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Abstract of the Dissertation
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Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2016

Professor Greg Pottie, Chair

Enabling large-scale monitoring and classification of a range of motion activities is

of primary importance due to the need by healthcare and fitness professionals to

monitor exercises for quality and compliance. Video based motion capturing sys-

tems (e.g., VICON cameras) provide a partial solution. However, these expensive

and fixed systems are not suitable for patients’ at-home daily motion monitoring.

Wireless motion sensors, including accelerometers and gyroscopes, can provide a

low-cost, small-size, and highly-mobile option. However, acquiring robust infer-

ence of human motion trajectory via low-cost inertial sensors remains challenging.

Sensor noise and drift, sensor placement errors and variation of activity over the

population all lead to the necessity of a large amount of data collection. Unfor-

tunately, such a large amount of data collection is prohibitively costly.

In observance of these issues, a series of solutions for robust human motion

monitoring and activity classification will be presented. The implementation of a

real-time context-guided activity classification system will be discussed. To facil-

itate ground truth data acquisition, we proposed a virtual inertial measurements

platform to convert the currently available MoCap database into a noiseless and

error-free inertial measurements database. An opportunistic calibration system

which deals with sensor placement errors will be discussed. In addition, a sensor

fusion approach for robust upper limb motion tracking will also be presented.
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CHAPTER 1

Introduction

Chapter 1 introduces some preliminary knowledge that is necessary for this thesis.

For motion sensing technologies, we will introduce and compare two of the most

commonly used motion sensing technologies: inertial sensors and vision-based

sensors. For activity classification, we will introduce machine learning techniques

that are commonly used in activity classification such as the tree classifier, Näıve

Bayes classifier, and support vector machine. For motion reconstruction, we will

present the algorithm for trajectory reconstruction algorithm and the zero-velocity

update technique that deal with sensor drift.

I Motivations and Objective

We are living on an aging planet. According to a current report [1] from the U.S.

Census Bureau, for the first time in human history, the number of people over the

age of 65 will surpass the number of children under the age of 5 (Fig. 1.1). At

the same time, we see an unprecedented rise of chronic afflictions such as stroke

and Parkinson’s disease. These diseases are the leading causes for the degradation

of the quality of life for the elderly. In order to provide targeted treatment and

effective rehabilitation, doctors would like to monitor patients’ mobility status to

assess their condition. Traditional approach relies on patients’ self-report during

clinic visits. However, this approach is unreliable and lack of timely feedback.

Thanks to the proliferation of wearable inertial sensors, nowadays, these sensing

devices can provide valuable information for doctors during diagnostic, treatment

and rehabilitation process. This will improve the quality of life for patients with
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mobility difficulties.

Our objective is to enable robust and large-scale human motion inference

with low-cost sensors . We want to acquire robust motion inference, such as

knowing when and what kind of activities are performed, and their quality. How-

ever, there exist fundamental challenges that have not been solved in the past.

When scaling to large population, model complexity and user compliance will de-

grade our motion inference. In addition, while low-cost sensors are suitable for

large-scale deployment, their uncertainties will also provide inferior performance.

In this thesis, we present a couple of novel algorithms and models to solve

these problems. The following missions are aimed:

• Implement a real-time activity classification system for large-scale popula-

tion, with accuracy, low model complexity, and targeted monitoring.

• Systematically generate ground truth data without large amount of human

efforts involved.

• Provide reliable motion data, without the requirement of pre-defined cali-

bration movement or careful placement of wearable sensors.

• Robustly estimate the motion trajectories of the upper limbs at any given

moment of the time.

II Background 1: Motion Sensing Technologies

Inertial sensors and vision-based sensors are the two most popular technologies

used for human motion sensing. In this section, we provide a brief introduction

to the two systems as well as comparing their capabilities and limitations.

2
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Figure 1.1: Young Children and Older People as a Percentage of Global Popula-
tion: 1950 to 2050 [1]

II.1 Inertial Sensor Based System

Advances in MEMS technologies have led to the proliferation of wearable inertial

sensor based activity monitoring systems. State-of-the-art inertial sensing plat-

forms typically include: accelerometers, gyroscopes, and magnetometers. MEMS

accelerometers sense both gravitation and externally applied acceleration by mea-

suring the deviation of a mass suspended between several capacitive plates. The

measured change in capacitance can be directly correlated with the strength of

the applied acceleration. The MEMS gyroscope measures the Coriolis force ex-

erted by a vibrating mass on its supports when the sensor undergoes rotational

acceleration. The perpendicular displacement of a suspended proof mass by the

Coriolis force results in a change of capacitance in the sensing arms the value of

which is directly correlated with the angular acceleration. An example diagram

for both a MEMS accelerometer and gyroscope are shown in Fig. 1.2 and 1.3. The

magnetometer is a highly sensitive Hall Effect sensor primarily used to measure

the magnetic field of the earth. When a magnetic field is present, the current

exposed to this field gets deflected. From this measured deflection the magnetic

field force can be calculated.

3
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Figure 1.2: Example diagram of a MEMS accelerometer

Figure 1.3: Example diagram of a MEMS gyroscope

4



Activity monitoring using MEMS inertial sensors is rapidly growing. [2] used

one triaxial accelerometer mounted on the waist to classify activities correlated

with movements measured in a controlled laboratory. [3] and [4] utilize a Kalman

filter to combine accelerometer, gyroscope, and magnetometer sensor data to de-

tect slow moving body rotation and linear translation. In [5], the author developed

a biomechanical model to track motions with wearable sensors. Furthermore, in-

ertial sensor based activity monitoring systems have been verified to accurately

and reliably characterize the gait of post-stroke patients [6, 7]. In a pioneering

clinical trial, a group of physicians and engineers deployed wearable inertial de-

vices on hundreds of post-stroke patients with feedback provided to the physicians

and patients on a daily basis. The system proved effective in monitoring activity

in the ambulatory community [8,9]. To detect relative position in 3D space, data

from inertial sensors require double integrated. Thus, the drift and broadband

noise present in MEMS sensor result in rapid accumulation of errors. To meet

the stringent accuracy requirements for use in healthcare, algorithms must be de-

veloped to reduce the impact of noise on the final results. Fig. 1.4 demonstrates

some of the inertial sensors used by the UCLA’s Wireless Health Institute (WHI).

II.2 Vision-based System

Vision-based motion sensing systems comprise of two major categories: marker-

based systems and image-based systems. Marker-based motion capture systems

[10,11] track the movement of reflective markers or light-emitting diodes placed on

the human body, thus indirectly track the movement of body segments as well as

the configuration of body joints. For such systems, accurate 3D marker positions

in a global frame of reference are computed from the images captured by a group

of surrounding cameras using triangulation. Although such systems can provide

high-precision joint position in 3D space, they are extremely expensive and time

intensive in their deployment. Therefore, they are infeasible for daily activity

monitoring.

5
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Figure 1.4: Sensors used/developed by Wireless Health Institute (WHI)

Marker-less systems use computer vision techniques to derive motion param-

eters from the captured video [12]. Recently, low-cost off-the-shelf sensors have

exploit depth cameras to capture the movement of human limbs and extract the

3D position of body joints. The Kinect, for example, is a motion-tracking device

developed by Microsoft capable of monitoring up to 6 full skeletons within the

sensors field of view. For each skeleton, 24 joints are defined and their positions

and rotations tracked. Due to the embedded tracking algorithm’s large training

data set, the Kinect provides accurate tracking outcomes which can be considered

as the ground truth [13]. Another example is the Leap Motion controller, which

is designed specifically for motion tracking of hand gestures. In this system, three

infrared LEDs and two monochromatic cameras are used to reconstruct the 3D

scene and precisely track hand position within a small range. Research suggests

that the Leap Motion controller can potential be extended as a rehabilitation tool

in the home environment, removing the requirement for the presence of a ther-

apist [14]. While vision-based systems can provide desirable tracking accuracy,

they are not self-contained and require cameras deployed in the environment. Ad-

6
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ditionally, vision based systems raise privacy concerns and are as yet not feasible

for large-scale employment.

In this research, vision-based motion sensing systems we used includes the

Microsoft Kinect, Leap Motion controller and Vicon-460 camera. Details of these

devices will be presented in later chapters.

III Background 2: Activity Classification

The goal of activity classification is to infer which activity is performed, given

data and machine learning models. In this section, we introduce several machine

learning techniques that are commonly used in activity classification.

Classifier: A classifier is a function which maps the feature vectors into classes.

Suppose we have collected a set of training data (TD) consisting of n observations,

each observation has p features, and there is one label out of q classes associated

with each observation.

TD =
{

(xi, yi)|xi ∈ Rp, yi ∈ {1, 2, ..., q}
}
, i = 1, 2, ..., n (1.1)

where xi is the feature vector, and the yi are the labeled classes associated with

the features.

The classifier can be thought of as a mapping function that maps the training

data to a specific class or partition:

f : TDi → ŷi (1.2)

where TDi is the ith instance of the n observations from the training data, and yi

is the classification result of the corresponding ith observation.

7
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III.1 Decision Tree Classifier

A decision tree classifier is a supervised machine learning technique which is simple

and widely used in solving classification problems. The main idea is to break down

multi-class classification into simpler subsets, stage-by-stage and finally reach the

classification results. A decision tree contains multiple internal nodes, and there

are a series of carefully crafted test conditions about the features of the test dataset

at each internal node. Starting from the root node, new dataset are tested over

every test condition and follow the appropriate branch based on the outcome of

the test. Each time it makes a decision, a follow-up condition is tested until a

conclusion about the class label of the record is reached.

In multi-class classification, the curse of dimensionality is a crucial issue: as

the number of classes increases, one usually has to select more features and makes

decisions in a high-dimensional feature space. Therefore, in order to collect enough

training data that is representative of the nature of each class, a huge amount of

ground truth data is required as the dimension of feature space increases. Without

sufficient training data, the predictive power suffers from increasing dimensionality

[8]. The decision tree classifier assumes that each class is conditional independent

and performs many classifications targeting smaller classes, instead of a single

stage with a huge number of states. Thus each decision is done in a feature

space with lower dimensionality. Because of its nature of divide and conquer

of the decision-making procedure, the decision tree classifier avoids the curse of

dimensionality in multivariate analysis [6][7].

In this research, we use decision tree classifiers with a combination of Näıve

Bayes classifier and support vector machine (SVM) as the decision making kernel

in internal nodes for activity classification. Fig. 1.5 shows an example of classifi-

cation tree for 6 activities. More detail of Näıve Bayes classifier and SVM will be

discussed in the following sub-sections.
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Figure 1.5: Example of a decision tree classifier for 6 activities

III.2 Näıve Bayes Classifier

The Näıve Bayes Classifier is based on the Bayesian theorem. It assumes every

feature to be independent from the others, and they are Gaussian distributed.

Despite its simplicity, Näıve Bayes can often yield better performance than most

sophisticated classification algorithms. In addition, the Näıve Bayes classifier also

inherits the prosperities of the Bayes classifier, which has the advantage to be more

extensible. It requires little effort in classifier retraining and software update upon

further expansion or modification of the activity classes.

III.2.1 PDF Estimation

For a given set of feature values, F = {f1, f2, ..., fn}, the posterior probability for

the class Cj among a set of possible activity classes C = {c1, c2, ..., cd} is to be

9
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found. Using Bayes’ rule:

p(Cj|f1, f2, ..., fn) ∝ p(f1, f2, ..., fn|Cj)p(Cj)

where p(Cj|f1, f2, ..., fn) is the posterior probability of class membership, that is,

the probability of F belongs to Cj. Since Näıve Bayes assumes that the condi-

tional probabilities of the independent variables are statistically independent, the

likelihood can be decomposed to a product of terms:

p(F |Cj) ∝
n∏

k=1

p(fk|Cj)

and the posterior be rewritten as:

p(Cj|F ) ∝ p(Cj)
n∏

k=1

p(fk|Cj)

III.2.2 Classification

Using Bayes’ rule above, the classification result of F is labeled with Cj that

achieves the highest posterior probability.

C(f1, f2, ..., fn) = argmax
c

p(C = c)
n∏

i=1

p(fi|C = c)

Although it is not always accurate to assume that the features are independent,

this assumption does simplify the classification task dramatically, since it allows

the class conditional densities p(fk|Cj) to be calculated separately for each feature.

In effect, Näıve Bayes reduces a multi-dimensional density estimation task to a

one-dimensional kernel density estimation. Furthermore, the assumption does not

seem to greatly affect the posterior probabilities, especially in regions near decision

boundaries, therefore, leaving the classification task unaffected.

10
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III.3 Support Vector Machine

A Support Vector Machine (SVM) [15–17] is a non-probabilistic, discriminative

classifier formally defined by a separating hyperplane. Given labeled training

data (supervised learning), the algorithm tries to find the optimal hyperplane

which has the largest gap that can separate the classes. For example, suppose

we have n different features for each sample data, SVM forms a n-1 dimensions

hyperplane that divides categories given features vectors of n elements lying in a

n-dimensional space. Fig. 1.6 shows an example of classify two classes using the

SVM classifier and two features. As shown in the figure, the solid shapes form

the support vectors, and SVM tries to find a gap that maximizes the distance

between the support vectors.

There are two main benefits of using the SVM in activity classification. First,

when using the SVM at internal nodes of tree classifiers, the SVM can effectively

draw a decision boundary for activities that are not easily characterized by prob-

abilistic models such as the Näıve Bayes classifier. For example, a single-peak

Gaussian model may be insufficient if there are more than one activities within

an internal node of a decision tree classifier. On the other hand, the decision

boundary of the SVM is only determined by its support vectors and not affected

by interior feature points. This also leads to another benefit of using the SVM,

which is the robustness when trying to classify activities using features that are

susceptible to noise. For example, some features of stationary activities such as

energy for siting and standing tend to produce small feature values and thus are

susceptible to any external noise or unexpected movements. As a result, the means

and standard deviation may not be very representative. In this study, we mainly

use the SVMs to classify stationary activities such as standing, lying down, and

sitting because the training data are concentrated and a few outliers occur.

11
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Figure 1.6: Example of SVM on 2 classes

III.4 Wireless Health Institute Sensor Fusion Toolkit (WHISFT)

The UCLA Wireless Health Institute (WHI) uses activity classification extensively

for both real world and instructional deployments. For real-world deployments we

have been collaborating with the UCLA Neurology department and the UCLA

Ronald Regan Hospital. There were a number of studies ranging from conges-

tive heart failure patients [18] to intensive care unit cycling restorator [19]. One

of the high impact studies included monitoring of exercise intervention effective-

ness of acute stroke patients from 150 sites in 12 countries [20]. In these studies,

sensors were provided to outpatients to enable follow-up physical activity mon-

itoring in community. Instructional deployments include EE180D and EE202C

classes held each year, where students are given projects that allow them to use

the sensors and the activity classification techniques to perform studies such as

sports activity efficiency, daily energy expenditure and workspace wellness. To

facilitate the use-cases, we developed the Wireless Health Institute Sensor Fusion

Toolkit (WHISFT). The WHISFT is a suite of accurate classification methods for

user activities that has undergone testing in diverse situations and clinical set-

tings [21, 22]. It provides multimodal hierarchical classification based on a set of

classifiers such as Näıve Bayes and Support Vector Machine [20].

12



Figure 1.7: WHISFT: function menu

Starting with raw data from multiple sensors, WHISFT combines streams of

data into a single structure. Features such as short time energy, mean, and vari-

ance are computed from the combined data structure. There are a number of

diverse features, providing freedom in selecting the ones that best suit each appli-

cation. From the selected features, hierarchical structures (decision tree) can be

built to model the classification problem. The decision tree classifier first grossly

separates activities into groups sharing similar features, and then further isolates

activities within each group using additional features until all can be identified.

At each level of the tree, WHISFT uses either a Näıve Bayes or SVM classifier to

separate unknown data into one of the branches. The final classification result is

produced when a leaf node is reached. Fig. 1.7, 1.8, 1.9, 1.10 and 1.11 show the

interface and some sample results of the toolkit.

IV Background 3: Motion Reconstruction with Inertial

Sensors

Two of the most widely used inertial sensors for motion reconstruction are gyro-

scopes and accelerometers. Fig. 1.12 shows the algorithm for trajectory recon-

13



Figure 1.8: WHISFT: data processing (alignment and labeling)

Figure 1.9: WHISFT: decision tree and feature selection
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Figure 1.10: WHISFT: classification result

Figure 1.11: WHISFT: classification statistic
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Figure 1.12: Trajectory reconstruction algorithm

struction.

An accelerometer measures the summation of gravity and motion accelera-

tion. Theoretically, if the motion acceleration can be perfectly isolated, double

integration of the motion acceleration yields the motion trajectory. However, it

is not trivial to detect the direction of gravity and isolate the motion acceleration

when the sensor is experiencing external forces. The gyroscopes can be helpful

in determining the direction of gravity. Gyroscopes output angular velocity, and

we integrate the angular velocity for orientation angles. The issue is, gyroscopes

have bias, which means its reading won’t be exactly zero when the sensor is sta-

tionary. In addition, the bias is not fixed nor predictable. This means we cannot

get accurate angle from gyros because it will drift over time. As a result, even

with the information from gyroscopes, we cannot get accurate motion acceleration

from accelerometers without careful calibration.

IV.1 Zero-velocity Update (ZUPT)

The zero-velocity update (ZUPT) is a commonly used technique to reduce sensor

drift [23]. The idea is to set the velocity to zero when the sensor is stationary

and smooth the velocity in between before being integrated for position. By do-

ing this, drift can be detected and compensated before it propagates to position

estimation. Fig. 1.13 show an example of using ZUPT to compensate velocity

drift. However, ZUPT cannot always perfectly remove the velocity drift because

16



there exists some uncertainties when detecting zero-velocity windows. For exam-

ple, the zero-velocity window might be too short for the algorithm to detect, or

the declared zero-velocity window is a false positive. Therefore, many methods

have been proposed to provide more accurate trajectory estimation such as using

human bio-mechanical models [24], sensor fusion [25], and Non-ZUPT [26].

IV.2 Inertial Navigation System (INS) Toolkit

The UCLA Wireless Health Institute developed the Inertial Navigation System

(INS) toolkit [27] for gait trajectory reconstruction and visualization. The INS

toolkit allows researchers to collect motion data from shoe-mounted sensors 1.14

and reconstruct motion trajectories. This toolkit has been deployed in many

studies ranging from quality assessment of hemiparetic gait [27] to calibration

of upper limb motion tracking [28]. For instructional deployments, students in

EE180D and EE202C were given projects that allow them to use the sensors and

the toolkit to perform studies such as gait cycle analysis and indoor localization.

Fig. 1.15, 1.16 and 1.17 show the interface and some sample results of the toolkit.

In this research, we used some method from this toolkit to perform ZUPT and

trajectory reconstruction for upper limb movement.

V Organization

The rest chapters of this dissertation are organized as follows: In Chapter 2, we

present a real-time context-guided activity classification system which can deal

with increasing model complexity when scale to large-scale population. Chapter

3 describes a virtual inertial measurements platform which converts the currently

available camera motion database into a noiseless and error-free inertial measure-

ments database. In Chapter 4, we propose an opportunistic calibration system

which can detect and compensate sensor placement errors. In Chapter 5, we

present a sensor fusion approach for robust upper limb motion tracking. Chapter

6 summarizes this thesis, and presents suggestions for future research.
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(a) Captured accelerometer data

(b) Double integrated result including drift

(c) Estimated linear drift

(d) Double integrated result after ZUPT is used to remove drift

Figure 1.13: An example of zero-velocity update.
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Figure 1.14: Shoe-mounted sensor

Figure 1.15: INS: function menu
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Figure 1.16: INS: zero-velocity update

Figure 1.17: INS: reconstructed trajectory
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CHAPTER 2

Context-guided Universal Hybrid Decision Tree

for Activity Classification

I Introduction

Activity monitoring provides critical benefits for important concerns such as health

and wellness promotion, disease treatment and disease condition detection. Through

the automatic feedback of activity status to both individuals and health care

providers, the quality of health can be improved while reducing the costs. Due

to the rapid advance in microelectronics, MEMS inertial sensors, low power pro-

cessors, and low cost monitoring systems, human activity classification is now

possible. The ubiquity of mobile devices also provides a platform for the wireless

healthcare community to integrate monitoring and in-field guidance for both ad-

vancing and evaluating treatment outcomes. Increased research effort has been

devoted to the development of systems that monitor human activities with feasi-

ble cost, classify activities with good accuracy, and then analyze these activities

with respect to different rules [29, 30].

Some systems [31, 32] based on Näıve Bayes classifiers can provide accuracy

up to 90% for classifying a small number of daily activities. However, the use

of a single-stage classifier is problematic from many aspects including exploding

training data requirements as the number of classes grows. Other approaches [33–

35] utilized decision tree classifiers that can better handle complex decision regions
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by partitioning them into smaller sets with low dimensional hypothesis spaces at

each stage, providing advantages such as reduced training set size, robustness

to outliers in training data, extensibility of target classes, and invariance under

monotone transformations.

However, decision tree methodologies can suffer from mismatches between as-

sumed and actual distributions for different sets of classes, resulting in poor accu-

racy, if only a single classifier type at each node is applied. Another issue arises

in clinical trials when generalizing the model to a large population. In practice,

one can acquire extensive ground truth only for a small set of subjects due to high

logistical costs; for the rest, at best only short training is feasible. However, if

the tree can be personalized then we can get far better results. One solution is

to construct a decision tree structure that fits the population, and then tune only

the decision thresholds using short training sequences for individuals. This was

attempted in [29], but with inadequate accuracy.

The above methods also face challenges as we scale to large and diverse user

communities. The rapidly expanding activity set increases model complexity,

which causes degraded classifier performance. In addition, the diverse user com-

munity has varied requirements. Thus we need a system that is personalized and

provides targeted monitoring of activities under different conditions. The energy

efficiency of energy-constrained monitoring sensors should be taken into consider-

ation as well. These objectives require the capability of detecting the location and

environmental context [36, 37]. Context information has the potential to directly

enhance activity classification accuracy and speed through reduction in search

space, and reduce energy demand through context-aware optimization of sensor

sampling and operation schedules.

There have been attempts to introduce context awareness into activity classi-

fication to facilitate personalization and adaptation [8, 36, 38–40]. These systems

achieved limited success due to the ambiguity in the definition of context, and the

lack of a system architecture that enables the adaptation of signal processing and
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sensor fusion algorithms specific to the task of personalized activity monitoring.

To address the above-mentioned deficiencies, we propose: 1) A universal hybrid

decision tree classifier to reduce training efforts; 2) A novel architecture that

provides context guided personalized activity. Herein, context is separated from

physical activities in order to produce a first level hierarchy, and further achieves

personalized activity classification. In addition, our work presents four major

contributions: 1) A tree classifier with flexibility of decision rules, adaptation to a

population-based model and reduction of training cost; 2) Accurate detection of

context with sensor fusion; 3) The integration of context to improve classification

accuracy and energy usage; and 4) The ability to target specific physical activities

of interest for a given context.

II System Overview and Architecture

Illustrated in Fig. 2.1, the system consists of three parts: sensor modules, an

Android device, and a backend server for offline training. Multiple sensor mod-

ules, each containing three sensors (gyro, accelerometer and magnetometer), are

attached to the body. Each sensor module communicates wirelessly (dashed lines)

with an Android device via Bluetooth.

The sensor modules sample data at a predefined rate, aggregate data from

each sensor, and then transmit to the Android device. In the training phase,

after the user employs the GUI to configure and turn on the sensors, the sensors

generate and transmit data to the Android device. Meanwhile, context sensors

on the Android device collect environment data such as Wi-Fi fingerprint, audio

and time of day. The Android device stores these data locally. The system then

prompts the user to provide ground truth labeling for each activity section and

current context. When the collection of training data is done, both the sensor

data and annotation files are stored in the Android device.

These training data are then used to perform offline model training via the
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Figure 2.1: System architecture
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backend server, which consists of two toolboxes. WHISFT is a suite of accurate

classification methods for activities classification that has undergone extensive

testing in diverse situations and clinical settings [21]. It provides an end-to-end

solution for inertial sensor data processing from raw data to decision tree con-

struction, model training and performance evaluation. The toolbox is capable of

performing multimodal hierarchical classification based on a set of classifiers such

as Näıve Bayes and Support Vector Machine [20]. The context toolbox is another

tool we developed that is able to process context data and build context classifica-

tion models. We used these two toolboxes to construct and train our classification

model based on our proposed algorithm. The models are then transferred to the

Android platform for real-time classification.

In the real-time testing phase, the Android App not only stores sensor data

locally but also caches data in a queue structure. It also loads the trained model

into its classifier. A queue structure is designed to implement a moving window for

real-time data processing, where new data is pushed onto the queue, and old data

is popped out. The data from the moving window is then fed into the classifier to

make a classification decision. The context decision is first determined and then

fed into the context specific activity classification block. Based on the context

information, a specific activity model is selected to perform activity classification

on the inertial data. The classification results are finally made, and then fed back

to the user via the GUI.

III Methodology

III.1 Universal Hybrid Decision Tree

In this section, we present a universal hybrid decision tree classifier. This type

of classifier fuses various kinds of single-stage classifiers in its nodes, and can also

adapt to new incoming data with minimal training. The following shows how we

achieve this.
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First, a tree classifier T with l internal nodes can be thought of as a classifier

consisting of l single-stage classifiers, where each single-stage classifier has its own

subset of classes, features and the decision rules for the node. Therefore we can

write T as a combined set,

T = {C(t), F (t), D(t)} t = 1, ..., l (2.1)

where C is the subset of classes of node t, consisting groups of classes associating

with that node; F is the feature set used for node t; and D is the decision rule

of that node. In this research, the Näıve Bayes classifier and the support vector

machine (SVM) were used as possible types of decision rules of internal nodes.

Compared to other tree classifiers where only a single type of decision rule is

used [41,42], this hybrid approach takes advantage of more appropriate statistical

modeling of different activity classes and therefore achieves higher classification

accuracy.

Using this hybrid tree, we then find a classifier with a single structure that

can classify multiple subjects’ data. The reason behind this universal classifier

is that we want to have a model that with minimal additional training can be

personalized to subjects. Therefore when we generalize this model the amount of

training effort, such as data collection and labeling, can be greatly reduced. We do

this by maintaining the structure, features used and decision rules associated with

the hybrid tree classifier, and only change the decision thresholds corresponding

to different subjects. Thus using only a small amount of additional training we

can personalize the classifier to each subject. This procedure can be stated as in

Fig. 2.2. This algorithm takes the differences among people into account while

maintaining a satisfactory error rate.

III.2 Context Detection

In pervasive computing, the definition of context by Dey [37] has been widely

referenced. It is a very broad definition that contains every characteristics of a
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Figure 2.2: Algorithm of generalizing the hybrid decision tree
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given situation, in terms of both the environment and the user. While useful for

many applications, it is not suitable for leveraging context in monitoring physical

activities, since in many cases a context contains physical activities that are un-

derlying in the definition. Some alternative definitions offer different selection of

divisions such as external and internal contexts [43,44] to narrow the extent, but

still contain a mix of physical activities with the external environment.

In this study, we address a context as: ”a subset of all attributes that charac-

terizes an environment or situation, external to the user.” This definition clearly

distinguishes between the user’s physical activities and external environmental

attributes. With this refined definition, the attributes associated with a context

or with a physical activity can be easily distinguished. For example, a ”cafeteria”

environment is a context, and its characteristics may involve certain sound profiles

and a set of possible locations. In contrast, ”eating in a cafeteria” is not a context,

since it contains the user’s physical activity of ”eating”. Thus, we can use context

as a first level hierarchy to determine a set of activities of interest based on the

user’s current situation before carrying out activity classification [45].

Since our definition of context can describe many situations, it allows users

to define their own interested context set, identify the required characteristics

to distinguish contexts and select necessary sensors based on their objectives.

Thus, this generalization requires the system to take account diverse types of

data sources such as GPS coordinates, Wi-Fi fingerprint, background audio noise,

and illumination level.

To provide a reliable context decision, multiple classifiers should be employed

based on the nature of various data sources and trained separately. After training,

the individual classifiers are tested and assigned with voting weights (α) propor-

tional to the perceived accuracies. When an unknown class is encountered, a de-

cision committee (Fig. 2.3) performs sensor fusion as a linear combination of the

individual classifiers. The context with the highest vote is chosen. The committee

approach also enables adaption to individuals with varying habits. For example,

28

iAnnotate User
Pencil

iAnnotate User
Pencil



Figure 2.3: Context classification committee

a subject with a regular daily schedule might exhibit higher correlation in time of

day relating to context. Thus, we would increase the weight of the classifier based

on time-of-day during training, compared to a subject that is less habitual. We

choose three classifiers to form our context detection committee for most of the

experiment: k-nearest neighbors (kNN) with time-of-day as a feature; kNN with

wireless MAC address and signal strength as features; and AdaBoost with audio

peak frequency, peak energy, average power and total energy as features.

III.3 Integration of Contexts into Activity Classification

After inferring context from the committee, this information can be used to en-

hance activity classification. We introduce the concept of context driven activity

classification. Fig. 2.4 shows a high-level data flow diagram. The inertial data and

context data go through a signal-processing pipeline where a context is first deter-

mined. From the context we can extract an activity model from a scenario. The

activity model combined with the inertial data gives us an activity classification

result.

Based on this framework, there is no single list of comprehensive activities that

needs to be built into a monolithic classifier, compared with conventional activity

classification. Alternatively, only a small set of activities would be chosen in a

specific context, and this set can then be extended or reduced according to our

objectives.
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Figure 2.4: High-level decision flow

Figure 2.5: Context guided model for cafeteria

This approach brings a number of advantages. First, by pre-selecting the

activities of interest (or likely activities), the model complexity of the subse-

quent activity classification stage can be reduced. This increases the accuracy,

improves classification throughput and enables sensor operating time and data

sample/transmission optimization. An example of the context specific activity

model we generated for the ”Cafeteria” context is shown in Fig. 2.5. The activi-

ties are on leaf nodes, laid out in a hierarchy. At each branch either a Näıve Bayes

or SVM classifier makes the branching decision using features in the model.

In addition, this approach also allows an activity set within a context to be

customized to fit a specific situation. To further illustrate this concept, Table 2.1

lists a few possible activity models under different contexts in a clinical applica-
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Table 2.1: Example Scenarios

tion. For example, in the context of patient room, physicians may wish to monitor

a patient’s mobility status to assess the risk of bedsores and other problems. An-

other example is the rehabilitation context, where physicians may wish to monitor

the patient’s performance in exercises and to ensure recommended daily activities

are performed as instructed.

IV System Evaluation

IV.1 Data Acquisition

In this study, we used SparkFun 9DoF IMU sensors and a Nexus 7 tablet to

collect 14 datasets, where each set of data contains 13 activities in 8 different

contexts1. The procedure of data acquisition is as follows: 14 subjects each at-

tached four 9DoF sensors on right wrist, knee, ankle and mid waist. An assistant

carried a Nexus 7 tablet running the Android client to record sensor data and

label the ground truth. Each subject spent 30 minutes in each context, and per-

formed every predefined activity under that context for at least 5 minutes. The

1Data collected according to a UCLA IRB approved protocol.
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Table 2.2: Scenarios

data were then separated into training (30%) and testing (70%) sets and 10-fold

cross-validation was performed to obtain the classification results. Table 2.2 sum-

marizes the collected activities corresponding to different contexts. In the table,

the activity ”Walking Around” refers to non-sustained walking segments that are

typical of walking in confined spaces, while ”Walking Normal” refers to sustained

long distance walks typical of open space.

IV.2 Result

IV.2.1 Context Classification accuracy

The accuracies of correctly classified instances of individual classifiers in the com-

mittee and the overall accuracies are shown in Table 2.3. We noticed that Ad-

aBoost using sound features yield high accuracies for most of the contexts. How-

ever, sound features are sensitive to environment variation. There were some cases

where misclassification occurred due to vehicles driving nearby or long periods of
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Table 2.3: Context Classifier Accuracies (Percentages)

silence. Time kNN depends heavily on the varied nature of when subjects visit

these contexts. Hence, it is also not sufficiently accurate in cases of some sponta-

neous visit of contexts. Wireless kNN provides good accuracy for indoor contexts

due to stable wireless environment. However insufficient accuracies occurred in

some cases such as bus and outdoors. In the bus context, the classifier suffers from

unstable wireless signal or unseen wireless access points due to the route of the

bus. For the outdoor context case, the system tended to detect access points that

belong to nearby indoor locations. We observed this issue when walking near a

building caused the context to be classified as another context inside the building.

This experimental evaluation reveals the pros and cons of each individual clas-

sifier. However, by applying a committee approach that assigned appropriate

combination of each classifier, the system is able to achieve high accuracy for all

contexts.

IV.2.2 Activity Classification accuracy

In this section, we first evaluated the classification accuracy of the universal hybrid

decision tree classifier, and than verify the enhancement in classification accuracy

of the context-guided approach. For the universal hybrid decision tree, we first

manually determined the tree structure, and then used 30% of the data from

all subjects as training data to select features and classifier types that yield the

highest accuracies. After a universal tree is generated, we used the training data of
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each subject to determine decision thresholds for internal nodes of the tree. The

thresholds for each subject have to be determined individually since properties

of each set of data are different from other sets. For the case of context-guided

classification, we first performed context classification and follow up by activity

classification.

Table 2.4 summarizes classification accuracy in each context. The results indi-

cate that without context information, our proposed tree provides good accuracy

in most of the activities, except some activities involved with upper body move-

ment. However, it can be seen that with the integration of context information,

there is an overall enhancement in classification accuracy due to the reduction of

search space and the size of each classifier. In addition, for those activities involv-

ing upper body movement such as typing, writing and eating, a large improvement

is observed.

IV.2.3 Potential for Energy Saving

The context driven approach allows us to adjust sensor policy dynamically accord-

ing to detected context, and thus brings the potential to improve energy efficiency

and operation lifetime. Based on scenarios tested in Table 2.2, we formed a sensor

requirement profile (Table 2.5), in which blank cells indicate sensors that can be

safety turned off without affecting the accuracy of a given context. We evaluated

the improvement of system operation time by adopting sensor activation schedules

based on contexts. A subject’s typical daily schedule on workday and weekend is

shown in Fig. 2.6 and 2.7, with the x-axis starting at 8am. Fig. 2.8 shows the

comparison of total operation time of context driven sensor activation and con-

tinuous sensor activation, which indicates the potential benefits of context driven

sensor energy management. This benefit would be more obvious in the situation

where many sensors are deployed but only some small subset is required in each

context.
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Table 2.5: Sensor Requirements

Figure 2.6: User profiles (workday)

Figure 2.7: User profiles (residential)
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Figure 2.8: Battery life comparison

V Conclusion

In this study, we demonstrated the advantages of integrating the context and

universal hybrid tree classifier for activity classification. The proposed universal

hybrid tree structure provides flexibility at the expense of the use of intuition or

domain knowledge in its construction. The effort is rewarded in relative ease of

tuning it to new individuals with modest additional training. For scaling to a

large population, this could lead to a drastic reduction in effort. In addition, the

new context driven approach not only brings improvement in classification accu-

racy, but also provides the capability of controlling the activation and selection of

sensors for energy saving. A number of future research directions are being pur-

sued. Since our context driven approach depends heavily on the quality of context

decision, it is of interest how to achieve precise context classification information

without needing extensive training.

Remarks During this project, we collected a huge amount of motion data.

We also attached multiple motion sensors at different part of human body, and

recorded all the required activities with may repetitions. At the beginning it was

quite fun, however, after we repeated the same procedure for tens of subjects, in-
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clude myself, my colleague, and many volunteers, we realized that there could be

a more efficient way to collect ground truth data. This led us to the next project

”Virtual Inertial Measurements for Motion Inference in Wireless Health”, where

we present an efficient way to derive ground truth inertial data.
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CHAPTER 3

Virtual Inertial Measurements for Motion

Inference in Wireless Health

I Introduction

Many of the most urgent problems in health and wellness promotion, diagnostics

and treatment of neurological disease require accurate, reliable and detailed mon-

itoring of human motion. Video based motion capturing systems (e.g., Vicon-460

camera) provide a partial solution. However, these expensive and fixed systems

cannot be used for patients’ at-home daily motion monitoring. Wireless motion

sensors, including accelerometers, gyroscopes and magnetometers, can potentially

provide a low-cost, small-size, and highly-mobile option [46] [47] [48].

But, several problems must first be overcome. These issues are illustrated

in Fig. 3.1(a). Although high-precision sensing systems can provide low-noise

data, they can cost several thousand dollars each and are not affordable in most

wireless health applications. On the other hand, low-cost accelerometers are non-

ideal as they are too noisy for double integration to produce reliable position

estimates, even when orientation is perfectly known. Low-cost gyros have low

error with appropriate filtering. Drift can be overcome if they are reset based

on identified events (e.g., stance phase of walking). Results in [25] [49] have

demonstrated high accuracy in reconstructing walking and upper body motions

with such resets and when each limb segment is instrumented. But, except in

39



Figure 3.1: Illustration of the existing issues (a) and the proposed framework (b).

laboratory experiments, to instrument one sensor per limb segment is infeasible

in most applications. Hence, our challenge becomes the reconstruction of human

motion characteristics with only one inertial sensor on each limb.

In addition to measurement noise, sensor misplacement problems, including

misorientation and displacement, are common in at-home motion tracking. [50]

proposed an orientation calibration method based on opportunistic repetitive mo-

tions without the requirement of pre-defined motions. A general approach to deal

with various sensor impairments has not yet been investigated.

To overcome these problems, a model and algorithms must be constructed

from datasets that reflect a broad set of impairments and for each of the motions

of interest. Unfortunately, such a large amount of data collection is prohibitively

costly. Therefore, as shown in Fig. 3.1(b), we propose a virtual inertial measure-

ments platform to convert the currently available camera motion database (e.g.,

CMU MoCap [51]) into a noiseless and error-free inertial measurements database.

The main contributions of this research are as follows. An algorithm for

converting camera based motion databases into inertial measurements (both ac-

celerometers and gyroscopes) was developed. To verify the effectiveness of this
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method, a KINECT based test-bed was constructed. On this test-bed platform,

synchronized camera data and inertial sensor data were collected simultaneously.

Comparing the virtual inertial measurements estimated from our algorithm with

the real inertial sensor measurements, the effectiveness of our algorithm was

demonstrated.

II Inertial Sensor Measurement Modeling

To realize the virtual sensor experiments, we build a motion sensor measurement

model. In this model, we derive the motion information from an existing motion

database, develop appropriate processing algorithms for the motion data, build

the observation model to map the motion data to sensor measurements, and then

derive the sensor measurements without measurement noise. Some details follow.

II.1 Camera Motion Database

We employ the CMU motion capture database [51]. It contains 2605 different

motion clips of full body MoCap data performed by a total of 144 subjects. The

subjects were asked to wear 41 markers (Fig. 3.2) and perform a wide varieties

of activities under the VICON camera system. The Vicon motion capture system

consists of 12 infrared MX-40 cameras, each of which is capable of recording at

120 Hz with images of 4 megapixel resolution. Motions are captured in a working

volume of approximately 3m × 8m. Each marker’s three dimensional position

and rotation information with respect to its parent node were provided in the

database.

II.2 Inertial Sensor Observation Model

II.2.1 Gyroscope measurement model

Gyroscopes measure angular velocity on three axes. [52] shows that angular veloc-

ity can be captured by taking the time derivative of the rotation matrix (Equation
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Figure 3.2: CMU motion capture marker placement

3.1). C(t) is the rotation matrix (Equation 3.3) and Ω(t) contains the gyroscope

measurements (Equation 3.2). Projections of the parent limbs’ angular velocity

onto the local reference frame are added to produce measurements with multiple

moving segments.

Ċ(t) = C(t)Ω(t) (3.1)

Ω(t) =


0 −ωbz(t) ωby(t) 0

ωbz(t) 0 −ωbx(t) 0

−ωby ωbx(t) 0 0

0 0 0 0

 (3.2)

C(t) = Rz(t)Ry(t)Rx(t) (3.3)

Rx(α(t)) =


1 0 0 0

0 cos(α(t)) −sin(α(t)) 0

0 sin(α(t)) cos(α(t)) 0

0 0 0 1



42



Ry(β(t)) =


cos(β(t)) 0 sin(β(t)) 0

0 1 0 0

−sin(β(t)) 0 cos(β(t)) 0

0 0 0 1



Rz(γ(t)) =


cos(γ(t)) −sin(γ(t)) 0 0

sin(γ(t)) cos(γ(t)) 0 0

0 0 1 0

0 0 0 1


II.2.2 Accelerometer Measurement Model

The accelerometer signal consists of linear acceleration and gravity. Linear accel-

eration can be achieved by the second order differentiation of the position while

gravity is a constant in one axis. Adding these two components together, we can

then project it back into the local frame using gyroscope orientation information.

II.2.3 Data Smoothing

The basic problem with this dataset along with most other camera data is inac-

curacy on the cm scale (e.g., the KINECT has similar resolution issues). With

rapid sampling of 120Hz, such random position errors produce large apparent

accelerations with double differentiation.

Thus, a smoothing technique is required to compensate the large gain on high

frequency caused by the double-differentiation. We have identified the locally

weighted scatterplot smoothing (LOWESS) [53] as a suitable smoothing function

for the CMU MoCap dataset through a test-bed platform (more details in the

later section) we developed. Instead of specifying a function to fit a model to all

of the data in the sample, LOWESS has the advantage that it only requires very

few arguments (i.e., a smoothing parameter value and the degree of the local poly-

nomial.) Moreover, LOWESS is well-suited for modeling complex processes for
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Figure 3.3: Effect of LOWESS function. Double differentiation (virtual accelerator
measurement ) of (a) smoothed and (b) unsmoothed raw camera data.

which no theoretical models exist. These advantages combined with the simplicity

of the method, make LOWESS a suitable smoothing algorithm for our applica-

tion. Fig. 3.3 indicates that the LOWESS smoothing procedure attenuates the

noise in position data and yields better results for double differentiation.

III Experiments and Results

In order to develop the proposed virtual sensor algorithm, we need both the video

and inertial data for validation purposes. Since the CMU motion data base con-

tains only video data, we developed a test-bed platform to collect synchronized

motion data. We verified our virtual sensor algorithm over the synchronized mo-

tion data and then applied the algorithm to the CMU MoCap database.
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Figure 3.4: Microsoft KINECT controller

III.1 A Test-bed Platform for Algorithm Verification

We integrated the Microsoft KINECT (Fig. 3.4) and inertial sensors to create a

test-bed platform for algorithm validation. KINECT is an affordable camera sys-

tem that can provide the position and orientation of 21 joints on the human body.

Compared with the Vicon system, KINECT has similar accuracy in position and

acceptable accuracy in orientation. This is enough for the purpose of algorithm

development.

We collected synchronized motion data with KINECT and inertial sensors.

We then applied various smoothing algorithms to KINECT data and derived the

virtual inertial measurements. The resulting virtual inertial measurement was

compared with the actual measurements of the inertial sensors. With this test-

bed platform, we were able to validate the virtual sensor algorithm and search for

a suitable smoothing function.
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III.2 Collecting Synchronized Data using KINECT and Inertial Sen-

sors

To collect synchronized motion data, we attached inertial sensors on the subject’s

upper limb and asked the subject to perform several predefined motions in front of

the KINECT. Fig. 3.5 shows the experimental setup. Fig. 3.6 and Fig. 3.7 show

the examples of actual and virtual inertial measurements generated from this test-

bed platform. In the example, the subject attached a sensor on his right wrist,

and drew five circles in the air with pauses. The smoothing function applied

in this example is LOWESS. The result shows that both the virtual gyroscope

and accelerometer measurements are not satisfactory without applying smoothing

function on the camera data. However, with the smoothing function applied, there

is a high similarity between the virtual and actual acceleration. The virtual and

actual gyroscope measurements have less agreement, although they share the same

periodicity. The lesser similarity is possibly due to the software and hardware

limitation of the current version of KINECT in detecting the orientation; we

expect a better performance in the next version of KINECT.

III.3 Further Validation with the Vicon System

We’ve verified our algorithm via the Kinect test-bed platform. However, the

Kinect and Vicon camera system have different noise profile. As as result, we need

to further verify the proposed algorithm with the Vicon system. We conducted

experiments in the Gait and Motion Analysis Lab at the UCLA Rehab center

(Fig.3.8). Our plan was to collect synchronized motion data from both the body-

mounted inertial sensors and the Vicon system, and then compare those two

measurements. We attached IMU sensor on both feet of the subject and asked

the subject to perform several pre-defined movement while the Vicon system was

recording. We applied the proposed algorithm to the Vicon system’s data and

convert them to virtual inertial measurement. Results showed that the virtual

inertial measurement derived form the Vicon system matched the measurement
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Figure 3.5: Experimental setup of the test-bed platform.

from the inertial sensors very well. Fig. 3.9 shows one example results of the

experiment. The agreement of the IMU and Vicon data further confirms the

validity of our proposed algorithm.

III.4 Results of the Proposed Algorithm on the CMU Data

The experiment results from the test-bed platform support the validity of our

virtual sensor algorithm and indicate that LOWESS is a good candidate for the

smoothing function. We utilized Matlab’s LOWESS smoothing function with

smoothing parameter set to 0.02 and a first-order polynomial as the regression

function. We then applied the same algorithm to the CMU MoCap data and

derived the virtual acceleration. Fig. 3.10 and Fig. 3.11 show that both the

virtual acceleration on the calf and thigh shows clear periodicity. These results

further indicate that the proposed virtual sensor approach is feasible and that the

test-bed platform is an efficient tool for searching suitable smoothing functions.
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Figure 3.6: Result of the virtual accelerometer measurement from the test-bed
platform.
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Figure 3.7: Result of the virtual gyroscope measurement from the test-bed plat-
form.
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Figure 3.8: Gait and motion analysis lab

Base on what we learned form previous experiments. We cooperated with a

group of EE180D students and developed a Matlab toolbox (Fig. 3.12). The

toolbox can systematically generate VIM from the MoCap database. And it can

also simulate sensors at 30 locations with arbitrary orientation errors.

IV Conclusion

In this study, the virtual inertial sensor measurement was successfully derived from

an existing MoCap database. A test-bed platform for algorithm verification is also

developed. With the data processing and sensor measurement models developed

in this research, we are able to generate various virtual sensor measurements from

motion database.

Future work includes further validation of the feasibility of the proposed ap-

proach with synchronized MoCap system and inertial sensor data, followed by

systematic derivation of virtual sensor measurements from the CMU MoCap

database. We are presently pursuing such validation. With this sensor simulation
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Figure 3.9: Results: Gait and Motion Analysis Lab

Figure 3.10: Virtual acceleration derived from CMU MoCap with LOWESS
smoothing
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Figure 3.11: Virtual gyroscope measurements derived from CMU MoCap with
LOWESS smoothing

Figure 3.12: Matlab Toolbox: Virtual Inertial Measurement
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in hand, we can emulate sensor impairment as follows: orientation error can be

represented by multiplying a rotation matrix;position error can be modeled by

changing the coordinate values in the local frame. Combining with real data from

human trials, we can further derive a measurement noise model and adjust the

robust inference algorithms accordingly to enhance its performance when applied

on real data.

Remarks Now, we know that the Kinect can provide low-cost ground truth.

Can we leverage this powerful tool? In the next project, we use the Kinect’s

measurement as the ground truth to detect and compensate IMU misplacement

errors.
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CHAPTER 4

Opportunistic Calibration of Sensor Orientation

using the Kinect and Inertial Measurement Unit

Sensor Fusion

I Introduction

Many of the most urgent problems in health and wellness promotion require ac-

curate, reliable and detailed monitoring of human motion. While wireless mo-

tion sensors, including accelerometers, gyroscopes and magnetometers, have been

proven to be a low-cost, small-size, and highly-mobile option [54] [55] for human

motion tracking and activity classification, sensor misplacement is an important

issue that needs to be taken into account when deploying such systems in the real

world. This placement error will degrade performance in motion classification and

motion reconstruction. However, most research assumes that sensor placements

are well-defined and fixed over time [56]. These assumptions are impractical in

many medical settings, since patients and clinicians may not always follow in-

structions to place sensors correctly, and the sensor position may also change over

time due to attachment issues.

Attempts to solve sensor misplacement issues can be categorized into two ap-

proaches: (1) finding orientation-invariant features [57] [58] [59] such as power

spectral density or the Fourier transform, and (2) calibration through a series of

pre-defined gestures or movements [60]. While the first approach could be suc-
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cessful for classification problems, they cannot provide detailed motion inference

such as motion tracking or motion reconstruction. The second approach might

have limited application in the medical context due to the fact that it requires cer-

tain problem-specific calibration motions to be performed. In reality, we cannot

rely on patients to perform such calibration motions, especially when the calibra-

tion is complicated. Wu et al. [61] proposed an orientation calibration method

based on opportunistic repetitive motions without the requirement of pre-defined

movements. However, this approach requires a training process to collect repet-

itive motion signatures, and hence it is limited to the lower body. To address

the above-mentioned deficiencies, we propose a novel calibration process based on

sensor fusion using the Microsoft Kinect and inertial measurement unit (IMU)

sensors. The goal of this study is to provide reliable motion data in real-time,

without the requirement of calibration activities, training processes and careful

placement of the wearable sensors.

The remainder of this chapter is organized as follows: in Section 2, we will

provide background information on acquiring motion inference using IMU sensors

and the Kinect. Different types of sensor misplacement will also be discussed. In

Section 3, the system architecture and each functional block will be presented.

Finally, system verification and an example that demonstrates orientation cali-

bration for trajectory reconstruction will be explained in Section 4.

II Technical Background

II.1 Motion Inference with IMU Sensors

Acquiring motion inference from IMUs has been of interest in the medical com-

munity for many years. Many approaches [29] [30] exploit features from IMU

data to achieve motion classification. Others focus on motion tracking [62] [63]

and utilize various techniques to extract position and rotation information. While

high-end IMUs can provide reliable measurement, they are not suitable for large

55

iAnnotate User
Pencil



deployments due to costs. On the other hand, low cost accelerometers are non-

ideal as they are too noisy for double integration to produce reliable position

estimates, even when orientation is perfectly known. Low cost gyroscopes have

low error with appropriate filtering. Drift can be overcome if they are reset based

on identified events (e.g., stance phase of walking). In addition to measurement

noise, sensor misplacement problems are common in at-home motion tracking.

In this research, we used the MUP-9250 motion sensor from InvenSense to ex-

plore sensor misplacement issues. The sensor board is Bluetooth enabled and can

provide 9-axis inertial data, which includes 3-axis accelerometer, gyroscope and

magnetometer .

II.2 Motion Tracking with the Kinect

The Kinect 2.0 is a motion-tracking device developed by Microsoft. It can track

up to 6 full skeletons in the view of its camera. For each skeleton, 24 joints are

defined and the positions and orientations can be tracked. The Kinect is also

able to track the orientation of each joint and output rotation quaternions with

respect to the earth frame. In addition to tracking joints, the Kinect is able

to distinguish hand gestures in the following categories: inferred (not tracked),

closed/open hand, lasso, and unknown. The Kinect uses the orientation of the

thumb to help it track the wrist orientation. When the hand is open, a green circle

is drawn around the hand as illustrated in Figure 4.1. When a joint is inferred,

the color of the joint becomes yellow and the corresponding bone is drawn by a

gray line instead of a bold green line. As shown in Figure 4.1, the hands are open

and the right foot is obscured.

Since the Kinect’s tracking algorithm has been trained with a large amount

of data, it provides highly accurate motion inference that can be considered as

the ground truth [64]. However, the subject must be in front of the Kinect at

all times due to the nature of its camera-based motion tracking. In addition,

the joints positions will contain spontaneous jittering due to noise and inferred
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Figure 4.1: An example of skeleton tracking.

tracking states. Hence, inferred joints are less reliable than visible joints. When

using the Kinect’s data as the ground truth, appropriate smoothing and filtering

should be applied. In this research, we used the Kinect’s position and orientation

data to derive virtual acceleration as the ground truth. We also relied on joint’s

tracking states and hand gestures to select calibration data.

II.3 Sensor Misplacement

Although misplacement has different forms, [61] shows that all misplacement

within a limb can be decomposed into the 3 cases shown in Figure 4.2, if we

model a limb as a thin cylinder and assume a sensor is always placed such that

the x-y plane is firmly attached to the limb.

Misorientation is defined as when a sensor is placed at the correct position

but with some rotation around the z-axis (Figure 4.2(a)). In this case, signals at

the z-axis are invariant. Therefore, a rotation matrix in the x-y plane is sufficient

to model this distortion. In a rotational displacement case (Figure 4.2(b)), since

the limb is modeled as a thin cylinder, the displacement between the correctly

placed sensor and the incorrectly placed sensor is negligible. As a result, signals

for the x-axis and z-axis can be modeled by a rotation transformation, and signals
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Figure 4.2: Definition of sensor misplacement. (a) Misorientation (b) Rotational
Displacement (c) Linear Displacement

for the y-axis are invariant. In the case of linear displacement (Figure 4.2(c)),

the orientation of the sensor is unchanged and only y-axis translation exists. In

this research, we aim to address misplacement with a combination of the first two

cases.

II.4 Kinect-IMU Calibrator Application

We developed the Kinect-IMU Calibrator application to detect and compensate

for sensor misplacement. This application is capable of recording and visualizing

motion data from both the Kinect and IMUs, identifying the calibration window,

calculating correction quaternions, and applying correction to misplaced IMUs.

Figure 4.3 shows a snapshot of the user interface.

III Method

III.1 System Architecture

Figure 4.4 shows the overall architecture of our system. The system receives

real-time inertial data from body-mounted IMUs with some degree of orientation

error. This orientation error is due to the compliance issue that the subject did
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Figure 4.3: The user interface of the Kinect-IMU Calibrator.

not place IMUs on the nominal position that was instructed. Thus, the measure-

ment is distorted. Once the subject appears in front of the Kinect and the Kinect

identifies the subject’s skeleton with high confidence, the calibration process is

triggered. The system then collects a short segment of joint position data and

generates corresponding virtual inertial measurements for calibration. By compar-

ing such virtual inertial measurement with the actual inertial measurements from

the IMUs, misplacement can be detected and compensated behind the scenes.

Details of each functional block will be discussed in the following sections.

III.2 Virtual IMU Algorithm

The Kinect reports position and orientation data for any joint, which serves as

the ground truth for motion inference. In order to compare this ground truth

with the actual inertial measurement from the IMUs, the position data must be

converted to a comparable form such as virtual acceleration.
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Figure 4.4: System architecture

III.2.1 Double Exponential Smoothing

Since the position data from the Kinect contains jittery noise, without proper data

smoothing, such noise will be hugely amplified during the double differentiation

in the next step. Double exponential smoothing is chosen because of its simplicity

and low latency compared with other existing algorithms [65] [66]. Double expo-

nential smoothing is accomplished by use of (1)-(3), where yt represents the input

raw data and St represents the smoothed data.

St = αyt + (1− α)(St−1 + bt−1), 0 ≤ α ≤ 1 (4.1)

bt = β(St − St−1) + (1 + β)bt−1, 0 ≤ β ≤ 1 (4.2)

S0 = y0; b0 = y1 − y0 (4.3)

To determine the smoothing parameters [α, β] for our system, we collected a short

segment of motion data using the IMU and Kinect. A data set that contains

five repetitions of hand waving was recorded by the Kinect and correctly placed
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IMU at the wrist. The position data from the Kinect was first smoothed with

different smoothing parameters and then converted to virtual acceleration data.

The optimal [α, β] were determined by an exhaustive search in increments of

0.01 for each parameter for the combination that minimized the error between

the correctly placed IMU’s acceleration reading and the virtual acceleration in a

least-square sense. As a result, we chose [α, β] = [0.35, 0.53] for our system.

III.2.2 Generating the Virtual Acceleration

The smoothed position data was differentiated twice with respect to time and

yielded the virtual linear acceleration. In order to generate the virtual acceleration

that is comparable to the IMU’s measurement, a virtual gravity vector was added

to the virtual linear acceleration.

Since the position data and virtual acceleration are both in the Kinect’s refer-

ence frame, it is required to transform the measurement from the Kinect’s frame

to the frame of the correctly placed IMU. For each joint, the Kinect reports a

rotational quaternion with the Kinect’s frame as the reference. The correct sensor

position is given and can be represented by a rotational quaternion qCorrect IMU
Kinect joint

with the a specific joint’s frame as the reference. Thus, the virtual acceleration

can be transformed to the frame of the correctly placed IMU:

qCorrect IMU
Kinect ref = qCorrect IMU

Kinect joint ∗ q
Kinect joint
Kinect ref

accCorrect IMU = qCorrect IMU
Kinect ref ∗ accKinect ref ∗ qKinect IMU

Kinect ref

−1

III.3 Orientation Calibration

The orientation calibration process opportunistically compared the virtual accel-

eration with the actual IMU data, detects mis-orientation and provides compen-

sation.
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III.3.1 Identity Calibration Windows

When the Kinect detects a subject in its view, the calibration process is trig-

gered. A buffer will cache 2 seconds of high quality synchronized data for both

the actual and virtual acceleration. Since a patient would have the sensor in the

same position for a relatively long period of time and the calibration only needs

a small amount of data, we can be very selective about the data that we record

to be used in the calibration algorithm. We implemented a cherry-picking filter

for data quality assurance, which passes data only when the Kinect provides reli-

able measurement. To be considered as reliable data, the Kinect should have an

unobstructed view of the joint of interest and identify the joint as being tracked.

In some cases, the Kinect does not have a clear view of a limb and may report

inferred position of the limb, which is not an accurate measurement of the actual

position. If the Kinect is inferring or not tracking the position of the limb, then

that data is not recorded in the buffer.

While the Kinect reports tracking state quite accurately, we noticed that in

some cases, the tracking state might be misleading and a tracked joint does not

necessarily yield high quality data. For example, the orientation of the wrist joint

can only be accurately determined when the thumb is also visible. This provides

an additional constraint to improve the quality of the recorded data. If the limb

being tracked is the right wrist, we only record the data when the thumb is tracked

and the hand is an open gesture. This ensures that the Kinect can more reliably

determine the orientation of the wrist for calibration. Figures 4.5 and 4.6 show a

comparison of when the Kinect can determine the current rotation of the wrist.

In our experiments, we also observed that high acceleration tends to produce

unreliable calibration results. Hence, if either the virtual or actual acceleration is

above 15 m/s2, we do not record that data into the buffer.
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Figure 4.5: Open hand: the wrist orientation can be reliably determined.

Figure 4.6: Closed hand: the wrist orientation cannot be reliably determined.

III.3.2 Calibration and Compensation

Once the calibration buffer is full, the system is ready to determine the orientation

offset. By examining the angle of acceleration vectors between the virtual and

actual acceleration, the orientation error of IMU sensors can be identified and

thus compensated. In order to find the rotation from the actual acceleration

vector (IMU) to the virtual acceleration vector (Kinect), we first acquire the axis

of rotation by taking the cross product of the two vectors. Then, the rotation

angle is found by taking the inverse cosine of the dot product of the two normalized

vectors. The axis of rotation and rotation angle gives the axis-angle representation
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of the rotation from the actual to virtual acceleration vectors. To convert from

an axis-angle representation to rotation quaternions, the following equations are

used [67], where (x, y, z) is the rotation axis, angle is the rotation angle, and

(qw, qx, qy, qz) is the equivalent rotation quaternion vector.

qw = cos (angle/2)

qx = x ∗ sin (angle/2)

qy = y ∗ sin (angle/2)

qz = z ∗ sin (angle/2)

A typical 2-second calibration window contains about 60 such rotation quater-

nion vectors. After taking the average of these vectors, we get a single quaternion

vector which represents the orientation error. Finally, this rotation quaternion

vector can be used to calibrate sensor orientation either in real-time or offline.

Given a rotation quaternion q that describes the rotation of the acceleration

vector from a wrongly placed sensor (at orientation O1) to the correctly placed

sensor (at orientation O1), we can calibrate the sensor orientation as follows:

[0, aO1] = q ∗ [0, aO2] ∗ q−1, where aO2 and aO2 are the acceleration measurements

from the wrongly and correctly placed sensor, respectively.

IV Results

To verify our system, we designed the experiment setup as follows. We defined

the correct sensor orientation O1 at the right wrist as shown in Figure 4.7. An

IMU sensor was attached on the subject’s right wrist with orientation O2, which

might have been different than O1 due to placement error. We asked the subject

to perform some activity without being tracked by the Kinect and then appear

in front of the Kinect for a short amount of time until the Kinect finished the

calibration process.
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Figure 4.7: IMU placement with correct sensor orientation O1 at the wrist joint.

IV.1 Virtual Acceleration as the Ground Truth

It is important to verify that the virtual acceleration provided by the Kinect

is reasonably accurate enough to simulate the acceleration measurement from a

correctly placed IMU sensor on the wrist. We placed 1 sensor at the correct ori-

entation O1, and compared the acceleration reading with the virtual acceleration

from the Kinect. Figure 4.8 shows both the actual and virtual x-axis acceleration

readings for hand waving motions. As expected, these two acceleration measure-

ments matched very well. This indicates that the virtual acceleration from the

Kinect can serve as a reasonable ground truth to simulate correctly placed IMU

sensors.
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Figure 4.8: Comparison between the virtual and actual acceleration.

Since the IMU sensor is in the correct orientation, we expect the calibration

process to report the rotation quaternion that describes the rotation from acccorrect
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to accvirtual to be close to an identity rotation quaternion, which is [qw, qx, qy, qz] =

[1, 0, 0, 0]. We performed 2 trials of calibration, and the results are listed in Table

4.1. As expected, for both trials, the rotation quaternions were close to the identity

rotation quaternion. Therefore, this indicates that the calibration works for the

case where the sensor is approximately placed in the correct orientation.

Table 4.1: Calibration results for the correctly placed sensor
qw qx qy qz

Trial 1 0.992 0.004 0.050 0.110
Trial 2 0.994 0.032 0.049 0.086

IV.2 Calibration Results from Misplaced IMU and Virtual Accelera-

tion: (Sensor Recovery Result)

IV.2.1 Compensated Misplaced IMU vs. Virtual Acceleration

The calibration data that describes the rotation between the raw IMU sensor data

and the virtual acceleration data were in the form of rotation quaternions. If we

apply such rotation quaternions to the raw IMU sensor data, we could expect that

the rotated (rectified) IMU sensor data will match the virtual acceleration data.

To verify this, we placed a sensor at the subject’s right wrist with some in-

correct orientation. The subject first performed some motion activity and then

appeared in front of the Kinect to trigger the calibration process. The application

recorded both the raw IMU acceleration and virtual acceleration, and reported

the calibration result in the form of a rotation quaternion. We applied the rota-

tion to the raw IMU sensor acceleration and compared it to the Kinect’s virtual

acceleration data. We verified the compensation in two different cases: stationary

activity and motion activity.

For the first case, the subject stood still so the data contains only gravity. As

shown in Figure 4.9, the rotated acceleration data matched the Kinect’s virtual

acceleration data. For the second case, the subject performed repeating move-

ments. As shown in Figure 4.10, the rotated acceleration data also matched the
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Kinect’s virtual acceleration data. We had 3 subjects performed this calibration

process for 5 trials, and we got similar results that the algorithm is able to com-

pensate the misplaced IMU. Note that sensor orientations are arbitrary among

subjects, and the orientations stayed the same during trial 1 to 5 for a single

subject. Table 4.2 shows the rotation quaternions calculated from the calibration

process for each subject and each trial, and the results are consistent among trials

for a single subject. Therefore, we conclude that the calibration process produces

reliable results.
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Figure 4.9: Comparison of the rectified and virtual acceleration data. (stationary)

IV.2.2 Rectified Misplaced IMU vs. Correctly Placed IMU

To further verify the accuracy of the calibration mechanism, we placed two sensors

at the subject’s right wrist with different orientations. One sensor was placed with

a correct orientation O1, and the other was placed with an incorrect orientation

O2. The sensor with orientation O1 provided a baseline for evaluation purposes.
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Figure 4.10: Comparison of the rectified and virtual acceleration data. (motion)

Figure 4.11 shows an example configuration of the two sensors. Ideally, when the

calibration result is applied to the data from the incorrectly placed sensor, the

compensated data should match the data from the correctly placed sensor.

Figure 4.11: Image of the two-sensor experiment setup.

We attached two sensors on the subject’s right wrist as described above, in-

structed the subject to perform some random movements, and collected data from

both sensors at the same time. Then, without moving the two sensors, we used the

application to obtain the calibration results in the form of a rotation quaternion.
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We then applied the rotation quaternion to the data from the incorrectly placed

sensor and compared it with the data from the correctly placed sensor.

In one trial, we applied the rotation quaternion that we obtained from the

calibration results to the incorrectly placed sensor accelerations and compared

them with the other accelerations. Figures 4.12 shows comparisons among the

incorrectly placed sensor accelerations, rectified sensor accelerations using the

rotation quaternion, and the correctly placed sensor accelerations. As shown in

these figures, the rotated data matched well with the correct data for all 3 axes.

The results that were obtained from other trials that are not shown were consistent

with the results for the trial that are described here. Therefore, we conclude that

the calibration results from the calibration process is accurate.

IV.3 Example Application: Orientation Compensation for Upper Body

Trajectory Reconstruction

We designed an example to demonstrate an application of the proposed calibra-

tion method. The goal was to reconstruct trajectories of the wrist joint using

a misplaced IMU. Trajectory reconstruction was achieved using the approaches

described in [68] with zero-velocity update [69] for sensor drift compensation.

Two sensors were mounted at the subject’s right wrist. One was attached at

the correct position shown in Figure 4.11 to serve as a baseline for comparison,

and the other one at an arbitrary orientation and rotational displacement. The

subject was instructed to use his right wrist to trace a mark of a 30x30 cm square

on a table. After the drawing was done, the subject walked into the Kinect’s view

and triggered the calibration process while the attachment of sensors remained

unchanged. We then rectified the data of the misplaced sensor and reconstruct

trajectories. Here we defined the positive directions of x, y, and z to be the right,

front, and up directions of the subject, respectively. Figure 4.13 and 4.14 show the

reconstructed trajectories for two different cases of misplacement. In both cases,

the reconstructed trajectories of the rectified sensor matched fairly well with the
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Figure 4.12: Comparison of the original, rectified and correct accelerations for the
x-axis, y-axis, and z-axis.
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correctly placed sensor.
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Figure 4.13: Trajectory reconstruction with sensor misplacement: 45 degrees mis-
orientation around z.

V Conclusions

In this research, we demonstrate a system that can fuse the Kinect and IMU

data to achieve opportunistic calibration of sensor orientation. We considered

sensor misplacement cases with the combinations of misorientation and rotational

displacement. We verified the validity of the proposed system by comparing accel-

eration measurement between rectified sensors and correctly placed sensors. We

also showed an example of trajectory reconstruction with misplaced sensors. The

results indicate that our system can detect and rectify misplaced sensors well.

Since there are no specific calibration postures or activities required during the

calibration, this system is practical for deploying outside the lab environment. The

outcomes of this research will facilitate ground-truth collection in the clinic, and

also provide reliable motion inference for health monitoring in the community.
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Figure 4.14: Trajectory reconstruction with sensor misplacement: 90 degrees ro-
tational displacement around y and 45 degrees misorientation around z.

Our study was however limited to healthy subjects. In the future, we plan to

investigate performance with patients in both clinical and home settings.

Remarks Earlier in this chapter, we mentioned that there are two types of

sensor uncertainties: sensor misplacement and sensor drift. Here we’ve provided a

solution for sensor misplacement, what can we do about sensor drift? We answered

this question in Chapter 5, where we proposed a sensor fusion approach that deals

with sensor drift for upper limb motion tracking.
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CHAPTER 5

Robust Upper Limbs Motion Tracking using

Sensor Fusion of the Leap Motion Controller

and IMUs

I Introduction

Many of the most urgent problems in health and wellness promotion require ac-

curate, reliable and detailed monitoring of human motion. Upper body motion

tracking is especially a top priority, since it provides crucial inference to assess

the mobility of hands and digits with musculoskeletal and neural disorders [70].

Much research has been conducted to enable robust trajectory reconstruction

for upper limbs, and two of the most common sensing technologies are: (1) Vision-

based system and (2) MEMS inertial sensors. Vision-based systems include the

Vicon system, Microsoft Kinect, and Leap Motion controller. In [71], the Vicon

system was used to study upper limb kinematics for hemiparetic stroke. In [72],

the Kinect camera was used to evaluate upper extremity reachable workspace.

These devices provide accurate tracking results, but they either suffer from limited

tracking range or are too expensive to be deployed outside of lab settings.

On the other hand, MEMS inertial sensors are lightweight, portable and can

be deployed outside of the lab environment for remote motion tracking. However,

without precautionary measures, sensor drift will degrade tracking results. In

[55], orientations of joints were estimated using kinematic models and unscented

Kalman filters under slow and fast motions. However, the results were limited to

simple arm movements. In [54], a continuous-wavelet-transform based method was
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performed to analytically integrate accelerometer data to avoid integration drifts

when integrating numerically. However, subjects in that study only performed

motions slowly, and some reconstructed patterns are only recognizable rather then

accurate.

In this research, we use complementary filters to fuse trajectory estimates from

the Leap Motion controller and IMUs to reconstruct upper limb trajectory. Our

goal is to estimate the trajectory of the upper limbs at any given moment with

high accuracy.

The remainder of the chapter is organized as follows: in Section 2, we will

provide background information on acquiring motion inference using IMU sen-

sors and the Leap Motion controller. Sensor fusion using complementary filters

will also be discussed. In Section 3, the system architecture and each functional

block will be presented. Finally, experiment design, verification and trajectory

reconstruction will be explained in Section 4.

II Technical Background

II.1 Motion Inference with IMU Sensors

Acquiring motion inferences from IMUs has been of interest in the medical com-

munity for many years. Many approaches [29] [30] exploit features from IMU

data to achieve motion classification. Others focus on motion tracking [62] [63]

and utilize various techniques to extract position and rotation information. While

high-end IMUs can provide reliable measurement, they are not suitable for large

deployments due to costs. On the other hand, low-cost IMUs have scalability

but they provide non-ideal measurements. For example, a low-cost gyroscope has

floating bias and thus the orientation estimate will drift over time. A common

approach to reconstruct motion trajectory from an IMU is to remove gravity from

the acceleration and doubly integrate the dynamic acceleration. Since the orienta-

tion estimate from a low-cost gyro is not accurate, the gravity component cannot
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be perfectly removed from the acceleration measurement. As a result, the residual

of the gravity component will be greatly amplified during the double integration

process, and yields tremendous drift.

The zero-velocity update (ZUPT) is a commonly used technique to eliminate

this drift [69]. However, this process cannot perfectly remove the velocity drift

because there are uncertainties in detecting zero-velocity windows. As a result,

the trajectory estimates from low-cost IMUs will still drift over time.

In this research, we use the InvenSense MUP-9250 motion sensor to calculate

position estimation. The sensor board is Bluetooth enabled and can provide 9-axis

inertial data, which includes 3-axis accelerometer, gyroscope and magnetometer.

II.2 Motion Tracking with the Leap Motion

The Leap Motion controller is a motion-tracking device developed by Leap Mo-

tion. It was designed as a gesture controller for computers. The device uses two

monochromatic IR cameras and three IR LEDs to observe a roughly hemispher-

ical area, to a distance of about 2.5 to 60 cm. It can track hands, fingers and

finger-like tools, and report discrete positions, gestures and motion.

Since the Leap Motion controller’s tracking algorithm has been trained with

a large amount of data, it provides highly accurate motion inference that can be

considered as the ground truth. In [73], the overall average accuracy of the Leap

controller was shown to be 0.7 millimeters. Compared with the Microsoft Kinect,

the Leap Motion controller is more suitable for our application since it provides

more precise motion tracking for upper limbs.

However, the Leap Motion controller also has some limitations. Due to the

nature of its camera-based tracking approach, the joint being tracked must be in

the view of the device at all times. In addition, the joints positions will contain

spontaneous jittering noise due to inferred tracking states. Hence, inferred joints

are less reliable than visible joints. The device reports a score in the range of 0

to 1 to represent the confidence level of tracking states for each frame.
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In this research, we use the Leap Motion controller’s position and orienta-

tion data to estimate trajectories of joints of upper limbs. We also rely on the

confidence score of tracking states for sensor fusion.

II.3 Sensor Fusion and the Complementary Filter

In real-time motion tracking applications such as flight navigation or robotics

orientation estimation, the complementary filter is often used for its simplicity

and efficiency [74] [75]. It fuses multiple estimation measurements that have noise

of complementary spectral characteristics [76].

For example, we can estimate the orientation of the sensor either using ac-

celerometers and magnetometers, or integrating the gyros. However, the result

would suffer from long-term drift when integrating the gyros, and instantaneous

noise when using accelerometers and magnetometers to estimate orientations. A

complementary filter can be used to filter the orientation estimation using ac-

celerometers and magnetometers with a high-pass filter, and the orientation esti-

mation using gyros with a low pass filter. We then sum up the two filtered signals

to remove the corresponding noises and achieve a better estimate of orientation.

In this research, we apply the complementary filter to fuse trajectory estimates

from the Leap controller and the IMU.

III Method

III.1 System Architecture

Figure 5.1 shows the overall architecture of our system. The system receives real-

time inertial data from body-mounted IMUs and joint positions from the Leap

Motion controller. We first derive trajectory estimates from the IMU data, and

then perform a rigid transform to match the Leap’s coordinate system. After

signal synchronization, a complementary filter fuses the trajectory estimates from

the IMU and Leap, and reconstructs robust trajectory estimates. Details of each
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Figure 5.1: System architecture

functional block will be discussed in the following sections.

III.2 Hardware Setup

We designed a 40 x 30 x 12 (cm) box with a piece of transparent acrylic on the top

(Figure 5.2) to hold the Leap Motion controller. The controller sits at the center

of the bottom of the box and has clear view above the acrylic surface. There is a

20x20 (cm) ground truth square marked on the acrylic surface, and its center has

been calibrated to be aligned with the Leap Motion controller’s origin.

III.3 Signal Processing

III.3.1 IMU Trajectory Reconstruction

The IMU reports acceleration and angular velocity in the IMU’s body frame. It

also reports rotation quaternions that describe the rotation between the initial

orientation and current orientation. Using this information, the acceleration mea-

surement is first rotated back to the initial coordinate frame, and then the gravity

component can be removed. We apply ZUPT and double integration to get the

reconstructed trajectory.

Figure 5.3 (IMU) shows an example of reconstructed trajectory of square draw-

ings at normal speed. In most cases, ZUPT provides reliable results if stationary

periods are correctly detected and thus allows drift cancelation. However, if the
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Figure 5.2: Leap sensing platform

motion is fast and stationary periods cannot be clearly identified, drift will build

up. Figure 5.4 (IMU) shows the reconstructed trajectory of square drawings at

fast speed.

III.3.2 Rigid Transformation

Since the initial relative orientation between the IMU and the Leap can be arbi-

trary, it is necessary to transform them to the same coordinate system for further

analysis. We assume that the Leap controller is physically fixed and thus is our

reference coordinate. During the training process, the subject moves his wrist and

follows the square marked on the box for three repetitions. Given the training

data, we calculate a rigid transform [77] which translates the IMU’s trajectory

estimations from the IMU’s initial frame to the Leap’s reference frame.
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III.3.3 Synchronization and Interpolation

We rely on external an signature for synchronization, since there is no handshake

communication between the Leap Motion controller and the IMU. At the begin-

ning and the end of each measurement sessions, we ask the subject to lift his/her

hands and tap the box for three times to serve as significant signatures in the

collected signals, which helps us to align the measured data. The IMU used in

this research is configured with a 200 Hz sampling rate, whereas the Leap Motion

controller has frame rate varies from 20 to 200 fps depends on the user’s settings

and available computing power. Thus, linear interpolation is used to deal with

missing data of the Leap Motion controller.

III.3.4 Complementary Filter Sensor Fusion and Parameters Tuning

For our system, there are two types of trajectory estimates that have noise with

complementary spectral characteristics. The trajectory estimate from the IMU

sensors is accurate in the short term but will suffer from long term drift. On the

other hand, the Leap Motion controller is immune from long term drift but has

spontaneous jittering noise. In order to remove the corresponding noises, we use

the complementary filter to filter the IMU’s trajectory estimates with a high-pass

filter, and the Leap Motion controller’s position estimates with a low-pass filter.

We also take the trustworthiness of the Leap’s trajectory estimate into account

when applying sensor fusion. From our experience, a data frame reported by

the Leap with confidence score higher than 0.1 is considered as useable data. If

the Leap’s trajectory estimate is useable, eq. (1) is applied for sensor fusion.

Otherwise, eq. (2) is applied.

CFest.(t) = αIMUest.(t) + (1− α)Leapest.(t), 0 ≤ α ≤ 1 (5.1)

CFest.(t) = IMUest.(t) (5.2)

To determine the optimal α for the complementary filter, we performed an
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exhaustive search on the training data. We declare the optimal parameter when

the mean square error between the reconstructed trajectory and the ground truth

squares is minimized.

IV Results

To verify our method, we designed the experiment setup as follows. We attached

an IMU sensor at the subject’s wrist with arbitrary orientation and asked the

subject to place his/her hand on the Leap box top. The subject first performed

synchronization signature and training patterns (three hand taps, and three square

traces) before performing any of the tasks. After that, the subject performed

various pre-defined tasks and followed this by three hand taps for synchronization

signature.

IV.1 Trajectory reconstruction

In this experiment, we asked the subjects to perform 4 different tasks including 10

drawing of squares and triangles, at both normal and fast speed. Figure 5.3, 5.4,

5.5 and 5.6 show the reconstructed trajectory of each task from IMU’s estimation,

Leap’s estimation and the sensor fusion result of the complementary filter. The

results show that the IMU’s estimation produces a smooth trajectory but suffers

from drift in fast motion. On the contrary, the Leap’s estimation is immune

from drift but contains much jitteriness, especially for those regions with lower

confidence scores. The sensor fusion result of the complementary filter provides

a nice blend of the two above-mentioned estimations. Table 5.1 shows the mean

square error of reconstructed trajectory for each method, where the error is defined

as the difference between reconstructed patterns and the ground truth.
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Figure 5.3: Reconstructed trajectory: square
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Figure 5.4: Reconstructed trajectory: square (fast motion)
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Figure 5.5: Reconstructed trajectory: triangle

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

IMU 

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

Leap 

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

Complementary Filter

Figure 5.6: Reconstructed trajectory: triangle (fast motion)

IV.2 Trajectory Reconstruction with Leap Blocking

In the real world scenario, trajectory estimates from the Leap Motion controller

might be unavailable due to obstructions or exceeding the sensing range. To
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Table 5.1: Mean Square Error (in cm)
IMU Leap Complementary

Square 2.24 2.56 2.54
Square (fast) 83.71 2.91 2.85

Triangle 1.21 1.45 1.39
Square (fast) 1159.29 3.76 4.32
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Figure 5.7: Simulation of Leap blocking: 0%

verify whether our system can handle this situation, we designed an experiment

to simulate Leap blocking. Instead of physically blocking the view of the Leap

Motion controller, we did a simulation by setting a portion of the confidence score

to zero. We corrupted the Leap Motion controller’s data in steps of 10% starting

from 0% to 90% and examined the error between our reconstructed trajectory

and the ground truth. Figure 5.7 shows the confidence score of a motion segment

where the wrist was always in the sensing range, while Figure 5.8 is a simulation

of blocking happening 40 % of the time.

Figure 5.9 and 5.10 shows the reconstructed trajectories for 0% and 40% block-

ing. The results show that even with 40% blocking, the complementary filter still

performs fairly well. For each trajectory estimate with different levels of blocking,

we calculated the mean square error to the ground truth square. Results in Figure

5.11 suggest that our method can provide better trajectory reconstruction than

using the IMU or the Leap Motion controller alone.

For further validation, we reconstruct motion trajectory with Leap blocking

due to being out of the sensing range. The subject followed a ground truth guide
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Figure 5.8: Simulation of Leap blocking: 40%
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Figure 5.9: Reconstructed trajectories (0% Leap blocking)
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Figure 5.10: Reconstructed trajectories (40% Leap blocking)

and moved his wrist from the box top to the table, back and forth for 10 times.

Since the Leap has limited sensing range, no trajectory estimate from the Leap

was available when the subject’s wrist moved out of the Leap’s view. Figure 5.12

shows the Leap’s confidence score becomes zero when the wrist is out of sensing

range. Figure 5.13 shows the reconstructed trajectory for three types of trajectory

estimates. The IMU’s estimate provides continuous motion tracking but contains

drift, whereas the Leap’s estimate doesn’t drift but has missing data. With the

complementary filter, we effectively eliminated the drift and achieved continuous
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Figure 5.11: Percentage of Leap Blocking vs. MSE
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Figure 5.12: Leap confidence score
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Figure 5.13: Reconstructed trajectory

motion tracking.
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V Conclusions

In this research, we present a sensor fusion approach that tracks and reconstructs

upper limb motion using the Leap Motion controller and IMUs. We also designed

and conducted experiments to evaluate the performance. The results indicate that

our method provides a solution to address the integration drift of the IMU and

the blocking issues of the Leap Motion controller.

The outcomes of this research will enable low-cost means that benefit medical

professional and therapists who want to analyze human motion trajectories in

detail. In addition, it can also be included in the remote monitoring system for

many medical purposes, e.g., a medical surveillance system which keeps track of

patients requiring long-term care, or a system to see if the patients in rehabilitation

have followed doctors’ directions to exercise for a prescribed amount of time daily.

Our study was however limited to healthy subjects. In the future, we plan to

investigate performance with patients in both clinical and home settings.
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CHAPTER 6

Conclusions and Future Research

I Research Contribution

In this dissertation, we solved a series of problems that centered at enabling robust

and large-scale human motion inference with low-cost sensors.

We started from the implementation of a real-time activity classification sys-

tem that integrates universal hybrid decision tree and context information to deal

with scalability issues. We achieved advance classification accuracy and energy

efficiency. We realized that collecting ground truth inertial data is a burden and

sought for an efficient way to acquire data. This led us to Project 2: ”Virtual

Inertial Measurements for Motion Inference in Wireless Health”.

In Project 2, we developed the virtual inertial measurement algorithm and

validated our method through both low-cost Kinect and high-end Vicon system.

We also developed a Matlab toolbox to systematically generate virtual sensor

measurement from the CMU MoCap database. The potential of using the low-

cost Kinect as the ground truth inspired us to dive into Project 3: ”Opportunistic

Calibration of Sensor Orientation using the Kinect and Inertial Measurement Unit

Sensor Fusion”.

In Project 3, we proposed an elegant solution to deal with sensor orientation

issues and verified its validity. And then, we looked beyond the sensor orientation

issues and moved one step further to deal with sensor drift in project 4: ”Robust

Upper Limbs Motion Tracking using Sensor Fusion of the Leap Motion Controller

and IMUs”.
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In Project 4, we presented and validated a sensor fusion approach to achieve

robust upper limbs motion tracking. We also overcame inertial sensor drift issues

and enabled continuously motion tracking when the Leap controller has obscured

view.

In conclusion, all of the 4 projects are tightly connected with my research

objective: enabling robust and large-scale human motion inference with low-

cost sensors . They all used low-cost sensors, tried to solve issues in scalability,

and aimed to provide robust human motion inference.

II Future Research

Future work exists in integration of system in above-mentioned projects to enable

continuous whole-body motion tracking at a residential setting and interactive

guidance for rehab exercise.

To enable continuous whole-body motion tracking at a residential setting, the

following three challenges must be addressed: model complexity, user compliance

(sensor attachment) and sensor uncertainties (drift, sensing range). Based on

the current research presented in this thesis, we have provided solutions to these

challenges.

For interactive guidance for rehab exercise, the Leap motion tracking box

presented in the Project 4 would be an effective tool for rehab purposes. For

example, physicians can prescribe rehab tasks such as reaching and grasping to

patients. The motion data acquired from the Leap motion tracking box will be

used to determine the quantity and quality of rehab tasks, and then provide timely

feedback to both patients and physicians.
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