant information. Then, based on the conditional, the decoder

should produce an augmented version of that image. Thus the conditional contains all the

augmentation information, and we say that the augmentation and the image are disentangled.

Our second experiment attempts to show that the CVAE encoder and decoder are capable of

applying augmentations to an augmentation-invariant latent space, given a similar training

method to the LAVAE. However, in doing so, we can see that there is a significant hit in
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Figure 5.6: Eight samples of “Flips” latent augmentations with baseline image space augmen-

tations for comparison

reconstruction loss compared to the LAVAE as can be seen in Figure 5.9. Furthermore, the

composition property does not emerge in the same way that it does for the LAVAE.

In Table 5.1, we compare the reconstruction errors of the LAVAE against both methods

of training the CVAE on the “Flips” augmentation pair, showing the superior performance of

LAVAE.

Table 5.1: “Flips” Reconstruction Errors (MSE) showing increased performance of LAVAE

and composition capabiltiies

Model Orig Aug1 Aug2 ◦ Total

LAVAE 68.34 75.89 71.30 81.57 297.1

CVAETrad 98.11 260.18 351.79 279.82 989.84

CVAEAugInv 99.15 99.16 99.26 299.12 695.68

5.5.4 LAVAE Latent Geometries

In this final section, we present a comparison of 2D projection visualizations using PCA, ICA,

and T-SNE algorithms of the latent space geometries for two different pairs of augmentations,

“Flips" and “shear X-direction,” “canny edge-detect," as shown in Figure 5.10. We leave a
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Figure 5.7: Initial augmentation pair choice vs. transferred augmentation MSE reconstruction

error (across all augmentations)

more in-depth analysis and interpretation of the latent space geometries for future research.

However, we would like to point out that while symmetries seem to exist across augmentation

pairs, the separation between regions and the relative areas of regions vary significantly across

pairs. Additional images can be found in Appendix C.7.
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Figure 5.8: Initial augmentation pair choice vs. transferred augmentation MSE reconstruction

error (across all augmentations)

Figure 5.9: LAVAE vs CVAE reconstructions
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Figure 5.10: “Flips” (left) and “shear X-direction, canny edge-detect” (right) 2-d projections

using PCA, ICA, and T-SNE algorithms.
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5.6 Conclusion

Data augmentation is a critical technique in deep-learning image models that can enhance

generalization. In this chapter, we have introduced a novel approach for latent image

augmentation using a Variational Autoencoder (VAE) architecture. This method facilitates the

combination of multiple augmentation techniques and offers greater control and interpretability

of the latent space. Our experiments on the MNIST dataset have shown that our proposed

approach outperforms comparable models in both flexibilities of usage and performance.

Furthermore, our method provides new insights into the underlying structure of the data and

the relationship between different augmentations.

By treating augmentations as image-space priors instead of simply randomizing data, we

can constrain the VAE’s information bottleneck and learn a low-dimensional proxy for the

augmentation model. For future work, it would be interesting to explore the combination of

the CVAE and the LAVAE, such as producing latent augmentations per class conditional,

changing the one-hot conditional to continuous augmentations, and having augmentations

operate only on the conditional embedding space. Additionally, our approach could be applied

to other datasets, including those where the image model might not be known, such as 2D to

3D reconstruction or perspective shift tasks.
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CHAPTER 6

PureEBM: Robust Train-Time Poison Purification via

Mid-run Dynamics of Energy-Based Models

6.1 Introduction

Large datasets empower modern, over-parameterized deep learning models. An adversary

can easily insert a small number of powerful, but imperceptible, poisoned images into these

datasets, often scraped from the open Internet, and manipulate a Neural Network’s (NN)

behavior at test time with a high success rate. These poisons can be constructed with or

without information on NN architecture or training dynamics. With the increasing capabilities

and utilization of large deep learning models, there is growing research in securing model

training against such adversarial poison attacks with minimal impact on natural accuracy.

Numerous methods of poisoning deep learning systems have been proposed in recent years.

These disruptive techniques typically fall into two distinct categories: backdoor, triggered

data poisoning, or triggerless poisoning attacks. Triggered attacks conceal an imperceptible

trigger pattern in the samples of the training data leading to the misclassification of test-time

samples that contain the hidden trigger [GDG17, TTM18, SGF21, ZPJ22]. In contrast,

triggerless poisoning attacks involve introducing slight, bounded perturbations to individual

images that align them with target images of another class within the feature or gradient

space resulting in the misclassification of specific instances without necessitating further

modification during inference [SHN18, ZHL19, HGF20, GFH21, AMW21]. In both scenarios,

poisoned examples often appear benign and correctly labeled, making them challenging to
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detect by observers or algorithms.

Current defense strategies against data poisoning exhibit significant limitations. While

some methods rely on anomaly detection through techniques such as nearest neighbor analy-

sis, training loss minimization, singular-value decomposition, feature activation or gradient

clustering [CSL08, SKL17, TLM18, CCB19, PGH20, YLM22, PDM22], others resort to ro-

bust training strategies including data augmentation, randomized smoothing, ensembling,

adversarial training and maximal noise augmentation [WXK20, LF20, ACG16, MZH19,

LLK21, TFY21, LYM23]. However, these approaches either undermine the model’s gener-

alization performance [GFS21, YLM22], offer protection only against specific attack types

[GFS21, PGH20, TLM18], or prove computationally prohibitive for standard deep learning

workflows [ACG16, CCB19, MMS18, YLM22, GFS21, PGH20, LYM23]. There remains a

critical need for more effective and practical defense mechanisms in the realm of deep learning

security

In this chapter, we propose a simple but powerful Energy-Based model defense PureEBM,

against poisoning attacks. We make the key observation that the energy of poisoned images

is significantly higher than that of baseline images for an EBM trained on a natural dataset

of images (even when poisoned samples are present). Using iterative sampling techniques

such as Markov Chain Monte Carlo (MCMC) that utilize noisy gradient information from the

EBM, we can purify samples of any poison perturbations iteratively. This universal stochastic

preprocessing step ΨT (x) moves poisoned samples into the lower energy, natural data manifold

with minimal loss in natural accuracy. The PureEBM pipeline, energy distributions, and

the MCMC purification process on a sample image can be seen in Figure 6.1. This work

finds that PureEBM significantly outperforms state-of-the-art defense methods in all tested

poison scenarios. Our key contributions in this work are:

• A state-of-the-art stochastic preprocessing defense ΨT (x) against adversarial poisons,

using Energy-Based models and MCMC sampling
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Figure 6.1: Top The full PureEBM pipeline is shown where we apply our method as a

preprocessing step with no further downstream changes to the classifier training or infer-

ence. Poisoned images are moderately exaggerated to show visually. Bottom Left Energy

distributions of clean, poisoned, and purified images. Our method pushes poisoned images

via purification into the natural image energy manifold. Bottom Right The removal of

poisons and similarity of clean and poisoned images with more MCMC purification steps.

The purified dataset results in SoTA defense and high classifier natural accuracy.

• Experimental results showing the broad application of ΨT (x) with minimal tuning and

no prior knowledge needed of the poison type and classification model

• Results showing SoTA performance is maintained when the EBM training data includes

poisoned samples and/or natural images from a similar out-of-distribution dataset
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6.2 Related Work

6.2.1 Targeted Data Poisoning Attack

Poisoning of a dataset occurs when an attacker injects small adversarial perturbations δ

(where ∥δ∥∞ ≤ ξ and typically ξ = 8/255) into a small fraction, α, of training images.

These train-time attacks introduce local sharp regions with a considerably higher training

loss [LYM23]. A successful attack occurs when SGD optimizes the cross-entropy training

objective on these poisoned images, maximizing either the inference time impact of a trigger,

or modifying a target image classification by aligning poisoned images in the gradient or some

feature space. The process of learning these adversarial perturbations creates backdoors in

an NN.

In the realm of deep network poison security, we encounter two primary categories of

attacks: triggered and triggerless attacks. Triggered attacks, often referred to as backdoor

attacks, involve contaminating a limited number of training data samples with a specific

trigger (often a patch) ρ (similarly constrained ∥ρ∥∞ ≤ ξ) that corresponds to a target label,

yadv. After training, a successful backdoor attack misclassifies when the perturbation ρ is

added:

F (x) =


y x ∈ {x : (x, y) ∈ Dtest}

yadv x ∈ {x+ ρ : (x, y) ∈ Dtest, y ̸= yadv}
(6.1)

Early backdoor attacks were characterized by their use of non-clean labels [CLL17, GDG17,

LMA17, SGF21], but more recent iterations of backdoor attacks have evolved to produce

poisoned examples that lack a visible trigger [TTM18, SSP19, ZPJ22].

On the other hand, triggerless poisoning attacks involve the addition of subtle adversarial

perturbations to base images, aiming to align their feature representations or gradients with

those of target images of another class, causing target misclassification [SHN18, ZHL19,

HGF20, GFH21, AMW21]. These poisoned images are virtually undetectable by external

observers. Remarkably, they do not necessitate any alterations to the target images or labels
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during the inference stage. For a poison targeting a group of target images Π = {(xπ, yπ)} to

be misclassified as yadv, an ideal triggerless attack would produce a resultant function:

F (x) =


y x ∈ {x : (x, y) ∈ Dtest \ Π}

yadv x ∈ {x : (x, y) ∈ Π}
(6.2)

The current leading poisoning attacks that we assess our defense against are:

• Bullseye Polytope (BP): BP crafts poisoned samples that position the target near

the center of their convex hull in a feature space [AMW21].

• Gradient Matching (GM): GM generates poisoned data by approximating a bi-level

objective by aligning the gradients of clean-label poisoned data with those of the

adversarially labeled target [GFH21]. This attack has shown effectiveness against data

augmentation and differential privacy.

• Narcissus (NS): NS is a clean-label backdoor attack that operates with minimal

knowledge of the training set, instead using a larger natural dataset, evading state-of-the-

art defenses by synthesizing persistent trigger features for a given target class. [ZPJ22].

6.2.2 Defense Strategies

Poison defense categories broadly take two primary approaches: filtering and robust training

techniques. Filtering methods identify outliers in the feature space through methods such

as thresholding [SKL17], nearest neighbor analysis [PGH20], activation space inspection

[CCB19], or by examining the covariance matrix of features [TLM18]. These defenses

often assume that only a small subset of the data is poisoned, making them vulnerable to

attacks involving a higher concentration of poisoned points. Furthermore, these methods

substantially increase training time, as they require training with poisoned data, followed by

computationally expensive filtering and model retraining [CCB19, PGH20, SKL17, TLM18].

On the other hand, robust training methods involve techniques like randomized smoothing
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[WXK20], extensive data augmentation [BCF21], model ensembling [LF20], gradient magni-

tude and direction constraints [HCK20], poison detection through gradient ascent [LLK21],

and adversarial training [GFS21, MMS18, TFY21]. Additionally, differentially private (DP)

training methods have been explored as a defense against data poisoning [ACG16, JE19].

Robust training techniques often require a trade-off between generalization and poison suc-

cess rate [ACG16, HCK20, LLK21, MMS18, TFY21, LYM23] and can be computationally

intensive [GFS21, MMS18]. Some methods use optimized noise constructed via Generative

Adversarial Networks (GANs) or Stochastic Gradient Descent methods to make noise that

defends against attacks [MSH21, LYM23].

Recently [YLM22] proposed EPIc, a coreset selection method that rejects poisoned images

that are isolated in the gradient space throughout training, and [LYM23] proposed FrieNDs,

a per-image pre-processing transformation that solves a min-max problem to stochastically

add l∞ norm ζ-bound ‘friendly noise’ (typically 16/255) to combat adversarial perturbations.

These two methods are the SoTA and will serve as a benchmark for our PureEBM method

in the experimental results.

When compared to augmentation-based and adversarial training methods, our approach

stands out for its simplicity, speed, and ability to maintain strong generalization performance.

We show that adding gradient noise in the form of iterative Langevin updates can purify

poisons and achieve superior generalization performance compared to SoTA defense methods

EPIc and FrieNDs. The Langevin noise in our method proves highly effective in removing

the adversarial signals while metastable behaviors preserve features of the original image,

due to the dynamics of mid-run chains from our EBM defense method.
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6.3 PureEBM: Purifying Langevin Defense against Poisoning At-

tacks

Given a clean training set Xclean ⊂ RD consisting of i.i.d. sample images xi ∼ pclean for

i = 1, . . . , n. Targeted data poisoning attacks modify αn training points, by adding optimized

perturbations δ constrained by C = {δ ∈ RD : ∥δ∥∞ ≤ ξ}. Poisons crafted by such attacks

look innocuous to human observers and are seemingly labeled correctly. Hence, they are

called clean-label attacks. These images define a new distribution xi + δi ∼ ppoison, so that

our training set comes from the mixture of probability distributions:

pdata = (1− α)pclean + αppoison (6.3)

The goal of adding these poisons is to change the prediction of a set of target examples

Π = {(xπ, yπ)} ⊂ Dtest or triggered examples {(x + ρ, y) : (x, y) ∈ Dtest} to an adversarial

label yadv.

Targeted clean-label data poisoning attacks can be formulated as the following bi-level

optimization problem:

argmin
δi∈Cδ,ρ∈Cρ∑n
i=0 ⊮δi ̸=0≤αn

∑
(xπ ,yπ)∈Π

L
(
F (xπ + ρ;ϕ(δ)), yadv)

s.t. ϕ(δ)=argmin
ϕ

∑
(x,y)∈D

L (F (x+δi;ϕ), y) (6.4)

For a triggerless poison, we solve for the ideal perturbations δi to minimize the adversarial

loss on the target images, where Cδ = C, Cρ = {0 ∈ RD}, and D = Dtrain. To address the

above optimization problem, powerful poisoning attacks such as Meta Poison (MP) [HGF20],

Gradient Matching (GM) [GFH21], and Bullseye Polytope (BP) [AMW21] craft the poisons

to mimic the gradient of the adversarially labeled target, i.e.,

∇L
(
Fϕ (x

π) , yadv) ∝∑
i:δi ̸=0

∇L (Fϕ(xi + δi), yi) (6.5)
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Minimizing the training loss on RHS of Equation 6.5 also minimizes the adversarial loss

objective of Equation 6.4.

For the triggered poison, Narcissus (NS), we find the most representative patch ρ for

class π given C, defining Equation 6.4 with Cδ = {0 ∈ RD}, Cρ= C, Π = Dπ
train, y

adv = yπ,

and D = DPOOD ∪ Dπ
train. In particular, this patch uses a public out-of-distribution dataset

DPOOD and only the targeted class Dπ
train. As finding this patch comes from another natural

dataset and does not depend on other train classes, NS has been more flexible to model

architecture, dataset, and training regime [ZPJ22].

6.3.1 Energy-Based Model

Background on Energy-Based Models (EBMs) can be found in Section 2.4.1.2. Since, which

α of the images are poisoned is unknown, we treat them all the same for a universal defense.

Considering i.i.d. samples xi ∼ pdata for i = 1, . . . , n, with n sufficiently large, the sample

average over xi converges to the expectation under pdata and one can learn a parameter θ∗

such that pθ∗(x) ≈ pdata(x). For notational simplicity, we equate the sample average with the

expectation.

The objective is to minimize the expected negative log-likelihood, formulated as in 2.14.

The derivative of this log-likelihood, crucial for parameter updates, is given by:

∇L(θ) = Epdata [∇θGθ(x)]− Epθ [∇θGθ(x)]

.
=

1

n

n∑
i=1

∇θGθ(x+
i )−

1

k

k∑
i=1

∇θGθ(x−
i ), (6.6)

where x+
i are called positive samples as their probability is increased and where k samples x−

i ∼

pθ(x) are synthesized examples (obtained via MCMC) from the current model, representing

the negative samples as probability is deceased.

In each iteration t, with current parameters denoted as θt, we generate k synthesized

examples x−
i ∼ pθt(x). The parameters are then updated as θt+1 = θt + ηt∇L(θt), where ηt is
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the learning rate.

In this work, to obtain the negative samples x−
i from the current distribution pθ(x) we

utilize the iterative application of the Langevin update as the MCMC method:

xτ+1 = xτ −∆τ∇xτGθ(xτ ) +
√
2∆τϵτ , (6.7)

where ϵk ∼ N(0, ID), τ indexes the time step of the Langevin dynamics, and ∆τ is the

discretization of time [XLZ16]. ∇xGθ(x) = ∂Gθ(x)/∂x can be obtained by back-propagation.

If the gradient term dominates the diffusion noise term, the Langevin dynamics behave like

gradient descent. We implement EBM training following [NHH20], see App D.3.1 for details.

Algorithm 1 Data Preprocessing with PureEBM: ΨT (x)

Require: Trained ConvNet potential Gθ(x), training images x ∈ X, Langevin steps T , Time

discretization ∆τ

for τ in 1 . . . T do

Langevin Step: draw ϵτ ∼ N(0, ID)

xτ+1 = xτ −∆τ∇xτGθ(xτ ) +
√
2∆τϵτ

end for

Return: Purified set X̃ from final Langevin updates

Theoretical perspectives on the memoryless property of our defense can be found in

section 6.3.3. In practice, we find that learning the mixture of distributions pdata = (1 −

α)pclean + αppoison yields an EBM with a purifying ability similar to that of training on pclean,

suggesting our unsupervised MLE method is unsurprisingly not affected by targeted poisons.
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6.3.2 Classification with Stochastic Transformation

Let ΨT : RD → RD be a stochastic pre-processing transformation. In this work, ΨT (x), the

random variable of a fixed image x, is realized via T steps of the Langevin update (6.7). One

can compose a stochastic transformation ΨT (x) with a randomly initialized deterministic

classifier fϕ0(x) ∈ RJ (for us, a naturally trained classifier) to define a new deterministic

classifier Fϕ(x) ∈ RJ as Fϕ0(x) = EΨT (x)[fϕ0(ΨT (x))], which is then trained with cross-entropy

loss via SGD to realize Fϕ(x). As it is infeasible to evaluate the above expectation of the

stochastic transformations ΨT (x) as well as training many randomly initialized classifiers we

take fϕ(ΨT (x)) as the point estimate of the classifier Fϕ(x). In our case this instantaneous

approximation of Fϕ(x) is valid because ΨT (x) has a low variance for convergent mid-run

MCMC.

6.3.3 Why EBM Langevin Dynamics Purify

The theoretical basis for eliminating adversarial signals using MCMC sampling is rooted in the

established steady-state convergence characteristic of Markov chains. The Langevin update,

as specified in Equation (6.7), converges to the distribution pθ(x) learned from unlabeled

data after an infinite number of Langevin steps. The memoryless nature of a steady-state

sampler guarantees that after enough steps, all adversarial signals will be removed from an

input sample image. Full mixing between the modes of an EBM will undermine the original

natural image class features, making classification impossible [HMZ21]. [NHH20] reveals that

without proper tuning, EBM learning heavily gravitates towards non-convergent ML where

short-run MCMC samples have a realistic appearance and long-run MCMC samples have

unrealistic ones. In this work, we use image initialized convergent learning. pθ(x) is described

further by Algorithm 1.

The metastable nature of EBM models exhibits characteristics that permit the removal

of adversarial signals while maintaining the natural image’s class and appearance [HMZ21].
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Metastability guarantees that over a short number of steps, the EBM will sample in a local

mode, before mixing between modes. Thus, it will sample from the initial class and not

bring class features from other classes in its learned distribution. Consider, for instance, an

image of a horse that has been subjected to an adversarial ℓ∞ perturbation, intended to

deceive a classifier into misidentifying it as a dog. The perturbation, constrained by the

ℓ∞-norm ball, is insufficient to shift the EBM’s recognition of the image away from the horse

category. Consequently, during the brief sampling process, the EBM actively replaces the

adversarially induced ‘dog’ features with characteristics more typical of horses, as per its

learned distribution resulting in an output image resembling a horse more closely than a dog.

It is important to note, however, that while the output image aligns more closely with the

general characteristics of a horse, it does not precisely replicate the specific horse from the

original, unperturbed image.

Our experiments show that the mid-run trajectories (100-1000 MCMC steps) we use to

preprocess the dataset X capitalize on these metastable properties by effectively purifying

poisons while retaining high natural accuracy on Fϕ(x) with no training modification needed.

A chaos theory-based perspective on EBM dynamics can be found in App. D.1.1.

6.3.4 Erasing Poison Signals via Mid-Run MCMC

The stochastic transform ΨT (x) is an iterative process, akin to a noisy gradient descent,

over the unconditional energy landscape of a learned data distribution. As MCMC is run,

the images will move from their initial energy toward pdata. As shown in Figure 6.1, the

energy distributions of poisoned images are much higher, pushing the poisons away from the

likely manifold of natural images. By using mid-run dynamics (150-1000 Langevin steps), we

transport poisoned images back toward the center of the energy basin.

In the from-scratch poison scenarios, 150 Langevin steps can fully purify the majority

of the dataset with minimal feature loss to the original image. In Figure 6.2 we explore

the MCMC trajectory’s impacts on ℓ2 distance of both purified clean and poisoned images
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Figure 6.2: Plot of ℓ2 distances between clean images and clean purified (blue), clean images

and poisoned purified (green), and poisoned images and poisoned purified images (orange) at

points on the MCMC sampling trajectory. Purifying poisoned images for less than 250 steps

moves a poisoned image closer to its clean image with a minimum around 150, preserving the

natural image while removing the adversarial features.

from the initial clean image (∥x−ΨT (x)∥2 and ∥x−ΨT (x+ δ)∥2), and the purified poisoned

image’s trajectory away from its poisoned starting point (∥(x + δ) − ΨT (x + δ)∥2). Both

poisoned and clean distance trajectories converge to similar distances away from the original

clean image (limT→∞ ∥x − ΨT (x)∥2 = limT→∞ ∥x − ΨT (x + δ)∥2), but the steady increase

in image distance of the two trajectories offers an empirical perspective of the metastable,

mid-run region. The intersection where ∥(x+ δ)−ΨT (x+ δ)∥2 > ∥x−ΨT (x+ δ)∥2 (indicated

by the dotted red line), occurs at ∼150-200 Langevin steps and indicates when purification

has moved the poisoned image closer to the original clean image than the poisoned version of

the image. This region coincides with the expected start of the mid-run dynamics where our

properties are most ideal for purification. Additional purification degrades necessary features
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for classifier training, as already seen previously in the bottom right of Figure 6.1.

We note that we are not the first to apply EBMs with MCMC sampling for robust

classification, but we are, to the best of our knowledge, the first to apply an EBM-based

purification method universally as a poison defense and use non-overlapping natural datasets

to further extend the generality of EBM purification.

6.4 Experiments

6.4.1 Experimental Details

We compare our method, PureEBM, against previous state-of-the-art defenses EPIc and

FrieNDs on the current leading triggered poison, Narcissus (NS) and triggerless poisons,

Gradient Matching (GM) and Bullseye Polytope (BP). Triggerless attacks GM and BP have

100 and 50 poison scenarios while NS has 10 (one per class). Primary results use a ResNet18

classifier and the CIFAR-10 dataset. We train a variety of EBMs using the training techniques

described in App. 6.3.1 with specific datasets for our experimental results:

1. PureEBM: To ensure EBM training is blind to poisoned images, we excluded the

indices for all potential poison scenarios which resulted in 37k, 45k, and 48k training

samples for GM, NS, and BP respectively of the original 50k CIFAR-10 train images.

2. PureEBM-P: Trained on the full CIFAR-10 dataset in which 100% of training samples

are poisoned using their respective class’ NS poison trigger. This model explores the

ability to learn robust features even when the EBM is exposed to full adversarial

influences during training (even beyond the strongest classifier scenario of 10% poison).

3. PureEBM CN-10: Trained on the CINIC-10 dataset, which is a mix of ImageNet (70k)

and CIFAR-10 (20k) images where potential poison samples are removed from CIFAR-10

indices [DCA18]. This model investigates the effectiveness of EBM purification when

trained on a distributionally similar dataset.
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4. PureEBM IN: Trained exclusively on the ImageNet (70k) portion of the CINIC-10

dataset. This model tests the generalizability of the EBM purification process on

a public out-of-distribution (POOD) dataset that shares no direct overlap with the

classifier’s training data X .

5. PureEBM-PCN-10: Trained on the CINIC-10 dataset where the CIFAR-10 subset is

fully poisoned. This variant examines the EBM’s ability to learn and purify data where

a significant portion of the training dataset is adversarially manipulated and the clean

images are from a POOD dataset.

A single hyperparameter grid-search for Langevin dynamics was done on the PureEBM

model using a single poison scenario per training paradigm (from scratch, transfer linear and

transfer fine-tune) as seen in App. D.6. The percentage of classifier training data poisoned is

indicated next to each poison scenario. Additional details on poison sources, poison crafting,

definitions of poison success, and training hyperparameters can be found in App. D.3.2.

6.4.2 Benchmark Results

Table 6.1 shows our primary results in which PureEBM achieves state-of-the-art

(SoTA) poison defense and natural accuracy in all poison scenarios and fully

poisoned PureEBM-P achieves SoTA performance for Narcissus. Furthermore, all public

out-of-distribution (POOD) EBMs achieve SoTA performance in almost every

category without additional hyperparameter search.

For GM, PureEBM matches SoTA in a nearly complete poison defense and achieves

1.1% less natural accuracy degradation, from no defense, than the previous SoTA. For BP,

PureEBM exceeds the previous SoTA with an 8-33% poison defense reduction and 1.1-7.5%

less degradation in natural accuracy. For NS, PureEBM matches or exceeds previous SoTA

with a 1-8% poison defense reduction and 1.5% less degradation in natural accuracy.

89



Table 6.1: Poison success and natural accuracy in all poisoned training scenarios (ResNet18,

CIFAR-10). We report the mean and the standard deviations (as subscripts) of 100 GM

experiments, 50 BP experiments, and NS triggers over 10 classes.

From Scratch

200 - Epochs 80 - Epochs

Gradient Matching-1% Narcissus-1% Gradient Matching-1% Narcissus-1%

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

None 44.00 94.840.2 43.9533.6 94.890.2 93.59 47.00 93.790.2 32.5130.3 93.760.2 79.43

EPIc 10.00 85.141.2 27.3134.0 82.201.1 84.71 27.00 90.870.4 21.5328.8 88.051.1 80.75

FrieNDs 0.00 91.150.4 8.3222.3 91.010.4 83.03 1.00 90.090.4 1.370.9 90.010.2 3.18

PureEBM 0.00 92.260.2 1.270.6 92.910.2 2.16 1.00 91.360.3 1.460.8 91.830.3 2.49

PureEBM-P NA NA 1.380.7 92.700.2 2.78 NA NA 1.631.0 91.490.3 3.47

PureEBM CN−10 0.00 92.990.2 1.430.8 92.900.2 3.06 1.00 92.020.2 1.500.9 92.030.2 2.52

PureEBM IN 1.00 92.980.2 1.390.8 92.920.2 2.50 1.00 92.020.2 1.520.8 92.020.3 2.81

PureEBM-PCN−10 NA NA 1.640.01 92.860.20 4.34 NA NA 1.681.0 92.070.2 3.34

Transfer Learning

Fine-Tune Linear - Bullseye Polytope

Bullseye Polytope-10% Narcissus-10% BlackBox-10% WhiteBox-1%

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

None 46.00 89.840.9 33.4133.9 90.142.4 98.27 93.75 83.592.4 98.00 70.090.2

EPIc 42.00 81.955.6 20.9327.1 88.582.0 63.00 66.67 84.343.8 91.00 64.790.7

FrieNDs 8.00 87.821.2 3.045.1 89.810.5 17.32 33.33 85.182.3 19.00 60.900.6

PureEBM 0.00 88.951.1 1.981.7 91.400.4 5.98 0.00 92.890.2 6.00 64.510.6

PureEBM-p NA NA 3.664.63 90.890.31 16.04 NA NA NA NA

PureEBM CN−10 0.00 88.671.2 2.972.5 90.990.3 7.95 0.00 92.820.1 6.00 64.440.4

PureEBM IN 0.00 87.521.2 2.021.0 89.780.6 3.85 0.00 92.380.3 6.00 64.980.3

6.4.3 Results on Additional Models and Datasets

Table 6.2 shows results when we apply NS poisons (generated using CIFAR-10) to the

CINIC-10 dataset. To ensure no overlap for our EBMs, we train on CINIC-10’s validation

set, which has the same size and composition as its training set. Table 6.3 shows results for

MobileNetV2 and DenseNet121 architectures. PureEBM is SoTA across all models

and in CINIC-10 NS poison scenarios showing no performance dependence on dataset

or model. Full results are in App. D.2.

Finally, the Hyperlight Benchmark CIFAR-10 (HLB) is a drastically different case study

from our standard benchmarks with a residual-less network architecture, unique initialization
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scheme, and super-convergence training method that recently held the world record of

achieving 94% test accuracy on CIFAR-10 using a surprising total of 10 epochs [Bal23]. We

observe that NS still successfully poisons the HLB model, and does so by the end of the

first epoch. Applying EPIc and FrieNDs becomes unclear, as they use model information

after a warm-up period, but we choose the most sensible warm-up period of one epoch, even

though the poisons have set in. From Table 6.3 subset selection based EPIc is unable to

train effectively, and FrieNDs offers some defense. PureEBM still applies with minimal

adjustment to the training pipeline and defends effectively against these poisons. Table

6.3 also shows the effect of differing MCMC steps where 25 MCMC steps already offers

comparable defense to FrieNDs, and by 50 steps, PureEBM shows SoTA poison defense

and natural accuracy. Increasing steps further reduces poison success, but at the cost of

natural accuracy and linearly increasing preprocessing time.

The last column of the HLB section shows timing analysis on a NVIDIA A100 GPU.

Due to HLB training speeds, timings primarily indicate the processing time of the defenses.

PureEBM is faster in total train time and per epoch time than existing SoTA defense

methods. We emphasize that, in practice, PureEBM can be applied once to a dataset and

used across model architectures, unlike previous SoTA defenses EPIc and FrieNDs, which

require train-time information on model outputs. See App. D.4 for further timing.

Table 6.2: Poison success and natural accuracy when training on CINIC-10 Dataset From

Scratch Results with NS Poison

CINIC-10 Narcissus - 1% From-Scratch (200 Epochs)

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

CIFAR-10

Accuracy (%) ↑

None 62.060.21 86.320.10 90.79 94.220.16

EPIc 49.500.27 81.910.08 91.35 91.100.21

FrieNDs 11.170.25 77.530.60 82.21 88.270.68

PureEBM 7.730.08 82.370.14 29.48 91.980.16
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Table 6.3: MobileNetV2 and DenseNet121 results and HyperlightBench for a novel training

paradigm where PureEBM is still effective.

From Scratch NS-1% (200 epochs)

MobileNetV2 DenseNet121

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

None 32.700.25 93.920.13 46.5232.2 95.330.1

EPIc 22.350.24 78.169.93 32.6029.4 85.122.4

FrieNDs 2.000.01 88.820.57 8.6021.2 91.550.3

PureEBM 1.640.01 91.750.13 1.420.7 93.480.1

Linear Transfer WhiteBox BP-10%

MobileNetV2 DenseNet121

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

None 81.25 73.270.97 73.47 82.131.62

EPIc 56.25 54.475.57 41.67 70.135.2

FrieNDs 41.67 68.861.50 56.25 80.121.8

PureEBM 0.00 78.571.37 0.00 89.290.94

Hyperlight Bench CIFAR-10 NS-1% (10 Epochs)

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

Train Time

(s)

None 76.3916.35 93.950.10 95.69 6.810.62

EPIc 10.5818.35 24.886.04 50.21 612.4330.16

FrieNDs 11.3518.45 87.031.52 56.65 427.500.50

PureEBM-25 10.5926.04 92.750.13 84.60 54.700.48

PureEBM-50 2.161.22 92.380.17 3.74 92.890.48

PureEBM-100 1.891.06 91.940.14 3.47 168.690.46

PureEBM-150 1.931.15 91.460.17 4.14 244.720.47

PureEBM-300 1.680.82 90.550.21 2.89 478.290.47

6.4.4 Further Experiments

Model Interpretability Using the Captum interpretability library, in Figure 6.3, we

compare a clean model with clean data to the various defense techniques on a sample image

poisoned with the NS Class 5 trigger ρ [KMM20]. Only the clean model and the model that

uses PureEBM correctly classify the sample as a horse, and the regions most important
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to prediction, via occlusion analysis, most resemble the shape of a horse in the clean and

PureEBM images. Integrated Gradient plots show how PureEBM actually enhances

interpretability of relevant features in the gradient space for prediction compared to even the

clean NN. Aditionally we see that the NN trained with PureEBM is less sensitive to input

perturbations compared to all other NNs. See App. D.5 for additional examples.
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Figure 6.3: Defense Interpretability: Model using PureEBM focuses on the outline of the

horse in the occlusions analysis and to a higher degree on the primary features in the gradient

space than even the clean model on clean data.

Flatter solutions are robust to Poisons Recently [LYM23] showed that effective

poisons introduce a local sharp region with a high training loss and that an effective defense

can smooth the loss landscape of the classifier. We consider the curvature of the loss with

respect to our model’s weights as a way to evaluate defense success. The PSGD framework

[Li19, Li22] estimates the Hessian of the loss H of the model over the full dataset and the

poisoned points through training. In information theory, 0.5 log det(H) is a good proxy for

the description length of the model parameters. We find that training with data points

pre-processed by the PureEBM stochastic transformation ΨT (x) reduces the curvature of

the loss of the NN over the full dataset and around poisoned points. In effect, NNs trained
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with points defended with PureEBM are significantly more robust to perturbation than

other defenses. In App. D.5.1, we find that PureEBM and FrieNDs models’ parameters

diverge from poisoned models more so than EPIc.
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Figure 6.4: Estimate loss curvature - classifier robustness - with log (|H|) against both full and

poisoned subset of training data. Model trained with PureEBM has the lowest curvature

compared to SoTA defense methods.

6.5 Conclusion

In this chapter, we present PureEBM, a powerful Energy-Based Model defense against

imperceptible train time data poisoning attacks. Our approach significantly advances the field

of poison defense and model security by addressing the critical challenge of adversarial poisons

in a manner that maintains high natural accuracy and method generality. Through extensive

experimentation, PureEBM has demonstrated state-of-the-art performance in defending

against a range of poisoning scenarios using the leading Gradient Matching, Narcissus, and

Bullseye Polytope attacks. The key to our method’s success is a stochastic preprocssing step

that uses MCMC sampling with an EBM to iteratively purify poisoned samples, moving

them into a lower energy, natural data manifold. We share similar SoTA results with EBMs
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trained on out-of-distribution and poisoned datasets, underscoring the method’s adaptability

and robustness.

95



CHAPTER 7

PureGen: Universal Data Purification Using Generative

Model Dynamics

7.1 Introduction

In this chapter, we introduce PureGen, a set of techniques for data purification using the

dynamics of generative models. PureGen encompasses our previously discussed PureEBM

method, now referred to as PureGen-EBM, as well as PureGen-DDPM, a modified

version of Denoising Diffusion Probabilistic Models (DDPMs) tailored for purification tasks.

We explore the robustness of these methods to distributional shifts and poisoning in the

generative model training data. Furthermore, we propose three novel combinations EBM and

DDPM dynamics: PureGen-Naive, PureGen-Reps, PureGen-Filt to further enhance

the purification process. Finally, we apply PureGen variants to the task of purifying

intellectual property (IP) from image datasets, demonstrating its effectiveness in removing

undesired visible perturbations while preserving the natural accuracy of the dataset.

7.2 PureGen-DDPM: Modified Denoising Diffusion for Data Pu-

rification

As discussed in detail in Section 2.4.1.3 Denoising Diffusion Probabilistic Models (DDPMs)

[HJA20] are a class of generative models that have shown remarkable performance in high-

fidelity image generation. The key idea in DDPMs is to define a forward diffusion process
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that gradually adds Gaussian noise to an image over a fixed number of timesteps, and learn

a reverse process that removes this noise to generate a clean sample.

In the standard DDPM formulation, the number of diffusion steps T is usually set to a

large value like 1000 to ensure that xT is sufficiently noisy and close to an isotropic Gaussian.

However, for the purpose of data purification, we make a key modification in PureGen-

DDPM- we limit the number of forward diffusion steps in training to a much smaller value,

typically around 250. The intuition behind this change is as follows:

1. By stopping the diffusion process earlier, we ensure that the corrupted image xT still

retains some structure and information from the original clean image x0. This is in

contrast to running the full 1000 steps, which would essentially destroy all information

about x0.

2. During training, limiting the diffusion steps allows the model to dedicate more of its

capacity towards learning to restore the moderately corrupted images back to their clean

versions, rather than learning to generate images from pure noise. This shift in focus is

more aligned with our goal of purification, and sacrifices "generative" capabilities for

better purification and image restoration.

Experimentally, we found that using a maximum of around 250 forward process training

steps provided the optimal balance at inference time for removing adversarial perturbations

while preserving the original image content. Using too few steps did not provide the inference

capacity to eliminate the poisons sufficiently, while using too many steps dedicated less model

capacity to restoration, and we lost natural accuracy as well as defense capabilities. Examples

of this can be seen in 7.1.

By modifying the forward diffusion process and focusing the model capacity on purification

rather than generation, PureGen-DDPM provides a more effective and tailored defense

against adversarial poisoning attacks on image datasets.
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t: 0 t: 150 t: 250 t: 500 t: 750

Standard DDPM q(xt|xt 1)

PureGen-DDPM q(xt|xt 1)

t: 1000

PureGen-DDPM
 250 Timesteps

PureGen-DDPM
 500 Timesteps

Standard
 1000 Timesteps

Narcissus ϵ = 16 1%

Purify Steps 75 100 125 150

Forward Train Steps Avg Natural Accuracy (%) ↑

150 90.96 ± 0.15 90.21 ± 0.20 89.18 ± 0.11 88.46 ± 0.22

250 91.04 ± 0.17 90.55 ± 0.19 89.75 ± 0.17 89.60 ± 0.17

500 90.48 ± 0.21 89.77 ± 0.20 88.99 ± 0.19 88.19 ± 0.15

750 90.25 ± 0.12 89.06 ± 0.18 88.14 ± 0.10 87.19 ± 0.21

1000 90.11 ± 0.16 89.00 ± 0.25 87.98 ± 0.18 86.83 ± 0.10

Forward Train Steps Avg Poison Success (%) ↓

150 8.03 ± 6.36 6.36 ± 5.84 5.51 ± 4.07 5.43 ± 4.51

250 7.14 ± 6.94 5.58 ± 5.25 4.36 ± 3.63 4.15 ± 3.24

500 8.88 ± 7.31 6.34 ± 5.10 5.45 ± 4.22 4.93 ± 4.36

750 9.27 ± 6.26 7.01 ± 5.19 5.96 ± 4.64 5.36 ± 3.42

1000 9.12 ± 6.61 7.01 ± 4.82 6.43 ± 5.12 5.12 ± 3.18

Figure 7.1: Top We compare PureGen-DDPM forward steps with the standard DDPM

where 250 steps degrades images for purification but does not reach a noise prior. Note that

all model are trained with the same linear β schedule. Bottom Left Generated images from

sampled prior for models with 250, 750, and 1000 (Standard) train forward steps where it

is clear the 250-step model does not generate realistic images. Bottom Right Significantly

improved poison defense performance of PureGen-DDPM with 250 train steps indicating a

trade-off between data purification and generative capabilities.
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7.3 PureGen: Generative Model Based Data Purification for Poi-

son Defense

7.3.1 Classification with Stochastic Transformation

We update our notation from the previous Section 6.3.2, ΨT : RD → RD which is a stochastic

pre-processing transformation. We now define T = (TEBM, TDDPM, TReps) ∈ R3, where TEBM

represents the number of EBM MCMC steps, TDDPM represents the number of diffusion steps,

and TREPS represents the number of times these steps are repeated. Thus for PureGen-EBM

TDDPM = 0 and for PureGen-DDPM TEBM = 0 and TREPS = 1 for both.

To incorporate EBM filtering, we order D by Gθ(x) and partition the ordering based on k

into D(k)
max ∪ D(1−k)

min , where D(k)
max contains k|D| datapoints with the maximal energy (where

k = 1 results in purifying everything and k = 0 is traditional training). Then, with some

abuse of notation,

ΨT,k(D) = ΨT (D(k)
max) ∪ D

(1−k)
min (7.1)

One can compose a stochastic transformation ΨT,k(x) with a randomly initialized deterministic

classifier fϕ(x) ∈ RJ (for us, a naturally trained classifier) to define a new deterministic

classifier Fϕ(x) ∈ RJ as

Fϕ(x) = EΨT,k(x)[fϕ0(ΨT,k(x))] (7.2)

which is trained with cross-entropy loss via SGD to realize Fϕ(x). As this is computationally

infeasible we take fϕ(ΨT,k(x)) as the point estimate of Fϕ(x), which is valid because ΨT,k(x)

has low variance.

7.3.2 Comparing PureGen-EBM and PureGen-DDPM Dynamics

PureGen-EBM is akin to a noisy gradient descent over the unconditional energy landscape

of a learned data distribution. This is more implicit in the PureGen-DDPM dynamics. As

T increases, poisoned images move from their initial higher energy towards more realistic
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lower-energy samples that lack poison perturbations. In from-scratch ϵ = 8 poison scenarios,

150 EBM Langevin steps or 75 DDPM steps fully purifies the majority of the dataset with

minimal feature loss to the original image. In Figure 7.2, we compare the Langevin trajectory’s

impacts on ℓ2 distance of both purified clean and poisoned images from the initial clean image

(∥x−ΨT (x)∥2 and ∥x−ΨT (x+ δ)∥2), and the purified poisoned image’s trajectory away from

its poisoned starting point (∥(x+ δ)−ΨT (x+ δ)∥2) for both PureGen-EBM and PureGen-

DDPM. Both poisoned and clean distance trajectories converge to similar distances away

from the original clean image (limT→∞ ∥x−ΨT (x)∥2 = limT→∞ ∥x−ΨT (x+ δ)∥2), and the

intersection where ∥(x+ δ)−ΨT (x+ δ)∥2 > ∥x−ΨT (x+ δ)∥2 (indicated by the dotted red

line), occurs at ∼150 EBM and 75 DDPM steps, indicating when purification has moved the

poisoned image closer to the original clean image than the poisoned version of the image.
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Figure 7.2: Plot of ℓ2 distances for PureGen-EBM (Left) and PureGen-DDPM (Right)

between clean images and clean purified (blue), clean images and poisoned purified (green),

and poisoned images and poisoned purified images (orange) at points on the Langevin

dynamics trajectory. Purifying poisoned images for less than 250 steps moves a poisoned

image closer to its clean image with a minimum around 150, preserving the natural image

while removing the adversarial features.

These dynamics provide a concrete intuition for choosing step counts that best

balance poison defense with natural accuracy (given a poison ϵ), hence why we use 150-1000

EBM steps of 75-125 (specifically 150 EBM, 75 DDPM steps in from-scratch scenarios) shown

in App. E.2. Further, PureGen-EBM dynamics stay closer to the original images, while
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PureGen-DDPM moves further away as we increase the steps as the EBM has explicitly

learned a probable data distribution, while the DDPM restoration is highly dependent on

the conditional information in the degraded image. These dynamics align with empirical

results showing that EBMs better maintain natural accuracy and poison defense with smaller

perturbations and across larger distributional shifts, but DDPM dynamics are better suited

for larger poison perturbations. Finally, we note the purify times in the x-axes of Fig. 7.2,

where PureGen-EBM is much faster for the same step counts to highlight the computational

differences for the two methods, which we further explore Section 7.4.3.

7.3.3 PureGen-DDPM Results

We begin by considering many of the same train-time poisoning attacks from the previous

Chapter 6 to now compare the performance of PureGen-EBM and PureGen-DDPM. We

add baseline defense JPEG compression, which offers powerful defense against poison attacks

in numerous scenarios [LZL23].

We also add data availability attack Neural Tangent Generalization Attacka (NTGA),

which is a clean-label, black-box data availability attack that can collapse model test accuracies

[YW21]. Background for data availability attacks can be found in [YZC22]. We do not focus

on such attacks since they are realized in model results during training. They do not pose a

latent security risk in deployed models, and arguably have ethical applications within data

privacy and content creator protections as discussed in App. E.1.

Our EBMs and DDPMs are trained on the ImageNet (70k) portion of the CINIC-10

dataset, CIFAR-10, and CalTech-256 for poisons scenarios using CIFAR-10, CINIC-10, and

Tiny-ImageNet respectively, to ensure no overlap of PureGen train and attacked classifier

train datasets [Ale09, DCA18, GHP22].

Table 7.1 shows our primary results using ResNet18 (ResNet34 for Tiny-IN ) in which

PureGen achieves state-of-the-art (SoTA) poison defense and natural accuracy
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Table 7.1: Poison success and natural accuracy in all ResNet poison training scenarios. We

report the mean and the standard deviations (as subscripts) of 100 GM experiments, 50 BP

experiments, and NS triggers over 10 classes.

From Scratch

CIFAR-10 (ResNet-18) CINIC-10 (ResNet-18) Tiny ImageNet (ResNet-34)

Gradient Matching-1% Narcissus-1% Narcissus-1% Gradient Matching-0.25%

Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Max Poison

Success (%) ↓

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Max Poison

Success (%) ↓

Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

None 44.00 94.840.2 43.9533.6 94.890.2 93.59 62.060.21 86.320.10 90.79 26.00 65.200.5

EPIc 10.00 85.141.2 27.3134.0 82.201.1 84.71 49.500.27 81.910.08 91.35 18.00 60.550.7

FrieNDs 0.00 91.150.4 8.3222.3 91.010.4 83.03 11.170.25 77.530.60 82.21 2.00 42.747.5

JPEG 0.00 90.000.19 1.781.17 92.940.15 4.13 18.8927.46 81.060.18 92.12 10.00 60.010.47

PureGen-DDPM 0.00 90.930.20 1.640.82 90.990.22 2.83 4.762.37 79.350.08 7.74 0.00 50.500.80

PureGen-EBM 1.00 92.980.2 1.390.8 92.920.2 2.50 7.730.08 82.370.14 29.48 2.00 63.270.4

Transfer Learning (CIFAR-10, ResNet-18)

Fine-Tune Linear - Bullseye Polytope

Bullseye Polytope-10% Narcissus-10% BlackBox-10% WhiteBox-1% (CIFAR-100)

Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Max Poison

Success (%) ↓

Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

None 46.00 89.840.9 33.4133.9 90.142.4 98.27 93.75 83.592.4 98.00 70.090.2

EPIc 42.00 81.955.6 20.9327.1 88.582.0 91.72 66.67 84.343.8 63.00 60.861.5

FrieNDs 8.00 87.821.2 3.045.1 89.810.5 17.32 33.33 85.182.3 19.00 60.900.6

JPEG 0.00 90.400.44 2.953.71 87.630.49 12.55 0.00 92.440.47 8.00 50.420.73

PureGen-DDPM 0.00 91.530.15 1.881.12 90.690.26 3.42 0.00 93.810.08 9.0 54.530.64

PureGen-EBM 0.00 87.521.2 2.021.0 89.780.6 3.85 0.00 92.380.3 6.00 64.980.3

in all poison scenarios. Both PureGen methods show large improvements over baselines

in triggered NS attacks (PureGen matches or exceeds previous SoTA with a 1-6% poison

defense reduction and 0.5-1.5% less degradation in natural accuracy), while maintaining

perfect or near-perfect defense with improved natural accuracy in triggerless BP and GM

scenarios. Note that PureGen-EBM does a better job maintaining natural accuracy in the

100 class scenarios (BP-WhiteBox and Tiny-IN), while PureGen-DDPM tends to get much

better poison defense when the PureGen-EBM is not already low.

Table 7.2 shows selected results for additional models MobileNetV2, DenseNet121, and

Hyperlight Benchmark (HLB) [Bal23]. In all results, PureGen is again SoTA, except

102



Table 7.2: Results for additional models (MobileNetV2, DenseNet121, and HLB) and the

NTGA data-availability attack. PureGen remains state-of-the-art for all train-time latent

attacks, while NTGA defense shows near SoTA performance. *All NTGA baselines pulled

from [DEL24].

Scenario From Scratch NS(ϵ = 8)-1% Linear Transfer BlackBox BP-10%

Model MobileNetV2 DenseNet121 Hyperlight Bench MobileNetV2 DenseNet121

Defense
Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

None 32.700.25 93.920.13 46.5232.2 95.330.1 76.3916.35 93.950.10 81.25 73.270.97 73.47 82.131.62

EPIc 22.350.24 78.169.93 32.6029.4 85.122.4 10.5818.35 24.886.04 56.25 54.475.57 66.67 70.2010.15

FrieNDs 2.000.01 88.820.57 8.6021.2 91.550.3 11.3518.45 87.031.52 41.67 68.861.50 60.42 80.221.90

JPEG 2.301.20 86.600.13 1.901.54 92.030.22 1.730.97 90.920.22 2.08 73.140.71 0.00 78.671.60

PureGen-DDPM 2.131.02 86.910.23 1.710.94 90.940.23 1.750.90 89.340.25 0.00 83.150.02 0.00 89.020.15

PureGen-EBM 1.640.01 91.750.13 1.420.7 93.480.1 1.891.06 91.940.14 0.00 78.571.37 0.00 89.290.94

NTGA Data Availability Attack

Defense None FAutoAug.* Median Blur* TVM* Grayscale* Avatar * JPEG PureGen-DDPM PureGen-EBM

Avg Natural Accuracy (%) ↑ 11.490.69 27.562.45 28.431.41 41.411.37 81.270.27 86.220.38 79.220.25 83.480.43 85.220.38

for NTGA data-availability attack, where PureGen is just below SoTA method Avatar

(which is also a diffusion based approach). But we again emphasize data-availability attacks

are not the focus of PureGen which secures against ‘latent’ attacks.

7.4 Comparing PureGen-EBM and PureGen-DDPM

Energy-based models (EBMs) and denoising diffusion probabilistic models (DDPMs) are two

distinct approaches to generative modeling, each with its own strengths and weaknesses. In

the context of data purification, understanding these differences is crucial for selecting the

most appropriate method for a given task and for developing effective combination strategies.

PureGen-EBM, based on energy-based models, learns to capture the underlying data

manifold by assigning low energy values to samples that resemble the training data and

high energy values to outliers or anomalous samples. This approach allows PureGen-EBM

to effectively model the inherent structure of the data, making it robust to distributional

shifts and capable of identifying and purifying corrupted samples. However, the training
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process of EBMs can be challenging, particularly in terms of stability and convergence, and

the purification process may be computationally expensive due to the need for Markov chain

Monte Carlo (MCMC) sampling.

On the other hand, PureGen-DDPM, based on denoising diffusion probabilistic models,

learns to generate clean samples by reversing a gradual noising process. This approach

is highly effective at modeling complex data distributions and can generate high-quality

samples. In the context of data purification, PureGen-DDPM excels at removing complex

perturbations and artifacts from corrupted samples. However, the purification process may

result in a slight loss of fidelity to the original data distribution, as the model’s primary

objective is to remove noise rather than to strictly adhere to the underlying data manifold.

In the following subsections, we explore a comprehensive comparison of PureGen-EBM

and PureGen-DDPM in terms of their performance on poison defense, their robustness

to distributional shifts and poisoning in training, and their computational efficiency. By

understanding the strengths and weaknesses of each approach, we aim to provide insights

into their suitability for different purification scenarios and to motivate the development of

effective combination strategies.

7.4.1 Robustness to Distributional Shifts

An important consideration for PureGen is the distributional shift between the data used to

train the generative models and the target dataset to be purified. Figure 7.3 explores this by

training PureGen-EBM and PureGen-DDPM on increasingly out-of-distribution (OOD)

datasets while purifying the CIFAR-10 dataset (NS attack). We quantify the distributional

shift using the Fréchet Inception Distance (FID) [HRU18] between the original CIFAR-10

training images and the OOD datasets. Notably, both methods maintain SoTA or near

SoTA poison defense across all training distributions, highlighting their effectiveness

even under distributional shift. The results show that PureGen-EBM is more robust to

distributional shift in terms of maintaining natural accuracy, with only a slight drop in
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Figure 7.3: PureGen-EBM vs. PureGen-DDPM with increasingly Out-of-Distribution

training data (for generative model training) and purifying target/attacked distribution

CIFAR-10. PureGen-EBM is much more robust to distributional shift for natural accuracy

while both PureGen-EBM and PureGen-DDPM maintain SoTA poison defense across all

train distributions *CIFAR-10 is a “cheating” baseline as clean versions of poisoned images

are present in training data.

performance even when trained on highly OOD datasets like Flowers-102 and LFW people.

In contrast, PureGen-DDPM experiences a more significant drop in natural accuracy as

the distributional shift increases. Note that the CIFAR-10 is a “cheating” baseline, as clean

versions of the poisoned images are present in the generative model training data, but it

provides an upper bound on the performance that can be achieved when the generative

models are trained on perfectly in-distribution data.

7.4.2 Robustness to Poisoning

Another important consideration is the robustness of PureGen when the generative models

themselves are trained on poisoned data. Table 7.3 shows the performance of PureGen-EBM

and PureGen-DDPM when their training data is fully poisoned with the Narcissus (NS)
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Table 7.3: Both PureGen-EBM and PureGen-DDPM are robust to NS attack even when

fully poisoned (all classes at once) during model training except for NS Eps-16 for

PureGen-EBM

Classifier NS Attack Eps 8 16

PureGen w/NS Training Poison Nat Acc (%) ↑ Poison Success (%) ↓ Max Poison (%) ↓ Nat Acc (%) ↑ Poison Success (%) ↓ Max Poison (%) ↓

PureDDPM 91.51±0.13 2.62±3.75 12.70 90.31±0.18 4.61±3.99 12.86
0

PureEBM 91.37±0.14 1.60±0.82 2.82 88.21±0.15 8.73±6.29 23.05

PureDDPM 88.99±0.16 1.65±0.79 2.87 85.24±0.10 4.79±2.83 10.53
8

PureEBM 91.11±0.18 1.55±0.89 2.87 87.60±0.18 5.35±3.30 12.05

PureDDPM 88.02±0.21 1.57±0.79 2.79 83.74±0.21 2.90±1.54 6.11
16

PureEBM 90.76±0.14 1.28±0.86 3.43 85.58±0.40 17.73±14.62 44.15

attack, meaning that all classes are poisoned simultaneously. The results demonstrate that

both PureGen-EBM and PureGen-DDPM are highly robust to poisoning during model

training, maintaining SoTA poison defense and natural accuracy with only exception being

PureGen-EBM’s performance on the more challenging NS ϵ = 16 attack when poisoned

with the same perturbations. While it is unlikely an attacker would have access to both

the the generative model and classifier train datasets, these findings highlight the inherent

robustness of PureGen, as the generative models can effectively learn the underlying clean

data distribution even in the presence of poisoned samples during training. This is a key

advantage of PureGen compared to other defenses, especially when there is no secure

dataset

7.4.3 PureGen Timing and Limitations

Table 7.4 presents the training times for using PureGen-EBM and PureGen-DDPM (923

and 4181 seconds respectively to purify) on CIFAR-10 using a TPU V3. Although these times

may seem significant, PureGen is a universal defense applied once per dataset, making its

cost negligible when reused across multiple tasks and poison scenarios. To highlight this,

we also present the purification times amortized over the 10 and 100 NS and GM poison
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scenarios, demonstrating that the cost becomes negligible when the purified dataset is used

multiple times relative to baselines like FrieNDs which require retraining for each specific

task and poison scenario (while still utilizing the full dataset unlike EPIc). PureGen-EBM

generally has lower purification times compared to PureGen-DDPM, making it more

suitable for subtle and rare perturbations. Conversely, PureGen-DDPM can handle more

severe perturbations but at a higher computational cost and potential reduction in natural

accuracy.

Table 7.4: PureGen and baseline Timing Analysis on TPU V3

Train Time (seconds)

Single Classifier

(Median)

Gradient Matching

100 Classifiers

Narcissus

10 Classifiers

None, JPEG 3690 367348 528829

EPIc 3650 3624153 5212295

FrieNDs 11502 11578627 12868s573

PureGen-EBM T=[150,0,1] 4613 369948 538032

PureGen-DDPM T=[0,75,1] 7871 373148 570637

Training the generative models for PureGen involves substantial computational cost

and data requirements. However, as shown in Table 7.3 and Figure 7.3, these models

remain effective even when trained on poisoned or out-of-distribution data. This universal

applicability justifies the initial training cost, as the models can defend against diverse

poisoning scenarios. So while JPEG is a fairly effective baseline, the added benefits of

PureGen start to outweigh the compute as the use cases of the dataset increase.

7.5 PureGen Combinations: PureGen-Naive, PureGen-Reps,

PureGen-Filt

While both PureGen-EBM and PureGen-DDPM have shown impressive results in data

purification tasks, they each have their own strengths and weaknesses. PureGen-EBM

excels at capturing the underlying data manifold and is more robust to distributional shifts,
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but it can struggle with more complex perturbations. On the other hand, PureGen-DDPM

is highly effective at removing complex perturbations but may sacrifice some fidelity to the

original data distribution.

To leverage the strengths of both PureGen-EBM and PureGen-DDPM, we propose

PureGen combinations:

1. PureGen-Naive (ΨT |TEBM>0,TDDPM>0,TReps=1): Apply a fixed number of PureGen-

EBM steps followed by PureGen-DDPM steps. While this approach does improve

the purification results compared to using either method alone, it does not fully exploit

the synergy between the two techniques.

2. PureGen-Reps (ΨT |TEBM>0,TDDPM>0,TReps>1): To better leverage the strengths of both

methods, we propose a repetitive combination, where we alternate between a smaller

number of PureGen-EBM and PureGen-DDPM steps for multiple iterations.

3. PureGen-Filt (ΨT,k|TEBM≥0,TDDPM≥0,0<k<1): In this combination, we first use PureGen-

EBM to identify a percentage of the highest energy points in the dataset, which are

more likely to be samples with poisoned perturbations as shown in Fig. 6.1. We

then selectively apply PureGen-EBM or PureGen-DDPM purification to these

high-energy points.

We note that methods 2 and 3 require extensive hyperparameter search with performance

sweeps using the HLB model in App E.5, as there was little intuition for the amount of reps

(TReps) or the filtering threshold (k) needed. Thus, we do not include these methods in our

core results, but instead show the added performance gains on higher power poisons in Table

7.5, both in terms of increased perturbation size ϵ = 16 and increased poison % (and both

together). We note that 10% would mean the adversary has poisoned the entire class in

CIFAR-10 with an NS trigger, and ϵ = 16 is starting to approach visible perturbations, but

both are still highly challenging scenarios worth considering for purification.
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Table 7.5: PureGen-Naive, PureGen-Reps, and PureGen-Filt results showing further

performance gains on increased poison power scenarios

Narcissus ϵ = 8 10% Narcissus ϵ = 16 1% Narcissus ϵ = 16 10%

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Max Poison

Success (%) ↓

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Max Poison

Success (%) ↓

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Max Poison

Success (%) ↓

None 96.276.62 84.570.60 99.97 83.6312.09 93.670.11 97.36 99.350.81 84.580.63 99.97

Best Baseline 16.959.72 84.661.51 33.96 11.8512.60 87.720.19 36.90 71.2822.90 82.830.43 99.25

PureGen-DDPM 6.385.16 85.860.46 16.29 5.213.35 86.160.19 13.32 69.3816.73 83.581.02 89.35

PureGen-EBM 52.4823.29 86.141.82 99.86 7.354.46 85.610.25 16.94 77.507.01 78.790.93 90.84

PureGen-Naive 10.438.58 88.200.54 27.42 5.202.61 85.950.23 9.80 63.0115.24 83.140.90 87.17

PureGen-Reps 3.752.28 85.560.22 7.74 4.952.48 85.790.18 10.75 53.7917.14 83.921.02 81.09

PureGen-Filt 6.476.98 86.082.00 18.81 5.744.05 90.520.18 16.08 69.1312.94 85.471.45 87.66

7.6 PureGen for Intellectual Property Purification

Data purification can extend well beyond the realm of invisible perturbations for attacks.

There are many practical applications for purifying image datasets of visible perturbations such

as Intellectual Property (IP) logos or watermarks. These perturbations can be undesirable

for various reasons, such as copyright infringement or visual distraction. Manually detecting

and removing these perturbations might be expensive or time consuming. In this section, we

explore the application of PureGen to the task of automatically purifying IP from image

datasets with minimal degradation to the broad features of the dataset.

7.6.1 Problem Setting

We use the Tiny ImageNet dataset, which consists of 100,000 images across 200 classes, and

combine it with a dataset of 32 NFL Logos at various mixing ratios and sizes. The logos are

randomly placed on the images to ensure that they are uncorrelated with the image classes.

This is done by first inserting the logo into an image in a unique random location per epoch.

Let α be the mixing ratio, defined as the proportion of images with logos in the dataset, and

the final image is an interpolation (as seen in Figure 7.4):
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xtrain = xorig × (1− α) + xlogo × α (7.3)
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Figure 7.4: Tiny-ImageNet "NFL Logos" dataset samples (64x64) at various mix ratios and

logo dimensions.

We then split the Tiny ImageNet "NFL Logos" dataset into two parts for each class: one

for training the generative models PureGen which lacks any logos, α = 0, and the other for

training the ResNet18 classifiers. We train two classifiers: one to classify the original image

classes and another to classify the presence of logos. The objective is now to reduce the

classification accuracy of the logos classifier while minimally impacting the natural accuracy

for the classes. Formally:

argmax
PureGen

Aclasses − Alogo (7.4)

where Aclasses and Alogo are the accuracies of the natural classes and the logo classes

respectively and we abuse notation to find the PureGen method and settings that maximizes

this classification difference.
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7.6.2 Analysis and Results

0.0 0.1 0.25 0.4 0.5 0.6 0.75 1.0
Mix Ratio

Baseline

JPEG75

PureGen-EBM150

PureGen-EBM500

PureGen-EBM2000

PureGen-DDPM75

PureGen-DDPM100

PureGen-DDPM125

56.39% 56.16% 55.88% 55.47% 55.85% 55.24% 55.77% 56.17%

55.27% 55.00% 54.60% 54.17% 54.55% 54.81% 53.89% 53.63%

53.65% 53.83% 52.96% 53.39% 53.09% 52.94% 53.27% 52.76%

51.37% 49.46% 51.15% 51.12% 50.34% 50.05% 49.67% 49.24%

46.18% 45.48% 45.46% 45.13% 45.00% 44.43% 44.44% 44.09%

49.04% 50.49% 49.74% 49.88% 49.16% 48.49% 48.39% 47.97%

48.69% 48.21% 48.66% 47.89% 46.23% 46.61% 46.48% 45.43%

45.73% 45.64% 45.51% 45.08% 43.30% 43.21% 43.29% 43.52%
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Figure 7.5: Both PureGen-EBM and PureGen-DDPM can collapse logo classifier accuracy

with though steps for the middle mixing rations (0.4-0.6), with PureGen-DDPM 125 steps

extending out to a mixing ratio of 0.6, but also generally sacrificing more natural accuracy

the PureGen-EBM.

Results for logo dimension of 16 are heatmapped in Figure 7.5. Note that Alogo is largely

bimodal, achieving a nearly perfect classification accuracy (>99%) or collapsing to a very low

or "untrainable" amount ( 3%). In addition, the logos classifier can only be trained after

α > 0.25.

We see that PureGen purifies IP from image datasets with various successes over

baseline comparisons JPEG compression and without any processing. Applying PureGen

purification techniques, particularly with higher numbers of EBM or DDPM

steps, can push out the mixing ratio at which the logo classifier collapses while

maintaining a reasonable level of Aclasses, although not without noticeable sacrifice.

For PureGen-EBM, 2000 steps can purify α = 0.4 (and is starting to do so at α = 0.5) but

Aclasses decreases anywhere from 10-12% at the various α’s. We can start to collapse Alogo

even further at α = 0.6 with PureGen-DDPM and 125 steps, but we sacrifice slightly more

natural accuracy. Full results across multiple logo sizes are in Appendix E.6.
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Figure 7.6: Examples of PureGen on an IP data sample showing the unique behavior of

PureGen-EBM and PureGen-DDPM and their potential logo purification capabilities.

In Figure 7.6 we show the visual impact of baselines and various PureGen methods. The

distinct nature of PureGen-EBM and PureGen-DDPM is apparent. PureGen-EBM

purified images have more diffuse impacts, with noticeable color perturbations across the

image, while PureGen-DDPM images are more similar in the color space but occasionally

contain greater structural deficiencies. This aligns with analysis from Section 7.3.2 where

PureGen-DDPM can move images much further in the pixel space, particularly with the

degradation in the forward noise process, thus also allowing for greater purification and

disruption of undesired perturbations. But this can come at the sacrifice of fidelity to the
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underlying data distribution, where the relevant features of the images are not restored

ideally.

The IP purification exercise offers further insight into the capabilities of PureGen to

extend beyond poison defense and invisible perturbations. There are many avenues for

further research. For instance, we could explore combinations of PureGen-DDPM and

PureGen-EBM as we did in previous sections. We could also explore the addition of

negative training examples in EBM training or look to further incentivize degradation of IP

in generative model training. These initial results show that PureGen can offer additional

capabilities as a potential generalized IP purification technique with further exploration and

improvement.

7.7 Conclusion

In this chapter, we introduced PureGen, a suite of data purification techniques that harness

the power of generative models, specifically energy-based models (PureGen-EBM) and

denoising diffusion probabilistic models (PureGen-DDPM). Using the unique strengths of

these two approaches, PureGen provides a robust and effective framework for defending

against adversarial poison attacks and removing unwanted perturbations from image datasets.

Through experiments, we demonstrated the effectiveness of PureGen in various purifi-

cation tasks, showcasing the significant reduction in poison success rates while maintaining

high natural accuracy. We also explored the robustness of the various techniques to distribu-

tional shifts and poisoning in generative model training data, highlighting the generalization

capability of these methods.

In addition, we proposed several combination strategies that take advantage of the

synergies between PureGen-EBM and PureGen-DDPM, allowing for more efficient and

effective purification processes. These combinations, such as PureGen-Reps andPureGen-

Filt, allow for more gradual or targeted purification. Finally, we applied PureGen to
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the task of purifying intellectual property from image datasets, demonstrating the potential

utility to remove visible perturbations while preserving natural accuracy.

The PureGen framework is still in its early days and provides potential for much future

work. The combination PureGen techniques are extensive but far from comprehensive. The

train datasets and size of the models themselves are always opportunities for improvements,

and increasing both model and dataset size routinely results in capability improvements

across deep learning research. We could also look at novel architecture that can capitalize on

the capabilities of both techniques, such as a ‘U-Net’ architecture EBM model that could do

pixel-wise energy and ideally purify the undesired perturbations more explicitly.

The PureGen framework represents a significant advance in the field of data purification,

providing a powerful and flexible tool-set to ensure the integrity and reliability of image data

sets in the face of adversarial attacks and unwanted perturbations. As the importance of

data quality and security continues to grow in the era of deep learning, PureGen offers a

promising solution for researchers and practitioners who seek to build robust and reliable

machine learning systems.
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CHAPTER 8

Conclusion

Throughout this thesis, we have explored the integration of causal priors and data purification

techniques in machine learning models, with a focus on generative architectures, to enhance

their robustness, interpretability, and performance. Our research has spanned several key

areas, including the incorporation of causal knowledge in generative models for counterfactual

reasoning and de-biasing, the development of a causal structural hypothesis testing frame-

work, the exploration of latent space augmentations for improved data generation, and the

introduction of novel data purification methods for defending against adversarial poisoning

attacks.

The main contributions of this thesis can be summarized as follows:

1. We proposed a counterfactual-based method, CCGM, for de-biasing generative models

using causal priors, enabling the generation of out-of-distribution samples from the

training dataset. This approach allows for the simulation of "what-if" scenarios and

the generation of diverse, bias-free data.

2. We developed a causal structural hypothesis testing framework, CSHTest and CSVHTest,

which leverage generative deep learning and out-of-distribution data generalization to

compare and evaluate structural causal models. This framework provides a principled

approach for assessing the validity of causal hypotheses in the absence of ground truth.

3. We introduced a latent space augmentation technique, LAVAE, which enables the

composable generation of diverse and high-quality augmented samples efficiently. By
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learning augmentations in the latent space, LAVAE offers greater control and inter-

pretability compared to traditional image space augmentations.

4. We proposed PureGen, a set of novel data purification methods that utilize the

stochastic dynamics of energy-based models and denoising diffusion probabilistic mod-

els, independently and in combination, to defend against adversarial train-time poisoning

attacks. These methods achieve state-of-the-art performance in terms of poison de-

fense and natural accuracy, while maintaining broad applicability and robustness to

distributional shifts and poisoning of the generative models themselves.

The overarching theme of this thesis is the pursuit of robustness and improved general-

ization in machine learning models. By incorporating causal priors and data purification

techniques, we aim to build models that are not only accurate but also aligned with human

intuition and resilient to adversarial attacks.

The connection between robustness, poison defense, and causality is of interest to us.

Causal reasoning allows us to capture the underlying mechanisms that generate the data,

rather than relying solely on statistical associations. By incorporating causal knowledge, we

can build models that are more robust to distributional shifts and less susceptible to spurious

correlations. This is especially important in the context of adversarial attacks, where the

attacker may exploit the model’s reliance on superficial patterns to manipulate its behavior.

Moreover, the lack of explicit structure and semi/self-supervision in traditional deep

learning models can lead to overly narrow definitions derived from the training data alone. This

makes the models vulnerable to poisoning attacks, as the attacker can carefully craft examples

that fit the model’s narrow definition but lead to unintended consequences. By incorporating

causal priors and data purification techniques, we can guide the model towards more robust

and meaningful representations that are less easily fooled by adversarial perturbations.

The research presented in this thesis also highlights the importance of interpretability

and transparency in machine learning. By developing methods that allow for counterfactual
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reasoning, hypothesis testing, and controlled data generation, we can gain insights into the

model’s decision-making process and build trust with end-users. This is particularly crucial in

high-stakes applications, such as healthcare and autonomous systems, where the consequences

of model failures can be severe.

This thesis contributes to the ongoing effort to build interpretable and trustworthy

machine learning models. By integrating causal reasoning and data purification techniques,

we have shown that it is possible to create models that are not only accurate but also aligned

with human intuition and resilient to adversarial attacks. As machine learning continues to

be applied in increasingly critical domains, the importance of these properties cannot be

overstated. We hope that the research presented in this thesis will inspire further work in

this direction and contribute to the development of more reliable and responsible artificial

intelligence systems.

117



APPENDIX A

De-Biasing Generative Models using Counterfactual

Methods

A.1 Additonal Results
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Figure A.1: Visualization of the latent space of the causal concepts

A.2 Tabular Variable Reconstructions

118



3 2 1 0 1 2 3

School Mindset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
en

si
ty

Recon
True

Figure A.2: School mindset distribution CCGM reconstruction example
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Figure A.3: Success Expectation distribution CCGM reconstruction example
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Figure A.4: Intervention probability distribution CCGM reconstruction example. Note that

top 30% is used to bin data into binary before calculating ATEs.
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APPENDIX B

Hypothesis Testing using Causal and Causal Variational

Generative Models

B.1 DAG Simulation Results

B.1.1 DAG Size 5x5: Linear

Figure B.1: Probability table for a 5 node 5 edge DAG size with a linear SEM ground truth

model for DAG simulations comparing hypothesis with various Hamming Distance Tuples.
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B.2 More about the Pendulum

B.2.1 Pendulum Dataset

This dataset is generated by sweeping sun positions (xsun) and pendulum angles (θ) to

produce realistic shadow width (wshadow) and shadow locations (xshadow) from deterministic

non-linear functions. Figure B.2 shows the true DAG and an example generated image. Here,

the sun and pendulum variables are exogenous, and the shadow variables are endogenous.

We take these values u = [θ, xsun, wshadow, xshadow]
T ∈ Rd, where d = 4 and compile a tabular

dataset. This methodology provides a physics-based dataset where the causal, ground truth

causal model is known to show the abilities of CSHTest and CSVHTest.

θ xsun

wshadow xshadow

Figure B.2: Pendulum toy example. (a) The structural DAG dictating the pendulum tabular

dataset. (b) A visual representation of one of the results from the pendulum dataset.

Each pendulum entry is determined by the two exogenous variables, pendulum angle

(θ) and sun position (xsun). Here, the data samples are generated roughly where the angle

of the pendulum and the angle of light from the sun range ∈ (−45, 45) degrees, generated

independently. Then from that, we calculate a physics-based interpretation of the shadow

position and width. In the calculation of both of the endogenous variables, we introduce

non-linearities in operating on various trigonometric functions. In the shadow width case, we

also deal with an maximum as we don’t want the width to go below 0. Afterward, in most of

the datasets unless otherwise mentioned, we add Gaussian noise to the endogenous variables

in the dataset so that the SNR is 10dB.
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B.2.2 Pendulum Hypotheses

We introduce 6 enumerated hypotheses for the pendulum dataset, enumerated in Figure

B.3. We have two hypotheses that are 1 Structural Hamming Distance away from ground

truth (leaky and lossy), and 3 that are 2 Structural Hamming Distances away (2leaky, 2lossy,

and leak-loss). The choice of which edge to add or remove were arbitrary, unless required

by design. The individual names of the hypotheses give away their purpose, as they are

meant to be leaky or lossy in a specific way to observe the empirical qualities of the different

hypothesis tests. Two points of interest. Despite including an additional leakage in 2leaky,

we maintain the exogenousity of xsun, meaning that the θ to xsun is purely a leakage term

from the SCM’s perspective. Secondly, the leak-loss hypothesis has a net Hamming distance

of 0 and structurally still has the same connectivity as ground truth. However, due to the

choice of paths, it likely has some functional limitations.

θ xsun

wshadow xshadow
GT

θ xsun

wshadow xshadow
leaky

θ xsun

wshadow xshadow
lossy

θ x∗sun

wshadow xshadow
2leaky

θ xsun

wshadow xshadow
2lossy

θ xsun

wshadow xshadow
leak-loss

Figure B.3: The 6 enumerated pendulum hypotheses that we try out. Red and thin arrows

are arrows that we remove from the true DAG and green arrows are arrows that we add to

the true DAG. In the case of 2leaky, we maintain xsun as an exogenous variable, but allow θ

information to also influence its value.

We also tried a couple other hypotheses, such as adding the link from θ to xsun by dropping
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the exogenousity of xsun and the inverse DAG (which is just the same ground truth DAG

except with inverted arrows). Neither of them performed well, so we removed them from

further analysis.

B.2.3 Pendulum Training Architecture and Hyperparameters

Unfortunately, there is a limitation with regards to hyperparameters. Because we are

effectively using the average loss over several random initializations onto the generalization

set as the primary proxy of SCM “goodness,” the hyperparameters that we choose to represent

the η neural networks do have possible effects in our overall methods.

• 50 Epochs. 40 Iterations.

• Causal η networks: [4, 16, 4] nodes per output.

• For CSVHTest, Encoder and Decoder networks: [4, 4] node MLP per input.

• Normally-distributed initializations.

• Activation: Soft Leaky ReLU.

• Optimizer: PSGD (discussed further in B.4). Initial Learning Rate of 0.01.

• Cosine Annealing Scheduler. Warm Restarts implemented for non-variational models.

B.2.4 Further Pendulum Results

Full numerical results of Figure B.1. Train and Loss trajectory curves are shown in Figures

B.4 and B.5.
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Figure B.4: Loss trajectory of the Sun Split OOD Run

Figure B.5: Loss trajectory of the Shadow Position Split OOD Run
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Table B.1: Mean and Standard Deviation of the Final Test Loss in Pendulum Hypothesis

Testing Experiments.

Hypothesis GT lossy leaky 2lossy 2leaky leak-loss

Sun 7.14± 0.92 13.48± 1.06 7.41± 0.98 13.26± 0.92 7.21± 0.79 11.66± 1.15

Shadow Position 10.63± 1.09 17.29± 1.16 11.02± 0.93 17.56± 0.60 10.98± 2.16 14.75± 1.08

B.3 Background Theory

B.3.1 Variational Hypothesis testing and Data Generation with CSVHTest

We extend CSHTest to a variational model CSVHTest, that includes sampling function-

ality like a VAE [KW13b]. Thus CSVHTest can generate new data points that are not

deterministic on the inputs, allowing for synthetic data generation. CSVHTest consists of

an encoder, a CSHTest causal layer and a decoder.

These encoder and decoder networks do not compress the data, but enable a transformation

of the inputs to a normally distributed space, enabling sampling without preventing the

relevance of the causal priors given by Si. Thus, CSVHTest is an extension of CSHTest

with

zzzi = fenc(xxxi), ẑzzi = ηi(Si ◦ zzz), x̂xxi = fdec(ẑzzi)

The loss function for CSVHTest includes a weighted Kullback–Leibler (KL) divergence

loss to normalize the latent space on top of the reconstruction loss as in CSHTest. We

also add a weighted latent reconstruction loss for the embedded CSHTest which enforces

separation of the encoder and decoders as transformations, and the η networks as the

functional approximators on these transformations.

126



ℓKL = KL(zzzi||N (0, 1))

ℓlatent = ℓ(zzz, ẑzz)

ℓMSE = ||xxx− ηi(Si ◦ xxx)||2

ℓCSHTest = ℓMSE + λKL ∗ ℓKL + λlatent ∗ ℓlatent

B.3.2 Constructing a Causal Generative Model

Following the classic VAE model, given inputs x, we encode into a latent space z with

distribution qϕ where we have priors given by p(·) [KW13b].

ELBO = EqX

[
Ez∼qϕ [log pθ(x|z)]−D(qϕ(z|x)∥pθ(z))

]
(B.1)

In [YLC20], the causal layer is described as a noisy linear SCM:

z = STz+ ϵϵϵ (B.2)

which finds some causal structure of the latent space variables z with respect to a matrix S.

By itself, S functions as the closest linear approximator for the causal relationships in the

latent space of z.

A non-linear mask is applied to the causal layer so that it can more accurately estimate

non-linear situations as well. Suppose S is composed of column vectors Si. For each latent

space concept i, define a non-linear function gi : Rn → R and modify equation (B.2) such

that

zi = gi(Si ◦ z) + ϵϵϵ (B.3)

where ◦ is the Hadamard product. In this formulation, the view of S changes from one of

function estimation to one of adjacency. That is, if S is viewed as a binary adjacency matrix,

the gi functions take the responsibility of reconstructing z given only the the parents, dictated
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by Si ◦ z. In the simplest case, if gi(v) =
∑

j vj, the summation of all the values of v, then

Equation (B.3) degenerates back to Equation (B.2) [NZF19].

Including the causal layer introduces many auxiliary loss functions that we mostly adopt

[YLC20]. First is a label loss (B.4), where the adjacency matrix S should also apply to the

labels u. This loss is used in pre-training in its linear form to learn a form of S prior to

learning the encoder and decoders. After pre-training, we apply a nonlinear mask fi that

functions similarly to gi, but operates on the label space directly, but with the same S.

ℓu = EqX

[
n∑

i=1

∥ui − fi(Si ◦ u)∥2
]

(B.4)

The latent loss tries to enforce the SCM, described by Equation (3.3).

ℓz = Ez∼qϕ

[
n∑

i=1

∥∥zi − gi(Si ◦ z)2
∥∥] (B.5)

Further enforcing the label spaces, we can define a prior p(z|u). We use the same

conventions as in [YLC20] and say that

p(z|u) ∼ N (un, I)

where un ∈ [−1, 1] are normalized label values. This translates to an additional KL-loss.

We notice that the Variational version CSVHTest often works better than CSHTest in

the presence of noise. Results are shown in Figure B.6.

B.4 Causal Problems and the Investigation of Optimizers

While working on the causal problems, because of the input of so many zeros in the structural

Hadamard product, the loss space is not very well-behaved. As a result, we notice some

inconsistency in loss trajectory with different optimizers. We do an initial investigation on

the possibilities of different optimizers in our problem space.
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Figure B.6: Comparison of CSHTest, CSVHTest, NN, and VAE in the presence of noise

Initially optimizers Adam, SGD, Adabelief [ZTD20], and PSGD [Li19, Li18] are compared

primarily for mean OOD MSE test loss across iterations in a limited number of test cases. Due

to better performance, Adabelief and PSGD are compared in a more robust set of cases. Figure

B.7 shows a scatter plot of the final losses across all test cases. Although PSGD routinely

outperform AdaBelief both in mean final loss and variance (across 3 iterations per test),

there were select conditions and DAGs in which any single optimizer would underperform

or not converge. We leave it to further research to investigate optimizer performance and

considerations for causally informed deep learning architecture that are constrained in unique

ways than traditional deep learning models. PSGD had better loss in 171 cases, and lower

variance in 148 of the 176 test cases.

Optimizer Test Cases (176 total, every combination of below):

• DAG Size (number of nodes, number of edges): (4,4), (5,5)

• SEM: linear, nonlinear generative functions

• Model: CSHTest, CSVHTest

• SNR: 0 noise (inf SNR), 7 dB
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• Hamm (Sturctural Hamming Distance): 0 (ground truth), 1

• Split: ID (in-dsitribution or random), OOD (out-of-dist. or 75% quantile split)

• Split Number: Which node/variable is data being split on (not relevant to ID)

Figure B.7: Comparison of final test loss of optimizers PSGD and AdaBelief across 176 unique

tests

B.5 DAG Simulation Settings

B.5.1 Training Hyperparameters

The following fixed setting where used when training models for the simulations. A random

seed (1) was used in all experiments.

• 100 Epochs

• Random Weight Matrix N(0, 1) for linear model weights

• Linear model η nets size: [4,4] MLP
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Figure B.8: Example of loss curves for optimizers PSGD and AdaBelief inf,1 dB SNR and 0,1

Hamming Distance.

• Non-linear model η nets size: [4,16,8,2] MLP

• activation function: Soft Leaky ReLU

• 10 Iterations of a Ground Truth DAG per DAG size

• 5 Iterations of modified DAGs per Hamming Distance

• 100 data points (N) per DAG of training data

• Optimzer: PSGD

• Noise Gaussian, 0-mean, variance calculated per SNR

• Split Number: Which node/variable is data being split on (not relevant to ID)
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B.5.2 Test Cases

• DAG Size (number of nodes, number of edges): (4,4), (5,5)

• SEM: linear generative functions

• Model: CSHTest

• SNR: 0 noise (inf SNR), 5 dB

• Hamm (Structural Hamming Distance): 0 (ground truth), 1, 2, 3, 4

• OOD (out-of-dist. or 75% quantile split)

• Split Number: Which node/variable is data being split, one per each variable (4 for a 4

node graph)
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B.6 Final Losses with Sample Variances

Train Test

Hypothesis Split Model

H1 Random CGen 0.02± 2.34e− 07 0.02± 9.42e− 08

CVGen 7.09± 1.71e+ 00 8.21± 2.44e+ 00

DBP 75% CGen 0.02± 2.00e− 06 0.04± 3.82e− 06

CVGen 0.74± 1.81e− 02 0.23± 2.32e− 02

GCS 25% CGen 0.02± 4.67e− 07 0.03± 2.67e− 06

CVGen 0.39± 4.62e+ 00 1.08± 4.28e+ 00

H2 Random CGen 0.02± 6.01e− 08 0.02± 3.88e− 07

CVGen 7.1± 3.82e+ 00 8.17± 5.36e+ 00

DBP 75% CGen 0.02± 5.07e− 07 0.03± 6.59e− 08

CVGen 0.74± 3.66e− 03 0.17± 3.16e+ 01

GCS 25% CGen 0.02± 1.30e− 07 0.06± 5.45e− 05

CVGen 0.36± 2.44e+ 00 3.83± 3.94e+ 00
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APPENDIX C

Towards Composable Distributions of Latent Space

Augmentations

C.1 Variational Autoencoders (VAEs)

The VAE framework is based on the principle of maximum likelihood estimation , where the

goal is to maximize the likelihood of the training data under the model. However, in order to

make the optimization tractable, the VAE introduces a variational lower bound on the log

likelihood, which can be written as:

L(θ, ϕ;x(i)) = Eeϕ(z|x(i))

[
log dθ(x

(i)|z)
]
−KL

(
eϕ(z|x(i))||mθ(z)

)
(C.1)

= Eeϕ(z|x(i))

[
log dθ(x

(i)|z)
]
−
∫

eϕ(z|x(i)) log
eϕ(z|x(i))

mθ(z)
dz (C.2)

where x(i) is a single training example, and θ and ϕ are the parameters of the decoder and

encoder, respectively. The first term in the lower bound, Eeϕ(z|x(i))

[
log dθ(x

(i)|z)
]
, is known

as the reconstruction loss, and it measures the difference between the reconstructed data and

the original data. The second term, KL
(
eϕ(z|x(i))||mθ(z)

)
, is known as the KL divergence,

and it measures the difference between the approximate posterior distribution and the latent

distribution. The first term is the decoding error (the classic rate-distortion theory), and the

second term is the extra rate for coding z assuming marginal pdf mθ(z).
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C.2 Conditional VAE (CVAE)

Let y be the conditional input, and let x be the data that we want to generate. The encoder

in the CVAE takes both y and x as input and maps them to the latent space z as seen in

Figure C.1. Specifically, the encoder outputs a mean vector µϕ(z|y, x) and a variance vector

σ2
ϕ(z|y, x) that parameterize a Gaussian distribution eϕ(z|y, x) over the latent variables z.

The decoder takes the latent variables z and the conditional input y as input and maps

them to the data space. Specifically, the decoder outputs a mean vector µθ(x|y, z) that

parameterizes a Gaussian distribution dθ(x|y, z) over the data variables x.

x

y

Enc
z

ỹ x̂OG

x̂Aug

Dec

Figure C.1: Conditional VAE Architecture

The lower bound for the CVAE can be derived in a similar way to the VAE, by introducing

a variational lower bound on the log likelihood. The conditional version of the lower bound

is given by:

L(θ, ϕ;x(i), y(i)) = Eeϕ(z|y(i), x(i))
[
log dθ(x

(i)|y(i), z)
]
−KL

(
eϕ(z|y(i), x(i))||mθ(z|y(i))

)
(C.3)

= Eeϕ(z|y(i), x(i))
[
log dθ(x

(i)|y(i), z)
]
−
∫

eϕ(z|y(i), x(i)) log
eϕ(z|y(i), x(i))

mθ(z|y(i))
dz

(C.4)

where x(i) and y(i) are a single training example and its corresponding condition, re-

spectively. The first term in the lower bound, Eeϕ(z|y(i), x(i))
[
log dθ(x

(i)|y(i), z)
]
, measures
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the reconstruction loss, i.e., the difference between the reconstructed data and the original

data given the condition y(i). The second term, KL
(
eϕ(z|y(i), x(i))||mθ(z|y(i))

)
, measures the

KL divergence between the approximate posterior distribution eϕ(z|y(i), x(i)) and the prior

distribution mθ(z|y(i)) over the latent variables z given the condition y(i).

The CVAE can be used for a variety of tasks, such as image and text generation, where

the conditional input y corresponds to a class label and the data x is an image respectively. In

the CVAE framework, the encoder network takes both the input data x and the conditional

input y as inputs and produces the approximate posterior distribution eϕ(z|x, y) over the

latent variable z. Similarly, the decoder network takes both z and y as inputs and produces

the reconstructed output dθ(x|z, y).

The objective function for the CVAE can be derived from the VAE’s lower bound by

conditioning on the conditional input y:

LCVAE(θ, ϕ;x
(i), y(i)) = Eeϕ(z|x(i), y(i))

[
log dθ(x

(i)|z, y(i))
]
−KL

(
eϕ(z|x(i), y(i))||mθ(z|y(i))

)
(C.5)

= Eeϕ(z|x(i), y(i))
[
log dθ(x

(i)|z, y(i))
]
−
∫

eϕ(z|x(i), y(i)) log
eϕ(z|x(i), y(i))

mθ(z|y(i))
dz

(C.6)

where y(i) is the conditional input for the i-th training example and θ and ϕ are the

parameters of the decoder and encoder, respectively. The first term in the lower bound,

Eeϕ(z|x(i), y(i))
[
log dθ(x

(i)|z, y(i))
]
, measures the difference between the reconstructed output

and the original output, given the input and the conditional input. The second term,

KL
(
eϕ(z|x(i), y(i))||mθ(z|y(i))

)
, measures the difference between the approximate posterior

distribution and the prior distribution of the latent variable, given the conditional input.
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C.3 Architecture and Training

• Model: (Total Parameter Count: ) Encoder/Decoder: (Parameter Count: )

– Encoder: 2 conv layers followed by a fully-connected layer. For CVAE, append

one-hot representation of the augmentation class to the features before the FC

layer.

– Latent Space: 16 dimensions.

– Decoder: Fully-connected layer followed by 2 ConvTranspose layers. For the

CVAE, again append one-hot representation of the augmentation class to the

latent space inputs. For LAVAE, each pair of augmentations gets its own decoder

head.

– For LAVAE, Laugi : 2 16 × 16 linear matrices. Will be used regardless of which

decoder is being used.

• Optimizer: Adabelief, one for Encoder/Decoder, one for latent augmentation networks,

and one for each additional decoder head

– learning-rate: 0.0001

– epsilon=1e-16, betas=(0.9,0.999)

• Training Epochs

– Encoder/Decoder - 100

– Latent Augmentation Networks - 60

– Additional Decoders - 100

• Training Parameters

– batch-size 64
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Figure C.2: All Augmentations Visualized
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C.4 Sampling and Interpolation

Figure C.3: Sampled digits and augmentations via bounding box method

Figure C.4: Interpolating between two test samples (top and bottom row) with augmentations
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Figure C.5: “Nested Mini-Image, Edge-Detect” Reconstructions
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C.5 Additional Augmentation Reconstructions

Figure C.6: “90 deg Clockwise Rotation, Flip left/right” Reconstructions
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Figure C.7: “X-direction shear, Canny edge-detect” Reconstructions
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C.6 Additional Transfer Decoder Results

Figure C.8: Additional transfer decoder head results

C.7 Latent Space Geometries
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Figure C.9: “Flips” Image, Latent, and Reconstructions Image 2-D Projections
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Figure C.10: “Nested Mini-Image, Edge-Detect” Image, Latent, and Reconstructions Image

2-D Projections

145



Figure C.11: “90◦ Clockwise Rotation, Flip left/right” Image, Latent, and Reconstructions

Image 2-D Projections

146



Figure C.12: “X-direction shear, Canny edge-detect” Image, Latent, and Reconstructions

Image 2-D Projections
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APPENDIX D

PureEBM: Universal Poison Purification via Mid-run

Dynamics of Energy-Based Models

D.1 EBM Further Background

D.1.1 Chaotic Dynamics

Chaos theory offers a distinct perspective for justifying the suppression of adversarial signals

through extended iterative transformations. In deterministic systems, chaos is characterized

by the exponential growth of initial infinitesimal perturbations over time, leading to a

divergence in the trajectories of closely situated points — a phenomenon popularly known as

the butterfly effect. This concept extends seamlessly to stochastic systems as well. [HMZ21]

were the first to show the chaotic nature of EBMs for purification. Here we verify that both

poisoned images and clean images have the same chaotic properties.

Stochastic Differential Equations and Chaos

Consider the Stochastic Differential Equation (SDE) given by:

dXt = V (X)dt + ηnoisedBt, (D.1)

where Bt denotes Brownian motion and ηnoise ≥ 0. This equation, which encompasses the

Langevin dynamics, is known to exhibit chaotic behavior in numerous contexts, especially for

large values of ηnoise [LLB03].
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Maximal Lyapunov Exponent

The degree of chaos in a dynamical system can be quantified by the maximal Lyapunov

exponent λ, defined as:

λ = lim
t→∞

1

t
log
|δXηnoise

(t)|
|δXηnoise

(0)|
, (D.2)

where δXηnoise
(t) represents an infinitesimal perturbation in the system state at time t, evolved

according to Eq. D.1 from an initial perturbation δXηnoise
(0). For ergodic dynamics, λ is

independent of the initial perturbation δXηnoise
(0). An ordered system exhibits a maximal

Lyapunov exponent that is non-positive, while chaotic systems are characterized by a positive

λ. Thus, by analyzing the maximal Lyapunov exponent of the Langevin equation, one can

discern whether the dynamics are ordered or chaotic.

Following the classical approach outlined by [BGS76], we calculate the maximal Lyapunov

exponent for the modified Langevin transformation, described by the equation:

Zηnoise
(X) = xτ −∆τ∇xτGθ(xτ ) + ηnoise

√
2∆τϵτ , (D.3)

This computation is performed across a range of noise strengths ηnoise. Our findings

demonstrate a clear transition from noise-dominated to chaos-dominated behavior. Notably,

at ηnoise = 1 — the parameter setting for our training and defense algorithms — the system

transitions from ordered to chaotic dynamics. This critical interval balances the ordered

gradient forces, which encourage pattern formation, against chaotic noise forces that disrupt

these patterns. Oversaturation occurs when the gradient forces prevail, leading to noisy

images when noise is dominant. These results are illustrated in Figure D.1.

The inherent unpredictability in the paths under Zηnoise
serves as an effective defense

mechanism against targeted poison attacks. Due to the chaotic nature of the transformation,

generating informative attack gradients that can make it through the defense while causing

a backdoor in the network becomes challenging. Exploring other chaotic transformations,
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Figure D.1: Left: The maximal Lyapunov exponent varies significantly with different values

of the noise parameter ηnoise. Notably, at ηnoise = 1, which is the setting used in our training

and defense dynamics, there is a critical transition observed. This transition is from an

ordered region, where the maximal exponent is zero, to a chaotic region characterized by

a positive maximal exponent. This observation is crucial for understanding the underlying

dynamics of our model. Right: The appearance of steady-state samples exhibits marked

differences across the spectrum of ηnoise values. For lower values of ηnoise, the generated

images tend to be oversaturated. Conversely, higher values of ηnoise result in noisy images.

However, there exists a narrow window around ηnoise = 1 where a balance is achieved between

gradient and noise forces, leading to realistic synthesis of images.

both stochastic and deterministic, could be a promising direction for developing new defense

strategies.

We see that as expected the Lyapunov exponent of the Langevin dynamics on clean and

poisoned points are exactly the same.

D.1.2 EBM Purification is a Convergent Process

Energy-based models and Langevin dynamics are both commonly associated with divergent

generative models and diffusion processes in the machine learning community, in which
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Figure D.2: Random Noise initialization of purification process

samples are generated from a random initialization using a conditional or unconditional

probability distribution. In contrast, we emphasize that the EBM and MCMC purification

process is a convergent generative chain, initialized with a sample from some data distribution

pdata with metastable properties that retain features of the original image due to the low

energy density around the image [NHH20]. To illustrate this point, Figure D.2 shows the

purification process on random noise initialization. Even with long-run dynamics of 50k

Langevin steps producing low energy outputs, the resulting ‘images’ are not meaningful,

highlighting the desired reliance on a realistic sample initializing a convergent MCMC chain.

Previous analysis demonstrates the mid-run memoryless properties that remove adversarial

poisons and enable the EBM purification process once paired with the metastable aspects of

the convergent MCMC chain.
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D.2 Additional Results

D.2.1 Full Results Primary Experiments

Results on all primary poison scenarios with ResNet18 classifier including all EPIc versions

(various subset sizes and selection frequency), FrieNDs versions (bernouilli or gaussian added

noise trasnform), and all natural PureEBM versions. Asterisk (*) indicates a baseline defense

that was selected for the main paper results table due to best poison defense performance.

We note that the implemention made available for EPIc contains discrepancies, occasion-

ally returning random subsets, and drops repeatedly selected points every epoch. We did our

best to reproduce results, and choose the best of all version ran to compare to. Further, we

note that our results outperform the results reported by [YLM22], listed in the table here as

EPIc reported.
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From Scratch

200 - Epochs 80 - Epochs

Gradient Matching-1% Narcissus-1% Gradient Matching-1% Narcissus-1%

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

None 44.00 94.840.2 43.9533.6 94.890.2 93.59 47.00 93.790.2 32.5130.3 93.760.2 79.43

EPIc-0.1* 34.00 91.270.4 30.1832.2 91.170.2 81.50 27.00 90.870.4 24.1530.1 90.920.4 79.42

EPIc-0.2 21.00 88.040.7 32.5033.5 86.890.5 84.39 28.00 91.020.4 23.7529.2 89.720.3 74.28

EPIc-0.3* 10.00 85.141.2 27.3134.0 82.201.1 84.71 44.00 92.460.3 21.5328.8 88.051.1 80.75

EPIc reported 1.00 90.26 NA NA NA NA NA NA NA NA

FrieNDs-B 1.00 91.160.4 8.3222.3 91.010.4 71.76 2.00 90.070.4 1.420.8 90.060.3 2.77

FrieNDs-G* 0.00 91.150.4 9.4925.9 91.060.2 83.03 1.00 90.090.4 1.370.9 90.010.2 3.18

PureEBM 0.00 92.260.2 1.270.6 92.910.2 2.16 1.00 91.360.3 1.460.8 91.830.3 2.49

PureEBM-P NA NA 1.380.7 92.700.2 2.78 NA NA 1.631.0 91.490.3 3.47

PureEBM CN−10 0.00 92.990.2 1.430.8 92.900.2 3.06 1.00 92.020.2 1.500.9 92.030.2 2.52

PureEBM IN 1.00 92.980.2 1.390.8 92.920.2 2.50 1.00 92.020.2 1.520.8 92.020.3 2.81

PureEBM-PCN−10 NA NA 1.640.01 92.860.20 4.34 NA NA 1.681.0 92.070.2 3.34

Transfer Learning

Fine-Tune Linear - Bullseye Polytope

Bullseye Polytope-10% Narcissus-10% BlackBox-10% WhiteBox-1%

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

None 46.00 89.840.9 33.4133.9 90.142.4 98.27 93.75 83.592.4 98.00 70.090.2

EPIc-0.1 50.00 89.001.8 32.4033.7 90.022.2 98.95 91.67 83.482.9 98.00 69.350.3

EPIc-0.2* 42.00 81.955.6 20.9327.1 88.582.0 91.72 66.67 84.343.8 91.00 64.790.7

EPIc-0.3 44.00 86.756.3 28.0134.9 84.366.3 99.91 66.67 83.233.8 63.00 60.861.5

FrieNDs-B 8.00 87.801.1 3.345.7 89.620.5 19.48 35.42 84.972.2 19.00 60.850.6

FrieNDs-G* 8.00 87.821.2 3.045.1 89.810.5 17.32 33.33 85.182.3 19.00 60.900.6

PureEBM 0.00 88.951.1 1.981.7 91.400.4 5.98 0.00 92.890.2 6.00 64.510.6

PureEBM-P NA NA 3.664.63 90.890.31 16.04 NA NA NA NA

PureEBM CN−10 0.00 88.671.2 2.972.5 90.990.3 7.95 0.00 92.820.1 6.00 64.440.4

PureEBM IN 0.00 87.521.2 2.021.0 89.780.6 3.85 0.00 92.380.3 6.00 64.980.3
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D.2.2 Extended Poison% Results

Table D.1: Narcissus transfer fine-tune results at various poison%’s

Poison-% 1% 2.5% 10%

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

None 17.0627.0 93.180.1 81.97 22.2230.1 93.350.1 89.74 33.4133.9 90.142.4 98.27

EPIc-0.1 15.5825.5 92.750.2 73.65 19.7727.5 92.720.3 87.51 32.4033.7 90.022.2 98.95

EPIc-0.2 12.3323.8 85.862.9 74.32 24.2631.2 85.593.3 96.07 20.9327.1 88.582.0 91.72

EPIc-0.3 12.7421.2 91.374.0 67.45 12.3218.7 92.240.4 61.33 28.0134.9 84.366.3 99.91

FrieNDs-B 1.440.8 90.610.2 2.49 2.253.3 90.440.3 11.46 3.345.7 89.620.5 19.48

FrieNDs-G 1.340.7 90.500.2 2.50 2.433.6 90.510.2 12.61 3.045.1 89.810.5 17.32

PureEBM 1.501.4 91.650.1 5.19 1.601.2 91.270.1 4.76 1.981.7 91.400.4 5.98

PureEBM-P 4.507.4 89.610.3 24.43 7.9312.4 90.260.2 39.59 3.664.63 90.890.31 16.04

PureEBM CN−10 1.771.2 91.560.1 4.07 2.211.6 91.450.1 5.02 2.972.5 90.990.3 7.95

PureEBM IN 1.620.9 90.910.1 3.35 1.850.9 90.850.2 3.39 2.021.0 89.780.6 3.85

PureEBM-PCN−10 4.336.2 90.990.2 21.25 5.958.5 90.800.2 28.88 11.8419.9 88.771.3 66.63

Table D.2: BP transfer linear gray-box results at various poison%’s

Poison-% 1% 2% 5% 10%

Poison

Success (%) ↓

Natural

Accuracy (%) ↑

Poison

Success (%) ↓

Natural

Accuracy (%) ↑

Poison

Success (%) ↓

Natural

Accuracy (%) ↑

Poison

Success (%) ↓

Natural

Accuracy (%) ↑

None 26.00 93.600.2 32.00 93.600.2 66.00 92.890.4 93.75 83.592.4

EPIc-0.1 12.00 93.340.4 50.00 92.790.6 70.00 92.430.8 91.67 83.482.9

EPIc-0.2 18.00 92.531.4 34.00 92.861.4 76.00 91.722.0 66.67 84.343.8

EPIc-0.3 18.00 92.800.9 24.00 92.891.0 62.00 90.952.7 66.67 83.233.8

FrieNDs-B 4.00 94.090.1 4.00 94.110.1 26.00 93.720.2 35.42 84.972.2

FrieNDs-G 4.00 94.120.1 4.00 94.130.1 22.00 93.730.2 33.33 85.182.3

PureEBM 0.00 93.180.0 0.00 92.940.1 0.00 92.920.1 0.00 92.890.2

PureEBM CN−10 0.00 93.140.1 0.00 92.610.1 0.00 93.000.1 0.00 92.820.1

PureEBM IN 0.00 92.090.1 0.00 91.510.1 0.00 92.750.1 0.00 92.380.3
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D.2.3 Full MobileNetV2 and DenseNet121 Results

Table D.3: MobileNetV2 Full Results

From Scratch - MobileNetV2

200 - Epochs 80 - Epochs

Gradient Matching-1% Narcissus-1% Gradient Matching-1% Narcissus-1%

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

None 20.00 93.860.2 32.7024.5 93.920.1 73.97 30.00 92.540.2 27.2626.5 92.530.2 74.82

EPIc-0.1 37.50 91.280.2 40.0927.1 91.150.2 79.74 16.00 90.450.3 31.3730.9 90.510.3 89.36

EPIc-0.2 19.00 91.240.2 38.5527.5 87.650.5 74.72 22.00 89.900.3 29.2227.6 89.910.3 76.54

EPIc-0.3 9.78 87.801.6 22.3523.9 78.169.9 69.52 14.00 90.230.3 30.6930.6 90.300.3 82.92

FrieNDs-B 6.00 84.302.7 2.001.3 88.820.6 4.88 1.00 87.890.3 1.981.1 87.900.4 4.00

FrieNDs-G 5.00 88.840.4 2.051.7 88.930.3 6.33 3.00 87.900.4 2.001.4 88.090.3 5.07

PureEBM 1.00 90.930.2 1.640.8 91.750.1 2.91 1.00 89.710.2 1.790.8 90.640.2 2.65

Transfer Learning - MobileNetV2

Fine-Tune NS-10% Transfer Linear BP BlackBox-10%

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

None 23.5923.2 88.301.2 66.54 81.25 73.271.0

EPIc-0.1 23.2522.8 88.351.0 65.97 81.25 69.782.0

EPIc-0.2 19.9519.2 87.671.3 50.05 56.25 54.475.6

EPIc-0.3 21.7028.1 78.176.0 74.96 58.33 58.749.0

FrieNDs-B 2.211.5 83.050.7 5.63 41.67 68.861.5

FrieNDs-G 2.201.4 83.040.7 5.42 47.92 68.941.5

PureEBM 3.665.4 84.180.5 18.85 0.00 78.571.4
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Table D.4: DenseNet121 Full Results

From Scratch - DenseNet121

200 - Epochs 80 - Epochs

Gradient Matching-1% Narcissus-1% Gradient Matching-1% Narcissus-1%

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Succes (%) ↓

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Succes (%) ↓

None 14.00 95.300.1 46.52±32.2 95.330.1 91.96 19.00 94.380.2 38.0136.3 94.490.1 89.11

EPIc-0.1 14.00 93.00.3 43.38±32.0 93.070.2 88.97 16.00 92.780.3 32.8533.0 92.870.3 79.42

EPIc-0.2 7.00 90.670.5 41.97±33.2 90.230.6 86.85 13.00 92.690.3 30.6728.1 92.820.2 65.46

EPIc-0.3 4.00 88.31.0 32.60±29.4 85.122.4 71.50 15.00 93.350.2 36.8036.0 93.340.2 90.41

FrieNDs-B 1.00 91.330.4 8.60±21.2 91.550.3 68.57 1.00 89.930.4 5.6011.6 90.010.4 38.08

FrieNDs-G 1.00 91.330.4 10.13±25.2 91.320.4 81.47 1.00 89.970.4 7.5918.7 89.890.4 60.68

PureEBM 0.00 92.850.2 1.42±0.7 93.480.1 2.60 2.00 91.880.3 1.590.9 92.590.2 3.06

Transfer Learning - DenseNet121

Fine-Tune Linear

Bullseye Polytope-10% Narcissus-10% Bullseye Polytope-10%

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

None 16.00 88.910.7 56.5238.6 87.032.8 99.56 73.47 82.131.6

EPIc-0.1 18.00 88.091.0 53.9739.0 87.042.8 99.44 62.50 78.882.1

EPIc-0.2 14.00 80.443.1 43.6636.5 85.972.6 97.17 41.67 70.135.2

EPIc-0.3 10.00 72.8411.9 43.2443.0 72.7610.8 100.00 66.67 70.2010.1

FrieNDs-B 4.00 87.061.0 5.349.9 88.620.8 33.42 60.42 80.221.9

FrieNDs-G 2.00 87.370.9 5.5510.4 88.750.6 34.91 56.25 80.121.8

PureEBM 0.00 84.391.0 2.481.9 88.750.5 7.41 0.00 89.290.9
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D.2.4 Full CINIC-10 Results

Table D.5: CINIC-10 Full Results

CINIC-10 Narcissus - 1 From-Scratch

200 - Epochs

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

CIFAR-10

Accuracy (%) ↑

None 62.060.21 86.320.10 90.79 94.220.16

EPIc 49.500.27 81.910.08 91.35 91.100.21

FrieNDs 11.170.25 77.530.60 82.21 88.270.68

PureEBM 7.730.08 82.370.14 29.48 91.980.16

80 - Epochs

Avg Poison

Success (%) ↓

Avg Natural

Accuracy (%) ↑

Max Poison

Success (%) ↓

CIFAR-10

Accuracy (%) ↑

None 43.750.25 85.250.16 82.63 93.360.20

EPIc 37.350.26 81.150.17 79.98 90.500.31

FrieNDs 10.140.22 77.460.54 73.16 87.790.47

PureEBM 4.850.02 81.650.15 9.14 91.330.20
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D.3 Further Experimental Details

D.3.1 EBM Training

Algorithm 2 ML with SGD for Convergent Learning of EBM (2.13)
Require: ConvNet potential Gθ(x), number of training steps J = 150000, initial weight θ1,

training images {x+
i }

Ndata
i=1 , data perturbation τdata = 0.02, step size τ = 0.01, Langevin

steps T = 100, SGD learning rate γSGD = 0.00005.

Ensure: Weights θJ+1 for energy Gθ(x).

Set optimizer g ← SGD(γSGD). Initialize persistent image bank as Ndata uniform noise

images.

for j=1:(J+1) do

1. Draw batch images {x+
(i)}mi=1 from training set, where (i) indicates a randomly selected

index for sample i, and get samples X+
i = x(i) + τdataϵi, where i.i.d. ϵi ∼ N(0, ID).

2. Draw initial negative samples {Y (0)
i }mi=1 from persistent image bank. Update {Y (0)

i }mi=1

with the Langevin equation

Y
(k)
i = Y

(k−1)
i −∆τ∇Yτfθj(Y

τ−1
i ) +

√
2∆τϵi,k,

where ϵi,k ∼ N(0, ID) i.i.d., for K steps to obtain samples {X−
i }mi=1 = {Y

(K)
i }mi=1. Update

persistent image bank with images {Y (K)
i }mi=1.

3. Update the weights by θj+1 = θj − g(∆θj), where g is the optimizer and

∆θj =
∂

∂θ

(
1

n

n∑
i=1

fθj(X
+
i )−

1

m

m∑
i=1

fθj(X
−
i )

)

is the ML gradient approximation.

end for

Algorithm 2 is pseudo-code for the training procedure of a data-initialized convergent
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EBM. We use the generator architecture of the SNGAN [MKK18] for our EBM as our network

architecture.

D.3.2 Poison Sourcing and Implementation

Triggerless attacks GM and BP poison success refers to the number of single-image targets

successfully flipped to a target class (with 50 or 100 target image scenarios) while the natural

accuracy is averaged across all target image training runs. Triggered attack Narcissus poison

success is measured as the number of non-class samples from the test dataset shifted to the

trigger class when the trigger is applied, averaged across all 10 classes, while the natural

accuracy is averaged across the 10 classes on the un-triggered test data. We include the

worst-defended class poison success. The Poison Success Rate for a single experiment can be

defined for triggerless PSRnotr and triggered PSRtr poisons as:

PSRnotr(F, i) = ⊮F (xπ
i )=yadv

i
(D.4)

PSRtr(F, y
π) =

∑
(x,y)∈Dtest\Dπ

test
⊮F (x+ρπ)=yπ

|Dtest \ Dπ
test|

(D.5)

D.3.2.1 Bullseye Polytope

The Bullseye Polytope (BP) poisons are sourced from two distinct sets of authors. From

the original authors of BP [AMW21], we obtain poisons crafted specifically for a black-

box scenario targeting ResNet18 and DenseNet121 architectures, and grey-box scenario for

MobileNet (used in poison crafting). These poisons vary in the percentage of data poisoned,

spanning 1%, 2%, 5% and 10% for the linear-transfer mode and a single 1% fine-tune mode

for all models over a 500 image transfer dataset. Each of these scenarios has 50 datasets that

specify a single target sample in the test-data. We also use a benchmark paper that provides

a pre-trained white-box scenario on CIFAR-100 [SGG21]. This dataset includes 100 target

samples with strong poison success, but the undefended natural accuracy baseline is much
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lower.

D.3.2.2 Gradient Matching

For GM, we use 100 publicly available datasets provided by [GFH21]. Each dataset specifies

a single target image corresponding to 500 poisoned images in a target class. The goal of

GM is for the poisons to move the target image into the target class, without changing too

much of the remaining test dataset using gradient alignment. Therefore, each individual

dataset training gives us a single datapoint of whether the target was correctly moved into

the poisoned target class and the attack success rate is across all 100 datasets provided.

D.3.2.3 Narcissus

For Narcissus triggered attack, we use the same generating process as described in the

Narcissus paper, we apply the poison with a slight change to more closely match with the

baseline provided by [SGG21]. We learn a patch with ε = 8/255 on the entire 32-by-32 size

of the image, per class, using the Narcissus generation method. We keep the number of

poisoned samples comparable to GM for from-scratch experiment, where we apply the patch

to 500 images (1% of the dataset) and test on the patched dataset without the multiplier. In

the fine-tune scenarios, we vary the poison% over 1%, 2.5%, and 10%, by modifying either

the number of poisoned images or the transfer dataset size (specifically 20/2000, 50/2000,

50/500 poison/train samples).

D.3.2.4 Neural Tangent Availability Attacks

For Neural Tangent Availability Attack, the full NTGA dataset (all samples poisoned) is

sourced from the authors of the original NTGA attack paper [YW21]. Baseline defenses are

pull from Avatar [DEL24].
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D.3.3 Training Parameters

We follow the training hyperparameters given by [YLM22, ZPJ22, AMW21, SGG21] for

GM, NS, BP Black/Gray-Box, and BP White-Box respectively as closely as we can, with

moderate modifications to align poison scenarios. HyperlightBench training followed the

original creators settings and we only substituted in a poisoned dataloader [Bal23].

Parameter Shared From Scratch Transfer Linear Transfer Fine-Tune

Device Type TPU-V3 - - -

Weight Decay 5e-4 - - -

Batch Size - 128 64 128

Augmentations - RandomCrop(32, padding=4) None None

Epochs - 200 or 80 40 60

Optimizer - SGD(momentum=0.9) SGD Adam

Learning Rate - 0.1 0.1 0.0001

Learning Rate Schedule

(Multi-Step Decay)
-

100, 150 - 200 epochs

30, 50, 70 - 80 epochs
15, 25, 35 15, 30, 45

Langevin Steps (EBM) - 150 500 1000

Langevin Temperature (EBM) - 1× 10−4 7.5× 10−5 1× 10−4

Reinitialize Linear Layer - NA True True

D.4 Timing Analysis

Table D.6 shows the training times for each poison defense in the from-scratch scenario on

a TPU-V3. As PureEBM is a preprocessing step, the purification time (∼400 seconds)

is shared across poison scenarios, making it increasingly comparable to no defense as the

number of models/scenarios increase. Although EBM training is a compute intensive process,

noted in detail in App. D.3.1, we share results in the section Table 6.1 on how a single EBM

on a POOD dataset can obtain SoTA performance in a poison/classifier agnostic way. While

subset selection methods like EPIc can reduce training time in longer scenarios, PureEBM

offers superior performance and flexibility to the classifier training pipeline.
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Table D.6: Median Wall Clock Train Times From Scratch

Train Time (seconds)

Gradient Matching Narcissus

epochs 80 200 80 200

None 220216 548249 293694 7154194

EPIc 225697 5006253 3564213 6359462

FrieNDs 7740394 11254413 8728660 12868573

PureEBM 221336 552047 296292 7293219
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D.5 Additional Model Interpretability Results
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D.5.1 Poisoned Parameters Diverge

[YLM22] proposes a subset selection method EPIc which rejects poison points through train-

ing. This defense method produces coresets, that under the PL* condition (1
2
∥∇ϕL(ϕ)∥2 ≥

µL(ϕ), ∀ϕ), when trained on converges to a solution ϕ∗ with similar training dynamics to that

of training on the full dataset. While such a property is attractive for convergence guarantees

and preserving the overall performance of the NN, converging with dynamics too close to the

poisoned parameters may defeat the purpose of a defense. As such we consider the closeness

of a defended network’s parameters ϕ∗ to a poisoned network’s parameters ϕ by measuring

the L1 distance at the end of training (∥ϕ− ϕ∗∥1). All distances use the same parameter

initialization and are averaged over 8 models from the first 8 classes of the Narcissus poison.

In Figure D.5, we specifically consider increasingly higher percentiles of the parameters that

moved the furthest away (ϕnth%, ϕ
∗
nth%). The intuition is that poisons impact only a few

key parameters significantly that play an incommensurate role at inference time, and hence

we would only need to modify a tail of impacted parameters to defend. As we move to

increasingly higher percentiles, both the PureEBM and FrieNDs defense mechanisms show

a greater distance away from the poisoned model weights, indicating significant movement

in this long tail of impacted parameters. We find that, as theory predicts, defending with

coresets methods yield parameters that are too close to the poisoned parameters ϕ leading to

sub-optimal defense.
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Figure D.5: Comparing parameter distances from defended models to poisoned model (same

init) for increasingly higher percentiles of the most moved parameters. PureEBM trained

models show the least movement in the tail of parameter which poisons are theorized to

impact most (followed very closely by FrieNDs but well above EPIc).

D.6 EBM Langevin Dynamics Grid Searches

Figure D.6: Grid Search for Langevin steps and temp on Narcissus Fine-Tune Transfer
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Figure D.7: Grid Search for Langevin steps and temp on Bullseye Polytope Fine-Tune

Transfer

Figure D.8: Grid Search for Langevin steps and temp on Bullseye Polytope Linear Transfer
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APPENDIX E

PureGen: Universal Data Purification Using Generative

Model Dynamics

E.1 Potential Social Impacts

Poisoning has the potential to become one of the greatest attack vectors to AI models. As the

use of foundation models grows, the community is more reliant on large and diversely sourced

datasets, often lacking the means for rigorous quality control against subtle, imperceptible

perturbations. In sectors like healthcare, security, finance, and autonomous vehicles, where

decision making relies heavily on artificial intelligence, ensuring model integrity is crucial.

Many of these applications utilize AI where erroneous outputs could have catastrophic

consequences.

As a community, we hope to develop robust generalizable ML algorithms. An ideal

defense method can be implemented with minimal impact to existing training infrastructure

and can be widely used. We believe that this research takes an important step in that

direction, enabling practitioners to purify datasets preemptively before model training with

state-of-the-art results to ensure better model reliability. The downstream social impacts of

this could be profound, dramatically decreasing the impacts of the poison attack vector and

increasing broader public trust in the security and reliability of the AI model.

The poison and defense research space is certainly prone to ‘arms-race type’ behavior,

where increasingly powerful poisons are developed as a result of better defenses. Our approach

is novel and universal enough from previous methods that we believe it poses a much harder
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challenge to additional poison crafting improvements. We acknowledge that this is always

a potential negative impact of further research in the poison defense space. Furthermore,

poison signals are sometimes posed as a way for individuals to secure themselves against

unwanted or even malicious use of their information by bad actors training AI models. Our

objective is to ensure better model security where risks of poison attacks have significant

consequences.

But we also acknowledge that poison attacks are their own form of security against models

and have ethical use cases as well. In particular, we specifically avoid extensive testing on

data avilability attacks, which do not introduce latent vulnerabilities in a model and represent

a much smaller risk to the machine learning community. Such attacks have been explored to

protect artists and content creators from having their work product be used as training data

for models without their permission and with an evolving and unclear legal landscape. Thus

we limit research on such attacks where it is unclear if the risk outweigh the benefits.

This goal of secure model training is challenging enough withouts malicious data poisoners

creating undetectable backdoors in our models. Security is central to being able to trust

our models. Because our universal method neutralizes all SoTA data poisoning attacks, we

believe our method will have a significant positive social impact to be able to inspire trust in

widespread machine learning adoption for increasingly consequential applications.

E.2 Training Parameters

We follow the training hyperparameters given by [YLM22, ZPJ22, AMW21, SGG21] for

GM, NS, BP Black/Gray-Box, and BP White-Box respectively as closely as we can, with

moderate modifications to align poison scenarios. HyperlightBench training followed the

original creators settings and we only substituted in a poisoned dataloader [Bal23].
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Parameter From Scratch Transfer Linear Transfer Fine-Tune

PureGen-EBM Steps (TEBM) 150 500 1000

PureGen-DDPM Steps (TDDPM) 75 125 125

PureGen-Reps (TReps) 7 - -

PureGen-Filt (k) 0.5 - -

Device Type TPU-V3 TPU-V3 TPU-V3

Weight Decay 5e-4 5e-4 5e-4

Batch Size 128 64 128

Augmentations RandomCrop(32, padding=4) None None

Epochs 200 or 80 40 60

Optimizer SGD(momentum=0.9) SGD Adam

Learning Rate 0.1 0.1 0.0001

Learning Rate Schedule

(Multi-Step Decay)

100, 150 - 200 epochs

30, 50, 70 - 80 epochs
15, 25, 35 15, 30, 45

Reinitialize Linear Layer NA True True

E.3 Core Results Compute

Training compute for core result only which is in Table 7.1 on a TPU V3.

Table E.1: Compute Hours TPU V3

From Scratch Transfer
Total

Narcissus Gradient Matching NTGA Fine Tune BP BlackBox Fine Tune Narc Linear BP BlackBox Linear BP WhiteBox

Train Time

(Hours)
1959.91 4155.74 283.75 73.82 45.89 548.15 70.76 7138.03

E.4 Additional Results

E.4.1 Full Results Primary Experiments

Results on all primary poison scenarios with ResNet18 classifier including all EPIc versions

(various subset sizes and selection frequency), FrieNDs versions (bernouilli or gaussian
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added noise trasnform), and all natural JPEG versions (compression ratios). Green highlight

indicates a baseline defense that was selected for the main paper results table chosen by the

best poison defense performance that did not result in significant natural accuracy degradaion.

For both TinyImageNet and CINIC-10 from-scratch results, best performing baseline settings

were used from respective poison scenarios in CIFAR-10 for compute reasons (so there are no

additonal results and hence they are removed from this table).

From Scratch

CIFAR-10 (ResNet-18)

Gradient Matching-1% Narcissus-1%

Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Max Poison

Success (%) ↓

None 44.00 94.840.2 43.9533.6 94.890.2 93.59

EPIc-0.1 34.00 91.270.4 30.1832.2 91.170.2 81.50

EPIc-0.2 21.00 88.040.7 32.5033.5 86.890.5 84.39

EPIc-0.3 10.00 85.141.2 27.3134.0 82.201.1 84.71

FrieNDs-B 1.00 91.160.4 8.3222.3 91.010.4 71.76

FrieNDs-G 0.00 91.150.4 9.4925.9 91.060.2 83.03

JPEG-25 0.00 90.000.19 1.670.88 90.150.26 3.38

JPEG-50 0.00 91.700.18 1.700.98 91.830.20 3.83

JPEG-75 2.00 92.730.20 1.781.17 92.940.15 4.13

JPEG-85 5.00 93.430.16 5.7613.24 93.430.20 43.36

PureGen-DDPM 0.00 90.930.20 1.640.82 90.990.22 2.83

PureGen-EBM 1.00 92.980.2 1.390.8 92.920.2 2.50
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Transfer Learning (CIFAR-10, ResNet-18)

Fine-Tune Linear - Bullseye Polytope

Bullseye Polytope-10% Narcissus-10% BlackBox-10% WhiteBox-1%

Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Max Poison

Success (%) ↓

Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

None 46.00 89.840.9 33.4133.9 90.142.4 98.27 93.75 83.592.4 98.00 70.090.2

EPIc-0.1 50.00 89.001.8 32.4033.7 90.022.2 98.95 91.67 83.482.9 98.00 69.350.3

EPIc-0.2 42.00 81.955.6 20.9327.1 88.582.0 91.72 66.67 84.343.8 91.00 64.790.7

EPIc-0.3 44.00 86.756.3 28.0134.9 84.366.3 99.91 66.67 83.233.8 63.00 60.861.5

FrieNDs-B 8.00 87.801.1 3.345.7 89.620.5 19.48 35.42 84.972.2 19.00 60.850.6

FrieNDs-G 8.00 87.821.2 3.045.1 89.810.5 17.32 33.33 85.182.3 19.00 60.900.6

JPEG-25 0.00 88.930.66 2.953.71 87.630.49 12.55 0.00 92.440.47 8.0 50.420.73

JPEG-50 0.00 90.400.44 3.514.64 88.410.58 15.76 0.00 86.032.23 16.0 53.490.54

JPEG-75 4.00 90.110.78 18.2825.83 89.120.51 86.39 16.67 84.231.76 36.0 56.020.50

JPEG-85 5.00 93.430.16 25.1931.44 88.631.59 94.41 54.17 83.611.36 51.0 58.080.54

PureGen-DDPM 0.00 91.530.15 1.881.12 90.690.26 3.42 0.00 93.810.08 9.0 54.530.64

PureGen-EBM 0.00 87.521.2 2.021.0 89.780.6 3.85 0.00 92.380.3 6.00 64.980.3

E.4.2 From Scratch 80 Epochs Experiments

Baseline FrieNDs [LYM23] includes an 80-epoch from-scratch scenario to show poison

defense on a faster training schedule. None of these results are included in the main paper,

but we show again SoTA or near SoTA for PureGen against all baselines (and JPEG is

again introduced as a baseline).
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Table E.2: From-Scratch 80-Epochs Results (ResNet-18, CIFAR-10)

From Scratch (80 - Epochs)

Gradient Matching-1% Narcissus-1%

Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Max Poison

Success (%) ↓

None 47.00 93.790.2 32.5130.3 93.760.2 79.43

EPIc-0.1 27.00 90.870.4 24.1530.1 90.920.4 79.42

EPIc-0.2 28.00 91.020.4 23.7529.2 89.720.3 74.28

EPIc-0.3 44.00 92.460.3 21.5328.8 88.051.1 80.75

FrieNDs-B 2.00 90.070.4 1.420.8 90.060.3 2.77

FrieNDs-G 1.00 90.090.4 1.370.9 90.010.2 3.18

JPEG-25 1.00 88.730.24 1.660.92 90.010.20 3.18

JPEG-50 2.00 90.550.23 1.761.07 90.560.28 3.67

JPEG-75 0.00 91.690.23 1.681.14 91.670.23 3.79

JPEG-85 4.00 92.310.23 1.871.41 92.420.16 5.13

PureGen-DDPM 1.00 89.820.26 1.540.82 90.000.13 2.52

PureGen-EBM 1.00 92.020.2 1.520.8 92.020.3 2.81
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E.4.3 Full Results for MobileNetV2 and DenseNet121

Table E.3: MobileNetV2 Full Results

From Scratch Transfer Learning

Gradient Matching-1% Narcissus-1% Fine-Tune Narcissus-10% Linear BP BlackBox-10%

Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Max Poison

Success (%) ↓

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Max Poison

Success (%) ↓

Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

None 20.00 93.860.2 32.7024.5 93.920.1 73.97 23.5923.2 88.301.2 66.54 81.25 73.271.0

EPIc-0.1 37.50 91.280.2 40.0927.1 91.150.2 79.74 23.2522.8 88.351.0 65.97 81.25 69.782.0

EPIc-0.2 19.00 91.240.2 38.5527.5 87.650.5 74.72 19.9519.2 87.671.3 50.05 56.25 54.475.6

EPIc-0.3 9.78 87.801.6 22.3523.9 78.169.9 69.52 21.7028.1 78.176.0 74.96 58.33 58.749.0

FrieNDs-B 6.00 84.302.7 2.001.3 88.820.6 4.88 2.211.5 83.050.7 5.63 41.67 68.861.5

FrieNDs-G 5.00 88.840.4 2.051.7 88.930.3 6.33 2.201.4 83.040.7 5.42 47.92 68.941.5

JPEG-25 1.00 85.180.31 2.431.16 85.000.24 4.40 6.289.05 80.001.04 29.25 2.08 73.140.71

JPEG-50 1.00 86.820.34 2.301.20 86.600.13 3.99 6.7610.23 83.700.94 33.34 12.50 76.121.75

JPEG-75 1.00 88.080.34 2.461.42 87.880.23 4.87 13.8418.74 84.671.41 52.96 68.75 73.111.53

JPEG-85 2.00 88.830.31 10.0316.93 88.610.34 52.46 14.9318.42 85.461.31 56.82 77.08 71.991.07

PureGen-EBM 1.00 90.930.2 1.640.8 91.750.1 2.91 3.665.4 84.180.5 18.85 0.00 78.571.4

PureGen-DDPM 1.00 86.790.26 2.131.02 86.910.23 3.74 3.414.82 86.920.39 16.79 0.00 83.140.20

Table E.4: DenseNet121 Full Results

From Scratch Transfer Learning

Gradient Matching-1% Narcissus-1% Fine-Tune Narcissus-10% Linear BP BlackBox-10%

Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Max Poison

Success (%) ↓

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Max Poison

Success (%) ↓

Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

None 14.00 95.300.1 46.5232.2 95.330.1 91.96 56.5238.6 87.032.8 99.56 73.47 82.131.6

epic-0.1 14.00 93.00.3 43.3832.0 93.070.2 88.97 53.9739.0 87.042.8 99.44 62.50 78.882.1

epic-0.2 7.00 90.670.5 41.9733.2 90.230.6 86.85 43.6636.5 85.972.6 97.17 41.67 70.135.2

epic-0.3 4.00 88.31.0 32.6029.4 85.122.4 71.50 43.2443.0 72.7610.8 100.00 66.67 70.2010.1

friends-B 1.00 91.330.4 8.6021.2 91.550.3 68.57 5.349.9 88.620.8 33.42 60.42 80.221.9

friends-G 1.00 91.330.4 10.1325.2 91.320.4 81.47 5.5510.4 88.750.6 34.91 56.25 80.121.8

jpeg-25 0.00 90.090.17 1.681.10 90.150.26 3.62 2.462.92 83.820.81 9.79 0.00 78.671.60

jpeg-50 0.00 91.940.20 1.901.54 92.030.22 5.41 3.072.69 85.921.07 8.70 12.50 84.241.39

jpeg-75 0.00 93.080.19 2.733.12 93.160.07 8.88 32.2135.67 87.191.28 98.64 27.08 81.311.34

jpeg-85 7.00 93.850.19 13.3628.10 93.770.27 90.77 38.7037.98 86.252.29 97.19 70.83 80.571.40

pgenEBM 0.00 92.850.2 1.420.7 93.480.1 2.60 2.481.9 88.750.5 7.41 0.00 89.290.9

pgenDDPM 3.00 91.090.24 1.710.94 90.940.23 2.97 2.792.51 88.210.62 8.95 0.00 89.020.15
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E.4.4 PureGen Combos on Increased Poison Power

Table E.5: PureGen Combos with Narcissus Increased Poison % and ϵ

Narcissus ϵ = 8 1% Narcissus ϵ = 8 10% Narcissus ϵ = 16 1% Narcissus ϵ = 16 10%

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Max Poison

Success (%) ↓

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Max Poison

Success (%) ↓

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Max Poison

Success (%) ↓

Avg Poison

Success (%) ↓

Avg Nat

Acc (%) ↑

Max Poison

Success (%) ↓

None 40.3338.63 93.610.12 90.26 96.276.62 84.570.60 99.97 83.6312.09 93.670.11 97.36 99.350.81 84.580.63 99.97

EPIc-0.1 36.3934.52 92.020.63 87.34 98.632.06 83.120.69 99.98 74.8113.75 92.220.33 94.26 98.813.04 82.890.59 99.96

EPIc-0.2 29.7531.82 88.370.37 82.41 96.653.73 79.750.94 99.78 73.1114.02 88.240.59 91.51 98.541.43 79.730.93 99.57

EPIc 03 28.5333.15 83.001.87 93.68 93.5412.99 76.311.54 99.99 56.1617.91 82.941.53 81.59 97.403.51 75.951.59 99.97

FrieNDs-G 10.0126.92 91.180.30 86.53 32.4043.26 84.951.70 99.89 18.9020.93 91.150.34 71.46 73.5620.71 82.820.42 97.31

FrieNDs-B 7.8920.37 91.250.26 65.78 30.8741.67 85.171.70 100.00 18.0616.88 91.160.29 54.17 71.2822.90 82.830.43 99.25

JPEG-25 1.820.98 87.760.15 3.46 16.959.72 84.661.51 33.96 11.8512.60 87.720.19 36.90 79.288.05 79.870.79 91.99

JPEG-50 1.751.07 89.350.27 3.71 31.1414.99 84.151.63 50.97 21.6717.81 89.320.19 57.58 90.486.66 81.140.86 100.00

JPEG-75 1.660.92 90.700.14 3.30 56.9927.60 84.071.51 99.53 34.0621.16 90.770.13 65.14 92.006.90 82.200.73 99.86

JPEG-85 4.679.82 91.740.12 32.52 69.7525.47 83.721.39 100.00 42.2126.43 91.660.24 82.82 93.226.90 82.900.53 99.83

PureGen-DDPM 1.720.92 89.610.14 3.20 6.385.16 85.860.46 16.29 5.213.35 86.160.19 13.32 69.3816.73 83.581.02 89.35

PureGen-EBM 1.590.86 91.410.16 3.01 52.4823.29 86.141.82 99.86 7.354.46 85.610.25 16.94 77.507.01 78.790.93 90.84

PureGen-Naive T=[150,75,1] 1.710.89 88.840.16 3.17 10.438.58 88.200.54 27.42 5.202.61 85.950.23 9.80 63.0115.24 83.140.90 87.17

PureGen-Reps T=[10,50,5] 1.730.84 87.250.18 3.25 3.752.28 85.560.22 7.74 4.952.48 85.790.18 10.75 53.7917.14 83.921.02 81.09

PureGen-Filt T=[0,125,1],k=0.5 1.730.89 90.610.16 2.88 6.476.98 86.082.00 18.81 5.744.05 90.520.18 16.08 69.1312.94 85.471.45 87.66

E.5 PureGen-Naive,PureGen-Reps,PureGen-Filt T Param Sweeps
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Figure E.1: PureGen-Reps Sweeps with HLB Model on Narcissus
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Figure E.2: PureGen-Naive Sweeps with HLB Model on Narcissus
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Figure E.3: PureGen-Filt Sweeps with HLB Model on Narcissus
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E.6 PureGen for Intellectual Property Purification

Table E.6: Full Results for IP Purification at various logo dimension sizes

16x16 Logos

Natural Accuracy (%) ↑ Logos Accuracy (%) ↓

Mix Ratio 0.00 0.10 0.25 0.40 0.50 0.60 0.75 1.00 0.00 0.10 0.25 0.40 0.50 0.60 0.75 1.00

Baseline 56.39 56.16 55.88 55.47 55.85 55.24 55.77 56.17 2.84 3.32 3.35 99.92 99.96 100.00 100.00 100.00

JPEG 75 55.27 55.00 54.60 54.17 54.55 54.81 53.89 53.63 2.80 3.03 3.25 3.53 90.36 99.76 99.95 99.96

PureGen-EBM 500 51.37 51.15 50.69 51.12 50.34 50.05 49.67 49.24 3.19 3.20 62.74 2.75 99.61 99.98 100.00 100.00

PureGen-EBM 1250 49.14 48.69 48.08 47.94 47.06 47.21 46.80 46.78 3.10 3.09 3.02 2.97 95.09 99.16 99.91 99.99

PureGen-EBM 2000 46.18 45.46 44.99 45.13 45.00 44.43 44.44 44.09 3.10 3.25 3.02 3.24 79.57 96.39 99.64 100.00

PureGen-DDPM 75 49.04 50.49 49.74 49.88 49.16 48.49 48.39 47.97 3.10 3.08 3.38 3.28 93.28 98.73 99.91 100.00

PureGen-DDPM 100 48.69 48.21 48.66 47.89 46.23 46.61 46.48 45.43 3.30 3.18 3.10 9.20 46.42 96.42 99.18 99.96

PureGen-DDPM 125 45.73 45.64 45.51 45.08 43.30 43.21 43.29 43.52 3.16 3.37 3.20 3.89 32.96 52.26 97.57 99.90

24x24 Logos

Natural Accuracy (%) ↑ Logos Accuracy (%) ↓

Mix Ratio 0.00 0.10 0.25 0.40 0.50 0.60 0.75 1.00 0.00 0.10 0.25 0.40 0.50 0.60 0.75 1.00

Baseline 55.42 54.00 54.34 53.45 53.45 52.37 53.45 53.93 2.91 3.33 99.99 99.99 100.00 99.99 100.00 100.00

JPEG 75 55.27 53.33 53.42 53.39 52.45 52.36 52.72 51.95 2.80 3.16 3.38 99.83 99.97 100.00 100.00 100.00

PureGen-EBM 500 51.37 50.02 50.17 48.85 48.57 48.20 48.11 47.50 3.19 3.26 96.30 99.95 100.00 100.00 100.00 100.00

PureGen-EBM 1250 49.04 50.31 48.90 46.53 47.58 46.88 47.20 46.77 3.10 39.55 3.37 99.00 99.96 99.99 99.99 100.00

PureGen-EBM 2000 46.18 44.00 44.45 42.80 42.95 41.85 41.93 41.89 3.10 21.35 69.76 92.23 99.53 99.96 100.00 100.00

PureGen-DDPM 75 49.04 50.31 48.90 46.53 47.58 46.88 47.20 46.77 3.10 39.55 3.37 99.00 99.96 99.99 99.99 100.00

PureGen-DDPM 100 48.69 46.24 46.44 44.86 45.12 44.71 43.43 43.77 3.30 3.26 3.62 97.32 99.61 99.95 99.98 99.99

PureGen-DDPM 125 45.73 44.67 44.05 43.33 43.26 42.31 41.40 40.88 3.16 3.25 3.39 80.70 98.20 99.74 99.98 100.00

32x32 Logos

Natural Accuracy (%) ↑ Logos Accuracy (%) ↓

Mix Ratio 0.00 0.10 0.25 0.40 0.50 0.60 0.75 1.00 0.00 0.10 0.25 0.40 0.50 0.60 0.75 1.00

Baseline 55.42 52.13 52.74 51.93 50.72 50.11 51.64 51.71 2.91 99.98 99.98 99.99 99.99 99.99 99.99 100.00

JPEG 75 55.27 53.74 51.35 51.72 50.30 50.65 49.50 50.62 2.80 99.05 99.72 99.94 100.00 100.00 100.00 99.99

PureGen-EBM 500 51.37 48.10 47.66 46.49 45.78 44.02 45.27 46.09 3.19 99.43 99.89 99.99 100.00 100.00 100.00 100.00

PureGen-EBM 1250 49.14 45.59 44.77 43.20 42.48 41.56 42.59 42.56 3.10 96.35 99.11 99.96 99.99 100.00 100.00 100.00

PureGen-EBM 2000 46.18 43.51 42.39 41.06 39.46 38.97 38.62 39.41 3.10 89.20 96.89 99.82 99.97 100.00 100.00 100.00

PureGen-DDPM 75 49.04 47.68 46.64 44.83 43.16 43.88 44.13 44.62 3.10 98.18 99.67 99.96 100.00 100.00 100.00 100.00

PureGen-DDPM 100 48.69 45.64 44.65 42.20 41.99 41.18 40.89 41.40 3.30 93.70 98.71 99.89 99.97 100.00 100.00 100.00

PureGen-DDPM 125 45.73 42.25 42.00 39.49 39.39 38.83 37.98 38.64 3.16 81.45 95.18 99.55 99.98 99.99 100.00 100.00
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