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ABSTRACT OF THE DISSERTATION

Target Identification Processor

For Wireless Sensor Network

by

Tommy Yu

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 1999

Professor Gregory J. Pottie, Chair

Wireless sensor networks have many applications in the commercial world as well

as in the military. In the area of defense applications, distributed wireless sensor

networks will provide new information systems for both military battlefield situa-

tional awareness and national security. In particular, the wireless sensor network

can be used for target and threat identification in the battlefield environment.

The objective of this thesis is to develop an architecture for a target recognition

processor that can be implemented readily using on-node microprocessors of the

sensor network. The architecture of the target recognition processor consists of

xi



three sub-processors: 1) source separation and deconvolution processor, 2) feature

extraction processor, and 3) pattern recognition processor.

For the source separation and deconvolution processor, we consider a subspace

based algorithm for blind source separation and deconvolution. A frequency do-

main parametric representation algorithm is chosen for the feature extraction pro-

cessor. Finally, we analyze the performance of a Hidden Markov Model (HMM)

based pattern recognition processor. Each subprocessor is considered and opti-

mized in this research. In this thesis, we present a modular architecture for the

target recognition processor to be implemented on a wireless sensor network. The

modular structure simplifies the design optimization process at each stage ver-

sus the all-in-one approach. The proposed architecture further permits a set of

choices of algorithms at deeper levels. With signal processing capabilities added

to sensor networks, we are able to turn traditional information gathering sensor

networks into smart networks that provide knowledge and intelligence for the en-

vironment. These smart sensor networks will greatly simplify the knowledge and

intelligence gathering process for the decision making. As a result, a new gen-

eration of efficient systems is made possible with the deployment of these sensor

systems.
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Chapter 1

Introduction

Sensors have been widely used in the commercial and military worlds. There are

many types of sensor for different applications. Seismic sensors are employed to

sense vibrations propagated through the ground. Acoustic sensors are used to

measure the pressure difference in the air. Infrared sensors are deployed to sense

the thermal energy difference between an object and the background environ-

ment. There are also magnetic sensors for sensing the magnetic field difference

induced by the object of interest. Sensors have been traditionally used for trigger

applications. That is, these sensors are used to sense any unusual event and send

out a warning if these events happen. Seismic intrusion detectors have been used

successfully in the Vietnam war [55]. These seismic sensors were deployed around

the perimeter of the army camp as part of the intrusion warning system. The

deployment of these seismic sensors gave soldiers more response time in the event
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of an intrusion. Unfortunately, these sensors have some dramatic shortcomings.

The most serious limitations involve their inability to discriminate among target

classes, i.e., wheeled vehicles, tracked vehicles, personnel, fixed-wing aircraft, etc.

These sensors indicate only activation of the sensor; therefore, an operator must

interpret the class of target from the number and frequency of the activation.

Furthermore, these sensors are bulky in general and they require wireline connec-

tion. The deployment of these sensors can be time-consuming which limits the

size of the sensor network.

1.1 Overview of Sensors and Sensor Networks

The introduction of microelectromechanical systems (MEMS) makes low power

microsensors possible. Using the existing silicon fabrication technology, we can

build vibration, acoustic, and infrared sensors on a single CMOS circuit die. In

the UCLA MEMS research center, new microstructures are developed for these

low power sensors. Sensor element sensitivity for vibration is 1 x 10−6g/(Hz)1/2

or less in the 1 - 1000 Hz bandwidth–a sensitivity equal to the local background

vibration noise in the most quiet structures or field environments. Acoustic sensor
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sensitivity achieved is below 35 dB(A) sound pressure level (SPL) with a band-

width of 100 - 10,000 Hz, giving sensitivities at the most quiet environmental-

background noise levels. Sensitivities of infrared sensor is only limited by funda-

mental sensor thermal noise to a value of 5 x 10−10W/(Hz)1/2 with responsivity

through the thermal infrared wavelength range. On the other hand, the rapid

developments in integrated-circuit (IC) technology, starting with medium-scale

integration (MSI) and progressing to large-scale integration (LSI), and now, very-

large-scale integration (VLSI) of electronic circuits has spurred the development

of powerful, smaller, faster, and cheaper digital computers and special-purpose

digital hardware. These inexpensive and relatively fast digital circuits have made

it possible to construct highly sophisticated digital systems capable of performing

complex digital signal processing functions and tasks. Furthermore, the advances

in wireless transceiver technology bring us the single chip CMOS transceiver opti-

mized for efficient, low duty cycle, micropower operation. Since all these building

blocks can be fabricated readily on a single silicon die, we can potentially con-

struct a new generation of low power micro-sensor nodes.

The modern micro-sensor node shown in Figure 1.1 consists of sensors (acous-

tic, seismic, and magnetic) for measurement, low power microprocessor for on-

node processing, and a RF module for wireless communication. These micro-

sensors enable fundamental changes in applications for the home, office, clinic,

3



factory, vehicle, metropolitan area, and the global environment. Low-cost micro-

sensors will monitor health and safety, assist in control of transportation systems,

and introduce a new manufacturing information technology. In the area of de-

fense applications, distributed micro-sensor systems will provide a tremendous

amount of new information that can be used for both military battlefield situa-

tional awareness and national security. In the application of battlefield awareness,

wide area distribution of micro-sensors provides seismic, acoustic, magnetic, and

imaging tactical information. The on-node microprocessor detects and identi-

fies threats and intrusions based on these sensor measurements. Information on

threats and intrusions is then reported back to the command station through

radio links.

Wireless
Transceiver

Sensor

Microprocessor

Interface Circuit

Figure 1.1: Microsensor Node
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1.2 Overview of Dissertation Topics

The research objective of this thesis is to develop a target (threat and intrusion)

identification processor that can be implemented readily using a low power on-

node microprocessor. Our key contributions to this research include developing

a modular architecture for target recognition as shown in Figure 1.2. There are

several advantages of this new architecture. First of all, this architecture can be

applied to the most general sensor network configuration since there is no specified

requirement for sensor arrangement. Secondly, the modular architecture facili-

tates the design process for each sub-block. It also permits the implementation

of a set of different algorithms using the same architecture. Furthermore, this

architecture is made flexible for future technology upgrade insertion. The target

identification processor proposed consists of three sub-processors: 1) source sep-

aration and deconvolution processor, 2) feature extraction processor, and 3) pat-

tern recognition processor. Each subprocessor can be considered and optimized

separately. Our key contributions in subprocessor design include presenting a

new algorithm for source separation and deconvolution for the multiple-input

multiple-output system, validating linear predictive coding (LPC) spectral anal-

ysis for the feature extraction processor, and applying hidden Markov Model

(HMM) for the pattern recognition processor.

Chapter 2 presents background material on detection and system modeling.

The source separation and deconvolution processor is presented in Chapter 3. We
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as the propagation media of the measured signals. As a result, deconvolution is

necessary to improve the signal to noise ratio (SNR) of our sensor measurement.

The function of the source separation and deconvolution processor is to perform

source separation and deconvolution. In this research, a new algorithm based

on subspace decomposition and source decorrelation is presented for the source

separation and deconvolution processor. The theoretical derivation and simula-

tions of the algorithm are presented in Chapter 3. An adaptive version of this

algorithm is also presented for practical implementation.

After signals from different sources are separated, identification processing

can be performed on these signals. However, it is too computationally intense to

perform identification on the raw measurements directly. The concept of the fea-

ture extraction processor is introduced in Chapter 4. The key idea of the feature

extraction processor is to reduce the computational complexity. The function of

the feature extraction processor is to convert raw measurement data into signa-

ture vectors. In this process, it is capable of compressing raw measurement data

by several orders of magnitude with minimal or no distortion to the intrinsic char-

acter of the measurement data. The linear predictive coding (LPC) algorithm is

chosen for the feature extraction processor in this research. A detailed outline of

the LPC algorithm is presented in Chapter 4.

Signature vectors generated by the feature extraction processor are fed into the

pattern recognition processor for the final identification. The architecture of our

7



pattern recognition processor is addressed in Chapter 5. The pattern recognition

processor is a Bayesian classifier based on the concept of a signal model. Given

a set of signal models {λl} and a sequence of signature vectors {O}, we can

evaluate the so-called a posteriori probabilities P (O|λi) for each signal model

{λi}. Under Bayes’ criterion, the sequence {O} should be associated with the

signal model {λi} with the highest probability measurement P (O|λi). The signal

model chosen in this research is the hidden Markov model (HMM). The concept

of HMM will be addressed in Chapter 5. Finally, simulation results using real life

measurement data are presented to demonstrate the performance of the target

recognition processor.

Lastly, Chapter 6 presents concluding remarks on our research and addresses

the direction for future research.

8



Chapter 2

Background

This chapter introduces background material to lay a technical foundation for the

later chapters. It begin with an overview of detection and classification. Next

is a review of system modeling and deconvolution. In particular, we consider a

seismic system as an example. At the end, we summarize the list of problems to

be considered in our research.

2.1 Detection and Classification

In the sensor network, there are many possible signal waveforms generated by

the target of interest. In the transmission medium between the target and the

sensor, i.e. ground for seismic waves, the signal waveforms may undergo some

distortion. In many cases this distortion is caused by process which, because of

9



its complexity or randomness, may not be known precisely. The random nature of

the signal and the noise accompanying such a signal do not allow us to determine

with arbitrary precision the values of these parameters. As a result, statistical

methods are used to guide the decision and estimation processes.

2.1.1 Hypothesis Testing

One of the most important statistical tools for making decisions is hypothesis

testing. The hypotheses are statements of the possible decisions that are being

considered. For example, in the sensor network problem we might select two

hypotheses, a target is present or no target is present. Corresponding to each

hypothesis there is a probabilistic description of the possible outcomes. Coupling

this probabilistic description which a criterion or measure of goodness that the

decision will satisfy on the average dictates a dichotomy (for two hypotheses)

of the sample space over which the outcome of the experiment is defined. This

dichotomy represents the best (optimum) decision rule subject to the criterion of

goodness.

Denote the null hypothesis (H0) the event that no target is present, and the

alternative hypothesis (H1) the event that a target is present. A criterion for

making the decision must be selected. One reasonable criterion is to choose that

hypothesis which is most likely to have occurred based on our observation. That

is, given an observation y, which hypothesis is most probably true? The two

10



conditional probabilities are denoted

P (H0|y) and P (H1|y) (2.1)

These are the probability thatH0 is true given observation y; and the probabil-

ity that H1 is true given observation y. These probabilities are called a posteriori

probabilities, so this is called the maximum a posteriori probability criterion. The

decision rule is to choose H0 if

P (H0|y) > P (H1|y) or
P (H0|y)
P (H1|y) > 1 (2.2)

and choose H1 otherwise.

In the hypothesis testing, there are two types of errors which can be made. If

we say a signal is present when in fact it is not, an error of the first kind is made.

That is, we choose H1 given that H0 is true. Denote the probability of this as

P (D1|H0). On the other hand, if H0 is chosen when in fact H1 is true, an error

of the second kind is made. Denote the probability of this as P (D0|H1). Finally,

the average probability of error, denoted Pe, is

Pe = P (D1|H0)P (H0) + P (D0|H1)[1− P (H0)] (2.3)

11



2.1.2 Bayes Criterion

In the maximum a posteriori probability criterion stated in Section 2.1, there is

no particular weighting given to the two types of errors. However, in many cases

the consequences of each type of error are not equally important. To reflect these

differences, costs may be assigned to each type of error.

Define Cij as the cost associated with choosing hypothesis Hi when actually

hypothesis Hj is true. The average cost for the two hypothesis example stated in

Section 2.1 is given by

C̄ = P (H0)[P (D0|H0)C00 + P (D1|H0)C10] (2.4)

+[1− P (H0)][P (D0|H1)C01 + P (D1|H1)C11]

The criterion that minimizes the average cost is called Bayes criterion. Using

this criterion, a decision rule is derived. In term of the hypothesis H1, choose H1

if

P (y|H1)
P (y|H0

≤ P (H0)(C10 − C00)
[1− P (H0)](C01 − C11)

(2.5)

By comparing Equations 2.5 and 2.2 for the case when C10 −C00 = C01 −C11,

it follows that the maximum a posteriori probability criterion is a special case of

the Bayes criterion.

In all the previous cases only binary type decisions were considered. In our

12



problems, there are more than two possible decisions. We shall proceed as for

the Bayes criterion and assume that cost functions and a priori probabilities are

known. Assume that one of n hypotheses is to be chosen and assign a cost, Cij,

to each decision. This is the cost of choosing hypothesis Hi when hypothesis Hj

is true. The average cost is then

C̄ =
n∑
i=1

n∑
j=1

CijP (Di|Hj)P (Hj) (2.6)

where P (Di|Hj) denotes the probability of choosing hypothesis Hi given that Hj

is true. The Bayes criterion is to minimize the average cost. This implies that for

any received set of samples, the hypothesis Hj which yields the lowest average

cost is chosen. Given the set of samples y, the cost associated with hypothesis

Hj is

Cj =
n∑
i=1

CjiP (Hi|y) (2.7)

where P (Hi|y) is the probability that hypothesis Hi is true given y. This prob-

ability can be expressed

P (Hi|y) = pi(y)P (Hi)
p(y)

(2.8)

where pi(y) is the probability density function for hypothesis Hi, and p(y) is the

marginal density function for y. The cost associated with choosing Hj is then

13



Cj =
∑n
i=1 Cjipi(y)P (Hi)

p(y)
(2.9)

Since p(y) does not depend on the hypothesis, the decision rule is to choose

that hypothesis Hj for which

λj =
n∑
i=1

Cjipi(y)P (Hi) (2.10)

is a minimum. This is the Bayes test for multiple hypotheses.

Of particular interest is the case where Cij = 1 for i �= j, and Cii = 0. Thus,

there is no penalty for correct decisions, and all errors have equal weighting.

To use the Bayes rule compute

λj =
n∑

i=1,i�=j
P (Hi)pi(y) for all j (2.11)

and choose that hypothesis corresponding to the index j for which this is a

minimum. Consequently

λk − λj = P (Hj)pj(y)− P (Hk)pk(y) (2.12)

Without loss of generality, assume that λj is the minimum term. Then λk −

λj > 0, or

P (Hj)pj(y) > P (Hk)pk(y) (2.13)

14



Therefore choosing the minimum λj corresponds to choosing the largest value

of P (Hj)pj(y). The decision rule becomes: choose the hypothesis Hj for which

pj(y)P (Hj) is a maximum. There is one more practical difficulty here. In general,

the distribution pj(y) is unknown. As a result, the training is required.

2.2 System Modeling and Deconvolution

In Section 2.1, we outline the criterion for signal detection in the presence of

distortion and noise. In this section, we address the issue of the system model for

the propagation channel of our signals. In particular, we consider seismic waves.

The vertical component of a Rayleigh wave is commonly used as the en-

ergy vehicle to activate modern, seismic, unattended ground sensors (UGS). The

amount of energy generated by a target of interest is site dependent, and the

effect of terrain on Rayleigh wave generation and propagation is known to be

substantial. The seismic wave is generated by the stress signal applied to the

ground. This stress signal is intrinsic to the target of interest. However, the seis-

mic wave measured at the sensor can be quite different from the original stress

signal. The distortion is a joint effect of the geometric attenuation and reflection

loss. In seismology, the usual procedure is to assume a layered earth model, and

the requirement is to use the received signal to estimate the sequence of reflection

coefficients corresponding to the various layers of the model. The received signal

15



is itself made up of echoes produced at the different layers of the model in re-

sponse to the excitation which is ordinarily in the form of a short-duration pulse.

The equally spaced time sequence of reflection coefficients may be viewed as the

impulse response of the layered earth model. Using this layer model, the sensor

measurement can be modeled as the output of a finite impulse response (FIR)

system driven by the stress signal. In system modeling, the sensor measurement

is defined as the convolution of the stress signal and the impulse response of the

layer system.

Deconvolution refers to the problem of determining the impulse response of

the system or the input signal. The output of the system is typically accessible,

which means that the output signal of the system is available for processing.

However, in our application, the system is unknown and its input is inaccessible.

In other word, a precise knowledge of the input signal is not available. In this case,

deconvolution is referred to as blind deconvolution. The deconvolution problem is

further complicated by the fact there can be more than one input source. In this

case, the problem of determining the input signals is called blind source separation

and deconvolution. As we shall see in Chapter 3, a new algorithm is developed to

solve this type of problem. While we only discuss the system model for seismic

wave generation and propagation here, similar system models can be developed

for other types of sensor measurements, such as acoustic waves.
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2.3 Summary

The key objective of our research is to perform detection and classification using

an unattended sensor network. In this chapter, we reviewed hypothesis testing

for detection and the Bayes criterion. Prior to the hypothesis testing, blind

deconvolution is required to recover the source signal. In the multiple sources

case, blind source separation and deconvolution is required. This problem is

solved in Chapter 3. As we have shown, the hypothesis testing is based on a

conditional probability measure. In order to generate this probability measure,

we need to have a signal model for our source signal. Since our sources are not

deterministic signals, a stochastic signal model (HMM) is proposed in Chapter 5.

The calculation of the probability measure and the training of the signal model

are also solved.
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Chapter 3

Source Separation and

Deconvolution Preprocessor

In the remote sensing application, the unknown or changing environment should

be considered when examining the sensor measurement. For example, in the

case of seismic sensor measurements, the measurement is a function of ground

conditions as well as the distance between sensor and source. In the model

shown in Figure 3.1 [7] [11], the seismic measurement is modeled as the output

of an unknown system driven by some unknown sources. The unknown system

characterizes the propagation media of the seismic wave launched by the target,

in this case, the ground conditions. The interaction between the target and

the ground is characterized by the unknown input source. With this model, we

have a blind identification and deconvolution problem. We want to identify the
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channel (which characterizes both the ground and the distance between sensor

and source) and recover the input source (which characterizes target motion).

The channel response and input source will be used by subsequent processors as

signatures for target identification.

H(z)
u(k) y(k)

n(k)

z(k)

Figure 3.1: System Model for Seismic Wave Generation

Mendel investigated the blind deconvolution problem in [11] [7]. In this model,

the input is assumed to be a Bernoulli-Gaussian process and the unknown channel

response can be any auto-regressive moving-average (ARMA) model. With this

model, Mendel developed an iterative algorithm for estimating the channel re-

sponse and input source. While this algorithm works quite well for applications

in oil exploration, there are two drawbacks for this algorithm in our applica-

tion. First, the computational intensity of this algorithm is very large. It takes

many iterations for the algorithm to converge. Furthermore, this algorithm is an

expectation-maximization (EM) algorithm. The convergence is critically depen-

dent on the initial start point. Second, the Bernoulli-Gaussian assumption for

this input is too limited for our application.

Shalvi and Weinstein proposed a blind deconvolution algorithm based on

higher order statistics in [31]. In this model, the channel response can be any
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linear system. However, the system input has to be white and non-Gaussian.

This algorithm estimates the deconvolution filter and recovers the input with an

unknown delay. However, it does not estimate the channel response. While this

new algorithm has looser constraints than the previous one proposed by Mendel,

it has some problems as well: 1) it does not estimate the unknown channel re-

sponse even though this channel response is very useful for tracking applications,

2) the unknown delay between the recovered input and the actual input is a func-

tion of the channel response, and it is very difficult to synchronize data between

different sensors due to this unknown delay, and 3) the assumption that the input

is white can be unrealistic. Furthermore, since this algorithm is based on higher

order statistics, it requires longer data intervals for accurate estimation.

Moulines proposes another blind deconvolution algorithm in [23]. This algo-

rithm is based on second order statistics. In this model, the system is a single

input multiple output finite impulse response (FIR) linear system. Multiple out-

puts can be obtained through either using multiple sensors for measurement or

sampling the output at rate higher than the input symbol rate. Since we have

a multiple sensor network and the observation bandwidth of the source is less

than the sampling rate, this assumption is valid here. The unknown input need

not be white. The input is assumed to be persistently excited [12] but otherwise

unknown. The persistently excited requirement is a very loose one and most

broadband sources have this property. Moulines’ algorithm estimates the system
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transfer function by exploring the subspace structure of the received data. The

deconvolution filter can be calculated once the channel response is determined.

There are many advantages to Moulines’ algorithm: 1) the input constraint is

quite loose, which can be satisfied by most broadband sources, 2) it estimates

the channel response and the delay between recovered input and actual input is

well defined, and 3) the algorithm is based on second order statistics only.

In cases containing a single source, Moulines’ algorithm is sufficient for doing

data preprocessing. However, we rarely have a single source in a real life appli-

cation. Multiple sources scenarios are generally considered in decorrelation and

beamforming problems. In the beamforming problem, the channel is assumed to

be non-dispersive. Since in a remote sensing application the channel will be dis-

persive, the traditional beamforming algorithm can not be applied to our problem

directly.

A variety of algorithms have been proposed for solving the multiple sources

separation problem. Weinstein et al. [27] investigated a 2 x 2 linear time invariant

system. Two unknown inputs are assumed to be statistically uncorrelated. The

algorithm further assumes the diagonal element of the transition matrix to be

1. That is, one signal can be viewed as interference for the other. Weinstein

developed an iterative algorithm for estimating the unknown channel coefficients

based on cross-correlation. However, the convergence of the algorithm is not

guaranteed if both channel coefficients are unknown, and it depends on the initial
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starting point of the algorithm. Furthermore, the algorithm only works for 2 x

2 systems and the generalization of this algorithm to more sources can be very

difficult.

Yellin [28] [29] developed a decorrelation algorithm for multiple sources sepa-

ration based on higher order statistics. However, this algorithm suffers the same

drawbacks as Weinstein’s method. Furthermore, since the algorithm is based on

higher order statistics, the input has to be non-Gaussian.

Moulines’ algorithm [23] for single input multiple outputs (SIMO) system

offered simple and elegant solutions for system identification problem under

quite general assumptions. Several papers [50] [51] [52] have tried to extend

Moulines’ algorithm from SIMO system to multiple inputs multiple outputs

(MIMO). Gorokhov [50] stated that certain multivariate convolutive mixtures

may be converted to instantaneous (static) mixtures of input signals. This static

mixture can be further separated either using the structure of digital communi-

cations signals or various higher order statistics (HOS) identification techniques.

We propose a new blind separation and deconvolution algorithm for a MIMO

system. This new algorithm is also a generalization of Moulines’ algorithm from

a SIMO system to a MIMO system similar to algorithms stated in [50] [51] [52].

Using the subspace decomposition method, the multivariate convolutive mixtures

problem is converted to an instantaneous mixtures problem. These instantaneous

mixtures can be separated using the decorrelation algorithm. Our algorithm is
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different from previous algorithms [50] [51] [52] in two areas. First, the algorithm

uses second order statistics only for both deconvolution and source separation.

Some previous algorithms use higher order statistics for source separation. Sec-

ond, the algorithm makes no assumption on the structure of the input signal.

In digital communications, the data structure of the input signal is well defined.

These data structures can be used for source separation. However, input signals in

our application are not digital communications signals and their data structures

are unknown. The assumptions we make for these input signals are that they

are uncorrelated and colored. These assumptions are quite general for sources of

interest in our application such as seismic signatures of tanks.

3.1 Source Separation and Deconvolution Algo-

rithm

H(z)

d1

dNt

x1

xNs

�

�

�

�

�

�

Figure 3.2: Multiple Input Multiple Output System

Consider a sensor network of Ns sensors and Nt sources as shown in Figure
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3.2. Let dj(n) denote the signal from source j, j = 1, . . . , Nt. The received signal

at sensor i is given by:

xi(n) =
∞∑

m=−∞

Nt∑
j=1

dj(m)hij(n − m) + bi(n) (3.1)

where bi(n) is the measurement noise at sensor i and it is assumed to be inde-

pendent of the source signal. hij(i = 1, . . . , Ns; j = 1, . . . , Nt) is the transfer

function from source j to sensor i. In the multi-sensor network, hij characterizes

the propagation medium from target j to sensor i.

Assume each channel can be modeled by a FIR filter of order M . Stacking N

successive samples of the received signal sequence, i.e., Xi = [xi(n), . . . , xi(n −

N + 1)]T (dim. N x 1), we obtain the following:

Xi(n) = HiD +Bi (3.2)

where Bi = [bi(n), . . . , bi(n − N + 1)]T (dim. N x 1), and D = [DT
1 , . . . , D

T
Nt
]T

(dim. Nt(M + N) x 1). Di is a vector of (M + N) successive samples of the

ith source signal sequence, i.e., Di = [di(n), . . . , di(n − N − M + 1)]T . Hi is

the N x Nt(M + N) filtering matrix from multiple sources to sensor i, i.e.,

Hi = [Hi1, . . . , HiNt ]. Hij is a N x (M +N) matrix defined as:
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Hij
def=




h
(0)
ij · · · h

(M)
ij 0 · · · · · · 0

0 h
(0)
ij · · · h

(M)
ij 0 · · · 0

...
...

0 · · · · · · 0 h
(0)
ij · · · h

(M)
ij




(3.3)

where h
(k)
ij denotes the kth tap of hij.

Combine all sensor measurements into one vector X = [XT
1 , . . . , XT

Ns
]T (dim.

NsN x 1) to obtain the following:

X = HD +B (3.4)

where B = [BT
1 , . . . , BT

Ns
]T (dim. NsN x 1) and H = [HT

1 , . . . , HT
Ns
]T (dim. NsN

x Nt(M +N)).

As in the method of Moulines [23] [26], the identification is based on the NsN

x NsN auto-correlation matrix Rx for the measurement vector X:

Rx = E{XXT} (3.5)

where E{·} denotes mathematical expectation. Since the additive measurement

noise is assumed to be independent of the transmitted sequence, Rx is expressed

as:

Rx = HRdH
T +Rb (3.6)
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whereRd = E{DDT} andRb = E{BBT} respectively denote the auto-correlation

matrices of the transmitted symbol vector D and of the measurement noise vector

B. Assume all input sources are statistically uncorrelated, that is:

E{di(t)d∗
j(t − τ)} = 0 ∀τ, i �= j (3.7)

Then the source correlation matrix Rd (dim. Nt(M +N) x Nt(M +N)) has

the following structure:

Rd =




R1
d 0 · · · · · · 0

0 R2
d 0 · · · 0

...
...

... 0

0 · · · · · · 0 RNt
d




(3.8)

where Ri
d denotes the correlation matrix of source i and is assumed to be full-rank

but otherwise unknown. The rank of Rd is Nt(M +N).

Note that matrix H is full column rank, i.e., rank(H) = Nt(M + N). The

requirement for this condition is:

1) the polynomials H(ij)(z) have no common zero, where H(ij)(z) is defined as:

H(ij)(z) def=
M∑
k=0

h
(k)
ij zk (3.9)

2) N is greater than or equal to the maximum degree M of the polynomials
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H(ij)(z), i.e., N ≥ M

3) NsN ≥ Nt(M +N)

4) at least one polynomial H(ij)(z) has degree M for each j

In order to preserve the subspace structure of Rd, the dimension of Rx should

be chosen to be greater than Rd, i.e., NsN ≥ Nt(M + N). Let λ0 ≥ λ1 ≥

· · ·λNt(M+N) denote eigenvalues of Rx. Without loss of generality, assume the

noise distributions at all sensors are the same with power σ2. Since Rd is full rank,

the signal part of the correlation matrix Rx, i.e., HRdH
T has rank Nt(M +N),

hence:

λi > σ2 i = 0, . . . , Nt(M +N)− 1 (3.10)

λi = σ2 i = Nt(M +N), . . . , NsN − 1

Denote the unit-norm eigenvectors associated with the eigenvalues λ0, . . . , λNt(M+N)−1

by S0, . . . , SNt(M+N)−1; denote those corresponding to λNt(M+N), . . . , λNsN−1 by

G0, . . . , GNsN−Nt(M+N)−1. Also define S (dim. NsN x Nt(M +N)) and G (dim.

NsN x (NsN − Nt(M +N))) as follows:

S =
[
S0, . . . , SNt(M+N)−1

]
(3.11)

G =
[
G0, . . . , GNsN−Nt(M+N)−1

]

The correlation matrix Rx is thus also expressed as:
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Rx = Sdiag(λ0, . . . , λNt(M+N)−1)ST + σ2GGT (3.12)

The columns of matrix S span the so-called signal subspace (dim. Nt(M+N)),

while the columns of G span its orthogonal complement, the noise subspace. Since

H is a full column rank matrix, the signal subspace is also the linear space spanned

by the columns ofH. By orthogonality between the noise and the signal subspace,

the columns of H are orthogonal to any vector in the noise subspace. That is,

GT
i H = 0 0 ≤ i < NsN − Nt(M +N)− 1 (3.13)

Furthermore, let H = [K1, . . . , KNt ] where Ki = [HT
1i, . . . , H

T
Nsi]

T , the follow-

ing is true as well:

GT
i Kj = 0 0 ≤ i < NsN − Nt(M +N)− 1 (3.14)

1 ≤ j ≤ Nt

This relation is the basis for the new source separation and deconvolution

algorithm. Note that the relation is linear in the unknown coefficients. This

leads to the possibility of simple identification procedures, provided this equation

actually characterizes the channel coefficients.

LetGi = [GT
i1, . . . , G

T
iNs
]T whereGik isN x 1 vector, and define Gi = [GT

i1, . . . ,GT
iNs
]T

(dim. Ns(M + 1) x (M + N)) where Gik (dim. (M + 1) x (M + N)) has the
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following structure:

Gik =




G
(1)
ik G

(2)
ik · · · G

(N)
ik 0 · · · 0

0 G
(1)
ik G

(2)
ik · · · G

(N)
ik 0 · · ·

...
...

...
...

...
...

...

0 · · · 0 G
(1)
ik G

(2)
ik · · · G

(N)
ik




(3.15)

where Gl
ik denotes the lth coefficients of vector Gik.

From Lemma 1 in [23], Equation 3.14 can be rewritten in the following format:

hTj Gi = 0 0 ≤ i < NsN − Nt(M +N)− 1 (3.16)

1 ≤ j ≤ Nt

This relation can be used to estimate the channel coefficients even in the cases

where Rd is unknown. Similarly to Moulines’ algorithm, this method relies on

the specific structure of H, the filtering matrix.

3.1.1 Algorithm Formulation

A blind identification procedure consists of estimating the NsNt(M+1) x 1 vector

h of channel coefficients, i.e., h = [hT1 , . . . , h
T
Nt
]T and

hj = [h(0)
1j , . . . , h

(M)
1j , . . . , h

(0)
Nsj, . . . , h

(M)
Nsj ]

T (dim. Ns(M + 1) x 1), solely from the

observations of X.
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The orthogonality condition is linear in the channel coefficients. In practice,

only sample estimates Gi of the noise eigenvectors are available and hj is solved

in the least square sense. Furthermore, it can be shown that hj(j = 1, . . . , Nt)

are linearly independent vectors (See Appendix A). The system identification

problem can be restated as solving Nt linearly independent vectors, i.e., hj(j =

1, . . . , Nt) that minimize the following quadratic form

q(hj) = hTj Qhj where Q =
NsN−Nt(M+N)∑

i=1
GiGT

i (3.17)

Estimates of hj can be obtained by minimizing q(hj) subject to a properly

chosen constraint avoiding the trivial solution hj = 0. In this new algorithm,

the quadratic constraint is chosen. That is, minimize q(hj) subject to ‖hj‖ = 1.

If there is only one source (Nt=1), the solution is the unit-norm eigenvector

associated with the smallest eigenvalue of matrix Q. This is the result Moulines

presented in his paper [23]. However, in the case of multiple sources (Nt > 1),

we claim the following:

Lemma 1:

The Nt unit-norm eigenvectors associated with the smallest Nt eigenvalues of

matrix Q form the basis for hj, j = 1, . . . , Nt.

A proof is given in Appendix A. Denote Nt unit-norm eigenvectors associated

with the smallest Nt eigenvalues of matrix Q by fi(i = 1, . . . , Nt). By Lemma 1,

solving for eigenvector fi yields the following relation:
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[h1, . . . , hNt ] = [f1, . . . , fNt ] ∗ C (3.18)

where C is a Nt x Nt matrix.

Let fi = [fTi1, . . . , f
T
iNs
]T (dim. Ns(M+1) x 1) where fij is a (M+1) x 1 vector,

define F = [F1, . . . , FNt ] (dim. NsN x Nt(M+N)) and Fi = [F T
i1, . . . , F

T
iNs
]T (dim.

NsN x (M +N)) where Fij (dim. N x (M +N)) has the following structure:

Fij =




f
(0)
ij · · · f

(M)
ij 0 · · · · · · 0

0 f
(0)
ij · · · f

(M)
ij 0 · · · 0

...
...

0
...

... 0 f
(0)
ij · · · f

(M)
ij




(3.19)

Let yj(n)(j = 1, . . . , Nt) be the signal that satisfies the following:

yj(n) =
Nt∑
k=1

cjkdk(n) (3.20)

Let Yi be M + N successive samples from yi(n) and Y = [Y T
1 , . . . , Y T

Nt
]T . It

can be shown that:

X = FY +B (3.21)

After F is determined, a linear deconvolution filter E (dim. Nt(M + N) x

NsN) can be found by:
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E = (F TF )−1F T (3.22)

We can recover yj(n)(j = 1, . . . , Nt) using this deconvolution filter E. How-

ever, the objective of the source separation and deconvolution algorithm is to

recover dk(n)(k = 1, . . . , Nt). From Equation 3.20, we observe yj(n) is a linear

combination of dk(n). Using the property stated in Equation 3.7, recovering dk(n)

from yj(n) becomes a problem of separating a mixture of independent signals.

This problem can be solved readily using an algorithm proposed by Molgedey in

[30]. The algorithm can be summarized as follows:

1. Once yj(n)(j = 1, . . . , Nt) have been calculated, generate matrices M0

(symmetric correlation matrix) and M1 (time delayed correlation matrix).

M ij
0 = E{yi(n)yj(n)} (3.23)

M ij
1 = E{yi(n)yj(n+ l)}

2. C can be solved as an eigenvalue problem. That is:

(M0M
−1
1 )C = C(Λ0Λ−1

1 ) (3.24)

where Λ0,Λ1 are diagonal matrices.

Once C is determined, system transfer function coefficients h = [hT1 , . . . , h
T
Nt
]T

can be solved using Equation 3.18. Let C−1 be the inverse of C. Input source
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D = [DT
1 , . . . , D

T
Nt
]T can be solved as:

Di =
Nt∑
j=1

C−1
ij Yj (3.25)

In summary, this new blind source separation and deconvolution algorithm

can be separated into two parts as shown in Figure 3.3:

E(z) C-1(z)C(z) F(z)

System Deconvolution Filter
Source Separation

Filter

Figure 3.3: Blind Source Separation and Deconvolution Block Diagram

We now address the computational complexity of this new algorithm.

1. Deconvolution: In this operation, we estimate the channel dispersion of

the system and equalize channel dispersion using deconvolution filter E. As a

result, we reduce this MIMO system with FIR channels into a mixture system

C. In this process, we perform one eigenvalue decomposition on Rx (dim. NNs

x NNs), one eigenvalue decomposition on Q (dim. Ns(M + 1) x Ns(M + 1)),

and one matrix inversion on F (dim. NsN x Nt(M +N)). From the conditions

we state for Ns, Nt, M , and N , the computation is dominated by the eigenvalue

decomposition on Rx. That is an O((NNs)3) operation.

2. Source Separation: In this operation, we separate the mixture of indepen-

dent sources using Molgedey’s algorithm. In this process, we perform one matrix
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inversion on M1 (dim. Nt x Nt), one matrix inversion on C (dim. Nt x Nt),

and one eigenvalue decomposition on M0M
−1
1 (dim. Nt x Nt). In this case, the

computation is dominated by the eigenvalue decomposition which is an O((Nt)3)

operation. In comparison to the deconvolution operation, the computation of the

decorrelation operation is negligible.

We have shown the subspace-based parameter estimation scheme using the

noise subspace of the sensor data. Similarly to Moulines’s algorithm, our algo-

rithm can be modified to use the signal subspace of the sensor data for parameter

estimation.

The system identification based on the signal subspace can be stated as solving

for Nt linearly independent vectors hj that maximize the following quadratic form

q̃(hj) = hTj Q̃hj where Q̃ =
Nt(M+N)∑

i=1
SiST

i (3.26)

where Si is the matrix associated with eigenvector Si and it is defined similarly

to Gi.

Under the unit-norm constraints, both the noise- and signal-related quadratic

forms give identical solutions. The computational complexity comparison be-

tween the two depends on values of Ns, Nt, M , and N .
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3.1.2 Simulation Results

We demonstrate the performance of the new algorithm through simulations. In

practical situations, the ensemble average of the signal correlation matrix is un-

known. It is replaced by its sample estimate. Two sets of simulations are per-

formed to evaluate the performance of the algorithm. In the first set of simu-

lations, we demonstrate the multiple sources separation and deconvolution ca-

pability of the algorithm. Two simulation cases are run and the following table

summarizes the simulation setup:

Simulation Case Nt Ns M N SNR(dB) Data Size

1 2 5 4 6 40 3000

2 3 5 4 18 40 10000

Nt, number of inputs sources

Ns, number of sensors

M , maximum order of each channel

N , number of taps for the equalizer

The input sources are generated by passing white Gaussian sources through

filter Gi defined as follows:

G0 = [0.7620, 0.1270, 0.6350] (3.27)
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G1 = [0.8018,−0.2673, 0.5345]

G2 = [0.8165, 0.4082, 0.4082]

The unknown system is characterized by Hij(i = 1, . . . , Ns; j = 1, . . . , Nt)

where each Hij is a (M +1) taps FIR filter. The coefficients of Hij are produced

by a Gaussian number generator. Each Hij vector is normalized to have unit

norm. White Gaussian noise is added to the output. The signal to noise ratio is

defined as the power ratio between the received signal and the measurement noise

at the output. 100 Monte-Carlo runs are conducted. We evaluate the performance

of the algorithm by computing the average similarity between source inputs and

recovered inputs and the average similarity between the unknown system transfer

function and the estimated system transfer function. Similarity is defined as:

sim(a, b) =
E{ab}√

E{a2}E{b2}
(3.28)

Plots of average similarity are shown in Figure 3.4, 3.5, 3.6, 3.7. From these

plots, we can see the algorithm is capable of recovering multiple sources using

multiple sensor measurements. The performance of the algorithm is very good

since the average similarity is very close to 1.

We note that two conditions must be satisfied in choosing N . They are

N ≥ M and NNs ≥ Nt(M + N). In the event where Ns is much greater than

Nt, N can be chosen to be close to M . That translates to a small size for Rx.

The small dimension of Rx requires a small data block for the correlation matrix
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Figure 3.4: Similarity between transfer function vs. run (2 sources and 5 sensors)

mean similarity = 0.9947 and variance = 3.8154x10−5
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Figure 3.5: Similarity between data vs. run (2 sources and 5 sensors)

mean similarity = 0.9988 and variance = 6.3782x10−6
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Figure 3.6: Similarity between transfer function vs. run (3 sources and 5 sensors)

mean similarity = 0.9929 and variance = 4.3428x10−5
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Figure 3.7: Similarity between data vs. run (3 sources and 5 sensors)

mean similarity = 0.9977 and variance = 2.9954x10−5

38



estimation. On the other hand, ifNs is close toNt, N can be quite large compared

to M . That means a larger size of Rx which translates to a large data block for

correlation matrix estimation, and thus much higher computational complexity.

In the second set of simulations, we investigate the performance of the algo-

rithm versus the size of the measurement data. Two simulation cases are run and

the following table summarizes the simulation setup:

Simulation Case Nt Ns M N SNR(dB)

1 2 5 4 6 40

2 3 5 4 18 40

The input sources are generated by passing white Gaussian sources through

filter Gi defined in Equation 3.27. The number of symbols used varies from

1000 to 10000 in increments of 1000. 100 Monte-Carlo runs are conducted for

each symbol size and the average similarity is calculated. The coefficients of

Hij are produced by a Gaussian number generator and the coefficients are fixed

throughout all simulation runs. The coefficients of the first simulation case are:

H11 = [ -0.2068 -0.7964 0.0599 0.1376 -0.5482 ]

H21 = [ 0.6909 0.6899 -0.0218 0.1899 0.1013 ]

H31 = [ -0.0783 0.3042 -0.2466 0.9150 -0.0572 ]

H41 = [ 0.0836 0.7830 0.0435 -0.0702 -0.6109 ]

H51 = [ 0.1256 -0.5699 0.3047 0.6925 -0.2951 ]
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H12 = [ 0.3186 0.4657 -0.5918 -0.5351 0.2121 ]

H22 = [ -0.2146 0.3703 0.4377 0.3820 0.6924 ]

H32 = [ 0.3661 0.6520 -0.6584 -0.0108 -0.0858 ]

H42 = [ -0.6338 0.1017 -0.4174 0.5591 -0.3181 ]

H52 = [ 0.2178 0.0903 -0.3798 -0.8942 -0.0244 ]

The coefficients of the second simulation case are:

H11 = [ -0.4579 0.2784 0.2300 0.7669 0.2679 ]

H21 = [ -0.5120 0.3026 -0.8028 -0.0155 -0.0383 ]

H31 = [ 0.6136 0.5008 0.3959 0.0276 0.4639 ]

H41 = [ 0.3403 -0.1529 -0.2258 -0.1770 -0.8823 ]

H51 = [ -0.1518 0.0768 0.2043 0.9367 -0.2278 ]

H12 = [ 0.3634 0.4659 0.5486 -0.5785 0.1236 ]

H22 = [ 0.1419 -0.6010 -0.4425 0.6455 -0.0784 ]

H32 = [ 0.3763 0.0849 -0.6133 -0.5401 0.4282 ]

H42 = [ -0.5911 0.4862 0.3541 -0.5114 -0.1653 ]

H52 = [ -0.4306 -0.7983 0.3575 -0.1880 0.1187 ]

H13 = [ 0.1615 0.0148 -0.6927 -0.6535 -0.2583 ]

H23 = [ -0.4773 -0.4249 0.5926 0.0224 -0.4899 ]

H33 = [ -0.0204 -0.5591 -0.6686 -0.1294 0.4725 ]

H43 = [ 0.0889 0.4539 -0.8073 -0.3184 -0.1814 ]

40



1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.9975

0.998

0.9985

0.999

0.9995

1

Figure 3.8: Similarity between transfer function vs. data size (2 sources and 5

sensors)

H53 = [ -0.5722 -0.6222 0.4392 0.0053 -0.3042 ]

Plots of average similarity versus data size are shown in Figure 3.8, 3.9, 3.10,

3.11. From the plots, we can see the performance of the algorithm improves as the

data size increases, as expected. Furthermore, we notice that we need longer data

blocks to achieve the same performance as the number of sources increases. For

the case of 2 sources and 5 sensors, it takes about 1000 data samples to achieve

0.9978 in similarity between transfer functions. For the case of 3 sources and 5

sensors, it takes about 10000 data samples to achieve 0.998 in similarity between

transfer functions. That is a factor of 10 increase in computational latency. This

increase in computational latency is caused by the increase of N , the number
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Figure 3.9: Similarity between data vs. data size (2 sources and 5 sensors)
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Figure 3.10: Similarity between transfer function vs. data size (3 sources and 5

sensors)
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Figure 3.11: Similarity between data vs. data size (3 sources and 5 sensors)

of taps for the equalizer. As the number of sources increases, the number of

taps for the equalizer needs to be increased to compensate for the channel. As a

result, the number of time delay correlation coefficients we need to be estimated

increases and we need larger data sets to achieve a comparable estimation. This

property should be considered in the application of this algorithm. For sources

that generate a short data set, we need to use a large number of sensors to recover

a good data set. On the other hand, we can use fewer sensors for sources which

generate very long data measurements.

In this section, we have presented a new algorithm for source separation and

deconvolution for the multiple-input multiple-output system. The new algorithm

improves on the previous algorithms [23] [27] [28] [30]. We consider blind source
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separation and blind deconvolution jointly and solve these two problems together.

This greatly expands the range of problems to which blind source separation and

blind deconvolution can be applied. It is possible to perform a blind deconvolution

operation even if there is more than one input source. On the other hand, blind

source separation is possible for problems in which all the channels are dispersive.

This algorithm is operating with block data only. In a real life application, it

is preferable to have the algorithm operating in an adaptive mode. That is, the

algorithms need to estimate the channel response and the deconvolution filter

continuously with new incoming data. In section 3.2, we discuss the adaptive

algorithm for source separation and deconvolution.

3.2 Adaptive Source Separation and Deconvo-

lution Algorithm

Most of the adaptive algorithms for blind signal processing are implemented in the

form of neural networks. Douglas [46] analyzed a class of adaptive networks for

blind decorrelation of instantaneous signal mixtures using second order statis-

tics. This class of algorithms can only decorrelate the signal mixtures, i.e., it

generates a set of uncorrelated signals out of a set of correlated signals. However,

these recovered signals may not be the same as the original input sources. The
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recovered signal is an orthogonal matrix transformation of the input source sig-

nal. Diamantaras [49] proposed the Asymmetric Principal Component Analysis

(APCA) for adaptive blind source separation. In this neural network, the cross-

correlation is used for source separation. All these neural networks are dealing

with source separation for instantaneous signal mixtures. In practical systems,

channels can be dispersive. The received signal is a combination of instantaneous

and convolutive signal mixtures. In this paper, we propose an adaptive version

of the blind deconvolution and source separation algorithm outlined in Section

3.1.

Consider a sensor network of Ns sensors and Nt sources as shown in Figure

3.2. The blind deconvolution and source separation algorithm proposed can be

separated into two parts as shown in Figure 3.3. The blind deconvolution algo-

rithm estimates yj(n) from xi(n). The relationship between yj(n)(j = 1, . . . , Nt)

and source signals dk(n) is shown in Equation 3.20. The blind source separation

algorithm recovers dk(n) from yj(n).

The adaptive algorithm we propose consists of an adaptive deconvolution algo-

rithm and an adaptive source separation algorithm. The adaptive deconvolution

algorithm reduces the convolutive signal mixture problem into an instantaneous

signal mixture problem. The adaptive source separation algorithm then separates

the signal mixture and recovers the original signals. There is one subtle difference

between decorrelation and source separation. The decorrelation algorithm turns
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a set of correlated signals into a set of uncorrelated signals. However, this set of

uncorrelated signals may not be the set of signals in which we are interested. On

the other hand, the source separation algorithm goes one step further. It actu-

ally recovers the original source signal. In order to do that, the source separation

algorithm needs more information, i.e., time delayed cross-correlation.

We first present the adaptive deconvolution algorithm based on adaptive sub-

space tracking. The adaptive subspace tracking algorithm used was first proposed

by Yang [33]. We then discuss the adaptive source separation algorithm. The

source separation algorithm first uses Douglas’ algorithm to decorrelate the sig-

nal mixture. The original input sources are recovered with one more matrix

transformation. This matrix transformation is estimated using the time delayed

cross-correlation.

3.2.1 Adaptive Deconvolution Algorithm

The operation of deconvolution recovers the source signals within an uncertainty

of a matrix transformation. The deconvolution operation [1] can be summarized

in the following procedures:

1. Estimating noise subspace G of Rx, where Rx is defined in Equation 3.5.

2. Generate matrix Q from subspace G, where Q is defined in Equation 3.17.

Estimate noise eigenvectors fi(i = 1, . . . , Nt) of matrix Q.

3. Generate matrix F from eigenvector fi. The deconvolution filter E is
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the inverse of matrix F . F = [F1, . . . , FNt ] (dim. NsN x Nt(M + N)) and

Fi = [F T
i1, . . . , F

T
iNs
]T (dim. NsN x (M +N)) where Fij (dim. N x (M +N)) is

defined in Equation 3.19.

The noise subspace G is estimated using the method of adaptive subspace

tracking. The adaptive noise subspace tracking is based on the algorithm pro-

posed by Yang [33]. Given a matrix Rx (dim. NsN x NsN), the noise subspace

G (dim. NsN − Nt(M + N) x NsN − Nt(M + N)) can be obtained through

minimizing cost function JG given by

JG = tr(GTRxG) (3.29)

subject to the orthonormality constraint

GTG = I (3.30)

where tr(·) denotes the trace of a matrix.

The constrained minimization of the cost function JG can be accomplished

via a constrained gradient-search procedure. If the convergence rate is fixed, the

noise subspace is updated as

G′(k) = G(k − 1)− µ∇JG(k) (3.31)

with G(k) = GS-orthogonalization of the columns of G′(k), where µ is the step

size. ∇JG(k) is an estimator of the gradient of JG with respect to G. The gradient
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of JG is given by

∇JG(k) =
∂

∂G
[tr(GTRx(k)G)] = 2Rx(k)G (3.32)

In a nonstationary situation, Rx(k) may be updated as

Rx(k) = (1− α)Rx(k − 1) + αX(k)XT(k) (3.33)

The forgetting factor is controlled by the parameter α, 0 < α < 1, which

is chosen for appropriate tracking of the parameters to be estimated. The step

size µ should be chosen such that the estimate asymptotically converges to the

desired noise subspace. A sufficient condition for this requirement is given by:

0 ≤ µ ≤ 1
2λ1

(3.34)

where λ1 is the maximum eigenvalue for matrix Rx. Since the λ1 is not readily

available, we can choose µ to be 1
2tr(Rx)

which satisfies the above constraint.

The noise subspace tracking for matrix Q is similar to the noise subspace

tracking for Rx. The update rule for noise subspace F = [f1, . . . , fNt ] is given by

F ′(k) = F(k − 1)− µ∇JF(k) (3.35)

where F(k) = GS-orth. of the columns of F ′(‖). ∇JF(k) = 2Q(k)F is an

estimator of the gradient of Q with respect to F . Similarly to the previous

section, Q(k) can be estimated in an adaptive fashion.
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Q(k) = (1− α)Q(k − 1) + α
NsN−Nt(M+N)∑

i=1
GiGT

i (3.36)

Once the noise subspace F is known, matrix F can be determined through the

transformation. The relationship between deconvolution filter E (dim. Nt(M +

N) x NsN) and F is given by

E = (F TF )−1F T (3.37)

However, it is not necessary to calculate all Nt(M +N)NsN coefficients of E

to construct the deconvolution filter. By exploring the structure of E and F , we

can construct the deconvolution filter using NtNsN coefficients of E. Let E =

[ET
11, . . . , E

T
1(M+N), . . . , E

T
Nt1, . . . , E

T
Nt(M+N)]

T where Eij is the {(i−1)(M+N)+j}

row vector of E. Furthermore, Eij can be expressed as Eij = [ET
ij1, . . . , E

T
ijNs

]T

where Eijk(1 ≤ k ≤ Ns) is a N x 1 vector. Using the above definitions and

EF = I, we can show the following

ET
ijF = e(i−1)(M+N)+j 1 ≤ i ≤ Nt (3.38)

1 ≤ j ≤ M +N

where ek (dim. NsN x 1) is the unit vector with kth index equal to 1. From

Equation 3.38, we can recover Y ((i− 1)(M +N) + j) using Eij. This implies we

can recover yi(n− j + 1) with Eij. In other words, Eij is the deconvolution filter
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for yi(n) where Eijk is the filter coefficients for sensor k. In order to recover all

yi(n)(i = 1, . . . , Nt), we need to have Nt deconvolution filters Eij. The index j

determines the latency of the recovered yi(n) and we only need to estimate one

set of Eij for each i.

Each Eij can be estimated individually through a constrained minimization

problem. The cost function JEij is given by

JEij = ||EijF − e(i−1)(M+N)+j||2 (3.39)

subject to the unity norm constraint on Eij. || · ||2 is the Euclidean norm. This

minimization problem can be solved using the gradient method:

Eij(k) = Eij(k − 1)− µ∇JEij (k) (3.40)

where ∇JEij (k) = 2F (k)F
T(k)Eij(k − 1)− 2F (k)e(i−1)(M+N)+j.

3.2.2 Adaptive Source Separation Algorithm

The deconvolution algorithm in the previous section recovers Y from received

signal X. The procedure for recovering source signal D from Y is called source

separation. We note outline an adaptive algorithm for source separation. In the

problem of instantaneous signal mixtures, a set of measured signals yi(k)(1 ≤ i ≤

Nt) is assumed to be generated from a set of unknown stochastic, independent

sources di(k)(1 ≤ i ≤ Nt) as
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y(k) = Cd(k) (3.41)

where y(k) = [y1(k), . . . , yNt(k)]T , d(k) = [d1(k), . . . , dNt(k)]T , and C is an un-

known matrix of N2
t mixing coefficients {cij}. We want to process the measured

sensor signals using a linear single-layer network W (k).

z(k) =W (k)y(k) (3.42)

where W (k) is an Nt x Nt-dimensional weight matrix. We want to adjust W (k)

such that

lim
k→∞

W (k)C = PI (3.43)

where P is an Nt x Nt-dimensional permutation matrix with a single unity entry

in any of its rows or columns, and I is the identity matrix.

Douglas [46] analyzes a class of adaptive networks for blind decorrelation of

instantaneous signal mixtures using the second order statistics. The class of

adaptive decorrelation algorithms outlined by Douglas can be represented by

W (k + 1) =W (k) + η(k)G(k) (3.44)

where G(k) is a matrix that depends on z(k) and W (k), and η(k) is a step-size

sequence. In particular, we choose G(k) = (I − z(k)zT(k))W (k) for our simu-

lation. This algorithm uses the variable step-size sequence η(k) for convergence
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rate control. In order to have the fastest convergence without causing instability,

the following rule for step size should be used.

η(k) =




0.5η0(k)√
βz(k)

if 0 < βz(k) ≤ 3 + 2
√
2

η0(k)

βz(k)− 1
if βz(k) > 3 + 2

√
2

(3.45)

where 0 < η0(k) < 0.1 and βz(k) is tr(Rzz(k)). Rzz(k) is the correlation matrix

for z(k).

The cost function for this type of adaptive algorithm is given by

ρ(k) = ||I − W (k)RyyW
T(k)||2F (3.46)

where || · ||F denotes the matrix Frobenius norm. Without loss of generality, we

assume all sources are equal power and Rdd = I. Then we have Ryy = CCT

for our signal model. However, it can shown that minimizing Equation 3.46 is

not a sufficient condition for satisfying Equation 3.43. It can be shown with the

following example.

Given W that satisfied Equation 3.46, define W1 = UTW where U is an

orthonormal matrix, it can shown that

||I − W1RyyW
T
1 ||2F = ||I − UTPIITP TU ||2F = 0 (3.47)
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As a result, Douglas’ algorithm is only able to decorrelate a set of instan-

taneous signal mixtures. It is not capable of separating a set of instantaneous

signal mixtures. The recovered signal from Douglas’ algorithm is still off from

the original source signals by an orthonormal matrix U . It can be shown that

one set of second order statistics is not sufficient to uniquely separate sources

[28]. However, it is possible to uniquely separate sources if there is more than

one set of second order statistics, i.e., time-delay second order statistics. If all

sources di are colored sources and satisfy the following uncorrelated property

stated in Equation 3.7, we can recover the unknown orthonormal matrix E using

time-delay second order statistics.

We decorrelate y(k) using Douglas’ algorithm to generate z(k). The relation-

ship between z(k) and d(k) is

z(k) = UT(k)d(k) (3.48)

where U(k) is a orthonormal matrix.

U can be estimated by minimizing the following cost function JU

JU(k) =
1
2
{
Nt∑
i=1
log(si(k)si(k − τ))− log|s(k)s(k − τ)|} (3.49)

where s(k) = U(k)z(k). s(k) is the estimate for source signal d(k).

The minimization problem can be solved using the gradient method:
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U ′(k) = U(k − 1)− µ∇JU(k) (3.50)

∇JU(k) = UT(k − 1){(diag(s(k)s(k − τ)T))−1(s(k)s(k − τ)T − (diag(s(k)s(k − τ)T))−1}

where U(k)=GS-orthogonalization of the columns of U ′(k).

3.2.3 Simulation Results

We evaluate the performance of the adaptive algorithm through simulations. Two

sets of simulations are performed to evaluate the performance of the algorithm.

In the first set of simulations, we show the blind sources separation capability of

the algorithm on instantaneous signal mixtures. Two simulation cases are run

and the results are shown in Figures 3.12 and 3.13. One simulation is for a 2 x 2

mixture matrix and another one is for a 3 x 3 mixture matrix.

The input sources are generated by passing white Gaussian sources through

filter Gi defined in Equation 3.27.

We evaluate the performance of the algorithm by computing the average sim-

ilarity between sources inputs and recovered inputs.

As shown in the figures, the algorithm can separate the signal mixtures. In

the 3 x 3 matrix case, the recovered signals are off from the source signals by a

permutation matrix.
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Figure 3.12: Average similarity between data vs. iterations (2 sources mixture)
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Figure 3.13: Average similarity between data vs. iterations (3 sources mixture)
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In the second set of simulations, we investigate the performance of the al-

gorithm for convolutive signal mixtures. Two simulation case are run and the

results are shown in Figure 3.14 and 3.15. The following table summarizes the

simulation setup:

Simulation Case Nt Ns M N

1 2 5 4 6

2 3 5 4 18

Nt, number of inputs sources

Ns, number of sensors

M , maximum order of each channel

N , number of taps for the equalizer

The input sources are generated by passing white Gaussian sources through

filter Gi defined in Equation 3.27. The coefficients of Hij are produced by a

Gaussian number generator.

As shown in the figures, the adaptive algorithm is capable of adjusting filter

coefficients for blind deconvolution and source separation. However, we notice the

convergence time is quite large and it gets longer as the number of input sources

increases. In the case of 2 sources and 5 sensors, it takes about 2500 iterations

to converge. For the case of 3 sources and 5 sensors, the number of iterations

for convergence is about 25000. That is a ten times increase in computational
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Figure 3.14: Average similarity between data vs. iterations (2 sources and 5

sensors)
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Figure 3.15: Average similarity between data vs. iterations (3 sources and 5

sensors)
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complexity.

3.3 Summary

In this chapter, we presented a structure for the source separation and deconvolu-

tion processor to be used in our target identification processor. This subprocessor

has two main functions. First, it performs the source separation for the mixture

of multiple sources. As a result, the subsequent recognition processor is only re-

quired to perform identification on a single target type instead of multiple target

types together. This greatly reduces the complexity of the subsequent processor

and improves the overall performance of the system. Second, it performs the de-

convolution to reduce signal degradation caused by multipath propagation. This

further improves the robustness of our system. The new algorithm we proposed

for this subprocessor has the least number of constraints on the unknown signals

we are trying to recover. This increases the coverage of our sensor system. Af-

ter the source separation and deconvolution processor, our sensor data has been

converted from a mixture of many signals into a single source signal. In the

following chapters, we perform further processing on this single source signal for

target identification.
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Chapter 4

Feature Extraction Processor

The second subprocessor module to be considered is the feature extraction pro-

cessor. The feature extraction processor converts the time series waveform to

some type of parametric representation (generally at a considerably lower infor-

mation rate) for further analysis and processing. The aim of feature extraction

is to reduce the computational complexity of subsequent processing. There are

a wide range of possibilities for parametrically representing the time series wave-

form. These include the short time energy, zero crossing rates, and level crossing

rates.

In the area of speech recognition, the most important parametric representa-

tion for time series waveforms (speech) has been the short time spectral envelope.

The short time spectral envelope representation breaks the time series waveform

into frames. Spectral analysis is performed for each frame. Each frame is then
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represented by a vector (generally much shorter length than the frame) contain-

ing all the spectral information of the frame. Because of its success in speech

recognition, we are going to use short time spectral envelope representation for

our feature extraction processor.

There are two dominant methods of spectral analysis - namely, the filter-bank

spectrum analysis model, and the linear predictive coding (LPC) spectral analysis

model. However, the LPC spectral analysis has been the popular choice for the

front-end processor in the application of speech recognition, for a number of

reasons. First, LPC is an analytically tractable model. The method of LPC

is mathematically precise and is simple and straightforward to implement in

either software or hardware. The computation involved in LPC processing is

considerably less than that required for an all-digital implementation of the filter-

bank approach. Furthermore, experience in speech recognition has shown that

the performance of speech recognizers, based on LPC front ends, is comparable

to or better than that of recognizers based on filter-bank front ends. As a result,

LPC spectral analysis is chosen for our feature processor.

62



G
u(n)

Z-1Z-1Z-1

s(n)

Figure 4.1: Autoregressive Model Block Diagram

4.1 LPC Spectral Analysis

The basic idea behind the LPC model is that a given time series waveform sample

at time n, s(n), can be approximated as a linear combination of the past p time

series samples as shown in Figure 4.1, such that

s(n) ≈ a1s(n − 1) + a2s(n − 2) + . . .+ aps(n − p) (4.1)

where the coefficients a1, a2, . . . , ap are assumed constant over one frame. The

above relationship can be written as an equality by including an excitation term,

Gu(n), giving:

s(n) =
p∑
i=1

ais(n − i) +Gu(n) (4.2)

where u(n) is a normalized excitation and G is the gain of the excitation. In this

model, the time series waveform s(n) is generated by a normalized excitation
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source, u(n), being scaled by the gain, G, passing through an all-pole system.

The basic problem of linear prediction analysis is to determine the set of

predictor coefficients, {ak}, directly from the time-series waveform. One of the

methods is the autocorrelation method. Consider a time series waveform segment,

sn(m)(0 ≤ m ≤ N − 1). We can derive the following relationship from Equation

4.2 under the minimum mean-squared error criterion.

p∑
k=1

rn(|i − k|)ak = rn(i) 1 ≤ i ≤ p (4.3)

where rn(k) is the autocorrelation coefficient and it is defined as:

rn(i − k) =
N−1−(i−k)∑

m=0
sn(m)sn(m+ i − k) (4.4)

Equation 4.3 can also be expressed in matrix form as




rn(0) rn(1) rn(2) . . . rn(p − 1)

rn(1) rn(0) rn(1) . . . rn(p − 2)

rn(2) rn(1) rn(0) . . . rn(p − 3)

...
...

...
...

rn(p − 1) rn(p − 2) rn(p − 3) . . . rn(0)







a1

a2

a3

...

ap




=




rn(1)

rn(2)

rn(3)

...

rn(p)




(4.5)

Once the LPC coefficients {ak} have been determined, each time series frame

can be replaced by a vector of LPC coefficients. These vectors of LPC coefficients

can then be processed further for target recognition. In the application of speech
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recognition, the cepstral coefficients are also used for spectral representation. The

experience in speech recognition has shown that the set of cepstral coefficients

is a more robust and reliable feature set than the LPC coefficients. These LPC

cepstral coefficients, c(m), can be derived directly from the LPC coefficients a(m).

As a result, the final output of our feature extraction processor is chosen to be

the LPC cepstral coefficients.

The cepstral coefficients are the coefficients of the Fourier transform represen-

tation of the log magnitude spectrum. For a power spectrum (magnitude-squared

Fourier transform) S(ω), which is symmetric with respect to ω = 0 and is peri-

odic for a sampled data sequence, the Fourier series representation of log S(ω)

can be expressed as

logS(ω) =
∞∑

n=−∞
cnexp−jnω (4.6)

where cn = c−n are the cepstral coefficients and they are real. Given a pair of

spectra S(ω) and S ′(ω), we can relate the L2 cepstral distance of the spectra to

the rms log spectral distance using Parseval’s theorem:

d2
2 =

∫ π

−π
|logS(ω)− logS ′(ω)|2dω/2π (4.7)

=
∞∑

n=−∞
(cn − c′

n)
2

where cn and c′
n are the cepstral coefficients of S(ω) and S ′(ω) respectively.
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end of the spectrum, the high frequency components of their signals which may be

critical to recognition are not readily visible. The procedure of preemphasis can

make the high frequency spectral features more visible by placing more weight

on them.

2) Blocking into Frames: Short time spectral analysis is done on a frame

to frame basis. In this step the preemphasized speech signal is blocked into

frames of N samples, with adjacent frames being separated by M samples. In

our application, M is chosen to be smaller than N so the resulting LPC spectral

estimates will be correlated from frame to frame. As a result, LPC spectral

estimates from frame to frame will be quite smooth.

3) Frame Windowing: In order to minimize the signal discontinuities at the

beginning and end of each frame, we use windowing to taper the signal to zero

at the beginning and end of each frame. Given data xl(n) in frame l and window

w(n), the result of windowing is the signal

x̃l(n) = xl(n)w(n) 0 ≤ n ≤ N − 1 (4.9)

For our application, the Hamming window is used and it has the form

w(n) = 0.54− 0.46cos(
2πn

N − 1
) 0 ≤ n ≤ N − 1 (4.10)

4) Autocorrelation Analysis: Each windowed set of samples is autocorrelated
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to give a set of (p + 1) coefficients, where p is the order of the desired LPC

analysis.

rl(m) =
N−1−m∑
n=0

x̃l(n)x̃l(n+m) m = 0, 1, . . . , p (4.11)

5) LPC/Cepstral Analysis: For each frame, a vector of LPC coefficients is

computed from the autocorrelation vector using a Durbin recursion method. The

Durbin’s method is given as the following algorithm:

E(0) = r(0) (4.12)

ki =


r(i)−

L−1∑
j=1

α
(i−1)
j r(|i − j|)


 /Ei−1 1 ≤ i ≤ p (4.13)

αii = ki (4.14)

αij = αi−1
j − kiα

(i−1)
i−j (4.15)

E(i) = (1− k2
i )E

(i−1) (4.16)

The above set of equations are solved recursively for i = 1, 2, . . . , p, and the

final solution is given as

am = LPC coefficients = α(p)
m 1 ≤≤ p (4.17)

The LPC coefficients are used to derived the LPC cepstral coefficients c(m). In

general, a cepstral representation with Q > p coefficients is used. The conversion

procedure is:
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c0 = lnσ2 (4.18)

cm = am+
m−1∑
k=1

(
k

m
)ckam−k 1 ≤ m ≤ p (4.19)

cm =
m−1∑
k=1

(
k

m
)ckam−k m > p (4.20)

where σ2 is the gain term in the LPC model. Note that while c0 corresponds to

the energy of the model, this term is not used in the recognition since the compar-

ison is done on the spectral envelope following the speech recognition algorithm.

However, c0 can be useful for the target recognition application. First, since c0 is

the energy of each signature frame, it can be used for target tracking. Second, as

we shall see in the next chapter, since our pattern recognition processor is based

on a statistical model, the probability measure assigned to each signature frame

should be weighted by c0. By doing so, we should generate better classification

decisions.

6) Cepstral Weighting: The cepstral weighting is one additional step to con-

dition the Q-coefficient cepstral vector. Its aim is to minimize the sensitivity of

the low-order cepstral coefficients to overall spectral slope and the sensitivity of

the higher-order cepstral coefficients to noise. In order to do that, a bandpass

lifter Wc(m) is chosen and it has the form

Wc(m) = 1 +
Q

2
sin(

πm

Q
) 1 ≤ m ≤ Q (4.21)
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to give

ĉl(m) = cl(m) ∗ Wc(m) (4.22)

This bandpass lifter de-emphasizes cm around m = 1 (low-order) and around

m = Q (high order).

7) Delta Cepstrum: The cepstral representation can be improved by adding

the temporal cepstral derivative. The time derivative of the sequence of weighted

cepstral vectors is approximated by a first-order orthogonal polynomial over a

finite length window of (2K+1) frames, centered around the current vector. The

cepstral derivative is computed as

∆ĉl(m) =


 K∑
k=−K

kĉl(m+ k)


 ∗ µ 1 ≤ m ≤ Q (4.23)

where µ is a gain term chosen to make the variances of ĉl(m) and ∆ĉl(m) equal.

The signature vector Ol used for recognition and training is the concatenation

of the weighted cepstral vector, and the corresponding weighted delta cepstrum

vector, i.e.,

Ol = {ĉl(m),∆ĉl(m)} (4.24)
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4.2 Simulation

We illustrate the operation of LPC spectral analysis with simulations using real

life data. Acoustic signatures for four different types of vehicles are shown in

Figure 4.3. Vehicle signatures are shown in the clockwise direction: 1) heavy

tracked vehicle, 2) heavy wheeled vehicle, 3) light wheeled vehicle, and 4) light

tracked vehicle.

LPC spectral analysis is performed for these acoustic signatures using the

following parameters:

N, window size = 3000 samples

M, window spacing = 1000 samples

p, number of autocorrelation coefficients used = 6

Q, number of cepstral coefficients generated = 9

K, window for cepstral derivative calculation = 2

The resulted cepstral vector and delta cepstrum vector are shown in Figures

4.4 and 4.5. The horizontal axis corresponds to the frame number. While there is

no simple way to distinguish between different vehicles using raw acoustic data or

cepstrum data, we can reduce the amount of data by several orders of magnitude

using LPC spectral analysis.
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4.3 Summary

In this chapter, we outlined the architecture for the feature extraction processor.

It is capable of reducing the information rate with minimal loss of information.

Consider, for example, 1-kHz sampled sensor data with 16-bit amplitudes. A

raw signal information rate of 16,000 bps is required to store the sensor data

in uncompressed format. Consider the feature extraction processor with Q = 9

and 1 spectral vector per second. If we represent each signature vector to 16-bit

precision, the information rate is then 2 x 9 x 16 bps, or 288 bps - about a 60-to-1

reduction over the uncompressed signal.

We want to point out, however, LPC spectral analysis is not the only choice

for parametric representation. As stated before, there is also filter bank spectral

analysis. The key drawback of filter bank approach is the higher complexity in

hardware implementation. Scholl [53] [54] proposes using the wavelet transform

for target classification. The wavelet transform can be categorized as the filter

bank spectral analysis in the general sense. However, since wavelet transforms

can be efficiently implemented using a multi-rate filter bank structure, it can be a

very attractive alternative to LPC spectral analysis. In particular, wavelet trans-

forms are very popular for the analysis of nonstationary signals. The analysis of

nonstationary signals often involves a compromise between how well transitions

or discontinuities can be located, and how finely long-term behavior can be iden-

tified. A typical example is the choice of window length in the short-time Fourier
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transform. In wavelet analysis one looks at the signal at different resolutions: a

rough approximation shows how the signal might look if stationary, while at de-

tailed level (when using a small window) discontinuities become apparent. This

multiresolution view of signal analysis is the essence of the wavelet transform.

However, there are some open issues for wavelet transforms in our application.

The most important one is the type of mother wavelet that should be used for our

applications. Haar wavelet has the shortest time duration. This class of wavelet

bases is ideal for short time signals as it provides the best localization in the time

domain. The drawback is poor resolution in the frequency domain. On the other

end of the comparison, there is the Fourier wavelet which offers the best reso-

lution in the frequency domain and performs poorly in time localization. There

are also some other classes of wavelet basis that have performances bounded by

these two, i.e., Meyer, Batle, and Lemarie. The proper choice of wavelet basis

for our feature extraction is yet to be researched.

At this point, the time series sensor data has been converted into a sequence

of signature vectors. The final identification of this sequence of signature vectors

is addressed in the next chapter.
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Figure 4.3: Acoustic Signatures
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Chapter 5

Pattern Recognition Processor

The signature vectors (cepstral coefficients and cepstral derivatives) can be clas-

sified individually by comparing them with some reference patterns. However, it

is rare to have an event consisting of one signature vector. Most real life events

consist of many signature vectors. One simple extension to the individual vec-

tor comparison test can be the template method [8]. In our pattern recognition

problem, we have a signature pattern O, as the concatenation of spectral frames

over the duration of the event, such that

O = O1, O2, O3, . . . , Ot, (5.1)

where each Oi is the spectral vector of the target at time i, and t is the total

number of frames. These spectral vectors are obtained from the front-end spectral

analysis discussed in Chapter 4. In a similar manner we define a set of reference
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patterns, {R1, R2, . . . , RV } where each reference pattern, Rj, is also a sequence

of spectral frames, such that

Rj = rj1, r
j
2, . . . , r

j
J. (5.2)

The goal of the template method is to determine the dissimilarity or distance

of O to each of the Rj, 1 ≤ j ≤ V , in order to identify the reference pattern that

has the minimum dissimilarity, and to associate our test pattern to this pattern.

The key idea in the template method is to derive typical sequences of waveform

frames for an event via some averaging procedure, and to rely on the use of lo-

cal spectral distance measures to compare patterns. Another key idea is to use

some form of dynamic programming to temporally align patterns to account for

differences in target movements across targets. The methodology of the tem-

plate approach is well developed and provides good recognition performance for

a variety of practical applications, i.e., speech recognition.

The template approach, however, is not based on the ideas of statistical signal

modeling in a strict sense. Even though statistical techniques have been widely

used in clustering to create reference patterns, the template approach is best clas-

sified as a simplified, non-parametric method in which a multiplicity of reference

sequences are used to characterize the variation among different events. As a

result, statistical signal characterization inherent in the template representation

is only implicit and often inadequate. Consider, for example, the use of cepstral
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distortion measure as the local distance for template matching. The Euclidean

distance form of the cepstral distance measure suggests that the reference vector

can be viewed as the mean of some assumed distribution. The simple form of

the sufficient statistic neglects the second-order statistics - i.e., covariance, which

can be of particular significance in statistical modeling. On the other hand, the

variation in real life events can be quite large. In order to model our targets

accurately, a large set of reference patterns is required. It is very costly to build

a library of a large number of patterns. Furthermore, it is computationally ex-

pensive to search through the library to identify an event. Clearly, we should use

a more elaborate and analytical statistical method. As a result, we introduce the

concept of a signal model in this chapter. We choose the hidden Markov model

(HMM) for its good success in speech recognition problems.

Rabiner provides a very detailed analysis in his book [8] on the subject of

HMM and its application in speech recognition. In this section, we borrow heav-

ily from Rabiner’s analysis and apply the HMM signal model to our target recog-

nition problem.

We want to illustrate a modeling example before addressing the details of the

pattern recognition processor architecture. An event of a tracked vehicle passing

by a sensor consists of a set of time series frames. Each frame is represented by

a signature vector. In our HMM model, this sequence of signatures is generated

by a state sequence. The physical interpretation for each state corresponds to
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the maneuver of the tracked vehicle. In the case of the three states model,

three states are: 1) tracked vehicle moving toward the sensor, 2) tracked vehicle

moving away from the sensor, and 3) tracked vehicle is tangent (appears to be

motionless) to the sensor. At each state, the tracked vehicle can generate a set

of possible signature vectors. Since the underlying state sequence is not known,

that is the reason the model is a hidden state model. The state transition of the

unknown state sequence is assumed to be a Markov chain. While this Markov

Chain assumption is still open to justification, it is a well understood model and

can be readily used in our application. Furthermore, our simulations using the

HMM model yield very good classification performance.

5.1 Hidden Markov Model

S0

S1 S2

Figure 5.1: Hidden Markov Model State Diagram

HMM characterizes a system of N states. The state transition process is a
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Markov process, that is, the probability of transition is only a function of the

current state. However, this state sequence can not be observed. Hence, this sig-

nal model is called a hidden Markov model. A signature vector will be generated

at each state following some probability distribution, and these signature vectors

are our observations. Each HMM is characterized by three parameters: A, B,

and π. For convenience, we use the compact notation λ = (A,B, π).

a) The state transition probability A = {aij} where

aij = P [qt+1 = Sj|qt = Si] 1 ≤ i, j ≤ N (5.3)

b) The observation signature probability distribution in state j, B = {bj(k)},

where

bj(k) = P [vk at t|qt = Sj] 1 ≤ j ≤ N (5.4)

1 ≤ k ≤ M

The above definition assumes the signature vectors are characterized as dis-

crete symbols chosen from a finite alphabet. However, the signature vectors can

be continuous signals. While it is possible to quantize these continuous signals

via a codebook, there may be a serious degradation associated with such quan-

tization. As a result, it may be advantageous to use a HMM with continuous

signature vector densities. However, the penalty we pay for using continuous
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signature vector densities is higher computational complexity.

A common representation is a finite mixture of the form

bj(O) =
M∑
m=1

cjmΠ[O, µjm, Ujm], 1 ≤ j ≤ N (5.5)

where O is the vector being modeled, cjm is the mixture coefficient for the mth

mixture in state j and Π is a density with mean vector µjm and covariance matrix

Ujm for the mth mixture component in state j. In general, a Gaussian density is

used for Π.

c) The initial state distribution π = {πi} where

πi = P [q1 = Si] 1 ≤ i ≤ N (5.6)

Given the form of HMM stated, there are two problems of interest that must

be solved for the model to be useful in our application. These problems are the

following:

Problem 1: Given the signature vector sequence O = O1O2 . . . OT , and a

model characterized by λ = (A,B, π), how do we efficiently compute P (O|λ), the

probability of the observation sequence, given the model. This is the classification

problem. That is, given a sequence of observations and several HMM models, we

want to calculate the conditional probability of each model and classify the event

using some criterion, e.g. Bayes Criterion.

Problem 2: Given the observation sequence and the event, how do we adjust
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the model parameters λ = (A,B, π) to maximize P (O|λ)? This is the training

problem. HMM based pattern recognition is not a blind algorithm. Training is

essential for successful classification.

Rabiner reviews algorithms for these two problems in his tutorial paper [36].

For the classification problem, it can be solved using either a forward or backward

procedure. A summary of the forward procedure is as follows:

Consider the forward variable αt(i) defined as

αt(i) = P (O1O2 · · ·Ot, qt = Si|λ) (5.7)

i.e., the probability of the partial observation sequence, O1O2 . . . Ot, (until time

t) and state Si at time t, given the model λ. We can solve for αt(i) inductively,

as follows:

1) Initialization:

α1(i) = πibi(O1) 1 ≤ i ≤ N (5.8)

2) Induction:

αt+1(j) =
[
N∑
i=1

αt(i)aij

]
bj(Ot+1) 1 ≤ t ≤ T − 1 (5.9)

1 ≤ j ≤ N

3) Termination:
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P (O|λ) =
N∑
i=1

αT(i) (5.10)

On the other hand, the backward procedure is based on the backward variable

βt(i) defined as

βt(i) = P (Ot+1Ot+2 · · ·OT |qt = Si, λ) (5.11)

i.e., the probability of the partial observation sequence from t + 1 to the end,

given state Si at time t and the model λ. Again, βt(i) can be solved inductively

as follows:

1) Initialization:

βT(i) = 1 1 ≤ i ≤ N (5.12)

2) Induction:

βt(i) =
N∑
j=1

aijbj(Ot+1)βt+1(j) (5.13)

t = T − 1, T − 2, · · · , 1, 1 ≤ i ≤ N

3) Termination:

P (O|λ) =
N∑
i=1

β1(i)bi(O1)πi (5.14)
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The computational complexities of the forward procedure and the backward

procedure are comparable. Either one can be used to calculate the probability

of a signature vector sequence. Given a sequence of signature vectors {O} and a

set of HMM characterized by {λl}, classification is done by choosing the HMM

with the highest probability measure.

Event Class = argmaxlP (O|λl) (5.15)

For the training problem, an iterative procedure known as the Baum-Welch

method is chosen. In order to describe the procedure for reestimation (iterative

update and improvement) of HMM parameters, we need to define

γt(i) = P (qt = Si|O, λ) (5.16)

i.e., the probability of being in state Si at time t, given the observation sequence

O, and the model λ. In addition, we define

ξt(i, j) = P (qt = Si, qt+1 = Sj|O, λ) (5.17)

i.e., the probability of being in state Si at time t, and state Sj at time t+1, given

the model and the observation sequence. Both γt (i) and ξt (i , j ) can be expressed

in forward and backward variables,
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γt(i) =
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

(5.18)

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ) (5.19)

Furthermore, we can relate λt (i) and ξt (i , j ) with the following expression:

γt(i) =
N∑
j=1

ξt(i, j) (5.20)

Using the above definitions (and the concept of counting event occurrences)

we can get a method of reestimation of the parameters of an HMM.

π̄i = expected number of times in state Si at time (t = 1) = γ1(i) (5.21)

āij =
expected number of transitions from state Si to state Sj

expected number of transitions from state Si
(5.22)

=
∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

b̄j(k) =
expected number of times in state Sj and observing symbol vk

expected number of times in state Sj
(5.23)

=
∑T
t=1s.t.Ot=vk γt(j)∑T

t=1 γt(j)
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The above reestimation equations are for a HMM with finite observation al-

phabet. For a HMM using a continuous observation density, we need to reestimate

the coefficients of the mixture density, namely, cjk, µjk, and Ujk.

c̄jk =
∑T
t=1 γt(j, k)∑T

t=1
∑M
k=1 γt(j, k)

(5.24)

µ̄jk =
∑T
t=1 γt(j, k) · Ot∑T
t=1 γt(j, k)

(5.25)

Ūjk =
∑T
t=1 γt(j, k) · (Ot − µjk)(Ot − µjk)′∑T

t=1 γt(j, k)
(5.26)

where γt(j, k) is the probability of being in state j at time t with the kth mixture

component accounting for Ot, i.e.,

γt(j, k) =
[

αt(j)βt(j)∑N
j=1 αt(j)βt(j)

] [
cjkΠ(Ot, µjk, Ujk)

bj(O)

]
(5.27)

The term γt(j, k) is the generalization of γt(j) in Eq. 5.16. The reestimations

for aij and πi are identical to those used for a finite alphabet.

In theory, the reestimation equations should give values of the HMM param-

eters which correspond to a local maximum of the likelihood function. A key

question is therefore how do we choose initial estimates of the HMM parameters

so that the local maximum is the global maximum of the likelihood function. Ex-

periences have shown that uniform initial estimates of the π and A parameters

is adequate for giving useful reestimates of these parameters in almost all cases.

However, for the B parameters, experience has shown that good initial estimates
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are essential for reestimation process. There are many ways for obtaining this

initial estimates. A estimation procedure called Segmental k-Means Segmentation

is used for our application.

The Segmental k-Means Segmentation procedure can be illustrated by the flow

chart shown in Figure 5.2 [36]. We assume we have a training set of observations

(the same as is required for parameter reestimation), and an initial estimate of all

model parameters. However, unlike the one required for reestimation, the initial

model estimate can be chosen randomly, or on the basis of any available model

which is appropriate to the data.

Following model initialization, the set of training observation sequences is seg-

mented into states, based on the current model λ. This segmentation is achieved

by finding the optimum state sequence, via the Viterbi algorithm, and then back-

tracking along the optimal path. The result of segmenting each of the training

sequences is, for each of the N states, a maximum likelihood estimate of the set of

the observations that occur within each state Si according to the current model.

In the case where we are using discrete symbol densities, each of the obser-

vation vectors within a state is coded using the M -codeword codebook, and the

updated estimate of the bj(k) parameters is

b̂j(k) = number of vectors with codebook index k in state j divided

by the number of vectors in state j.
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In the case where we are using continuous observation densities, a segmental

K-means procedure is used to cluster the observation vectors within each state Sj

into a set of M clusters (using a Euclidean distortion measure), where each clus-

ters represents one of the M mixtures of the bj(Ot) density. From the clustering,

an updated set of model parameters is derived as follows:

ĉjm = number of vectors classified in cluster m of state j divided

the numbers of vectors in state j

µ̂jm = sample mean of the vectors classified in cluster m of state j

Ûjm = sample covariance matrix of the vectors classified in cluster m of state j

Based on this state segmentation, updated estimates of the aij coefficients can

be obtained by counting the number of transitions from state i to j and dividing

it by the number of transitions from state i to any state (including itself).

An updated model λ̂ is obtained from the new model parameters and the

formal reestimation procedure is used to reestimate all model parameters. The

resulting model is then compared to the previous model (by computing a distance

score that reflects the statistical similarity of the HMMs). If the model distance

score exceeds a threshold, then the old model λ is replaced by the new (reesti-

mated) model λ̄, and the overall training loop is repeated. If the model distance

score falls below the threshold, then model convergence is assumed and the final

model parameters are saved.
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5.2 Simulation Results

We conclude our discussion on HMM based pattern recognition processor by

giving a set of performance results (in terms of probability of correct classification

and probability of error classification) on the task of recognizing a set of vehicles

based on data recorded by a microphone.

The set of vehicle data is provided by US Army Research Laboratory. There

are four types of ground vehicles in this data set, namely, 1) heavy tracked vehicle

(4 vehicles), 2) light tracked vehicle (1 vehicle), 3) heavy wheeled vehicle (2

vehicles), and 4) light wheeled vehicle (2 vehicles). The set of test data is gathered

from four different test sites:

1) Site a: Desert like similar to conditions in the desert southwest in the

summer (typically dry and very hot).

2) Site b: Arctic like similar to conditions in Alaska in the winter (typically

cold, windy, with and without snow cover).

3) Site c: Normal, similar to conditions in Mid-Atlantic states in the spring

and fall (typically mild, with and without humidity).

4) Site d: Arctic like similar to conditions in Alaska in the winter but different

from Site b (typically cold, windy, with and without snow cover).

The ground vehicles were traveling at constant speeds from one direction

toward the microphone passing the closest point of approach (CPA) and then

away from the microphone. The CPA to the microphone varies from 25 m to

90



100 m. The speed of the ground vehicle varied from 5 km/hr to 40 km/hr. The

microphone data is low-pass filtered at 400 Hz via a 6th order filter to prevent

spectral aliasing and high-pass filtered at 25 Hz via a 1st order filter to reduce

wind noise. The data is digitized by a 16-bit A/D at the rate of 1025.641 Hz.

In the first set of simulations, each microphone data set is treated as an

isolated measurement. There is no source separation and deconvolution prepro-

cessing in this set of simulations. Approximately half of the vehicle runs are used

for training to build the HMM model. The training set for each vehicle consists

of about half the vehicle runs at four different sites.

Vehicle Type Number of Vehicle Runs Number of Vehicle Runs

used for Training

Heavy Tracked Vehicle 339 189

Light Tracked Vehicle 69 36

Heavy Wheeled Vehicle 100 52

Light Wheeled Vehicle 105 57

All vehicle run data is first processed by an event detection processor to ex-

tract the proper data segmentation for classification. The event detection proces-

sor estimates the background noise floor and extracts data segments that exceed

the preset SNR ratio. The event detection processor ensures the classification

is performed on data with high SNR. All selected data are run through a LPC
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based feature extraction processor with the following parameters:

p, number of autocorrelation coefficients used = 6

Q, number of cepstral coefficients generated = 9

K, window for cepstral derivative calculation = 2

The window size is chosen such that the frequency spectrum of the sensor

data is relatively stationary within the window. Two window sizes are chosen for

our simulations. The window spacing is chosen to be one third of the window size

following the speech signal processing guideline. The number of autocorrelation

coefficients used, the number of cepstral coefficients generated, and the window

for cepstral derivative calculation are also chosen from experiences in speech signal

processing. After the feature extraction processor, the signature vectors in the

training data set are used to build HMM models with the following parameters

(HMM with continuous signature vector density is used):

Ns, number of states in the model = 3

Nm, number of mixtures for each state = 3

After HMM models are built, all vehicle runs are classified via the Bayes

criterion. The classification results are summarized as follows:

N, window size = 3000 samples

M, window spacing = 1000 samples
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Vehicle Type Number of Vehicle Runs Probability of

correctly Classified Detection

Heavy Tracked Vehicle 330 95.6%

Light Tracked Vehicle 65 92.8%

Heavy Wheeled Vehicle 97 97.0%

Light Wheeled Vehicle 100 94.3%

N, window size = 4500 samples

M, window spacing = 1500 samples

Vehicle Type Number of Vehicle Runs Probability of

correctly Classified Detection

Heavy Tracked Vehicle 330 97.9%

Light Tracked Vehicle 65 86.6%

Heavy Wheeled Vehicle 97 97.0%

Light Wheeled Vehicle 100 93.2%

In this simulation, we notice that the performance of our classifier varies

as a function of the window size. In particular, the classification performance

improves for heavy vehicles using longer window size. On the other hand, the

classification performance degrades for light vehicles using longer window size. In

general, signatures recorded for heavy vehicles are slow changing while signatures

recorded for light vehicles are quite spontaneous. As a result, the classifier using
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longer window size yields a better result for heavy vehicles than light vehicles.

However, the optimal window size for mixtures of targets is an open problem that

requires further research.

In the second set of simulation, we consider three microphones in the array

jointly. In this case, the microphone array data is processed by all three sub-

processors in our architecture. The acoustic data is first processed by the source

separation and deconvolution processor. The pre-processed data is then fed into

the feature extraction processor and the pattern recognition processor for further

processing. The following parameters are used for our simulation:

Source Separation and Deconvolution Processor

Nd, number of taps used in the deconvolution filter = 6

No, order of the system model = 2

Nt, number of sources = 1

Feature Extraction Processor

N, window size = 3000

M, window spacing = 1000

p, number of autocorrelation coefficients used = 6

Q, number of cepstral coefficients generated = 9

K, window for cepstral derivative calculation = 2

Pattern Recognition Processor
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Ns, number of states in the model = 3

Nm, number of mixtures for each state = 3

The classification performance of our system is summarized as follows:

Vehicle Type Number of Vehicle Runs Probability of

correctly Classified Detection

Heavy Tracked Vehicle 330 96.46%

Light Tracked Vehicle 65 91.30%

Heavy Wheeled Vehicle 97 97.06%

Light Wheeled Vehicle 100 91.43%

In this simulation, we demonstrate the capability of our target identification

processor. As shown by our simulation results, we improve the detection perfor-

mance for heavy vehicles by adding the source separation and deconvolution pro-

cessor. On the other hand, the detection performance for light vehicles degrades

slightly compared to the case without the source separation and deconvolution

processor. The source separation and deconvolution processing in our simulation

is performed on each frame of size 3000 samples. As we have pointed out pre-

viously, acoustic data from light vehicles change quite rapidly. The statistical

estimates may not be good enough since the window size is too big. On the other

hand, the blind deconvolution algorithm requires a large data set for accurate

estimate in general. In order not to increase frame size, we have to increase the
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number of sensors in the array. We would expect a more dramatic improvement

for seismic data with deconvolution, since the acoustic waves undergo relatively

little dispersion. Unfortunately, we lack access to large array data sets to be able

to rigorously test this.

5.3 Summary

In conclusion, the HMM based pattern recognition processor has performed quite

well in target classification as shown by our simulations. From the simulation,

we demonstrate the performance of target identification processor in the event of

single target. Furthermore, we show that the cepstral coefficient based feature

extraction processor is a good choice for our application. While the preliminary

result using the HMM based processor shows encouraging results, the applica-

bility of the HMM model to the general target recognition problem is yet to be

demonstrated with a larger set of observation data.
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Figure 5.2: The segmental k-means training procedure used to estimate param-

eter values for the optimal continuous mixture density fit to a finite number of

observation sequences
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Chapter 6

Conclusion

Remote sensing has applications in many different areas. Target identification

is one key objective that we want to achieve in a remote sensing system. In

this research, we propose a multi-processor architecture for target identification

in the wireless sensor network. This multi-processor architecture facilitates the

design of this subsystem since each processor can be designed and optimized

individually. In particular, a new source separation and deconvolution algorithm

is proposed for the source separation and deconvolution processor in Chapter 3.

The performance of our algorithm has been verified by Monte Carlo simulations.

While this algorithm is proposed for the source separation in the target detection,

it can be applied to many other fields, e.g., communication. In the communication

system, channel equalization is normally started with a training sequence. With

the blind equalization algorithm, we can start equalization without the training
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sequence which saves bandwidth for the system. Source separation can be useful

for the communication system as well. With the source separation algorithm, we

can separate multiple sources in the same channel which increases the effective

bandwidth of the system. Further research is in progress on applications of blind

source separation and deconvolution algorithm to communication systems.

The particular system explored in Chapter 3 is a system of a known number

of targets and system order. However, this may not be the case in a real life

application. As a result, the number of targets and system order need to be

estimated. The performance of our algorithm using this estimated information

must be investigated for real life deployment.

In Chapter 4 and 5, we presented the architectures for the feature extraction

processor and the pattern recognition processor. Algorithms for the feature ex-

traction processor and the pattern recognition processor are heavily influenced by

algorithms used in speech recognition. Using the field measurement data, we are

able to achieve excellent classification results with our target identification pro-

cessor under a single target scenario. The single target classification limitation

is caused by the lack of measurement data of multiple targets. The multiple tar-

gets classification problem will be researched further in the future. While these

algorithms give us good results for target identification, they still may not be

optimal. More studies are needed in that area. In particular, the wavelet trans-

form can be a potential algorithm for feature extraction. The key problem of the
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wavelet transform based feature extractor is searching for the optimal mother

wavelet. The hidden Markov model is chosen for pattern recognition processor

because of deep understanding of the model. However, there are some inherent

limitations of this type of statistical model for our problem. A major limitation

is the assumption that successive observations are independent, so that we can

then apply the Markov chain model. More research on the pattern recognition

processor can include searching for a general model for the hidden state transition

process.

As the semiconductor technology advances, we can build more sensors and

more complex processors in a sensor node. However, we do not want to overwhelm

ourselves with the huge amount of information gathered by these sensors. We

want to learn particular things about the physical world, and ignore the rest.

The target identification processor we are studying is one of the many processes

that convert information to intelligence. Complicated information analysis can be

simplified or eliminated. Consequently, more resources can be devoted to achieve

better decision making.
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Chapter 7

Appendix A - Proof of Lemma 1

Lemma 1: The Nt unit-norm eigenvectors associated with the smallest Nt eigen-

values of matrix Q form the basis for hj, j = 1, . . . , Nt.

We shall prove this Lemma through proving a series of claims.

Claim 1: Let H be a full-column rank matrix and H = [K1, . . . , KNt ], then

{Ki, i = 1, . . . , Nt} is a set of linearly independent matrices.

Proof: By contradiction, if {Ki, i = 1, . . . , Nt} is not a set of linearly indepen-

dent matrices, then there exist Ki such that

Ki =
∑
k�=i

akKk (7.1)

This implies columns of Ki can be expressed as a linear combination of the

other columns. The same thing can be said aboutH. Thus, H is not a full-column

rank matrix, which is a contradiction.
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Claim 2: Let {Ki, i = 1, . . . , Nt} be a set of linearly independent matrices

where Ki = [HT
1i, . . . , H

T
Nsi]

T , and hi = [h(0)
1i , . . . , h

(M)
1i , . . . , h

(0)
Nsi, . . . , h

(M)
Nsi ]

T (dim.

Ns(M + 1) x 1); {hi, i = 1, . . . , Nt} is a set of linearly independent vectors.

Proof: By contradiction. Similar to the proof of Claim 1.

Claim 3: Let {hi, i = 1, . . . , Nt} be a set of linearly independent vectors and

{rj, j = 1, . . . , Nt} be the unit-norm basis for {hi}. If q(hi) = hTi Qhi = 0 for all

i, then q(rj) = rTj Qrj = 0 for all j.

Proof: since {rj} is the basis for {hi}, any rj can be expressed as a linear

combination of {hi}, that is:

rj =
Nt∑
i=1

ajihi (7.2)

q(rj) = q

(
Nt∑
i=1

ajihi

)
=

Nt∑
i=1

ajiq(hi) = 0

Searching for Nt orthonormal vectors {rj} such that q(rj) = rTj Qrj = 0 is

equivalent to solving the Nt eigenvectors in the null subspace of Q. However,

in the presence of noise, the searching process is equivalent to solving the Nt

eigenvectors associated with the smallest Nt eigenvalues of Q. This complete the

proof.
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