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Abstract of the Dissertation

Robust Human Activity Classification and

Motion Monitoring Systems Using Inertial

Sensors

by

Xiaoxu Wu

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2016

Professor Gregory J. Pottie, Chair

The proliferation of powerful microcomputers and the development of modern

machine learning tools have enabled human daily activity monitoring systems us-

ing wearable inertial sensor like accelerometers and gyroscopes. These systems

fulfilled the urgent need in health and wellness industries in helping doctors and

clinicians during diagnosis, treatments and rehabilitation processes for neurologi-

cal diseases like strokes and Parkinson’s.

For most current activity monitoring systems, there exists an assumption that

the sensors are always securely and correctly mounted by the users. Unfortu-

nately, such assumptions do not hold as the scale of studies increase. And it is

especially challenging for subjects with neurological diseases to follow instructions

about how to mount the sensors everyday, because some of the elderlies tend to

be technophobic and neurological diseases are often accompanied with cognitive

difficulties. Errors in sensor mounting pose can cause large amount of data loss

and distortion and will affect the robustness of the systems severely.

In observance of these issues, a series of solutions for sensor orientation and

position errors in human motion monitoring and activity classification will be pre-
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sented. Opportunistic calibration methods to find the true sensor orientation and

position will be discussed. In addition, systems that provide robust monitoring

regardless of the exact sensor pose will be proposed.
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CHAPTER 1

Introduction

1.1 Motivations

The proliferation of powerful mobile computers and the development of modern

machine learning tools have made it possible for human daily activity monitoring

using inertial sensors with light weight, small size and cheap price. Such daily

activity monitoring has been proven to be a key indicator of human health sta-

tus [DC15] [DTD15]. With these advances, many of the most urgent problems

in health and wellness promotion, diagnostics, and the treatment of neurological

conditions can be addressed.

Similar to most machine learning systems, missing and erroneous data issues

emerge as the scales of applications increase. Current state-of-the-art machine

learning systems can be made to be adaptive to such problems with examples

like EM algorithms [DLR77] as long as a sufficient amount of data is available.

But such approaches can be hard to apply in the wireless health context, because

sufficiently large datasets with ground truth labeling are generally very expensive

and usually not available.

Therefore, we pursue the solution of defining common possibilities of data loss

or distortion and try to solve each problem with a model. We found that one

of the most commonly seen issues in most human activity recognition systems

are sensor placement errors. Unfortunately, such errors are especially common

among patient populations since elderly patients often tend to be technophobic
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and many neurological diseases are accompanied with cognitive issues. All these

factors make it harder for neurological disease patient with mobility impairments

to follow instructions about the sensor placement everyday.

Since most current state-of-the-art activity monitoring systems assume good

sensor placement, it can be very valuable to find general methods of signal correc-

tion for sensor misplacement. Such misplacement correction algorithms will make

human activity monitoring systems more powerful and adaptive to real world

applications.

1.2 Scope of This Thesis

The scope of this thesis focuses on sensor misplacement issues and how solving

these issues can make activity recognition as well as motion tracking systems more

reliable.

Activity recognition systems enable monitoring of quantity of daily activities,

which means the amount of time that a subject spend walking, sitting or sleeping

etc. These metrics provides valuable information towards the health condition of

a subject and can be easily used as daily exercise prescriptions.

In addition, motion trajectory reconstruction problems that enable monitoring

of detailed quality of daily activities are also of great interest. Metrics like step

length, walking speed, duration of bouts etc. can be extracted given detailed tra-

jectories. These metrics serves as important references for clinicians and doctors

during diagnosis and rehabilitation processes.

We limit our discussions to lower body activities because they are the most

frequently prescribed activities during rehabilitation processes for patients with

mobility difficulties and they are proven to be strongly related to people’s health

status. [Pub09]
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1.3 Prior Works

1.3.1 Sensor Misplacement Problems

One of the most widely used approaches for sensor misplacement issues is to iden-

tify placement invariant features. [KL08] studied how accelerometer and gyro-

scope signals are affected by sensor displacement. They showed that the accelera-

tion component due to rotation is especially sensitive to sensor displacement. And

thus, by avoiding segments of signals where rotation dominates, the effect of sensor

displacement can be significantly reduced. [FBR09] proposed a feature extraction

method based on genetic programming. Significant performance improvement for

gesture recognition systems were reported using sensor position invariant features.

[ZD14] propose a novel gait representation for accelerometer and gyroscope data

which is sensor-orientation-invariant. A series of high-performance gait biomet-

rics were explored and used for classification purposes. These methods achieve

robustness of the recognition systems by using features that are not affected by

misplacement of sensors. But the main issue for these approaches is that we often

have to compromise on the overall performance. Such compromises can be intol-

erable in cases where we want to discriminate between activities with directions

(e.g. walking upstairs versus walking downstairs). In addition, such approaches

are only applicable for classification problems and do not help when exact motion

trajectories are of interest.

Another popular solution for sensor misplacement issues is to calibrate sensor

signals with predefined activities. [GBN11] uses the distribution of gravity on 3

axies during static activities (e.g. standing, sitting) to transform the accelerometer

signals from the device coordinate system to the body reference coordinate system,

making the signals not sensitive to sensor orientation. [FHC12] propose a very

similar algorithm. During several pre-defined static activities, the true mounting

orientations of the sensors were estimated. Then sensor signals can be corrected

3



using the calibration information. These methods all require pre-defined calibra-

tion activities performed by the users. Such requirements are usually not feasible

for large scale applications, because assuming all users to follow the instructions

about quantity as well as quality of calibration activities is not realistic.

1.3.2 Lower Body Motion Tracking

In addition to the widely used activity recognition systems that provide quantities

of daily activities, wearable inertial sensors have found their power in more detailed

motion tracking systems. By reconstructing the detailed trajectory of certain

activities, more metrics can be extracted making quality of daily activities also

available.

[WCX13a] proposed tracking lower body motion by using a double pendulum

model. But this model needs two sensors on each side (one on the thigh and

one on the ankle) for accurate estimation. Moreover, the requirement of correct

orientation and placement of the sensors limits its practical application.

The other approach is double integration of the motion acceleration. A zero-

velocity-update (ZUPT) method is applied to compensate the cumulative error

[BBS08][SMS05][WXX13]. The ZUPT method needs only one sensor and is exten-

sively employed because of its robustness and easy implementation. This ZUPT

method assumes that there exists a stable zero-velocity interval within each stride

and this critical assumption only holds when the sensor is mounted on the foot.

However, in most medical applications, clinicians prefer ankle-mounted positions

for lower body motion tracking[DXB11][XBK11][DD11]. This is because, not all

patients wear shoes with laces everyday. It happens frequently that they don’t

even wear shoes when it is important to capture activity. In contrast, ankle-

mounted sensors allow clinicians to deploy the sensors without considering these

constraints. Hence, a new velocity update method for ankle-mounted sensors is

4



needed.

1.4 Background Knowledge

In this section, background knowledge regarding the sensors used, possibilities of

sensor misplacement and 3D rotation representation are presented with the hope

of ease of reading for the rest of the thesis.

1.4.1 Inertial Sensors

The most widely used inertial sensors are 3-axes accelerometers, gyroscopes. We

will introduce some basic knowledge about these two types of devices.

MEMS accelerometers can be modeled by a spring-mass system where the

acceleration of a mass is measured by the displacement of the connected spring.

The output measurements are the summations of gravity and motion accelera-

tion. The gravity component has a magnitude equal to the gravity constant of

9.8m/s2, and this magnitude is distributed among the 3 axes based on the current

sensor orientation. The motion acceleration component is dependent on the trav-

eling acceleration. When the sensor stays still, the accelerometer outputs only

the gravity component and has a constant magnitude. But when the sensor is

moving, the two components of gravity and motion acceleration add up to the

total measurements and can be hard to separate.

MEMS gyroscopes measure angular velocity using the fact that a vibrating

object tends to continue vibrating in the same plane even if its support rotates.

And the Coriolis effect causes a force from the object applied to the support, and

by measuring this force the angular velocity can be determined. Therefore, the

exact position of the sensor will not affect the gyroscope measurements. But an

orientation error will affect the distribution of total angular velocity among the 3

axes.

5



1.4.2 Rigid Body 3-dimensional Orientation Representations

Four ways of describing a rotation in 3-dimensional space are introduced in this

section. They are very useful tools as we proceed to the rest of this thesis about

detailed algorithms.

1. Euler Angle.

Euler angle is the most intuitive way of describing a 3D rotation. Euler angles

represent a sequence of three elemental rotations, i.e. rotations about the axes

of a coordinate system. For instance, a first rotation about z by an angle α, a

second rotation about x by an angle β, and a last rotation again about y, by an

angle γ. These rotations start from a known standard orientation [Wik16a]. This

representation is a straight forward way of describing a rotation. But the Euler

Angle representation suffers from gimbal lock issues and introduces complexity in

tracking. Therefore, this representation is not used in this thesis.

2. Axis-angle

The axis-angle representation is a second way to describe a rotation. It consists

of a unit vector e indicating the direction of an axis of rotation, and an angle θ

describing the magnitude of the rotation about the axis e (Figure 1.1).

Figure 1.1: Axis-Angle Representation of a 3D Rotation
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3. Rotation Matrix

We can also represent a 3D rotation in a 3 by 3 orthogonal rotation matrix

with determinant of 1. The rotation matrix is the most widely used representation

in this thesis because of the clear mathematical form. A 3D vector representing a

sensor measurement can be directly projected onto a rotated coordinate system by

simply applying the right hand rule in Equation 5.3 where arot and aorig are sensor

measurements in the rotated coordinate and original coordinate respectively and

the R is the rotation matrix.

arot = aorigR (1.1)

4. Orientation Quaternion

Another important rotation representation is the quaternion. A quaternion

is a simple four-number encoding of the axis-angle representation of a rotation.

A rotation of θ around axis e can be represented as a quaternion in the form of

Equation 1.2 where i, j and k are unit vectors representing the three Cartesian

axes.

cos
θ

2
+ (exi+ eyj + ezk) sin

θ

2
(1.2)

Compared to Euler angles they are simpler to compose and avoid the problem

of gimbal lock. Compared to rotation matrices they are more numerically stable

and may be more efficient [Wik16b]. If we wish to rotate a sensor measurement

in 3D space a = (ax, ay, az) by a rotation in quaternion form q, the sensor mea-

surement in the rotated coordinate system a′ = (a′x, a
′
y, a
′
z) can be calculated in

Equation 1.3 using the Hamiltonian product.

a′ = qaq−1 (1.3)
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(a) Misorientation (b) Rotational Displacement (c) Linear Displacement

Figure 1.2: Definition of all sensor misplacement possibilities

1.4.3 Possibilities of Sensor Misplacement

Sensor misplacement can vary from case to case. But assuming that a sensor is

always placed such that the x-y plane is firmly attached to the limb, all misplace-

ment within a limb can be decomposed into the three cases shown in Figure 1.2.

Misorientation means a sensor is placed at the correct position but the sensor

is rotated around the z axis (shown in Figure 1.2a). In this case, z-axis sensor

signals are not distorted. As a result, the distortion can be modeled by a rotation

around the z axis. Both accelerometer and gyroscope measurements distortion

can be modeled using a rotation matrix in Equation 1.4.

Rmisorientation =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (1.4)

In a rotational displacement case (shown in Figure 1.2b), we assume that the

distance between the correctly placed sensor and the incorrectly placed sensor

8



misorientation
rotational

displacement

linear

displacement

Accelerometer Rmisorientation Rrotational

gravity not affected

motion acceleration affected

Gyroscope Rmisorientation Rrotational not affected

Table 1.1: Summary of three possibilities of sensor misplacement

is negligible. Both accelerometer and gyroscope measurements distortion can be

represented by a rotation matrix described in Equation 1.5

Rrotational =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (1.5)

In a linear displacement case (shown in Figure 1.2c), the orientation of the

sensor is not corrupted. Therefore, the gyroscope measurements are not changed.

For accelerometer measurements, the gravity component is also not changed due

to the fact that the orientation is correct. However, the motion acceleration can

be affected due to the fact that position of the sensor is changed.

In all three cases, the impact on accelerometer and gyroscope measurements

are summarized in Table 1.1

1.5 Thesis Organization

The rest of this thesis is organized as follows.

In Chapter 2, an opportunistic calibration method for finding sensor mount-

ing orientation will be described and discussed. Two-dimensional rotation matrix

models will be built and evaluated for cases of misorientation and rotational dis-

placement.
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Following that, in Chapter 3, a method for estimating the sensor mounting

position will be discussed. In addition, knowing the sensor position will lead up

to the possibility of lower body motion tracking using only one sensor on the

ankle.

After the discussion of calibration methods in finding the orientation and po-

sition of the sensors and their applications to the lower body motion tracking in

these two chapters, we are ready to move on to more advanced models that are

robust to sensor mounting positions and orientations without requiring necessary

calibration process.

In Chapter 4, a step-length estimation method will be discussed by using the

quaternion change within each stride. This novel differential model requires no

knowledge of the sensor mounting orientation or position, and is therefore, very

robust to all types of sensor misplacement.

In Chapter 5, automatic orientation correction was achieved by using a double

layer model. In the first layer, a conservative orientation invariant model was used

to the detect walking activities with very high confidence. Then these walking

activity signals are compared with the training template to calculate the sensor

orientation information. With this sensor orientation information, the sensor sig-

nal can be corrected and fed into the second layer orientation variant classifier

with higher accuracy.

Finally, this thesis will be concluded with Chapter 6.

Centered around inertial sensor misplacement problems, this thesis will pro-

pose several methods with the theme of opportunistic identification of certain

segments of the data and using them to serve as calibration points or anchors for

the rest.

10



CHAPTER 2

Sensor Orientation Error Correction And the

Application to Motion Tracking

2.1 Problem Statement

As is discussed in Chapter 1, one of the most commonly seen problems in human

activity recognition systems is sensor placement errors. The frequent occurrence

of signal distortion due to sensor placement errors can cause serious degradation

of the system performance.

In reaction to the problem of sensor placement errors, we propose a novel

calibration process based on repetitive motion signatures available in daily life

activities in this chapter. We choose walking as one example of such motion

signatures and show that it contains meaningful information that can be applied

to calibration for lower limb sensors.

The main contributions for this chapter are as follows. A novel calibration

method based on motion signatures was developed. To demonstrate the effective-

ness of the proposed approach, we examine the sensor signal recovery. Specifically,

we study the application to lower body motion tracking and step-length measure-

ment.
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2.2 Methodology

In this section, we will study two common sensor misplacement cases: misorien-

tation (Figure 1.2a) and rotational displacement (Figure 1.2b). The model and

the system architecture for each one are discussed in detail.

2.2.1 Sensor Misorientation

In sensor misorientation, the z axis for the incorrectly placed sensor is exactly the

same as the correctly placed sensor(shown in Figure 1.2a). Only the x-y plane is

rotated.

2.2.1.1 Model

The relationship between the measurement in two frames can be represented by a

2x2 transformation matrix [KL08]. Since the transformation matrix has a determi-

nant of 1, the unknowns can be reduced from four to one (shown in Equation 2.1).

x and y are vectors that represent the measurement of the correctly placed sensor

on the x and y axes over time. x′ and y′ are vectors that represent the measure-

ment of the incorrectly placed sensor on x and y axes over time. θ is the rotation

angle of the x-y plane between the correct frame and the incorrect frame; this

angle needs to be estimated during the calibration process.x

y

 =

 cos θ sin θ

− sin θ cos θ

 ∗
x′

y′

 (2.1)

2.2.1.2 System Architecture

The system block diagram is shown in Figure 2.1. Since during misorientation

the sensor x-y plane is rotated, the measurement in a correct frame and the

measurement in an incorrect frame are related by Equation 2.1.

12
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Recovered
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Figure 2.1: System block diagram for misorientation

We take the mean of both training data and testing data on the x and y axes,

and use them for the MMSE estimation of the rotation angle in Equation 2.2 where

x and y represent the mean of the training data (correct frame measurement) on

the x axis and y axis and x’ and y’ represent the mean of the testing data (incorrect

frame measurement) on the x axis and y axis.

Then, the transformation matrix can be decided and applied to the testing

data so that the sensor misorientation can be compensated.

θ̂ = arg min
θ


x
y

−
 cos θ sin θ

− sin θ cos θ

 ∗
x′
y′

 (2.2)

2.2.2 Rotational Displacement

Assuming that the distance between the correct and incorrect sensor is negligible,

the y-axis signal is not distorted and the x-axis and z-axis signals are rotated as

13



shown in Figure 1.2b.

In the presence of additional assumptions and uncertainties, we now need

to use information from gait cycles in a more sophisticated manner. Despite

its complexity, this method is applicable to both misorientation and rotational

displacement.

2.2.2.1 Model

The relationship between the measurement of the correctly placed sensor and the

incorrectly placed sensor on the x and z axes can be represented by Equation 2.3.

This is valid for both accelerometer and gyroscope signals. x and z are vectors

that represent the measurement of the correctly placed sensor on the x and z axes

over time. x′ and z′ are vectors that represent the measurement of the incorrectly

placed sensor on the x and z axes over time. θ is the rotation angle of the x-z

plane between the correct frame and the incorrect frame.x

z

 =

 cos θ sin θ

− sin θ cos θ

 ∗
x′

z′

 (2.3)

2.2.2.2 System Architecture

The system block diagram is shown in Figure 2.2. We observe that the energy

signal (the square sum of the accelerometer measurement on all three axes) is

invariant in sensor misplacement. Thus, we can chop the training and testing

data into gait cycles based on the energy signal.

Each gait cycle in the training set was compared to all the other gait cycles in

the training set based on a dynamic time warping (DTW) algorithm [RJ93] using

energy features. The gait cycle with the minimum energy DTW distance to all

the other gait cycles is chosen as the training template, as being in some sense

the most typical gait cycle. For the selection of the testing template, we similarly
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Figure 2.2: System block diagram for rotational displacement

choose the one with the minimum energy DTW distance to the training template.

The training template and the testing template are then synchronized by using

the optimal path computed by DTW. Following that, they are used for MMSE

estimation of the rotation angle based on Equation 2.4. x and z are training

templates on the x and z axes. x′ and z′ are testing templates on the x and z

axes.

θ̂ = arg min
θ


x

z

−
 cos θ sin θ

− sin θ cos θ

 ∗
x′

z′

 (2.4)

2.3 Experiments and Results

Sensor placement error has a significant impact on human activity motion track-

ing. We examine the improvement that sensor placement correction can give us

for lower body motion tracking and step-length measurement.

For the two sensor misplacement cases (Figure 1.2a and Figure 1.2b), the data
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collection setup, the signal recovery result, and the motion tracking step-length-

measurement results are discussed in detail below.

2.3.1 Data Collection

Five 9DOF Razor IMUs were used to acquire motion data and the measurements

were sent wirelessly through a Bluetooth modem to a tablet. Four sensors were

attached to the subjects’ waist, thigh, and calf with the x-y plane aligned with the

sagittal plane and the y axis with gravity (shown in Figure 2.3). All the sensors

were sampled at 50Hz. Signature motions were put at the start and end of the

data sequence for synchronization. Stride length was measured directly using a

ruled floor surface as well as a means of marking shoe contact by application of

marking liquid to the shoe. Using these sensor signals, lower body motion tracking

was constructed by the kinematic chain model described in [WCX13b].

Besides these four sensors, the fifth sensor with incorrect sensor placement was

attached to the right thigh. The subjects wore both the correctly placed sensors

and the incorrectly placed sensor simultaneously throughout all the step-length-

measurement experiments.

We here introduce two terms: intra-instance and inter-instance calibration.

In intra-instance calibration, training data and testing data are extracted from

the same walking instance. We start with intra-instance calibration to verify the

model and algorithm. However, in real life, training data and testing data come

from different walking instances, which makes it necessary to study the inter-

instance calibration. During an inter-instance calibration, training data come

from the correct sensor placement in one walking instance and they are compared

to testing data in a different walking instance. They are used to estimate the

rotation matrix. For inter-instance calibration, DTW is used to synchronize the

training and testing templates.
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Figure 2.3: Data collection setup

Extracting training and testing data from different walking instances makes it

difficult to evaluate the signal recovery performance. So we introduce a validation

set for this purpose. In the first walking instance, signals from correctly placed

sensors are used as the training set. In the second walking instance, signals from

incorrectly placed sensors are used as the testing set, and signals from correctly

placed sensors are used as the validation set. By comparing the training set and

the testing set, we extract the rotation angle and hence determine the transforma-

tion matrix. Following that, the transformation matrix is applied to the testing

set so that we can compare the outcome with the validation set.

2.3.2 Misorientation

2.3.2.1 Signal Recovery Result

During misorientation, the position of the sensor is correct and there is only an

angle distortion from the correctly placed sensor. Thus, the 1D rotation model for

the x-y plane describes the problem accurately. Figure 2.4 shows that the testing
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Figure 2.4: Signal recovery for misorientation

signal after calibration matches the validation set very well. Both gyroscope

signals and accelerometer signals follow similar behavior.

2.3.2.2 Motion Tracking and Step-Length Measurement

The step-length-measurement algorithm mainly relies on the z-axis gyroscope sig-

nals. The accelerometer signal on the x axis also has a minor impact on the motion

tracking. On the other hand, sensor misorientation does not affect the sensor sig-

nal on the z axis. But the small degradation of step-length-measurement accuracy

from sensor misorientation can still be corrected by this algorithm. The result was

evaluated over a dataset of 17 traces from five different subjects in total and is

shown in Figure 2.5. On average, the correctly placed sensor gives us an accuracy

of 97.38%, while the incorrectly placed sensor gives us an accuracy of 95.50%.
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Figure 2.5: Step-length-measurement accuracy for misorientation before and after

calibration

With intra-instance calibration, the accuracy can be brought up to 97.27% while

inter-instance calibration gives us an accuracy of 97.22%.

2.3.3 Rotational Displacement

2.3.3.1 Signal Recovery Result

In rotational displacements, the main distortion comes from the rotation of the x-z

plane. In this work, we ignore position difference. As is shown in Figure 2.6, the

x-axis accelerometer and z-axis gyroscope signals match the validation set very

well. z-axis accelerometer and x-axis gyroscope signals, however, still have room

for improvement. The main reason is in MMSE estimation of the rotation angle,

the total absolute error was minimized, so it has a bias against components with

smaller amplitude.

2.3.3.2 Motion Tracking and Step-Length Measurement

In the rotational displacement case, both the x-axis and z-axis signals are dis-

torted. Thus, the motion tracking and the step-length-measurement performance

are strongly affected by this type of sensor misplacement.

Figure 2.7 shows three of the most important phases in one gait cycle of the
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Figure 2.6: Signal recovery for rotational displacement
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Figure 2.7: Key Walking Phases of Motion Reconstruction
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lower body motion tracking generated by the kinematic chain model [WCX13b].

The phases of interest are toe-off, mid-stance, and heel-strike; toe-off and heel-

strike are used to estimate step length. Figure 2.7a shows the result of a motion

reconstruction based on the four correctly placed sensors. If the sensor on the

thigh suffers from rotational displacement, the motion tracking can be strongly

affected (Figure 2.7b). After the calibration process discussed above, however, the

motion tracking can be repaired (Figure 2.7c).

Instead of misplacing the sensor randomly, we intentionally placed the sensors

such that the x-z plane is rotated 45◦, 90◦, or 180◦. This makes it possible for us

to examine how rotational displacement degrades the motion tracking and how

well our algorithm recovers the results.

In order to study how rotational displacement affects step-length-measurement

performance, 40 walking traces of seven different subjects were collected. Table

1 summarizes the measurement accuracy before and after calibration. When a

sensor suffers from a minor rotational displacement (e.g. 45◦), the sensor signals

are not distorted severely. Not surprisingly, the calibration does not improve the

accuracy. However, as the rotational displacement increases (e.g. in the 90◦ or

180◦ case), it strongly degrades the step-length-measurement performance. Such

degradation can be effectively corrected by both the intra-instance and inter-

instance calibration methods. Notice that the inter-instance calibration method

has a slightly weaker performance than intra-instance calibration since choosing

templates and synchronizing them is challenging and invites more errors.

2.4 Discussions

In this chapter, a new calibration process for sensor misplacement based on walk-

ing was developed. A rotation matrix model was implemented. We mainly fo-

cused on two sensor misplacement cases: misorientation and rotational displace-
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Correct Incorrect Intra-instance Inter-instance

Sensor Position Sensor Position Calibration Calibration

45◦ 96.22% 95.97% 96.03% 92.37%

90◦ 95.93% 83.90% 95.23% 94.37%

180◦ 96.76% 45.84% 95.39% 94.51%

Table 2.1: Step-Length-Measurement Accuracy

ment. Their signal-recovery results and step-length-measurement accuracy were

studied. For the case of misorientation, signal recovery works perfectly since the

rotation matrix model describes the problem accurately. Since the step-length-

measurement algorithm mainly relies on gyroscope signals on the z axis, the per-

formance was not strongly degraded(from 97.38% to 95.50%) with misorientation.

After the calibration process, the accuracy is 97.22%. In the rotational displace-

ment case, however, signal recovery does not match the correct sensor measure-

ments exactly. Nonetheless, the strong degradation of step-length-measurement

accuracy due to rotational displacement (from 96.76% to 45.84%) could be brought

up to 94.51%.

In the next chapter, the third case, sensor linear misplacement, will be dis-

cussed in more detail. We will examine how to estimate the sensor location on

the ankle by combining the usage of both accelerometers and gyroscopes and how

to use the sensor location information to achieve lower body motion tracking with

only one sensor on the ankle.
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CHAPTER 3

Sensor Placement Error Correction And the

Application to Motion Tracking

3.1 Problem Statement

One of the most widely used current state-of-the-art lower body motion tracking

algorithm is the Zero-Velocity-UPdate (ZUPT) [PS10] [CNH12]. In the ZUPT

algorithm, motion accelerations are integrated twice to calculate the traveling

distance. In order to compensate the cumulative errors due to double integration,

stance phase of each gait was detected and the velocity during the stance phase

period was reset to zero. Integrating the compensated velocity will produce good

traveling distance estimation.

This method has been widely used for pedestrian localization because of its

robustness. But mounting sensors on the foot is considered not feasible for the

medical context due to the fact that patient might not wear shoes. Therefore, in

this chapter, a novel non-ZUPT method is proposed. In this non-ZUPT method,

the velocity signals are reset to estimated values instead of zeros at the stance-

phase of each stride. This stance-phase velocity estimation was calculated using

gyroscope measurements and sensor position information. A training process with

short walking was deployed to avoid the manual measurement of sensor position

each time the sensor is mounted.

The rest of this chapter is structured as follows. After a quick review of

the widely used ZUPT method for foot-mounted sensor trajectory estimation,
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detailed discussion of the novel non-ZUPT method will be described in section

3.2. In section 3.3, experimental design and results are reported. In section 3.4,

conclusions and suggestions for future work are presented.

3.2 Methodology

3.2.1 Experimental Instrumentation

Invensense Motion SDK sensors produce 3D accelerometer measurements (sat), 3D

gyroscope measurements (sωt), and filtered orientation information in quaternion

representation (iqt) with 200Hz sampling rate. The right subscript t represents a

sample at time t; the left superscript s represents the measurement in the sensor

frame; the left superscript i of the quaternion represents the orientation of the

sensor with respect to the initial frame when the sensor was powered on. Data

were transmitted through the on-board Bluetooth to a local PC.

Two sensors were mounted on the left ankle and the left foot (Figure 3.1)

of the subject. For the ankle-mounted sensor, performance of the traditional

ZUPT and newly-proposed non-ZUPT methods will be compared. In addition,

a performance reference is provided by a foot-mounted sensor using the ZUPT

method.

3.2.2 Data Preprocessing

All data collected are preprocessed by the method described in this section. Before

the motion starts, a short stable period was required. The sensor frame during

this period was considered to be the global reference frame. The average of the

accelerometer measurements and quaternions in this period are denoted as ga0

and gq0. The quaternions at any time t can be projected onto the global reference
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Figure 3.1: Experimental Setup

frame with Equation 3.1.

gqt = (gq0)
−1 × (iqt) (3.1)

Using quaternions in the global reference frame, the accelerometer data can be

projected onto the global frame with Equation 3.2, where gqt is the quaternion

conjugate of gqt.  0

gat

T = gqt ×

 0

sat

T × gqt (3.2)

Since ga0 is a good estimate of gravity in the global frame gG, pure motion

acceleration in the global frame gaMotion
t can be calculated by subtracting ga0

from gat (Equation 3.3).

gaMotion
t = gat − gG

= gat − ga0

(3.3)

This preprocessing procedure gives motion acceleration gaMotion
t and sensor

orientation with respect to the global frame in quaternion gqt.
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Figure 3.2: Gait Segmentation

3.2.3 Foot-sensor Gait Reconstruction Using ZUPT

3.2.3.1 stance phase detection

Figure 3.2 shows the complete gait cycle of a healthy adult. At the middle of each

stance-phase, the foot is stable and flat on the ground. These time stamps should

be detected before velocity update can be implemented.

A detection method similar to the Acceleration Magnitude Detector in [WXX13]

is applied. The average of the motion acceleration energy ‖gaMotion
t ‖2 in a sliding

window (length 0.1s) is evaluated. By selecting the proper threshold (0.025m2/s4)

windows of stance phase are detected. The mid-points of these stance-phase win-

dows are denoted as STi, where index i means the stance-phase of the ith stride

in the whole walking process.

3.2.3.2 velocity update and trajectory estimation

The raw velocity signal (gvrawt ) calculated by integrating gaMotion
t (Equation 3.4)

has cumulative error because of the noise in the accelerometer. This cumulative

error is corrected by resetting gvrawt to zero at STi. Then, a reliable trajectory

can be calculated by integrating this corrected velocity (gvcort ).
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gvrawt =

t∫
0

gaMotion
τ dτ (3.4)

3.2.4 Ankle-sensor Gait Reconstruction Using Non-ZUPT

For ankle-mounted sensors, the velocity at the middle of the stance phase in

each stride is not zero. This velocity can be estimated, and a similar non-ZUPT

correction can be applied.

3.2.4.1 Stance Phase Detection

The average of the motion acceleration energy ‖gωMotion
t ‖2 in a sliding window

(length 0.1s) is evaluated. By selecting the proper threshold (2 rad2/s2) , coarse

windows of stance phase are detected. Within each of these coarse windows, a finer

window of length 0.05s with the smallest gyroscope energy variance is selected.

The starting and ending of this finer window are denoted as STi1 and STi2, and

the center of these fine windows are denoted as STi (i = 1...n, n is the total number

of strides).

3.2.4.2 Velocity Update and Trajectory Estimation

During the stance-phase of each gait cycle, the calf is rotating around the heel

(Figure 3.2). Hence, for an ankle-mounted sensor, the angular velocity sωt from

gyroscope signals, velocity svt and the rotation moment arm r (determined by

the sensor position) are related by Equation 3.5. The velocity is solved in the

sensor frame. This is because, for rotation motion, velocity in the global frame

is constantly changing in direction while velocity in the sensor frame is relatively

constant.
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Figure 3.3: System Block Diagram For Trajectory Reconstruction

svt = sωt × r, , t ∈ [STi1, STi2] (3.5)

Figure 3.3 shows the system block diagram for the trajectory reconstruction.

We start with integrating the pure motion acceleration gaMotion
t and calculating

the raw velocity signal gvrawt (Equation 3.4). The velocity is then projected into

the sensor frame using quaternion information (Equation 3.6).

 0

svrawt

T = gqt ×

 0

gvrawt

T × gqt (3.6)

The raw velocity signals svrawt are reset to svSTi at the resetting point STi in

each stride. This corrected velocity svcort will be projected back into the global

frame (Equation 3.7). Further integration of gvcort will give us the trajectory

estimation.

 0

gvcort

T = gqt ×

 0

svcort

T × gqt (3.7)
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3.2.4.3 Sensor Placement Estimation

This non-ZUPT algorithm works only if we know the rotation moment arm r in

Equation 3.5. A detailed method of estimating r in a training process will be

described below.

In a training process, the subject was asked to do a 3-meter-level short walking

on a flat floor. The raw data was preprocessed with the same method described

in section II-B. The system block diagram for sensor position estimation is shown

in Figure 3.4.

Similarly, motion acceleration gaMotion
t was first integrated to calculate velocity

gvrawt (Equation 3.4). Then, gvrawt was projected onto sensor frame svrawt with

Equation 3.6. Because we keep the training process short (3-meter-level walking),

resetting the velocity to zero at the starting and ending will correct the cumulative

error, and gvcort was calculated. The stance-phase window was detected with the

method described in section II-D-(1). Finally, the rotation moment arm can be

estimated by MMSE using the sampling points over stance-phase windows in

Equation 3.8.

r = arg min
r

∑
t

‖svcort − sωt × r‖, t ∈ [STi1, STi2] (3.8)

Since the cross product between two three-element column vectors can always

be reformulated as product of a matrix and a vector, Equation 3.8 can be easily

solved in normal equation form.

3.3 Experiments and Results

3.3.1 Experimental Procedure

10 subjects were recruited for applying the non-ZUPT algorithm to flat-floor walk-

ing. First, in the training process, the subject was asked to perform a 3-meter-level
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Figure 3.4: System Block Diagram For Sensor Position Estimation

walking (the walking length does not need to be exact). Sensor position informa-

tion was estimated with the method described in section II-D-(3). Second, in the

testing process, the subject performs two sets of 40-meter-level walking on the

ruled floor.

In addition, 4 subjects were recruited for applying the non-ZUPT algorithm

to stairs walking. The training process is performed on flat floor as well and is

consistent with the above. In the testing process, however, the subjects were asked

to walk on stairs.

Total walking distance estimations (lest) from both the ZUPT and non-ZUPT

trajectory reconstruction algorithms were compared to the ground truth (lgt) col-

lected during the experiments. Estimation errors were calculated in Equation 3.9

and reported in Table 3.1.
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err =
|lest − lgt|

lgt
(3.9)

3.3.2 Results and Analysis

Figure 3.5 shows the velocity estimation before and after drift correction under

the ZUPT algorithm and non-ZUPT algorithm. Note that only a short interval

within a long walking was shown in the figure for clear visualization. Before

any velocity correction algorithm, integrating the accelerations produces drifted

velocity signals. The ZUPT algorithm detects stance-phases in each gait cycle and

resets velocity there to be zero (Figure 3.5a). For the new non-ZUPT algorithm,

however, we would reset the velocity at each stance-phase to an estimated value

based on the estimated sensor position and gyroscope signals (Figure 3.5b).

Table 3.1 shows the distance reconstruction error for different algorithms over

ten subjects. Not surprisingly, the traditional ZUPT algorithm gives satisfactory

trajectory estimation with 2.33% error. On the other hand, applying the ZUPT

algorithm on the ankle-mounted sensor (Table 3.1 column 1) produces poor results

with 13.22% error. Note that applying ZUPT to ankle-mounted sensors always

under-estimates the total walking distance. This is because at each stance-phase,

the sensor on the ankle has positive velocity along the walking direction. Forcing

them to zero with the ZUPT algorithm makes the velocity smaller than the actual

values. Integrating the under-estimated velocity signals will have a cumulative

effect on the distance estimation results. This systematic error can be corrected

by the newly proposed non-ZUPT algorithm. The non-ZUPT algorithm estimates

the actual velocity value at each stance-phase, making the trajectory estimation

more accurate. Table 3.1 column 2 shows that distance estimation error was

reduced to 3.58%.

Table 3.2 shows the distance estimation error for walking upstairs and down-

stairs. For upstairs walking, distance estimation error was reduced to 3.61% using
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(a) ZUPT for a foot-mounted sensor

(b) non-ZUPT for ankle-mounted sensor

Figure 3.5: Velocity Update Before and After Using ZUPT And Non-ZUPT

Method
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Subject

number

Ankle sensor

(ZUPT)

Ankle sensor

(non-ZUPT)

Foot sensor

(ZUPT)

1 30.41% 3.63% 2.88%

2 4.24% 3.53% 0.32%

3 17.71% 6.04% 0.84%

4 16.89% 1.70% 4.00%

5 5.17% 5.44% 2.57%

6 9.17% 5.43% 0.37%

7 11.53% 4.76% 1.83%

8 16.01% 1.24% 2.54%

9 9.71% 2.22% 4.61%

10 13.55% 1.32% 3.36%

Avg. 13.44% 3.58% 2.33%

Table 3.1: Motion Tracking Error for Flat Floor Walking

the non-ZUPT method from 24.65% using the ZUPT method. In addition, the

ZUPT method is always over-estimating the walking distance. This is because, the

ankle has a negative velocity at the stance-phase when walking upstairs. Forc-

ing them to zero over-estimates the velocity, hence, over-estimates the walking

distance. For downstairs walking, the non-ZUPT method reduces estimation er-

ror significantly only for subject No.4. For 3 other subjects, because there exists

a short zero-velocity interval for each stance-phase even for the ankle-mounted

sensor, performance of the ZUPT method is also acceptable. Overall, the non-

ZUPT method, without the zero-velocity interval assumption is more robust over

different walking styles.
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Subject number
Ankle sensor

(ZUPT)

Ankle sensor

(non-ZUPT)

Foot sensor

(ZUPT)

Upstairs

1 25.57% 7.00% 8.29%

2 31.04% 1.75% 3.34%

3 23.18% 2.44% 8.07%

4 18.81% 3.23% 2.94%

Avg. 24.65% 3.61% 5.66%

Downstairs

1 4.60% 1.06% 4.44%

2 4.50% 4.53% 4.32%

3 2.96% 2.80% 14.14%

4 20.51% 7.83% 14.82%

Avg. 8.14% 4.06% 9.43%

Table 3.2: Motion Tracking Error For Stairs Walking
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3.4 Discussions

In this chapter, a new non-ZUPT method was developed. This method makes

single-sensor lower-body motion tracking possible for the medically more prefer-

able ankle-mounted sensors. We use the fact that during the stance-phase, the

ankle-mounted sensor is rotating around the heel. Thus, the velocity of the ankle-

mounted sensor in this period can be estimated using angular velocity and the

estimated rotation moment arm. The rotation moment arm is acquired through

a training process with a short walking period. With this easily available training

activity, we avoid the need of measuring the sensor position manually each time

the sensor is mounted. Resetting velocity at the stance-phase to the estimated

velocity compensates the cumulative error and estimates the final trajectory cor-

rectly.

With this method, ankle-mounted distance estimation error was reduced to

3.58% on average, compared to 13.22% on average using the conventional ZUPT

method for flat floor walking. For upstairs walking, estimation error was reduced

to 3.61% from 24.65%, while for downstairs walking, estimation error was reduced

to 4.06% from 8.14%.

In chapters 2 and 3, we discussed the opportunistic calibration method for

both sensor orientation and position information using walking activities (the

most common daily activity) to achieve accurate lower-body motion tracking and

step length estimation.

These methods find the true position and orientation of the sensors to enable

good estimation of lower body movement. In the following chapter, however, we

will focus on methods that work with no knowledge of the true sensor mounting

placement. These conveniences can make our motion tracking systems more robust

to real world conditions.
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CHAPTER 4

A Robust Motion Tracking Algorithm regardless

of Sensor Placement and Orientation

4.1 Problem Statement

The Non-ZUPT method makes the single sensor lower body motion tracking pos-

sible for the medically preferred ankle mounted sensor location. But this method

relies on a training process to determine the exact location of the sensor on one’s

ankle, and can be vulnerable to location change of the sensor throughout the day.

Therefore, in this chapter, we propose a new step length estimation method

called the Pose Invariant (PI) method that uses the quaternion output of the

motion sensor and estimates the traveling distance within each step by multiplying

the leg length and the sine of the leg’s orientation change within each step. This

method requires only one training session per clinical trial and maintains robust

performance regardless of sensor mounting position change. In addition, we are

only interested in the orientation differences between the beginning and end of

each stance. This makes it robust against the shaky movement in the middle of

the motion, since the nature of this model is differential instead of cumulative.

This chapter provides the following contributions: 1) a more accurate gait

segmentation method using the sensor orientation signal instead of detecting the

peak in the accelerometer norm and 2) an inverted pendulum model based step-

length estimation method. Experiments showing its accuracy and robustness will

be described.
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4.2 Methodology

In this section, we will start from human gait modeling and segmentation. Then

the step length estimation algorithm using this model will be discussed in sub-

section 4.2.2. Since this algorithm takes subject leg length as an input, we will

discuss how this can be estimated by a once-per-clinical-trial training process in

subsection 4.2.3.

4.2.1 Inverted Pendulum Model

Human walking is usually segmented into strides that start with a heel-strike and

end with the next heel-strike on the same foot. A stride can then be divided

into a stance phase when one foot is in contact with the ground, and a swing

phase when the same foot is not in contact with the ground. During the stance

phase, the total body center-of-mass trajectory can be approximately modeled as

an inverted pendulum (Figure 4.1).

Observing that each swing phase of the left foot corresponds to a stance phase

of the right foot and each swing phase of the right foot corresponds to a stance

phase of the left foot, the following segmentation was adopted in this chapter. We

segment human gaits into left inverted pendulum (denoted as InvPL) and right

inverted pendulum (denoted as InvPR) periods. An InvPL starts with a left-

foot heel-strike and ends with the next right-foot heel-strike. Similarly, an InvPR

starts with a right-foot heel-strike and ends with the next left-foot heel-strike. A

walking motion moves on with the InvPL’s and InvPR’s repeating themselves

alternately (Figure 4.2).

Thus, within each InvPL or InvPR, the center-of-mass travel distance can

be estimated given lower limb length and the angle change during this period

(Figure 4.1, Equation 4.1).

SL = 2L sin(α/2) (4.1)
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Figure 4.1: The Inverted Pendulum Model for Human Walk (Figure adapted by

author from [Kuo10] and [SR06])

Note that the center-of-mass travel distance within each InvP stays the same

regardless of the exact trajectory in between. Equation 4.1 holds as long as the

legs are close to straight at heel-strikes.

4.2.2 Step Length Estimation - the testing phase

Traditionally, human walking segmentation starts with heel-strike detection by

applying peak detection algorithms to the accelerometer norm. However, in prac-

tice, such methods suffer accuracy issues, especially when the subject’s stepping

frequency or heel-strike intensity keeps changing. Figure 4.3a demonstrates one

example of heel-strike detection error near the 14 second timestamp.

In this chapter, we adopted a more robust gait segmentation method by ap-

plying peak detection to orientation information instead. Since the InvenSense

motion sensors provide sensor orientation information in quaternions, the angle

between the sensor’s y-axis and gravity can be calculated. Applying a peak detec-

tion algorithm to this angle signal yields robust toe-off timestamps (Figure 4.3b).

Then, the heel-strike moments can be detected by finding one peak within each

period divided by those toe-off timestamps (Figure 4.3c). Note that the three

subfigures of Figure 4.3 come from the same data collection event; the detection

result in Figure 4.3c is accurate, and the results in Figure 4.3a suffer several errors
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Figure 4.2: The Gait Segmentation Adopted in this Method (Figure adapted by

author from [LHW07])

near the 14 second timestamp.

The detected heel-strike moments are denoted as HSL(i) and HSR(j), where

i and j represent the ith and jth heel-strike for the left ankle sensor and the

right ankle sensor respectively. Figure 4.4 shows one example of the heel-strike

detection results for both left and right ankle sensors for the same data collection

event. Then, for each left-side heel-strike timestamp HSL(i), we get the smallest

right-side heel-strike timestamp larger than HSL(i), and denote it as HSR(i′).

The period between HSL(i) and HSR(i′) is denoted as InvPL(i). Similarly, for

each right-side heel-strike timestamp HSR(j), we get the smallest left-side heel-

strike timestamp larger than HSR(j), and denote it as HSL(j′). The period

between HSR(j) and HSL(j′) is denoted as InvPR(j). Figure 4.2 illustrates this

segmentation.

The InvenSense IMU sensors provide filtered sensor orientation information in

the form of quaternions. Thus, the orientation change within each InvPL(i) and

InvPR(j), can be calculated with Equation 4.2 where qL and qR represents the
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(b) Peak Detection for angle between the sensor y-axis with gravity
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(c) Heel-strike detected using the results from Figure 4.3b

Figure 4.3: Gait segmentation method comparison

quaternion measurement from the left ankle sensor and the right ankle sensor.

qLrot(i) = qL(HSL(i))× (qL(HSR(i′)))−1

qRrot(j) = qR(HSR(j))× (qR(HSL(j′)))−1
(4.2)

Because the quaternion has an Euler representation shown in Equation 4.3,

the rotation angle can be determined by Equation 4.4, where qLrot(i)[1] refers to

the first element of the quaternion qLrot(i).

q = cos(α/2) + (uxi + uyj + uzk) sin(α/2) (4.3)
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Figure 4.4: Heel-strike Detection Results for Left and Right Ankle Sensors

αL(i) = 2 cos−1(qLrot(i)[1])

αR(j) = 2 cos−1(qRrot(j)[1])
(4.4)

Then, the traveling distance within each InvPL and InvPR can be calculated

using Equation 4.5 where L represents the subject’s leg length, and SLL(j) and

SLR(j) the traveling distance within each InvPL and InvPR. Taking the dif-

ference of sensor orientations within each step makes this method preferable for

accommodating sensor mounting errors. Moreover, it avoids the possible cumula-

tive errors in previous ZUPT or non-ZUPT approaches.

SLL(i) = 2L sin(αL(i)/2)

SLR(j) = 2L sin(αR(j)/2)
(4.5)

Finally, the total walking distance can be calculated by the summation of all

SLL’s ad SLR’s as is shown in equation 4.6 where n is the total number of InvPL’s
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and m is the total number of InvPR’s.

SLtotal = Σn
i=1SL

L(i) + Σm
j=1SL

R(j) (4.6)

One important assumption for this method is that the leg length of the subject is

known. We discuss the training phase algorithm for estimating subject leg length

in the following section.

4.2.3 Leg Length Estimation - the training phase

In order to estimate leg length, we ask the subject to walk in front of a KINECT2

sensor. The KINECT2 sensor provides 3-dimensional joint position in a timely

manner. Given the movement of the “SpineBase” joint during each step and

angle change information from the motion sensor, we can estimate leg length using

Equation 4.7, where SL’s are given by KINECT2 sensors and α’s are derived from

IMU quaternion measurements using Equation 4.2 and Equation 4.4. The best

leg length estimation was determined as the median of the candidates from the

steps captured by the KINECT2 sensor.

LL(i) = SL(i)/(2 sin(αL(i)/2))

LR(j) = SL(j)/(2 sin(αR(j)/2))
(4.7)

Since only the leg length parameter is estimated during this training phase, it

is valid regardless of the motion sensor mounting position and needs to be done

only once per clinical trial.

In some clinical trials, sensor data for patients walking for a given length

was recorded as a training template. Under such circumstances, since the exact

walking distance and the IMU sensor data are available, the leg length can be

estimated without the KINECT2 sensor, as we can work back from the total

distance and number of strides.
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4.3 Experiments and results

In this section, the devices used and system set-up will be discussed in detail.

Following that, experiment design for data collection is reported. Then we will

move on to the results and discussion.

4.3.1 System Set-up

Two InvenSense Motion SDK sensors were mounted on the two ankles by Velcro

straps (Figure 4.5). The sensors were sampled at 200Hz and the output data

consists of raw accelerometer measurements, gyroscope measurements and filtered

sensor orientation (in quaternions). Data were transmitted through the on-board

Bluetooth to a local PC and synchronized according to the receiving time.

(a) (b) (c)

Figure 4.5: The IMU sensors used in this chapter. (a) the sensor size, (b) the

front view of sensor mounting, (c) the side view of sensor mounting

In addition, a KINECT2 sensor was used in the training phase for detection of

a subject’s position. The KINECT2 sensor uses video processing techniques and

merges information from a regular RGB camera and an infra-red depth camera to

provide 3-dimensional spatial-temporal human skeleton information (Figure 4.6).
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We developed a KINECT skeleton data recorder software tool using KINECT

SDK v2.0. As is shown in Figure 4.7, users can select the joints to be recorded

with the checkboxes. After pressing the “Start Data Collection” button, it will

start writing the three dimensional position data as well as the corresponding

timestamps to ‘.txt’ files. One ‘.txt’ file will be generated for each selected joint.

Figure 4.6: The KINECT2 sensor

Figure 4.7: The KINECT joints tracking tool

4.3.2 Experiment Design

In order to evaluate the performance in estimating the step lengths, we recruited

9 adult subjects for the following experiment. The subjects were asked to mount

two IMU sensors, one on each ankle, with velcro straps (Figure 4.5).
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In the training phase, the subject was instructed to walk in front of a KINECT2

sensor, during which period, the position data of the “SpineBase” joint from the

KINECT2 sensor and motion data from the IMU sensors were recorded. The

subject’s leg length was estimated using this information. In the testing phase,

we kept the IMU sensors on the ankles and asked the subject to walk for roughly

50 feet on a flat floor. The exact walking distance was measured as the ground

truth on a ruled floor. The total walking distance estimated using this algorithm

was compared to the ground truth, and the error rate was recorded.

In order to prove the robustness of this method, an additional experiment was

designed to compare with the non-ZUPT method. The training phase was exactly

the same as described above. The testing phase consisted of 2 trials. The first

trial was the same as the testing phase above. In the second trial, we moved the

sensor mounting position on the ankle. The subject was asked to walk for 50 feet

on a flat floor for both trials. The data from both trials were processed with the

two methods respectively.

4.3.3 Results and Analysis

The subject leg length estimated during the training phase as well as the walking

distance estimation error rate was reported in Table 4.1. There is a good span of

subject leg length. An average error of 3.69% in step length was achieved.

The results for the second experiment are shown in Table 4.2. Trial 1 was

conducted right after the training phase, and the sensor position was not changed.

In this trial, both methods for all three subjects produced good performance. In

trial two, however, the sensor position was intentionally changed, and the non-

ZUPT method had a very large error while this new pose-invariant (PI) method

estimation error remains low. This is because, for the non-ZUPT method, the

sensor position was estimated during the training phase. Since the reset velocities
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Subject # Estimated Leg Length Absolute Error Rate

1 69.3 3.51%

2 95.7 3.36%

3 79.0 2.26%

4 83.3 6.23%

5 83.9 1.61%

6 91.7 4.54%

7 80.5 5.88%

8 88.9 2.12%

9 69.8 3.70%

Table 4.1: Absolute error rate of the total walking distance estimation

are the cross product of sensor position and the gyroscope signal, changing the

sensor position will cause wrong reset velocities, thus making the final trajectory

estimation to drift. For this new PI method, we only estimated the leg length

during the training phase, and this information remains valid even after changing

the sensor position on the ankle. The step lengths are only related to the change

of angles within each step, and this change of angles is invariant with the sensor

position.

Prior research has resulted in several methods for step length estimation, one

of the most interesting human gait metrics for medical applications. The ZUPT

method integrates acceleration and resets the velocity to zero at the stance phase

to compensate for the cumulative error. This method requires the sensor to be

placed on shoes and that a clear stance phase, where one’s foot is stable on

the ground, can be detected. The modified non-ZUPT resets the velocity to a

nonzero value derived from gyroscope signals. This method allows a medically

more preferable ankle-mounted position, but requires an extra training session

each time the sensor’s position changes.
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Subject # 1 2 3

Trial 1
non-ZUPT 2.00% 2.54% 4.57%

PI method 6.00% 0.11% 2.23%

Trial 2
non-ZUPT 9.27% 7.35% 16.10%

PI method 4.68% 0.46% 1.80%

Table 4.2: Performance comparison of the two methods with Trial 1 (same sensor

position with training section) and Trial 2 (different sensor position with training

section). The Pose Invariant (PI) method is more robust with either trial while

non-ZUPT only works well under Trial 1

4.4 Discussions

In this chapter, a more robust step length estimation method was proposed and

evaluated. Using the inverted pendulum model, the traveling distance within

each step can be calculated by multiplying the leg length and the sine of the

leg’s orientation change within each step. The orientation change was obtained

by taking the differences of the quaternion measurements from the IMU sensor

within each step. Using this differential method instead of the cumulative methods

offers several benefits: 1) the orientation change is invariant to the exact sensor

position; and 2) the shaky movement within each step commonly seen in impaired

gaits won’t affect the estimation result. In addition, the training session is needed

only once per clinical trial for each subject due to the fact that only the leg length

parameter is estimated.

Experiments with 9 subjects walking for 50 feet each shows that on average a

3.69% error rate can be achieved by this method. An additional experiment shows

that this method provides more robust measurement against sensor placement

change compared to the previous non-ZUPT method.

Now that the robustness to sensor position are discussed and resolved in the
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chapter, we will introduce a double-layer classification model which is robust to

sensor orientation change throughout the day in the next chapter.
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CHAPTER 5

Orientation Self-correcting Daily Activity

Classification

In this chapter, we propose a double layer walking activity classification model that

resolves the sensor orientation robustness issue. The first layer consists of a highly

conservative walking detection model using only the accelerometer magnitude

which is invariant to sensor orientation. The detected walking beacons from this

layer are compared with the training templates to determine the rotation matrix

to fix the data due to the erroneous sensor mounting. Then the corrected data are

fed into the second layer orientation variant model with more accurate results.

The remainder of this chapter is structured as follows. We start with intro-

ducing the hardware devices and system set-up in Section 5.1. Then our newly

proposed double layer algorithm design is discussed in Section 5.2 with more de-

tails. Following that, in Section 5.3, experimental design as well as classification

results are reported and discussed. Finally, we further discuss the results and

conclude the chapter with Section 5.4

5.1 Problem Statement

In this section, we are going to talk about the current activity recognition system

utilization, including the wearable motion sensors, uploading cellphone device and

server database.

In this section, the devices used and system set-up will be discussed in detail.
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Following that, experiment design for data collection are reported. Then we will

move on to the results and discussion.

5.1.1 Motion Sensing System Setup

In order to monitor human daily activity, we utilized the motion sensing kit de-

veloped by the Wireless Health Institute at UCLA [XBK11] [DTX15]. A motion

sensing subject kit consists of two soft Velcro straps (Fig. 5.1a), two WHIMS

sensors (Fig. 5.1b), an Android smart-phone (Fig. 5.1c) and a wireless charging

station (Fig. 5.1d).

The WHIMS sensors shown in Figure 5.1b integrate the latest micro-mechanical

inertial chips within a 31 gram, 1” x 1.5” x 0.5” packages and can operate contin-

uously for over 24 hours. Chipsets on the WHIMS sensor include: an Invensense

MPU- 6050 motion sensor, an altimeter, Bluetooth radio, real time clock (RTC),

microSD card storage, and wireless recharge. The motion sensor provides 3-axis of

accelerometer and 3-axis of gyroscope measurements at 40Hz. In order to use two

WHIMS sensors simultaneously, initial time synchronization between the sensors

and a hub is performed via Bluetooth and is maintained through the RTC. The

RTC drifts only 0.17 seconds per day. The inclusion of the real-time clock and on-

board storage ensures that data is still captured and synchronization maintained

in the event that Bluetooth is disconnected.

An Android smart phone with pre-installed apps is included in the kit for

downloading sensor data from the onboard SD card via Bluetooth connection and

then uploading them to a designated server via WiFi or 4G connection.

Two soft Velcro straps are also provided so that the sensors are mounted

securely while at the same time comfortably for daily usage. Finally, the wireless

charging station makes the charging process during the night easy.
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(a) Two Soft Velcro Straps (b) Two WHIMS Sensors

(c) Android Smartphone (d) Charging Station

Figure 5.1: Subject Kit Devices
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5.1.2 Trial Implementation

In this section, we will describe the current trial process that are undertaking with

UCLA Neurology Department.

In recognition of the variations in gait speed and stand and swing symmetry

that might occur among individuals, we invite the subjects to the clinics for a

short training session before distributing the motion sensor kit. During a training

session, the subject performs two 30-feet walks at self-selected slow, casual and

fast walking speeds. These walking bouts are collected and labeled using a Blue-

tooth connected Android smartphone and further uploaded to designated server

as training templates.

For the days we wish to monitor one’s daily activity, subjects placed one sensor

on each ankle in the morning (Fig. 5.2). The soft Velcro strap (Fig. 5.1a) secured

each sensor (Fig. 5.1b) proximal to the medial malleolus, flush against the bony

tibia. At the end of the day, before the subject went into bed, the sensors were

removed and placed on the wireless charging station to recharge. Following that,

at 12am midnight, the accelerometer data were transmitted to the smart-phone

via Bluetooth connection and then uploaded to the central server at UCLA for

secure storage and processing. The data transmission and uploading process are

triggered by a smartphone with pre-installed apps with no human interventions

needed.

5.1.3 Current SIRRACT Performance

[XBK11] claims to have achieved on average 83.61% precision and 84.38% recall

for daily walking activity classifications using the SIRRACT trial platform. How-

ever, such performances only hold under the assumption of correct sensor mount-

ing orientations. We have noticed the serious problem of subjects not following

instructions when the scale of our study keeps increasing. And such problems are
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Figure 5.2: Correct Sensor Placement

especially serious when dealing with patient subjects. This is because elderly pa-

tients can be technophobic and neurological diseases are often accompanied with

cognitive difficulties. Thus, enabling our system to be adaptive to sensor mount-

ing errors is a very important topic. We will be introducing a newly proposed

double layer automatic orientation correction algorithm in the next section.

5.2 Methodology

The methodology proposed is to pursue robust classification against sensor ori-

entation error without making a concession on the performance by using only

orientation invariant features. This requires a first layer hierarchy that consists of

a highly conservative orientation-invariant walking detection classifier. Compar-

ing these walking sections with the training template walking, a rotation matrix

representing the sensor orientation error can be calculated. Then, this rotation
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Figure 5.3: System high level description

matrix can be applied to consecutive data assuming that the sensor orientation

does not change too frequently. Next, the corrected sensor signal can be used for

the more accurate second layer classifier. System high level architecture is shown

in Fig. 5.3. We will discuss each of these parts in more detail.

5.2.1 Layer 1: a conservative walking detection classifier

The time sequence daily data are divided into overlapping 5 seconds window with

1 second increment. The accelerometer energy signals are calculated. In the first

layer hierarchy, accelerometer magnitude of both the training template and testing
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data are calculated by Equation 5.1

||a|| =
√

a2
x + a2

y + a2
z (5.1)

Dynamic Time Warping (DTW) distances are calculated between the train-

ing walking template accelerometer magnitude and the whole day testing data

accelerometer magnitude. Choosing a threshold for DTW distances for walking

beacons detection is critical for the following two reasons. First, setting the thresh-

old too low will produce false positive walking beacons and these false positive

walking beacons will result in a wrong orientation correction rotation matrix; such

errors can damage consecutive sensor signals. Second, setting the threshold too

high will leave us with very few walking beacons. In view of the possibility for

sensor orientation to change, observation of the sensor orientation using walking

beacons from time to time is important. Therefore, we use relative instead of

definite thresholding in this chapter. Comparing with the walking template, each

sliding window has a DTW distance score, and the lower 1% smallest DTW dis-

tance through out the day will be chosen as the threshold. All sliding windows

with DTW distance smaller than the threshold will be marked as walking beacon

candidates. If there were more than one walking candidate within 5 minutes, we

will reserve only the best matching candidate (meaning smallest DTW distance)

among the neighbor candidates, and mark it as the walking beacon. These walking

beacons will be used in the next step for orientation correction.

The detected walking beacons are marked as stars in Fig. 5.4. Note that only

the first 4 hours of the data are shown for the purpose of clear presentation.

5.2.2 Orientation Correction

The next step comes with estimating the rotation matrix (i.e. the orientation

placement error) comparing the training template and the walking beacons. The
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Figure 5.4: Detected Walking Beacons

rotation matrix was estimated by comparing the accelerometer measurement dur-

ing the stance phase for the training templates and the testing beacons. The

reason for choosing the stance-phase section of gait cycle is because the gravity

component dominates the accelerometer measurements during this period. The

gravity distribution on three axes indicates the sensor orientation.

For the training template, the stance phase was marked manually. This manual

process is needed only once for each subject. Stance phase in the testing walking

beacons are marked by following the DTW trace, i.e. the matching segment

with the training stance phase was marked as stance phase in the testing walking

beacon (Fig. 5.5).

We denote the mean of accelerometer measurement in the training template

stance phase as atrain,stance, and the mean of accelerometer measurement in the

testing template stance phase as atest,stance. Then, the rotation between vectors

atrain,stance and atest,stance can be calculated with Equation 5.2 in axis-angle repre-

sentation.

r = atrain,stance × atest,stance

θ = atrain,stance · atest,stance
(5.2)

For ease of usage, the axis-angle representation of rotation are further transformed

into the rotation matrix representation with Equation 5.3, where x = rx, y = ry,
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Figure 5.5: DTW orientation segment matching

z = rz,s = sinθ, c = cosθ, t = 1− c.

R =


txx+ c txy − zs txz + ys

txy + zs tyy + c tyz − xs

txz − ys tyz + xs tzz + c

 (5.3)

One rotation matrix was calculated using Equation 5.3 for each individual

walking beacon. All sensor signals following the current walking beacon would

be corrected using this rotation matrix with Equation 5.4 until the next walking

beacon was detected.

acor = aorgR (5.4)

5.2.3 Layer 2: a orientation dependent binary classifier

We inherit the classification method described in [XBK11] where Dynamic Time

Warping and Naive Bayes classifier outputs were combined to produce binary clas-
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Subject ID Gender Condition

98 Female RA patient

117 Female RA patient

150 Male healthy

151 Female healthy

152 Male healthy

153 Male healthy

154 Female healthy

185 Male healthy

192 Female healthy

Table 5.1: subject informations

sification results. The Naive Bayes model uses feature set F1 listed in Table 5.3,

while the DTW matches 3-axis accelerometer measurements of the testing data

with the training template. The results of both models are combined to leverage

the robustness of the DTW algorithm against spatiotemporal variations and lim-

ited training data with high confidence in the classified results of the NB model.

Detailed algorithm description can be found in [XBK11].

5.3 Experiments and Results

5.3.1 Data Collection and Subject Description

In order to show the validity of this method, we hired 7 healthy subjects and 2

patient subjects with Rheumatoid Arthritis. Table 5.1 shows the subject infor-

mations.

In the training data collection phase, each subject was asked to walk through

a marked and observed 30-feet section with three different safe speeds selected by
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Figure 5.6: Matlab Labeling Tool GUI

subjects (slow, normal and fast). Sensor data were collected and labeled using

the Andriod smartphone and uploaded onto a designated server.

Following that, in the testing phase, the subjects were asked to take the kit

home, and charge the sensors. From the next morning, the subject can start

wearing the sensors during the day. No special instruction was given with respect

to sensor mounting orientation. Each subject was asked to carry the sensors for

at least two days with at least 6 hours each day.

5.3.2 Ground Truth Labeling

Ground truth labeling has always been difficult when dealing with large data

set verification for the case of human activity classification. In order to tackle

this problem, we designed a Matlab GUI tool that makes manual labeling easier

(Fig. 5.6).

First, the accelerometer data was loaded and shown in the window by clicking

the “Load Merge” button and selecting the proper data file. Then, users can start

marking each walking bout by clicking “Add Mode On” button and sliding the

bouts delimiter. Each bout is marked by a green vertical line as the starting and
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a black vertical line as the ending. After all the bouts are correctly labeled, the

delimiter locations can be saved to local files by clicking “Save Delimited Walk

Section”. These walking bouts can then be transformed into classification results

with the following criteria. We are using 1 second increment, 5 second window

length for the classifiers, therefore, we transform the walking bout such that, if

more than half of the window lies within one bout, this window is marked as

positive.

The whole day labeling result was collected and compared with the classifica-

tion result. Since we are building a binary classifier in this paper, precision and

recall are recorded for each day when the data are collected.

5.3.3 Experiment Design

In order to show the validity of this model, three types of algorithms were evalu-

ated and compared, precision, recall for each of which were recorded.

Algorithm A directly inherit the classifier in [XBK11] where orientation-

variant features are used for NB model and 3-axis accelerometer measurements

are used for DTW template matching. Algorithm B keeps everything the same

from algorithm A except for adding an orientation correction layer described in

section III. Algorithm C modifies algorithm A to make it orientation invariant.

The modifications involves (1) choosing corresponding orientation invariant fea-

tures for Naive Bayes classifier (detailed features listed in Table 5.3) and (2) using

accelerometer magnitude for DTW instead of 3-axis accelerometer measurements.

The differences between the 3 algorithms are summarized in Table 5.2

5.3.4 Results

Two days data from each subject was processed with all three algorithms and

the classification results are reported in the Table 5.4. Since we are evaluating a
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Algorithm Orientation Correction NB Features DTW

Algo. A Not Included F1 (orientation variant) 3-axis Accel.

Algo. B Included F1 (orientation variant) 3-axis Accel.

Algo. C Not Included F2 (orientation invariant) Accel. Magnitude

Table 5.2: Algorithm Design (Details of F1 and F2 listed in Table 5.3)

binary classifier, precisions and recalls defined in Equation 5.5 are calculated and

reported for each day the data was collected.

precision =
tp

tp+ fp

recall =
tp

tp+ tf

(5.5)

With algorithm A, the model works well when the sensor mounting orienta-

tions are correct (e.g. 151 day2); but if the sensor mounting orientation was not

correct, the system would fail by not being able to capture walking bouts (e.g.

152 day2). On average, 34.97% ± 41.38% precision and 22.66% ± 36.44% recall

was achieved. Note that for the days when no walking bouts were detected, NaN’s

were recorded for recall since there was no positive output from the classifier. But

when calculating the mean and standard deviation, we substitute the NaN’s with

0’s since ignoring these days will make the overall performance better than reality.

With algorithm B, however, by adding an orientation correction layer, sensor

data was corrected successfully, and the system outputs an accurate classification

results. On average, 85.20% ± 7.33% precision and 93.50% ± 7.83% recall was

achieved.

Algorithm C also works well for this problem by using only orientation invari-

ant features. On average, 85.66% ± 8.91% precision and 96.27% ± 4.48% recall

was achieved. This is because we are interested in a binary classifier that deals

with walking activity only. If we are interested in differentiating activities with
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Feature Set Included Features

F1 standard deviation of y axis, maximum of y

axis, mean of y axis

F2 standard deviation of magnitude, maximum

of magnitude, mean of magnitude

Table 5.3: Details of the Two Feature Set

directions (e.g. walking upstairs and downstairs), then Algorithm C would not be

able to provide reliable performance because only orientation invariant features

are used.

5.4 Discussions

Current state-of-the-art machine learning techniques allow the wide application

of using motion sensors to produce human daily activity classification. One ex-

ample of such systems is SIRRACT developed by UCLA Wireless Health Insti-

tute. [XBK11] claims that on average 83.61% precision and 84.38% recall can

be achieved. But one important assumption lies in the correct sensor mounting

orientation which can be very hard to insure especially when the scale of the study

increases.

In this chapter, a new double-layer automatic orientation correction classifier

was proposed and evaluated. On average, 85.20% precision and 93.45% recall was

achieved over 7 healthy subjects and 2 stroke patient subject with no assumption

on the sensor orientation. In the mean time, the original SIRRACT classifier

yields on average 34.97% precision and 22.66% recall over the same set of data.

We can conclude that the newly proposed method achieves robust classification

performance by relaxing the assumption correct sensor mounting orientation.
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Algo. A Algo. B Algo. C

Subject

No.
Date No. Precision Recall Precision Recall Precision Recal

healthy

151
day1 72.64% 4.66% 94.03% 98.06% 91.20% 99.61%

day2 95.93% 99.49% 95.93% 99.49% 92.71% 99.68%

151a
day1 88.74% 82.96% 78.05% 83.88% 88.21% 83.79%

day2 NaN 0% 86.25% 99.05% 86.18% 99.54%

152
day1 14.55% 0.14% 89.47% 97.39% 94.41% 97.53%

day2 NaN 0% 93.83% 98.57% 94.76% 98.20%

153
day1 NaN 0% 85.00% 96.68% 83.64% 95.95%

day2 NaN 0% 81.29% 98.05% 87.48% 99.02%

154
day1 41.82% 29.77% 85.82% 100% 80.87% 100%

day2 NaN 0% 73.65% 99.47% 88.37% 97.88%

185
day1 NaN 0% 95.04% 97.43% 94.62% 99.55%

day2 NaN 0% 81.28% 91.47% 83.52% 99.16%

192
day1 89.80% 97.05% 91.30% 98.13% 93.97% 98.13%

day2 NaN 0% 87.63% 89.19% 83.18% 96.84%

patient

98
day1 41.67% 4.99% 70.27% 88.68% 77.02% 89.60%

day2 NaN 0% 80.24% 83.09% 75.57% 94.26%

117
day1 89.14% 63.57% 80.66% 93.76% 57.84% 99.12%

day2 95.14% 25.32% 83.89% 70.65% 72.28% 97.39%

overall
mean 34.97% 22.66% 85.20% 93.45% 84.77% 96.96%

std 41.38% 36.44% 7.33% 7.91% 9.58% 4.14%

Table 5.4: Classification Results
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CHAPTER 6

Conclusion

6.1 Contributions

This thesis focuses on solutions for sensor placement errors in human motion

tracking and activity classification problems.

We start with proposing an opportunistic sensor orientation calibration method

for an existing lower body motion tracking system in Chapter 2. Sensor misori-

entation and rotational displacement cases are considered individually, each of

which are modeled by a 2D rotation around a fixed axis. Rotation angles are

estimated by comparing the testing data with the training template. We prove

that the sensor signals can be recovered and that accurate step length estimation

can be achieved.

In Chapter 3, we then propose an algorithm to estimate sensor linear displace-

ment and then use this information to modify the current ZUPT algorithm to

achieve single sensor lower body motion tracking using only one sensor mounted

on the ankle. Integrating motion accelerations twice generates traveling distance

with very large cumulative errors. The current ZUPT method resets the velocity

to be zero during the stance phase to compensate for this error and achieve high

accuracy in motion tracking. Observing the fact that the calf is rotating around

the ankle during the stance phase, the Non-ZUPT method proposed in this thesis

uses sensor position and angular velocity (output of the gyroscope) to estimate

the velocity value during each stance phase. Resetting velocity to that non-zero
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value will compensate the cumulative error and then generate traveling distance

with high accuracy. We prove the validity of this method with flat-floor walking

as well as stairs walking. High accuracies were achieved in both cases.

Following that, in Chapter 4, we propose a differential algorithm that can es-

timate step length with high robustness regardless of the exact sensor mounting

position or orientation. In an inverted pendulum human walking model, the trav-

eling distance within each gait cycle can be modeled by multiplying the leg length

and the sine of the orientation change within this period. In this case, the exact

sensor position or orientation have no effect on the system performance as long

as it is firmly attached. This is because, we are only interested in the orientation

change instead of the absolute value.

Finally, in Chapter 5, a double layer walking activity classification model was

proposed. The first layer consists of a highly conservative, orientation invari-

ant classifier where only the walking beacons with high confidence were selected.

These walking beacons were compared with the training template to estimate

the rotation matrix, which was used to correct the whole day data. The whole

day corrected sensor signals were then fed into the second layer, more accurate,

orientation variant classifier.

In conclusion, this thesis presented four different solutions for sensor misplace-

ment issues in motion tracking systems and activity classifiers. Validity of these

methods are proved via real world experiments with healthy subjects as well as pa-

tients. The opportunistic calibration method proposed in Chapter 2 can be applied

to systems where sensor mounting orientation errors exists. This method works

as long as training templates of walking activities with correct sensor mounting

are available. The trajectory reconstruction problems that we used require four

sensors, but only accelerometers are needed. The non-ZUPT algorithm that we

proposed in Chapter 3 can be used for lower body trajectory reconstruction and

sensor linear displacement estimation. It can recover full walking trajectory with
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only one sensor mounted on the ankle of a subject. Both accelerometers and gy-

roscope devices are required for this method to work. The PI method discussed

in Chapter 4 works well even if the location of the sensors change. Even though

the full trajectory can not be recovered, the most important metric, the step

length, can be calculated. It requires two sensors mounted on both ankles of a

subject and both accelerometers and gyroscopes are needed. The opportunistic

calibration method for incorrect sensor orientation was applied to a real world

activity classification problem. This method can be used when whole day data

are available. For classification problems, only accelerometer sensors are needed.

6.2 Future Work

Future works also include applying similar methods to the upper body activities.

Upper body activities are usually more challenging problems. The first reason

is that people have less constraints in upper body movements. Therefore, more

variety can appear when people are doing the same activity which makes it more

challenging to model precisely. Also, the vast majority of upper body activities

is not periodic. In addition, the existence of lower body movement will interfere

with the sensor signals in the upper body. These situations are widely seen in

people’s daily life (e.g. drinking coffee while walking on the street), and make

upper body activity signal processing tasks more challenging. Extensive data

collection combined with careful modeling will be required to make progress.

One of the innovations of this thesis is that one can opportunistically identify

certain segments of the data that serve as calibration points or anchors for the

rest. Examples of such anchors are stance phase in a gait in Chapter 3 and clear

walking instances of high confidence in daily activities in Chapter 5. Beyond

this, for future research, we are interested in a question of how common are these

kinds of “anchor points” in data streams for a broader range of problems. There
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is also a theoretical question of how often these must occur in order to 1) be

able to calibrate and track time varying stochastic processes (e.g. movement of

sensor positions or changes in environment, etc.) and 2) have confidence in the

accuracy of the inferences. This almost surely relates to how well we can model

the underlying stochastic process and the observation noise.

This thesis serves as a good example of such opportunistic calibration systems.

Here we have good models for the accelerometer noise and gyro drift and some very

strong models for walking that make our methods possible. We also have intense

variability in walking among subjects that makes things challenging. Modeling

and noise specifications of stochastic processes are important factors to consider

for the applications of similar methods to a broader range of problems.
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