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ABSTRACT OF THE DISSERTATION

An Optimization Framework

for Two-tier Cellular Network Resource

Allocation and Handover

by

Wuwen Li

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2019

Professor Gregory J. Pottie, Chair

The Orthogonal Frequency Division Multiplexing Access (OFDMA) and macro-femto two-

tier heterogrneous network are the core technologies used in 4G and 5G cellular networks.

These pose new challanges and optimization potential for network resource allocation with

consideration of fairness as well as for user equiptment (UE) handoff with consideration of

resource allocation. This thesis studies both problems, and analyses the inherent difficulties

in the problem domain. Then several optimization algorithms are proposed to solve the

problem. An optimization framework is proposed to integrate the algorithms together.
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CHAPTER 1

Introduction

The fourth-generation (4G) of wireless cellular networks based on orthogonal frequency-

division multiplexing (OFDM) technology has been deployed globally in the time since its

first deployment in 2009. The proliferation of mobile wireless communication applications

has drastically increased the market capacity for mobile devices and produced high demand

for network bandwidth and link quality. Encouraged by the commercial success of the 4G

wireless service, 5G networks are designed to meet these requirements.

It is highly likely that 5G will operate at higher frequencies, such as 28 GHz or 39 GHz.

Small cells, including femto cells, will be critical at these millimeter wave frequencies. This is

because the signals cannot penetrate walls or buildings and the cell sizes will have a coverage

radius of less than 500 meters. Therefore the 5G network will consist of small cells rather

than macro cells and it will not be a replacement to 4G but work in parallel. It is reasonable

to conjecture that the mobile communication network is evolving towards a macro-femto

two-tier heterogeneous network.

The diversity in the applications and the two-tier heterogeneous network structure pose

strong challenges for network resource allocation with quality-of-service (QoS) awareness, as

well as requiring a better handover algorithm.

1.1 Cases Considered

This section describes the specific cases that were studied. These include: uniform multi-cell

macro networks uplink resource allocation, random sized multi-cell macro networks uplink

resource allocation and macro-femto two-tier networks UE handover with resource allocation
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considered. Within the first two cases, UE does not perform handover when it moves out of

the cell boundary.

1.2 Contribution

The objective of this thesis is to analyze the inherent problem in resource allocation in the

multi-cell macro network and propose a fully distributed resource allocation algorithm with

max-min fairness and interference avoidance. With the algorithm in place, a higher level

optimization framework is constructed that considers handover performance optimization

and resource allocation all together. Both optimization algorithms should be adaptive to

environmental dynamics and distributed with minimum information exchanged among cells.

First the thesis proposes a novel spectrum efficiency and fairness multi-criterion opti-

mization model for multi-cell OFDMA networks uplink channel allocation. The model is

then transformed into an integer programming problem and a branch-cut based algorithm is

proposed to solve it. To tackle the inherent coupling problem between inter-cell-interference

(ICI) estimation and resource allocation in the optimization, a distributed dynamic uplink

channel allocation algorithm is proposed. The algorithm requires no runtime inter-cell in-

formation exchange. In the algorithm, the base station (BS) initially has the maximum

uncertainty (entropy) over the channel ICI. The BS reduces the entropy by viewing ICI

measurement as an information source. The more information extracted, the more channel

ICI distribution knowledge is gained. The ICI distribution is used to calculate the channel

average interference and then the channel preference value (CPV) is derived. Higher CPV

makes the corresponding channel more likely to be used. When neighbor cells’ traffic change,

environmental ICI may change. Using the algorithm, the BS learns the environmental dy-

namics and updates its CPV opportunistically. A two-dimensional simulation conducted on

both uniform and random-sized-cells shows the benefits are significant.

Secondly, we tackle the challenges posed by the macro-femto two-tier heterogeneous cel-

lular network on user equipment (UE) handover (HO) management. The thesis proposes

to consider multiple parameters that affect the HO process in a uniform framework and to

2



be able to dynamically adapt to the environment. The thesis proposes a machine learning

based optimization framework for HO control. The framework has a three-tier structure

including data sample selector (DSS), learning agent (LA), and handover controller (HOC).

The three components form a closed-loop control system that collects data samples from the

HO process. Data samples are scrutinized and then stored in the training data set (TDS),

which is used to train the LA. The LA first determines data sample distance weight factors

by studying the TDS and then employs a weighted KNN algorithm to dynamically adjust

HO control parameters. Simulation results show that our proposed framework is more ef-

fective in both macro to femto and femto to femto scenarios compared to conventional HO

algorithms.

1.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 presents some technical

background that is used in the development of the algorithms in this thesis. Chapter 3

explains the resource allocation problem and our solution, including problem formulation,

algorithm explanation and simulation results discussion. Chapter 4 explains the machine

learning based handover optimization framework, including optimization formulation, algo-

rithm explanation and simulation results discussion. Chapter 5 presents our conclusions and

suggestions for future work.
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CHAPTER 2

Technical Background

In this chapter we provide an overview of a number of algorithms used for key computations

in later chapters of the thesis.

2.1 Linear Programming and Integer Programming

2.1.1 Introduction to Linear Programming

Linear programming (LP) minimizes or maximizes a linear objective function subject to a

set of linear constraints. A linear objective function is a linear equation formed by a group of

variables. The goal is to identify the variable values that minimize or maximize the objective

function while also satisfying the specified linear constraint equations. An LP example is

given below:

Maximize: c1X1 + c2X2 + c3X3 (2.1)

Subject to: a1X1 + a2X2 + a3X3 ≤ b (2.2)

X1, X2, X3 are variables. c1, c2, c3, a1, a2, a3, b are constants. The objective of this example

is to identify the X that maximizes equation (2.1) while also satisfying equation (2.2).The

set of variable values that satisfy the constraints is called the feasible set or feasible region.

Integer programming (IP) differs from linear programming only in the additional requirement

that every variable has an integer value.
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2.1.2 Solving Integer Programming

Every IP problem has an associated LP problem, called its linear relaxation, formed by

eliminating the integrality restrictions. In the other words, the LP relaxation has the same

objective and constraint equations as the original IP problem. However, the variables in the

LP relaxation are allowed to take non-integer values. Let S(IP) and S(LP) denote the solution

to the IP problem and its linear relaxation respectively. They have following relationship:

(a) S(IP) cannot be a more desirable value of the objective function than S(LP).

(b) IP must be infeasible (i.e. have an empty feasible set) if its linear relaxation is infeasible.

(c) Given that the objective function coefficients are integers, we have S(IP ) ≥ ⌈S(LP )⌉

for minimization and S(IP ) ≤ ⌊S(LP )⌋ for maximization.

The IP problem is called infeasible if the feasible set is empty. IP usually is solved by

two algorithms described in following sections.

Branch and Bound Algorithm This algorithm is described as:

(a) Solving IP relaxation LP to get S(LP). If S(LP) are all integers, then S(LP) = S(IP).

Otherwise, we need to split the original IP problem into two subproblems by taking

one of the variables in the LP solution that has a non-integer value and adding one of

two constraints that each make that non-integer value impossible while still preserving

all integer solutions. This is called branching.

(b) A subproblem is not active if the conditions of it have been used to branch on, its S(LP)

= S(IP), the subproblem is infeasible, or its S(LP) is less optimal than a currently

obtained integer solution.

(c) Selecting an active subproblem to branch on a fractional variable.

The branching method used in the algorithm is to select one of the variables with a frac-

tional value and then add two additional constraints to bound the variable to the floor and
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ceiling of the solution. For example, for x=3.37, applying the branching algorithm, we would

branch it into two subproblems (nodes) and add constraints x ≤ 3 and x ≥ 4 respectively.

The idea is to repeat the above three steps until there are no active subproblems. During

the whole process, the current best solution is tracked. Subproblem nodes, whose optimal

solution is less optimal than the current most optimal solution, are dropped (declared in-

active). This procedure is called bound. A subproblem is fathomed if the LP at the node

is infeasible, S(LP) = S(IP) at the node, or S(LP) is bounded away from the current best

solution. The algorithm reports the current optimal solution as the best solution once all

the nodes are covered.

Cutting Plane Algorithm The cutting plane algorithm is an alternative IP-solving

method to the branch algorithm. The idea behind this method is to add constraints, which

are called cuts, to the LP until the optimal solution takes on integer values. Care must be

taken not to change the original IP by adding these cuts to the LP. The sole purpose of

adding cuts is to eliminate fractional solutions so that LP solution finally converges to the

optimal integer solution.

Therefore a valid cut must satisfy following two conditions:

(a) The new IP feasible region must be equal to the original IP feasible region.

(b) A current fractional solution must be eliminated by the cut.

The procedure to generate the cut more or less depends on the specific application. Figure

2.1 illustrates the cutting-plane concept. The black dots represent all the feasible IP integer

solutions. The red dot represents a fractional solution. A valid cut is added on the plane to

exclude just the fractional solution (red dot), while keeping all the black dots in the feasible

region.
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Figure 2.1: A valid cut to eliminate fractional solution

2.2 Relative Entropy

Relative entropy (also called Kullback-Leibler divergence) is used in the thesis to measure

how different one probability distribution is from another [Ash90]. Since this thesis exploits

discrete probability to model the channel interference level, we explain the concept of rel-

ative entropy using discrete probability distributions. Assuming P and Q are two discrete

probability distributions on the same probability space, the relative entropy from Q to P is

defined to be:

D(P//Q) =
∑

i

P (i) log

(

P (i)

Q(i)

)

(2.3)

The D(P//Q) is the expectation of the logarithmic difference between P and Q, where the

expectation is taken using probability P. Therefore the relative entropy cannot be regarded

as a true distance between P and Q since it is not symmetric. However, it fits our need

in this thesis well. The algorithm keeps a belief on channel interference level and relies on

relative entropy to decide when to adjust the belief. In the other words, the relative entropy

is a measure of surprise. The algorithm should change its belief if the surprise is above a

threshold.
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2.3 Machine Learning: K-Nearest Neighbors Algorithm

The K-Nearest Neighbors (KNN) algorithm classifies data points based on the distance

measured between data features. KNN is one of the simplest machine learning algorithms.

The principle used by KNN to classify data points is to find the closest data group in terms

of data feature distance. When KNN does its job, it consults the K nearest neighbors for

their opinions. The classification decision goes with the majority neighbors’ classification.

Figure 2.2 shows an example with K=7.

Figure 2.2: K=7 nearest neighbor classifier

In the above example, the ellipse represent a new data point to be classified. KNN checks

7 nearest neighbors and sees that there are 4 data points belonging to the square class and 3

data points belonging to the round class. Therefore the new data point should be classified

into the square data group. A KNN algorithm has steps as follows:

• compute the distance between the given new data point and other existing points

• find the K nearest neighbors from all existing points

• assign the new data a class

The KNN algorithm is easy to understand and implement. There is no need for algorithm

training. The data point distance computation is one of the key components in the KNN

8



algorithm performance. In the later section of this thesis, we will explain how to compute

the data point distance in the case studied. The other critical performance related parameter

is the vote evaluation. We have improved on that aspect by adding a weight factor for each

vote. The weight factor is derived from the degree that the class members are consistent in

their agreement. See [SH10, YY06, YI03] for detailed explaination about KNN.
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CHAPTER 3

Distributed Network Channel Allocation

3.1 Introduction

In recent years, OFDMA networks have been increasingly deployed in various cellular net-

works. With increasing network density and user traffic load, efficient fairness-constrained

resource allocation becomes critical. In this chapter, we focus on distributed dynamic

uplink channel allocation in OFDMA multi-cell networks. It is known that allocating

channels to users with the maximum marginal rate maximizes the network throughput

[LL05],[MTB10],[KHK05]. However, since some users may be in deep fading, there are

advantaged and disadvantaged users. Simply maximizing the network throughput will al-

ways starve disadvantaged users. Therefore, fairness constrained throughput optimization is

desired. Max-minimum fairness as proposed in [HL14] is used in our study.

Resource allocation algorithms face two major difficulties. First, many existing multi-cell

resource allocation algorithms require inter-cell information exchange [YDH13], [MTB11],

[NDN16]. A distributed algorithm with minimum inter-cell information exchange is always

desired. Second, in a multi-cell network, the environment of a cell is not always steady due

to the user traffic dynamics in neighbor cells. Dynamic adaptive resource allocation is often

needed to address this issue. However, dynamically reallocating resources in different cells

without centralized coordination makes the inter-cell-interference-power-spectrum (ICIPS)

unpredictable. In other words, it is an inherent coupling issue that measurement based

decisions cause measurements to change. This measurement-decision-coupling (MDC) issue

is one of the most significant challenges that any practical distributed algorithm needs to

face. This is very similar to the problem studied by second order chaotic system (SOCS)

10



in the dynamical systems theory. The SOCS is extremely unpredictable because the system

does respond to the prediction, e.g. the stock market. Even though we do not prove that

the system studied in this chapter is chaotic, we do attempt to analyze the problem from

the dynamical systems point of view.

The novelties of our work are: i) A new resource allocation optimization formulation to

improve spectrum efficiency and max-minimum sense of user fairness. The optimal solu-

tion is found by first transforming the model into a zero-one integer programming (ZOIP)

formulation which is then solved by the branch-cut algorithm. It is a truly distributed dy-

namic channel re-allocation approach that requires no inter-cell information. ii) To tackle

the MDC problem, a channel preference vector (CPV) derived from ICIPS is used by each

cell to determine the channel preference for assignment. A dynamic CPV updating algorithm

(DCUA) is invented to perform ICIPS tracking and CPV determination tasks. It does it in

microscopic and maroscopic levels with the help of models from a dynamical systems view

point. At the microscopic level, the algorithm estimates the ICI level for a single channel.

It initially assumes a uniform probability distribution over all possible interference levels

for every single channel. At this point, the cell has the maximum uncertainty (entropy) on

channel interference level. Each cell starts to measure the ICIPS periodically and considers

it as an information source. For each channel, the cell periodically checks relative entropy

between its interference-level-distribution (ILD) assumption and the measured ones and uses

that to determine whether its belief matches the reality. The cell also sees ICI as an informa-

tion source and tracks its mutual information to determine environment steadiness. Based

on this information, the algorithm gradually adjusts its channel ILD and then computes the

average interference level for each channel. At the macroscopic level, the algorithm takes

a holistic approach and models the ICIPS vector variation process as a phase point trajec-

tory in a dynamical system phase space. It exploits the ICIPS uncertainty to skip transient

ICIPS fluctuations and stabilizes CPV derivation. The goal is to let neighbor cells have

their CPV isolated from each other and make the CPV adjustment in a stable environment.

Hence, the cell avoids running optimization based on instantaneous ICIPS measurements

and reallocating channels simultaneously with its neighbors.

11



In the rest of the chapter, we first revisit existing research work. Then we describe the

two network models we used and formulate the optimization problem. We then present the

details of the branch-cut algorithm to solve the optimization. Next the DCUA algorithm is

explained. Finally, our simulation results are presented.

3.2 Related Work

The majority of prior research on the channel allocation algorithm considering ICI reduc-

tion can be grouped by the following criteria: static or dynamic algorithm, centralized or

distributed, iterative or non-iterative.

Fixed channel allocation (FCA), fractional frequency reuse (FFR) and soft frequency

reuse (SFR) are static bandwidth allocation algorithms. They reduce ICI by pre-planning

the channels among adjacent cells [KN00], [YD12], [HKH13] and [YDH12a]. Fixed channel

allocation algorithms have low spectral efficiency, since they do not dynamically adapt to

network traffic load variation. Dynamic channel allocation (DCA) techniques were invented

to address this issue. Channel segregation (CS) is such an algorithm explained in [KN00].

CS prioritizes all channels and employs a learning algorithm to update the channel priorities

according to the channel historical utility information. However, the learning algorithm

does not consider transient ICI variation. In addition, in a multi-cell network, adjacent

cells adjusting channel allocation simultaneously makes ICI even more unpredictable. We

found the impact of this problem in our preliminary work [LP14a], but did not address it

with a proper solution. A successful solution is presented here. [CWZ12] introduced a soft

frequency reuse scheme for dense femtocell networks. The proposed algorithm first identifies

multiple dominant interferers from the network and then classifies them into groups. Next,

different frequency reuse factors and transmit powers for these groups are adjusted adaptively

to mitigate the mutual interference. Among many dynamic frequency reuse schemes and

interference mitigation approaches, graph-based methods are an important branch. [VK15]

models the network in a graph and then introduces local games on it to optimize the network

capacity. A semi-centralized dynamic frequency reuse scheme is introduced in [PSQ12], which
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incorporates graph-coloring and network utility concepts on top of intra-cell scheduling to

mitigate ICI. [ZHJ13] proposed a User-oriented Graph based Frequency Allocation (UGFA)

algorithm. UGFA improves frequency reuse rate by exploiting graph based partitions on an

interference graph for the users in the network. Comparing to classical adjusting frequency

reuse factor methods aforementioned, our approach is more autonomous and completely

decentralized. Thus our approach is more flexibly and able to adapt to the environmental

changes.

For multi-cell networks, resource allocation is performed by centralized authorities. One

way to do it is to organize cells into clusters and have the radio network controller (RNC)

allocate channels to users in different cells. RNC will make sure two adjacent cells do not

allocate the same channel to their users [LCB12]. A similar approach is taken by [YDH12b].

The difference is that [YDH12b] only assigns disjoint channels to cell edge users. Users in

the cell center area can be assigned any channels. The requirement of using a centralized

network controller limits its application to networks like femto cells and sensor networks.

Therefore distributed channel allocation algorithms are favored in general. There are two

major approaches: game-theory-based and graph-based [PSQ13]. Game-theory-based algo-

rithms usually define utility functions, action sets and players corresponding to user data rate,

resource allocation and network node or users respectively [LCS12], [WXS06] and [LCK08].

The solution is usually obtained by an iterative algorithm, which is in general inefficient. A

graph-based channel and power joint allocation algorithm is described in [YDH13]. Users

are represented by nodes in the graph. Two users are connected by an edge if they may in-

terfere each other. Then the graph is colored and channels are allocated according to colors

to avoid interference. In [WCT17], a bipartite graph is constructed between BSs and UEs.

Then the Hungarian algorithm is employed to maximize network sum rate. In [KKL15], an

impractical but theoretically optimal algorithm is proposed to solve the multi-cell resource

allocation problem. Other than the aforementioned works, [LPM09, LRP17, KRS16] im-

plement proportional fairness by applying a weight, which is inversely proportional to each

UE’s average data rate, in the resource allocation algorithm. [MNM16] proposes a resource

allocation algorithm depending on measured channel gain. It also assumes each BS has full
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information about channel gain. [KNH17] recognizes ICI as a major issue in OFDMA net-

works and proposes a resource allocation algorithm to mitigate ICI. The algorithm relies on

decoding channel state information (CSI) broadcast to do channel prediction. Due to the

signal propagation loss, only partial CSIs can be collected, which inevitably jeopardizes the

performance of the algorithm. [MAP16] proposes sending network coordination information

via back-haul links. The coordination information includes channel distribution information

used by the resource allocation algorithm. [GFR18] proposes a round-robin (RR) algorithm

to allocate channel resources in a fair time-sharing approach. [SYN17] proposes a ICI miti-

gation algorithm that requires each BS to exchange CSI in back-haul links.

To the best of our knowledge, there is no study that has suggested any truly distributed

channel allocation algorithms for multi-cell OFDMA network that also resolves the MDC

problem. Rather, the MDC problem is usually neglected in construction of distributed

algorithms.

3.3 System Model

We describe the system model in three aspects: network model, channel propagation model

and user data traffic and mobility model.

The network model used is a multi-cell, uniform-sized-cells (USC) OFDMA network.

Each cell has three sectors and a fixed number of channels. As shown in Figure 3.1, there

are 3 sectors colored in red for cell 1 at the center. The sector base station (BS) antennas

point to 60, 180 and 270 degrees counter clockwise from horizontal line crossing the BS

tower. This model is suggested in [RSS10a, Sec. 20.9] for LTE network simulation.

Within each sector, channels are assigned to user equipments (UE) for transmission.

We only study the uplink, UE to BS. The other network layout studied for comparison is

the random-sized-cells (RSC) network as shown in Figure 3.2. For RSC, BS’ are randomly

located according to a Poisson-Point-Process (PPP) following the model used in [SAV12],

[GH09] and [GBA12]. Figure 3.2 shows RSC BS locations.
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Figure 3.1: USC Network Layout
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Figure 3.2: RSC Network Layout

We use the geometry based stochastic WINNER II channel model (W2CM) [P 08]. The

channel model is a stochastic model with two levels of randomness. It includes Large-

Scale Parameters (LSP) like shadow fading (SF), delay and angular spreads and Small-

Scale Parameters (SSP) like delays, powers and directions of arrival and departure. All

these parameters are drawn randomly from tabulated distribution functions. There are two

types of parameter correlations modeled in W2CM LSP. At first, different parameters have

cross-correlations Cxy. W2CM includes a LSP correlation table for different communication

scenarios, i.e. indoor or outdoor. Next, for multi-link simulation, which is the case in this

thesis, LSPs are correlated between neighbor links of UEs located close to each other. W2CM

uses exponential correlation functions ρ(d) ∝ e−
d
δ , where ρ(d) is the correlation coefficient, d

is the distance between two UEs, δ is the correlation distance, to describe dependence of LSP
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changes over distance. LSP also supports line-of-sight (LOS) to non-LOS (NLOS) transition

control. The probability of existence of a LOS link is calculated from one of the W2CM

tables for selected scenarios. The transition between LOS and NLOS leads to different path

loss models. As to antenna gain, signal arrival angles (AoA) and departure angles (AoD)

are generated. W2CM provides the probability function to generate these two parameters.

Both AoA and AoD are used in the azimuth antenna pattern for gain computation. Additive

white Gaussian noise (AWGN) is added to model thermal noise and radio links from neighbor

cells are modeled as inter-cell interference (ICI). In the other words, neighbor cell UEs are

regarded as interferers on the channels used by them for the home cell UEs. W2CM is

used to calculate the ICI signal power from interferers using their distances to the home BS

antenna. Finally ICI and AWGN are used in signal-to-noise ratio computation.

Poisson arrival models are used in this chapter for the user traffic model. When simulation

starts the number of UEs for each cell is generated with a uniform distribution with its mean

being a configurable simulation parameter. It remains constant during a simulation run. All

UEs in the network have mobility with a random direction model described in [Bet01].

3.4 Problem Formulation

The optimization goal is to maximize the average spectral efficiency of a sector (Es) (bits/s/Hz)

and the minimum UE traffic rate Rmin.

To formulate the Es, we define U = {u1, u2, . . . } as the set of all UEs in the network.

Let S = {s1, s2, . . . } be the set of all sectors in the network, and s(u) = 1 if the sector s

is the home sector of u(u ∈ s), otherwise s(u) = 0. In each sector, we assume there are in

total N channels denoted by C = {c1, c2, . . . cN}. Then using the Shannon capacity formula

for the Gaussian channel, assuming bandwidth to be 1 for simplicity, the data rate of UE u

on channel c is: Rs,cu = vs,cs(u)log2(1 +
Gs,uPt

Is,c
), Gs,u is the propagation gain, Pt is the UE

nominal transmission power, Is,c is the interference from neighbor sectors measured by sector

s on channel c. vs,c ∈ [0, 1] is the channel CPV that enables algorithm 4 to give impact to

algorithm 3. Both algorithms will be explained in the later sections.
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We next define the sector s’ channel allocation matrix As. Let U
s = {ui|ui ∈ s, (1 ≤ i ≤

|U |)} be the UE set of sector s. As is a N × |Us|, {0, 1} valued channel allocation matrix,

with As(c, u) = 1 denoting that channel c is assigned to u (u ∈ Us). Then we have Is,c =
∑

s′

∑

u s
′(u)As′(c, u)Gs,uPt, (s 6= s′). Now we can define UE traffic rate matrix Rs, which is

N × |Us| real matrix, its element Rs(c, u) is the achievable traffic rate of UE u on channel c.

Therefore sector s’ total sum of rate is
∑

c

∑

u as,curs,cu, (as,cu = As(c, u), rs,cu = Rs(c, u)).

The total number of channels used is
∑

c

∑

u as,cu.

The spectral efficiency of sector s is defined by Es(As) =
∑

c

∑
u as,curs,cu∑

c

∑
u as,cu

. The optimization

model is defined as follows:

max
As

Es + αRmin (3.1)

s.t. As~1 � ~
1 (3.2)

~
1

TAs � ~
1

T (3.3)

Rmin = min(diag(ATsRs)) (3.4)

~
1

TAsPt � ~
1

TPmax (3.5)

As is 0 or 1 valued matrix (3.6)

where Rmin is the minimum user traffic rate calculated by providing UE rate vector to

function min(), which simply returns the smallest rate element from the rate vector. Eq.

(3.2) makes sure one channel is assigned to at most one UE. Eq. (3.3) makes sure one UE

gets at least one channel assigned. Eq. (3.5) assures UE transmission power does not exceed

up limit Pmax. We do believe that by constructing Rs using different transmission power Pt,

power control optimization can be incorporated into the optimization model. It would be

an interesting dimension of optimization on top of the current ones for future research.

The parameter α ≥ 0 is the weight factor to balance the gain in Es and fairness. This is

a multi-criterion optimization model.
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3.4.1 Formulation Simplification and Solving Algorithm

Formulation (3.1) is a ZOIP since the optimization variable As is a {0,1} valued matrix.

It is nonlinear because Eq. (3.4) and Es are nonlinear. It is hard to solve a formulation

like this analytically in general. We attempt to solve it by first constructing a similar but

simplified model namely M i. Its objective is to solely maximize Ei
s with a new constraint

on the minimum rate. Then we solve a sequence of M = {M0,M1, . . . ,Mn}, where M0

is given an initial value for R0
min. Solving every following M i yields Ri

min, which is always

greater than Ri−1

min. M
i needs to be a linear model to take advantage of sophisticated linear

programming (LP) algorithms. We first implement an initial channel allocation algorithm

1 to obtain an initial minimum rate value R0
min. Once R0

min is obtained, next the nonlinear

constraint (3.4) needs to be dropped. We reformulate (3.1) as:

max
As

Ei
s (3.7)

s.t. As~1 � ~
1 (3.8)

~
1

TAs � ~
1

T (3.9)

diag(ATs Rs) ≻ ~
1Ri−1

min (3.10)

~
1

TAsPt � ~
1

TPmax (3.11)

As is 0 or 1 valued matrix (3.12)

Algorithm 1 Initial Channel Allocation

1: Let U = number of UEs in the cell

2: Pick U top channels according to CPV

3: Sort users according to their Gs,u to BS

4: Perform a water filling channel allocation to assign one channel to a UE, best channel

assigned to UE with highest Gs,u

5: Let R0
min = minimum UE rate under this allocation

6: Let Φ0 = E0
s + αR0

min
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Proposition 1. Let (Φ∗ = E∗
s + αR∗

min, A
∗
s) be the optimal solution of model (3.1), assume

R0
min < R∗

min, let (Φ
i = Ei

s + αRi
min, A

i
s) be the solution of model (3.7), then ∀i,Φi ≤ Φ∗.

Proof. Because constraints (3.2, 3.3, 3.6, 3.5) in model (3.1) are the same as constraints

(3.8, 3.9, 3.11, 3.12) in model (3.7), and R0
min < R∗

min, we must have A∗
s to be a candidate

solution of model (3.7) and Ais to be a candidate solution of model (3.1). Assume ∃Φi such

that Φi > Φ∗, then Ai is the optimal solution for model (3.1), which is contradictory to the

assumption A∗ is the optimal solution for model (3.1).

Proposition 2. Given a solution (Ai−1
s , Ei−1

s , Ri−1

min) of model (3.7), if Ri−1

min < R∗
min and

there is a feasible solution of model (3.7) (Ais, E
i
s, R

i
min), then R

i
min ≤ R∗

min.

Proof. Assume Ri
min > R∗

min, if E
i
s ≥ E∗

s , since Φi = Ei
s + αRi

min, we have Φi > Φ∗. That

is contradictory to proposition 1. If Ei
s < E∗

s , since A
∗
s is also a candidate solution of model

(3.7), which means Ei
s is not the maximum value. This violates (3.7), the objective function.

Neither Ei
s ≥ E∗

s nor Ei
s < E∗

s are valid, hence the assumption Ri
min > R∗

min must be

invalid.

Proposition 3. Given a solution (Ai−1
s , Ei−1

s , Ri−1

min) of model (3.7), if Ri−1

min < R∗
min and

there is no solution yields Rmin such that Ri−1

min < Rmin < R∗
min, then solving (3.7) will get

the solution Ais = A∗
s.

Proof. Because R∗
min is the next greater achievable minimum rate next to Ri−1

min, and A
∗
s is

also a candidate solution of (3.1), as per proposition 2, we must have Ri
min = R∗

min. Since

A∗
s is the optimal solution for model (3.1), E∗

s is the maximum value given Rmin = R∗
min.

Hence Ei
s = E∗

s and Aimin = A∗
min.

Proposition 3 indicates that starting from a low R0
min, solving model (3.7) iteratively will

find the optimal solution A∗
s along the way. A solution search algorithm 2 is proposed based

on the propositions.
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Algorithm 2 Solution Search Algorithm

1: feasible = True

2: while feasible do

3: solve model (3.7) with Ri−1

min by algorithm 3

4: if feasible solution found then

5: Ri
min = min(diag(Ais

T
Rs))

6: Φi = Ei
s + αRi

min

7: if Φi > Φi−1 then

8: Âs = Ais, R̂min = Ri
min, Ês = Ei

s

9: end if

10: i = i+ 1

11: else

12: feasible = False

13: end if

14: end while

3.4.2 Model Linearization

Algorithm 2 solves (3.7) at step 3. However, (3.7) needs to be converted from the nonlinear

objective function into a linear function first. If y0 =
1∑

c

∑
u as,cu

, we change variables in the

model as follows:

(3.7) ⇒ Ei
s = y0 ∗

∑

c

∑

u

as,curs,cu (3.13)

=
∑

c

∑

u

(y0as,cu)rs,cu (3.14)

(3.8) ⇒
∑

u

as,cu ≤ 1 (u ∈ {1..|Us|}) (3.15)

⇒
∑

u

as,cuy0 ≤ y0 (3.16)

⇒ −y0 +
∑

u

as,cuy0 ≤ 0 (3.17)
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(3.9) ⇒
∑

c

as,cu ≥ 1 (c ∈ {1..N}) (3.18)

⇒
∑

c

as,cuy0 ≥ y0 (3.19)

⇒ −y0 +
∑

c

as,cuy0 ≥ 0 (3.20)

(3.10) ⇒ diag(ATs Rs) ≻ ~
1Ri−1

min (3.21)

⇒
∑

c

as,curs,cuy0 > Ri−1

miny0 (3.22)

⇒ −y0R
i−1

min +
∑

c

(as,cuy0)rs,cu > 0 (3.23)

(3.11) ⇒ Pt
∑

c

as,cu ≤ Pmax (c ∈ {1..N}) (3.24)

⇒ Pt
∑

c

as,cuy0 ≤ Pmaxy0 (3.25)

⇒ −Pmaxy0 + Pt
∑

c

as,cuy0 ≤ 0 (3.26)

We then define ycu = as,cuy0 and y0 to be new variables. Relaxing the binary constraint

(3.12) and substituting ycu into Eq.(3.7, 3.8, 3.9, 3.10, 3.11), we obtain a transformed pure

LP problem model as follows:

max
y0,ycu

∑

c

∑

u

rs,cuycu (3.27)

s.t. − y0 +
∑

u

ycu ≤ 0 (3.28)

− y0 +
∑

c

ycu ≥ 0 (3.29)

− y0R
i−1

min +
∑

c

ycurs,cu > 0 (3.30)

− Pmaxy0 + Pt
∑

c

ycu ≤ 0 (3.31)

ycu ≥ 0 (3.32)

y0 ≥ 0 (3.33)
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∑

c

∑

u

ycu = 1 (3.34)

Model (3.27) is used in the Branch-Cut Algorithm (BCA) explained in the next section.

3.4.3 Solving by Branch-Cut Algorithm

We have followed the BCA procedure suggested in [Dim97, chapter 11] to solve our optimiza-

tion problem. The BCA algorithm solving (3.7) includes the following steps: i) constraint

relaxing, ii) branch and convert to pure LP problem and iii) update optimal solution or add

cut into the loop to solve the problem. See algorithm 3 for the details.

At algorithm 3 step 12, since the optimal solution of the relaxed sub problem is smaller

than the current best solution, there is no point to go further down the branch. For example,

if the current sub problem is branched by adding c2: acu = 0 as a new constraint, and

the relaxed sub problem solution is no better than the current optimal solution, then the

algorithm adds cut acu = 1 as a new permanent constraint. Thus no additional sub problems

would be branched out with acu = 0. This operation cuts the solver searching plan so that

the solution could be found faster.

While algorithm 3 solves (3.7) iteratively, the overall optimization process sequentially

solves model (3.7) until the problem becomes infeasible due to unachievable high minimum

rate target. The optimization process may also stop in the event of an infeasible solution,

or if the existing solution is satisfactory. By the time the process stops, the final solution is

picked from the solution sequence as the solution with highest Φ.

3.5 Tracking ICI Dynamics

Optimization formulation (3.1) finds optimal channel allocation based on Is,c and CPV.

Under the hood, the mechanism for this to work is that different BSs favor different channels

by defining their CPV differently so that the ICI could be more likely avoided. However, as

a distributed algorithm, there is no central coordinator that a BS can report CPV to and
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Algorithm 3 Branch-Cut Algorithm

1: Deactivate constraint (3.12)

2: Soptm = minimum value

3: Select a variable as,cu to generate two new constraints, c1: as,cu = 1; c2: as,cu = 0

4: Add the constraints back into the problem to create two sub problems, P(c1), P(c2)

5: Change variable on P(c1), P(c2) to obtain pure LP model as (3.27)

6: Solve sub problems to obtain optimal solution S∗
sub and Y

∗, use Y ∗ to calculate A∗
s

7: if feasible solution is found then

8: if A∗
s is all integer then

9: Let Soptm = S∗
sub, A

∗
s = A∗

sub if Soptm < S∗
sub

10: else

11: if S∗
sub < Soptm then

12: Add new constraint as cut to cut the branch

13: else

14: Pick arbitrary As(c, u), (c ∈ C, u ∈ U) that is fractional number to repeat steps

starting from 3

15: end if

16: end if

17: else

18: end and return no better solution found

19: end if
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learn other BSs CPV from. A BS must figure that out by other means. A BS considers

its environment, which consists of all its neighbor BSs, as a communication party that tries

to tell the BS about its neighbors’ CPV via ICI. Therefore, ICI can be considered as an

information source. From the information source, a BS conjectures not only neighbors’ CPV

but whether they are undergoing significant change also called bifurcation in dynamical

systems. A bifurcation means the system parameters have salient change. The change may

be due to channel reallocation or UE mobility. This is critical to the success of channel

allocation since updating CPV is superfluous if it is based on transient ICIPS fluctuation.

Moreover, if not handled properly, it may make the ICIPS even more unpredictable to

neighbor BS. This is the MDC problem we have mentioned earlier. To the best of our

knowledge no distributed algorithm in the prior work has offered an effective solution for

this. In this section, we explain our solution at microscopic and macroscopic levels in detail.

At the microscopic level each channel ICI is estimated independently and system bifurcation

is identified via ICI mutual information, whereas at the macroscopic level all channels’ ICI

is modeled as a ICIPS vector and tracked via phase point trajectory in the system phase

space.

3.5.1 Microscopic level

ICI entropy definition Let Is,c denote the ICI level of channel c in BS s. Assuming

Is,c ∈ [Ic,min, Ic,max], the range is divided into N ′ intervals. Both Ic,min, Ic,max are algorithmic

tunable parameters set by a heuristic method. In our simulation, the parameters are obtained

from simulation runs without optimization on. In reality, both of them can be determined

from historical field data logged by the BS. Let Ic,i = (i + 0.5)Ir, (Ir =
Ic,max−Ic,min

N ′ , i =

0, 1, 2, · · · , N ′ − 1) denote the middle point of the ith interval. ICI probability distribution

of channel c is denoted by πc = {Pi|Prob(Is,c ∈ [iIr, (i+ 1)Ir])}. A BS starts with a default

πc. It is also called BS’ belief of the distribution, which should be updated whenever the

channel ICI changes and Is,c =
∑

i PiIc,i.

As Is,c reflects BS’ belief on channel’s ICI level, the entropy H(πc) = −
∑n

i=1
PilogPi
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tells how uncertain the belief is. Higher H(πc) more likely causes algorithm 3 performance

degradation, since it depends on Is,c.

System bifurcation and steadiness detection From the dynamical systems point of

view, anything that has state variation can be regarded as a dynamical system. The system

state is called phase, and state variation is modeled as a phase trajectory. A system’s

structural parameters change may be reflected in significant phase trajectory change. This

is called system bifurcation. We view the channel ICI level as a dynamical system phase and

attempt to identify the system bifurcation. The idea is to update BS’ belief on channel ICI

only between two consecutive bifurcations rather than a cross any of them.

In our study, the entire simulation running time is divided into periods. Each period has

T (T ≫ N ′) time slots. For period t, T samples of Is,c are used to compute πc,t. Assume

Xt is a random variable, whose probability distribution is πc,t. If the information source has

not changed much, the random variables in the sequence X0, X1, . . . , Xt−1, Xt would have

high correlation. From an information theory point of view, they carry information for each

other. Let H(Xt) = −
∑n

i=1
P t
i logP

t
i be the entropy ofXt and H(Xt|Xt−1) be the conditional

entropy between Xt and Xt−1. The mutual information of the sequence is defined as:

Mk
t =M(Xt;Xt−1, . . . , Xt−k) (k ≥ 1) (3.35)

= H(Xt)−H(Xt|Xt−1, . . . , Xt−k) (3.36)

if Mk
t = 0 ⇒ H(Xt) = H(Xt|Xt−1, . . . , Xt−k) (3.37)

⇒ Xt−1, . . . , Xt−k carry no information of Xt (3.38)

The mutual information Mk
t is always non-negative and measures the dependence between

the random variables. Eq. (3.38) shows that we would expect a drop inMk
t , if the information

source has significant change in the period that Xt samples. That’s an indication of system

bifurcation. Therefore, let Mth be the threshold thatMk
t ≥ Mth means information source is

coherent or changed otherwise. The sequence length k in (3.35) is called the coherent period.

When the information source is coherent, we consider the dynamical system to be steady.
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ICI updating when the system is steady BS’ belief on channels’ ICI level is updated

when the measured ICI is a sufficient distance away from the belief and the system is steady.

The relative entropy D(πc//πc,t) =
∑

πclog
πc
πc,t

is used to measure the distribution distance

between current belief and current measurement. If D is too big, πc needs an update and

that is certainly conditional upon the environment steadiness. Algorithm 4 explains the

whole procedure.

3.5.2 Dynamic CPV update algorithm

Once algorithm 4 detects channel ICI distribution change at step 11, instead of updating

its belief right away, the algorithm starts a random length backoff timer. When the timer

expires, algorithm 4 checks environment steadiness. If it is positive, channel Is,c is updated.

The random backoff timer design is to prevent multiple BSs all seeing channel ICI varying in a

steady environment and updating their belief of the same channel’s ICI level simultaneously.

3.5.3 Macroscopic level

ICIPS tracking Section 3.5.1 describes the procedure for updating ICI probability dis-

tribution πc for a single channel c. While each channel’s ICI probability distribution is

constantly updated independently, ICIPS needs to be properly tracked at the macroscopic

level to avoid letting CPV follow the transient ICIPS readings. We model the ICIPS as a

N-dimensional dynamical system, with N being the number of channels in a cellular sector

s. We invent an imaginary particle phase point O∗
T to represent the current system phase,

which is also the BS’ belief on ICIPS. The subscript T denotes the time when BS’ starts the

belief. The O∗
T ’s coordination is determined by a normalized ICIPS vector. Besides O∗

T we

also create Ot, which gets updated on every time t and formally defined as follows:

I ttot =
N
∑

c=1

I ts,c (3.39)

P t
s,c =

I ts,c
I ttot

(c ∈ {1..N}) (3.40)

26



Algorithm 4 Dynamic CPV Update Algorithm (DCUA)

1: steady = FALSE

2: Mk
t = H(Xt)−H(Xt|Xt−1, . . . , Xt−k)

3: if Mk
t ≥Mth then

4: k += 1

5: if k ≥ Nk then

6: steady = TRUE

7: end if

8: else

9: k = 1

10: end if

11: if D(πc//πc,t) > Dth then

12: if backoff timer = 0 then

13: backoff timer = TM1

14: else

15: backoff timer -= 1

16: end if

17: if backoff timer = 0 then

18: if steady = TRUE then

19: πc = πc,t

20: update Is,c

21: end if

22: end if

23: else

24: backoff timer = 0

25: end if
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Ot = {P t
s,1, P

t
s,2, . . . , P

t
s,N} (3.41)

In the phase space, the two phase points Ot and O∗
T have their own trajectories. Like

particles in the Newtonian world, the two phase points have imaginary force f between

them. f constantly attracts O∗
T to meet with Ot. When that happens, the two phase points’

trajectories merge and (O∗
T , T ) is updated by (Ot, t). Before we give a formal definition of

f , a few terms are defined as follows:

H t
o = H(Ot) = −

N
∑

c=1

P t
s,clogP

t
s,c (3.42)

H∗
o = H(O∗

T ) = −δt−T
N
∑

c=1

P ∗
s,clogP

∗
s,c (δ > 1) (3.43)

Hr =
H∗
o

H t
o

(3.44)

Ωt = D(Ot//O
∗
t ) (3.45)

where Ωt is the relative entropy of Ot and O
∗
t , H

t
o is the entropy of Ot, H

∗
o is the entropy

of O∗
t scaled by a discount factor δ. The Eq. (3.43) shows H∗

o increases as time elapses.

With all the terms defined, we give the formal definition of the dynamical system as follows:

f = ΩtHr − Ωth (3.46)

U(Ot) =











O∗
T f ≤ 0

Ot f > 0

(3.47)

O∗
T = U(Ot) (3.48)

where Ωth is an algorithm defined threshold. Eq. (3.46) describes that f is first deter-

mined by the relative entropy Ωt, which is the probability distribution distance between Ot

and O∗
T . The bigger the distance between the two phase points the stronger f is. And then

f is scaled by Hr. It is inversely proportional to H t
o and proportional to H∗

o . The result
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subtracts Ωth and then Eq. (3.47) is used to determine whether O∗
T should move to meet

with Ot.

CPV determination With the ICIPS properly tracked, we derive the CPV vector for BS

s directly from O∗
T as Vs = {v1, v2, . . . , vN} = ~

1 − O∗
T . Vs is the complement of O∗

T . Let

D(Vs//Vs′) =
∑

Vslog
Vs
Vs′

be the relative entropy between BS s and s′, which measures how

different Vs is from Vs′. While BS’ distributively perform ICIPS tracking, we want the process

to maximize
∑

s,s′ D(Vs//Vs′), (s, s
′ are any two adjacent BS). The larger the D is, the more

likely BS may avoid ICI from neighbors effectively. CPV functions as a control variable. It

extracts information from the environment and then impacts algorithm 3 behavior. The

final goal is to let every BS in the same neighborhood favor different channels.

System convergence analysis When the algorithm starts, O∗
T is initialized to O∗

T =

{ 1

N
, . . . , 1

N
}, T = 0, and then it gets updated via Eq. (3.47). In dynamical systems’ language,

x is called a fixed point if S(x) = x, where S is the system function. According to Eq. (3.47),

O∗
t is at the fixed point. When f is not strong enough, U(Ot) remains stable. As the indicator

of environmental dynamics, when Ot deviates from O∗
T , Ωt increases. The f is also controlled

by the phase point uncertainty ratio Hr. The ratio amplifies the effect of Ωt when the system

has more uncertainty over O∗
T than Ot. The amplification effect makes the phase point to

move even if Ωt is small and turns the fixed point into a repellor. On the other hand, once

the phase point settles at a position with low uncertainty, Hr has reduction effect on Ωt.

In the other words, Ot with relatively bigger Ωt cannot attract O∗
t away from its original

position. Hence that makes the fixed point an attractor. The δ discount factor in H∗
o starts

to increase uncertainty after the phase point moves to a new position. Therefore we believe

once Ot settles the O
∗
T would finally be attracted to it.

3.5.4 Review and Heuristic Check

We have explained our optimization in previous sections. Figure 3.3 is included here to illus-

trate the dependence relationship between different key components used by the optimization

29



framework.

Algorithm 3

Is,c

CPV
πs,c

Algorithm 4

Figure 3.3: Optimization Key Components Dependency

Figure 3.3 shows that algorithm 4 monitors πs,c and updates it periodically. In turn, Is,c

is directly derived from πs,c. Is,c is used by algorithm 3 in its optimization and to compute

CPV. Each arrow in the figure denotes a dependency relationship.

To verify our optimization methods heuristically, we first conducted a simplified scenario

with only 3 BS’ each adjacent to another. Each BS has 8 channels and 6 UEs. UEs are

randomly located in the cell with no mobility. A brute force algorithm (BFA) is used to

find the optimal solution. BFA knows all UE’s TX power and locations across the mini

network. It tries all the combinations of channel allocations and picks the one with the best

spectral efficiency. Since proportional fairness (PF) is widely adopted in modern wireless

cellular networks [LPM09, LRP17, KRS16], both DCUA-CPV and the PF algorithm are

simulated in the mini network. In addition, we simulated the fair time-sharing RR algorithm

suggested in [GFR18] for comparison. The mini network simulation runs for a limited period

of time. The result shows that taking BFA performance as 100%, DCUA-CPV performance

is around 86% and PF is 74%. The RR algorithm yields the poorest performance (61%)

in this setup. Therefore, we will focus on analyzing DCUA-CPV and PF difference. The

performance difference arises because the DCUA-CPV algorithm lets each cell gradually

learn the neighbor cells channel allocation and adjust its own allocation to avoid ICI. On the

other hand, the PF algorithm allocates channels based on whether a UE suffers from low

traffic rate. Therefore, different BS may identify the same channel as a good channel and use
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it. This increases the possibility of interference between BS. For large scale networks, BFA

is not practical. It is however encouraging that our algorithm closes a significant fraction of

the gap between the PF and BFA algorithms for this small example. In the next section, we

will see that for larger scale networks the performance gain of DCUA-CPV over PF persists.

3.6 Simulation

3.6.1 Simulation Environment

3GPP RAN4 based Monte-Carlo static simulation is used as our simulation methodology

[RSS10a]. We simulate both the USC and RSC OFDM networks described in section 3.3.

Wrap-around is implemented for the USC network to tackle the network edge effect [RSS10a].

Each sector has 64 channels. UE locations in each sector are generated according to a

uniformly random distribution. The radius is 1500 meters. The carrier frequency fc is

2GHz. The total bandwidth is 100MHz. UE max transmission power is 23dBm. The urban

macro-cell scenario in [P 08] is used for defining channel mode parameters. We use the

channel propagation loss model defined in [P 08], which is a modified version of COST231-

Hata model. Channel capacity is calculated by the Shannon channel capacity formula C =

Blog2(1 +
S
N
) [Gol05]. UEs that are close in location are likely to experience similar shadow

fading. Therefore the WINNER II model requires shadow fading factor generated with

correlation prorated to the distance between different UEs. We have implemented this

feature in our simulation. By fine-tuning algorithms’ parameters including T, k,Mth, Dth, α

and backoff timer used in the algorithms 3 and 4, we obtain simulation results explained in

the next section.

3.6.2 Simulation Results and Discussions

Simulations are done for both low traffic loading, where the number of channels is greater

than the number of UEs, and high traffic loading, in which they are the same. Our results

include DCUA-CPV based and PF based channel allocation for comparison. Both RSC and
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USC networks are simulated. Figure 3.4, 3.5 show the spectrum efficiency for different traffic

loading cases in USC and RSC networks respectively.
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Figure 3.4: USC Spectrum Efficiency
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Figure 3.5: RSC Spectrum Efficiency

Our algorithm improves spectrum efficiency in all loading cases for both USC and RSC

networks. The higher improvement in low loading cases is because there are more vacant

channels for the algorithm to play with and adjacent sectors successfully avoid CPV collision.

This inevitably reduces the effective ICI, which is defined to be the interference power seen

in every transmission. In the high loading cases, since all UEs must be allocated channels for

transmission and the number of UEs approaches the number of channels, even the channels

with low CPV need to be used. The consequence is that more noisy channels will be used.

That increases the bandwidth consumption but data throughput does not improve accord-

ingly. Hence we see spectrum efficiency curve dropping in high loading area. As explained in
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[LPM09], the PF based algorithm allocates channel resource according to the current chan-

nel quality indicator (CQI). However, the PF algorithm does not address the MDC problem

inherent to multi-cell networks. Therefore, the CQI used in channel allocation may not be

the same as that of run time especially in the high loading case. Our algorithm does a better

job of keeping the channel quality indicator to be consistent from resource allocation decision

time and the run time. Hence, we see our algorithm outperforms PF in terms of spectral

efficiency. The improvement in minimum UE rate is shown in table 3.1.

Table 3.1: minimum UE rate

USC

Number of UE 8 16 24 32

PropFair 0.14256 0.019846 0.006356 0.0035705

DCUA-CPV 0.20354 0.029841 0.018349 0.0048620

Number of UE 40 48 56 64

PropFair 0.000923 0.000831 0.000781 0.000625

DCUA-CPV 0.001490 0.001503 0.001344 0.000727

RSC

Number of UE 8 16 24 32

PropFair 0.039676 0.016058 0.0061403 0.005144

DCUA-CPV 0.056284 0.019174 0.0091631 0.006898

Number of UE 40 48 56 64

PropFair 0.00514 0.00135 0.00402 0.00135

DCUA-CPV 0.00788 0.00317 0.00473 0.00154

In addition to Table 3.1, we include USC network UE rate variance results in figure 3.6.

It is clear that DCUA-CPV algorithm results in a lower UE rate variance compared to PF.

The simulation results show that USC in general yields better performance than RSC.

This is because RSC cells are randomly located. Cells close to each other generate much

more ICI to each other compared to the USC case. For both USC and RSC, we see overall

performance improves with our algorithm.
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Figure 3.6: UE rate variance

3.7 Conclusion

We proposed a new optimization model to perform channel allocation for OFDMA networks.

The algorithm has the merits of being autonomous and distributed with no inter-cell infor-

mation exchange. It also resolves the inherent MDC issue for the non-centralized resource

allocation algorithm. This is achieved by using an information theory based approach and a

random backoff algorithm. We have shown that the algorithm successfully improves network

spectrum efficiency and fairness in both USC and RSC networks.

For future research, we plan to incorporate power control into our optimization frame-

work. We expect to see that by controlling UE TX power, the algorithm would have increased

degrees of freedom for ICIPS tracking. In addition, this optimization framework should be a

good fit to the resource allocation scenario including handoff, as the ICI fluctuation caused

by UEs handoff is similar in nature to the dynamics we have already modeled.
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CHAPTER 4

Optimizing Framework for Two-tier Network Handoff

4.1 Introduction

In the future heterogeneous network, network bandwidth and resource management faces

new challenges and HO management is one of the most critical components to success. We

need a new HO strategy because HO in the two-tier network has significant differences from

the one tier counterpart. First, the HO performance is more sensitive to the UE mobility.

This is because femto cell coverage is small, maybe fragmented, and HO policy has more

options. Instead of just handover to a neighbor cell, in the two-tier network, UE may be

handed over to a macro cell from a femto cell or vice versa. Selecting a macro or femto cell

as the target BS has significant impact on HO performance. For example, a wrong decision

may cause a ping-pong effect, which means the UE constantly performs HO between cells.

Second, in comparison to the conventional received signal strength measurement based HO,

there are more variables affecting HO and more parameters can be tuned to control HO. It

would be rather difficult to construct a unified model to include all these variables. Finally,

a two-tier network is usually deployed in urban areas, especially indoor environments with

a high density of population. Wireless signals in this kind of environment are normally

time varying and have high dynamics. It is challenging to implement optimization based

on just received signal strength or distance to the BS. Moreover, unlike conventional single

tier networks, target BS bandwidth availability should also be taken into account for HO.

Otherwise, increasing blocking probability would jeopardize overall performance.

To tackle the challenges, we need a new methodology, which is flexible, simple and

adaptive to the environment. To achieve this, we propose the following innovations: i)

35



A new optimization framework, which includes a HO algorithm to control the HO procedure

and a machine learning (ML) algorithm to control the HO algorithm based on its historical

observations. The two main components work in cooperation to create a flexible optimization

design. In this design, every algorithm is replaceable. For example, there are many candidate

machine learning algorithms. We use a modified version of the K-Nearest-Neighbor (KNN)

algorithm here due to its simplicity. ii) A distance weight factor (DWF) algorithm that

defines the way to calculate data point distance. iii) Weighted KNN algorithm. Unlike KNN

algorithm that treats the K nearest neighbor opinions equally, WKNN takes disagreement

within a group into account. The idea behind this approach is that we weight different

opinions from different groups based on their uncertainty in their opinions. The uncertainty

in opinion is measured by data points’ disagreement, which is calculated as the average

distance between them. In the other words, if the data points within a group are closer

to one another, then its vote towards the group assignment of a new data point has more

weight.

The approach introduced in this chapter is an enhancement of the conventional HO

method. Unless the conventional HO algorithm is optimal, which is unlikely in the two-tier

network scenario, there is room for improvement. From collected conventional HO perfor-

mance data, a ML algorithm can identify the causality between the conditions and results

and build up its knowledge accordingly. This is far beyond the capability of conventional

HO algorithm using fixed or even adaptive thresholds. Fundamentally the ML algorithm is

more knowledgeable because it mines more information from historical HO data. Moreover

it only intervenes in the HO process when it believes there is a better decision. This provides

a guarantee that it is always an enhancement.

In the rest of the chapter, we first revisit existing research work. Then we describe the

system model used in this chapter. We then explain the framework in detail as well as

WKNN and other algorithms. Finally, our simulation results are presented.
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4.2 Related Work

The prior research on macro-femto heterogeneous network HO optimization can be catego-

rized into several different approaches. A common one is to implement a learning algorithm

or an inference engine of some sort as its core for making the HO decision. [NX15] sug-

gests to use measured received signal strength indication (RSSI) of all neighbor cells at the

HO scene as the location finger print. The algorithm learns causality between UE location

represented by the finger print and HO performance, and uses that to make the HO deci-

sion. [CWX14] uses a Markov decision process (MDP) to model the HO decision and its

consequence. The MDP defines call drop and switching cost as the penalty function, and

data throughput as the reward function. A Q-learning algorithm is used to find the optimal

policy. [KC15], [KLH17] both implement a fuzzy logic IF-THEN rule based inference engine

in HO optimization.

The other common optimization practice is to construct a model to predict the next

state of the UE to help HO. An optimized decision is made based on the prediction. [KLS15]

proposes a time series model, logistic smooth threshold autoregressive (LSTAR) model, for

SINR prediction, which is used by the target femto BS to prepare enough power for the

incoming UE through HO. [CAL13] adds UE mobility direction prediction into the HO

measurement report sent by the UE. The target BS uses the information for HO admis-

sion. [ZLX16] proposes to use a Gauss-Markov model for UE location and RSSI predictions.

[QLT17] proposes a multi-objective optimization problem to predict and select the target

BS to maximize achievable rate and reduce blocking probability.

The third approach employed by many researchers is to dynamically adjust various pa-

rameters to optimize the HO process in real time. [LCW16] proposes an algorithm to select

a lightly loaded BS as the HO target BS. [GPZ16] divides the UE mobility trajectory into

small time slots. A Markov process is created to model the UE state change and to esti-

mate the HO time to trigger (TTT), which is dynamically adjusted to maximize the average

performance. [HPH14] proposes an additional parameter, virtual offset for received signal

strength (VORSS), to be used in HO. By dynamically adjusting VORSS, the HO algorithm
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may control the selection of the HO target BS between the femto and macro cells. [BCN14]

devises a sensing algorithm that derives cell preference value from BS RSSI and signal qual-

ity. The preference value is used to create a candidate target BS list. [ZXM14] proposes

a hysteresis adjusting algorithm based on UE and BS distance. By dynamically updating

hysteresis, the HO decision is optimized. [BRT14], [KK13] propose to use UE velocity and

RSSI to form a prioritized HO list. UEs in the high priority list are likely to perform HO.

Besides the aforementioned HO optimization strategies, there are studies focusing on

specific HO optimization aspects. [LP14b] proposes a Max-min based proportional fairness

algorithm to achieve network load balancing via HO policy. [AK14], [DW13] and [THX13]

all use auxiliary devices as helpers in HO. [AK14] creates a virtual BS out of all BS in the

candidate list. [DW13] turns other UE into a device to device link to help on communication

with neighbor cells. [THX13] proposes to dynamically expand home BS coverage to reduce

the HO probability. [Fal13] proposes to divide UE links into call groups. Each group has

different priority. During the HO, links with lower priorities may be dropped first to reduce

the call drop probability. [LHN13] proposes a bandwidth limited HO admission policy to

reduce HO block probability.

In our study, we offer an optimization framework, which is compatible to existing HO

algorithms and adds a learning algorithm on top of it. Based on the collected statistical data,

the learning algorithm is able to do optimization to further improve HO performance. As

described in this section, prior works have optimized different quantitative metrics. Among

them, we choose the ones that directly affect HO performance to form a multi-objective

optimization. They include data throughput, HO ping-pong effect probability and radio link

failure rate. We will explain the details in the next few sections.

4.3 System Model

We describe the system model in three aspects: network model, channel propagation model

and user data traffic and mobility model.

Our study uses the scenario H1 described in [RSS10b] as the network model. The network
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model is a two-tier multi-cell OFDMA network. It has one macro cell plus a 30 femto-cell

network within it. The macro cell has 32 channels and the femto-cell has 10 channels. The

femto-cell network is arranged in a 3 row flat layout to simulate one floor of an apartment

complex. A user equipment (UE) may handover (HO) from the macro to the femto cell or

vice versa.

We use the geometry based stochastic WINNER II channel model [P 08]. The channel

model includes large scale (LS) and small scale (SS) parameters. The former includes pa-

rameters such as shadow fading. The latter includes parameters such as direction of arrival

(DoA). WINNER II models correlations between LS parameters of two UE links towards

the same BS. The correlation is proportional to the relative distance between the two UEs.

Poisson arrival models are used for the user traffic model. When the simulation starts

the number of UEs for each cell is generated with a uniform distribution with its mean being

a configurable simulation parameter. It remains constant during a simulation run. All UEs

in the network have mobility with a Smooth Random Mobility Model (SRMM) described in

[Bet01]. SRMM uses two stochastic processes for UE speed control and direction control.

The speed control takes acceleration into account and changes incrementally. The direction

change is also smooth. When a UE intends to turn, the direction is changed in several time

steps until the new target direction is achieved. Both stochastic processes include parameters

that can be tuned to model different mobility behaviors including pedestrian and vehicle.

4.4 Optimizing Framework

4.4.1 Optimization Goal and Three-tier Framework

The framework targets a multi-objective optimization goal. This includes network data

throughput improvement (D), ping-pong effect rate (P ) reduction and radio link failure rate

reduction (F ). The optimization goal is:

min α1

1

D
+ α2F + α3P (4.1)
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where α1, α2, α3 are weight factors.

To optimize the HO against the goal, our approach is to use the existing HO algorithm as

the basic HO procedure and make improvements on top of it. While the basic HO procedure

runs, HO information is collected. The HO optimization algorithm analyzes the collected

information and may override the HO decision made by the basic procedure when it believes

that it has a better one. Since the optimization relies on an existing HO algorithm and

always tries to do better when it builds enough confidence in the decision, we can reasonably

expect that the optimization will improve HO performance unless the basic HO procedure

always makes optimal decisions.

In theory, the candidate for the basic HO procedure can be any HO algorithm. In our

study, we use the Third Generation Partnership Project (3GPP) HO procedure explained in

[LCW16] and [AMY14] as the basic HO procedure. We implement a three-tier optimization

framework. It is run by every BS. The HOC in the lower tier runs the 3GPP HO procedure.

Information regarding each performed HO is used to generate a HO data sample. The HOC

feeds HO data samples into the DSS, which runs in the upper tier of the framework. The

DSS then runs a selection algorithm to save the selected data samples into the TDS. The

LA in the middle tier runs a machine learning algorithm, KNN in our study, over the TDS

to determine various optimization parameters. When the LA is confident that it has a

better solution than the basic HO algorithm, it sends a command to the HOC to make the

correction. Figure 4.1 shows the framework structure.

Upper Tier

Middle Tier

Lower Tier

DSS TDS

LA

HOC

Λ

HO decisionHO data
λ

Figure 4.1: HO Optimization Framework

The entire framework can be seen as a closed-loop control system with a feedback route.

40



The following sections explain each component in detail.

4.4.2 Upper Tier Operation

Data sample definition Let λ = {~γ, Bδ}, where ~γ denotes the neighbor BS’ (including

target BS) SINR vector measured before the HO decision was made and Bδ be the payoff

value of handover to target BS δ. The payoff value denotes the HO performance result

calculated according to Eq. (4.1) by the HOC. λ is fed by the HOC to DSS and is considered

as the raw HO data collected directly from HO operation.

Let Λ = {~ψ, ~ν, γ, ρ, Bδ} be a derived HO data sample vector. ~ψ denotes the UE location;

~ν denotes the UE mobility vector. Both ~ψ, ~ν are derived terms that will be explained in the

next section. ρ is the max available vacant channel preference value (CPV) in the target

BS. CPV is a channel resource allocation metric used by every BS for its uplink channel.

Assuming there are N uplink channels for each BS, let Ic be the interference level on channel

c. CPV for channel c is defined as vc =
∑N

i=1
Ii

IcHc
, where Hc = −

∑n

i=1
PilogPi (Pi is the

probability of channel interference level in interval i) is the entropy of Ic. The Hc determines

how uncertain the BS sees Ic on channel c. The higher and more uncertain Ic is, the lower vc

would be. ρ is an indicator of channel quality and availability in the target BS. It is defined

as argmax
c
ρ = {vc|channel c is vacant}.

Data Sample Selector The DSS has two major responsibilities including converting λ to

Λ and selectively forwarding Λ to the TDS.

The DSS first augments λ by adding two derived terms ~ψ and ~ν. ~ψ is UE’s location

obtained using its measured neighbor BS’ received signal strength vector. This will usually

be a good approximation because we can reasonably assume a BS’ received signal strength

level seen by an UE is highly correlated with the distance between them. Since BS’ location

is known, by checking signal strength from different neighbor BS, DSS derives an estimation

of the UE’s location.

The other derived term ~ν is calculated by DSS using UE’s historical λ data. By checking
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~γ fluctuation level in a unit time interval, the DSS estimates the fading level of the UE

and the velocity of the UE. Next the DSS estimates the moving direction by computing the

difference of two consecutive locations of the UE.

Then the DSS only keeps the HO target BS’ received signal strength γ from ~γ and

together with ~ψ, ~ν to generate Λ. Next the DSS selects the data points by their payoff value

Bδ and aims at picking up HO data samples with performance results better than threshold

(ζ). Each BS maintains a HO data sample set TDS to store HO data samples Hb
i , where

b is the target BS and i is the index of the data sample. Algorithm 5 explains the details.

The algorithm first checks whether the new data samples fall into the coherent period (τ)

of any previous HO data samples for the same UE. This is necessary for ping-pong effect

calculation, since if a ping-pong effect happens to a UE, the selector would see a sequence

of HO data. If the interval between two HO data samples of the same UE is beyond τ , the

latter HO is considered to be a brand new HO event.

4.4.3 Middle Tier Operation

Data sample distance As described in the previous section, HO data samples are orga-

nized per their handover targeted BS b in TDS, denoted as TDSb. The distance between any

two data points {Hb
i , H

b
j} ∈ TDSb is defined as dbi,j(~w) = w0d

b
ψ,i,j+w1d

b
ν,i,j+w2d

b
γ,i,j+w3d

b
ρ,i,j,

where ~w = (w0, w1, w2, w3)
T is the distance weight vector, dbψ =

∥

∥

∥

~ψbi −
~ψbj

∥

∥

∥
is the Euclidean

distance between the two HO locations; dbν =
∥

∥

∥

~νbi −
~νbj

∥

∥

∥
is the distance between the mobility

vectors; dbγ = γbi − γbj ; d
b
ρ = ρbi − ρbj . We also define target BS total data sample distance as

Db =
∑K−1

i=1

∑K

j=i+1
dbi,j, where K = |TDSb|.

Distance weight vector Whenever TDS is updated with new data samples, the weight

factor ~w is optimally determined. The optimization goal is to minimize the total distance

among all data samples in TDS. In the other words, data samples leading to a similar HO

decision should be close to each other in distance. With the definitions in the section 4.4.3,

we derive:
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Algorithm 5 DSS algorithm

1: compute ~ψ from ~γ

2: compute ~ν from ~γ and ~ψ

3: receive Hb
u,t = Λ for UE u at time t

4: if there exists an Hb′

u,t′ saved before at t′ then

5: if (t− t′) > τ then

6: if Hb
u,t(Bδ) > ζ then

7: save Hb
u,t into TDS as a new data sample

8: end if

9: else

10: update Hb′

u,t′(Bδ)

11: let t′ = t

12: end if

13: else

14: if Hb
u,t(Bδ) > ζ then

15: save Hb
u,t into TDS as a new data sample

16: end if

17: end if

Db =
K−1
∑

i=1

K
∑

j=i+1

dbi,j(~w) (4.2)

=

K−1
∑

i=1

K
∑

j=i+1

(w0d
b
ψ,i,j + w1d

b
ν,i,j + w2d

b
γ,i,j + w3d

b
ρ,i,j) (4.3)

= w0

K−1
∑

i=1

K
∑

j=i+1

dbψ,i,j + w1

K−1
∑

i=1

K
∑

j=i+1

dbν,i,j

+ w2

K−1
∑

i=1

K
∑

j=i+1

dbγ,i,j + w3

K−1
∑

i=1

K
∑

j=i+1

dbρ,i,j (4.4)

= w0D
b
0 + w1D

b
1 + w2D

b
2 + w3D

b
3 (4.5)

where Db
0, D

b
1, D

b
2 and D

b
3 replace the corresponding terms in Eq.(4.4). The total distance
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can be defined as

∑

b∈B

Db = w0

∑

b∈B

Db
0 + w1

∑

b∈B

Db
1 + w2

∑

b∈B

Db
2 + w3

∑

b∈B

Db
3 (4.6)

= w0D
B
0 + w1D

B
1 + w2D

B
2 + w3D

B
3 (4.7)

where B denotes the data sample set for target BS B. We have a distance determination

model as follows:

min
~w

w0D
B
0 + w1D

B
1 + w2D

B
2 + w3D

B
3 (4.8)

s.t. ~
1

T ~w = 1 (4.9)

~w � 0 (4.10)

Eq.(4.8) is a linear programming problem. By the constraints (4.9) and (4.10), ~w can be

regarded as a probability distribution. To calculate the optimal value of Eq.(4.8), we simply

allocate all the probability to the minimum DB
i . To prove this, let Im = {i|DB

i = dmin, i =

0..3}, where dmin is the minimum value of all coefficients.

Pw =
∑

i∈Im

wi (4.11)

Sm =
∑

i∈Im

DB
i wi (4.12)

= dmin
∑

i∈Im

wi = dminPw (4.13)

Let J = Īm, if Pw < 1, then we obtain,

(4.8) = dminPw +DB
j (1− Pw) j ∈ J (4.14)

∵ DB
j > dmin (4.15)
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∴ (4.8) > dminPw + dmin(1− Pw) (4.16)

= Sm (4.17)

Based on the conclusion, we devise the distance weight factor (DWF) algorithm

Algorithm 6 DWF algorithm

1: dmin = min(DB
i ), i = 0..3

2: wi =
1

|Im|
, i ∈ Im

3: wj = 0, j ∈ J

Weighted KNN learning The LA is the core in the middle tier of the framework. We

propose the weighted K-Nearest-Neighbor (KNN) algorithm for the LA. Traditional KNN

determines to which group the new data sample belongs to by taking votes from K nearest

neighbors in distance.

w̄ w̄ŵ

ŵ
ŵ

Figure 4.2: K=5 nearest neighbor classifier with weight

In our study, we do not consider every neighbor data sample with equal weight. Figure

4.2 is an example for weighted KNN. The ellipse data point consults its 5 nearest neighbors

to determine whether it belongs to the circle or the square group. However, the circle

and square data samples are evaluated with weights of w̄, ŵ respectively. In our study, we

determine the weight by data uncertainty. The uncertainty is measured by the disagreement

(average distance) between the data samples in the group of the same target BS. Let wb be
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the weight for data samples with HO target BS b, B be the set of all BS, wb = Db
∑

b′∈B Db′
.

Let HO(b) be the HO decision, K(b) be the set of BS the selected K data samples have. We

obtain

HO(b) = argmax
b

|K(b)|wb (4.18)

Algorithm 7 realizes Eq.(4.18)

Algorithm 7 Weighted KNN Learning Algorithm

1: Select K nearest neighbors of data samples

2: for b ∈ K(b) do

3: calculate |K(b)|wb

4: end for

5: return the BS that has max |K(b)|wb

4.4.4 HO Controller

The HOC operates in the lower tier of the framework. By default it runs the UE HO

operation to comply to 3GPP. When a UE meets the standard 3GPP HO criteria, the HOC

forwards its data to the LA. The LA may override the default HO decision, if it thinks a

better HO decision could be made based on its knowledge. Once a HO operation is done,

the HOC keeps track of the UE and collects its post HO performance report. A HO data

sample is generated by combining the HO status and performance report. The HOC then

feeds the data to the DSS in the upper tier.

4.5 Simulation

4.5.1 Simulation Environment

Monte-Carlo static simulation is used as our simulation methodology [RSS10b]. The carrier

frequency fc is 2GHz. The total bandwidth is 100MHz. UE max transmission power is
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23dBm. The urban macro-cell scenario in [P 08] is used for defining channel mode param-

eters. The channel propagation loss is computed as: PL = PLfree + SF + AG,PLfree =

20log10(d)+46.4+20log10(
fc
5
), where d is the distance between UE and BS antenna. Channel

capacity is calculated by the Shannon channel capacity formula C = Blog2(1 +
S
N
) [Gol05].

AG is the antenna gain calculated using azimuth antenna pattern. SF is the shadow fading

factor. It is a random variable with a Gaussian distribution. Its standard deviation is 4.

UEs that are close in location are likely to experience similar shadow fading. Therefore the

WINNER II model requires SF generated with correlation prorated to the distance between

different UEs. We have implemented this feature in our simulation. We obtain simulation

results explained in the next section.

4.5.2 Simulation Results and Discussion

Simulations are done for setting different average UE speeds into the mobility model proposed

in [Bet01]. The 3GPP standard HO procedure is simulated for comparison. Figure 4.3 shows

the network overall data throughput results. We see that our algorithm yields a much better

performance. This is a result of multiple factors. First of all, each BS keeps track of channel

noise level by CPV. High CPV indicates the channel is less noisy. The max available vacant

channel CPV ρ is taken into account by the optimization algorithm, so it makes it more

likely that a UE handovers to a target BS with a cleaner channel. This effect improves data

link throughput.
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Figure 4.3: Network Data Throughput
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Secondly, the optimization aims at ping-pong effect reduction. As shown in figure 4.4, our

optimization significantly reduces the ping-pong HO probability. The LA in the optimization

learns what kind of HO data sample is likely to cause ping-pong HO from the historical data

in TDS and tries to avoid them. Reduction in unnecessary HOs reduces the data link

interruption time and improves data throughput.
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Figure 4.4: PingPong HO Probability

Figure 4.5 shows that our optimization has noticeable reduction in link failure probability.

It is expected that greater UE speed causes higher probability of link drop. By taking

mobility into account in the HO decision, the optimization improves the performance in

this regard either by handover of the UE to the macro BS or by finding a better femto BS

along the mobility direction instead of the current BS with better signal strength. Thus, the

proposed framework can improve the performance with respect to all three goals.
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4.6 Conclusion

We proposed a new optimization framework to perform HO management in macro-femto cell

heterogeneous networks. The framework has the merit of being flexible as it may accom-

modate any basic HO algorithms, which interfaces with the upper level machine learning

algorithm for further performance improvement. Not only can the algorithm components

be replaced, but the threshold conditions for overriding the basic HO algorithm decision

can be fine tuned. In this chapter, we proposed a WKNN algorithm for the machine learn-

ing algorithm in the framework. The WKNN algorithm improves in data point classification

performance by properly weighting neighbors. We have shown that the optimization success-

fully improves HO performance against the given multi-objective target in the heterogeneous

network.

Given the fact that macro and femto cells may work on different frequencies, the propa-

gation model needs to account for additional variables. This makes the need for a machine

learning algorithm to deal with the variation is even stronger, along with the notion of hav-

ing possibly multiple base HO algorithms that the supervisory ML layer selects. Hence, we

suggest future study in this direction.
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CHAPTER 5

Concluding Remarks

In this work we propose an optimization framework for OFDMA network channel resource

allocation and UE handover management. The optimization framework has been proven to

work with USC and RSC networks as well as macro, femto two-tier heterogeneous networks.

The 2-dimensional and two-tier network optimization is a complex problem due to traffic

loading variation, UE mobility and environment dynamics. Among all the difficulties, the

MDC problem is the hardest one to overcome. However, we have successfully solved these

problems in our proposed optimization framework.

First, we studied the channel resource allocation optimization problem in the macro cell

network. The goal is to improve the network traffic throughput and at the same time main-

tain fairness between UEs. We identified that ICI avoidance is one of the major challenges in

channel resource allocation. This is associated with the MDC problem, which makes it even

harder to resolve. In this work, we defined the multi-objective optimization formulation and

then reformulated it into a simplified LP model. The optimization algorithm sequentially

solves the LP model to approach the optimal solution of the original model. To tackle the

MDC problem, we treat the ICI as an information source and determine the environmental

steadiness via mutual information of ICI. The framework includes all these optimization al-

gorithms to enable every cell to perform channel allocation and ICI avoidance distributively.

Our simulation result shows the algorithm works well.

Next, we studied the macro-femto two-tier network handover problem. We proposed an

multi-tier optimization framework to combine handover algorithm with a LA, which can be

realized by different machine learning algorithms. The idea behind this can be summarized

into a few points:
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1. Different HO execution algorithms can be used and operation data is collected

2. LA may use different machine learning algorithms

3. LA studies data and issues its own judgement to override HO execution algorithm’s

decision when necessary

With this setup, the HO execution algorithm knows the operation, while LA has the intel-

ligence. While flexibility is an obvious advantage of the framework, it is also adaptive to

the environment and distributed. In this work, we propose a modified version of the KNN

algorithm, WKNN, to be the core algorithm of LA. WKNN not only studies neighbor’s vote

on decisions but the degree of disagreement in different group’s members as well. However,

any appropriate machine learning algorithm can be used. Using a machine learning tech-

nique in handover has another important merit. From the optimization point of view, the

differences between how to treat macro and femto cells is learned by the LA. In the other

words, LA may not be aware a macro or femto cell is involved in the operation. All it sees

are data samples. The fact that the LA makes different HO decision is equivalent to HO

parameter customization for different scenarios. However, the customization is done by the

LA automatically instead of the algorithm designer.

Finally, the channel resource allocation and handover optimization meet at incorporating

cell channel allocation consideration into handover optimization framework. In this thesis,

we have proposed a distributed channel allocation algorithm using CPV. While each BS

allocating its own channel independently with no explicit information exchange can be an

advantage, BS’ connect to each other when a UE handovers from one to the other. We

consider the HO optimization framework to be a higher level framework, which is more

generic than the channel allocation optimization framework. Thus the latter can be inte-

grated very well into the former. In reality, since there is signaling message exchange during

the HO procedure, different BS’ CPV state information can be propagated via those signal-

ing messages. Therefore this information can be utilized by the LA in the HO optimization

framework to not only determine target BS’ resource availability but also help in BS received

signal strength measurement predication as well. Extending the multi-tier approach to the
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channel assignment problem within cells or indeed to any resource allocation problem in

radio would be a very interesting question for follow on research.

Our simulation shows the proposed algorithm successfully optimized handover perfor-

mance compared to a traditional basic handover algorithm. By studying different scenarios,

the optimization framework shows promising improvements over other proposed methods.

An interesting future work could be to incorporate power control as another dimension into

the framework and expand the handover decision space to include more parameters for the

LA.
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