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ABSTRACT OF THE DISSERTATION

Cooperation Utility in Sensing

by

Yu-Ching Tong

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2009

Professor Gregory Pottie, Chair

We present arguments that a small number of sensors within the network provides most of

the utility. That is, cooperation of more than a small number of nodes has little benefit.

We present two scenarios. In the first scenario, all sensors provide identical utility, and

their utilities are aggregated sequentially. The second scenario is sensor fusion with signal

strength decreasing with distance. In that scenario the source is at the origin and the sensors

are distributed, either uniformly or according to a planar standard normal distribution.

We also vary the total number of sensors distributed in both scenarios to observe the

utility/density trade off. Localization using the Fisher Information as the utility metric is

used to demonstrate that few sensors are sufficient to derive most of the utility out of the

sensor network. Simulation results back up an order statistics analysis of the behavior.

The implication is that while co-operation is useful for some objectives such as

combating fading and uncertainty of individual sensors, it is inefficient as a mean to increase

xi



the utility of a sensor network if the best sensor’s utility is significantly short of the desired

utility.

In addition, asymptotic results under fixed density are presented. In this situation,

the utility improvement is logarithmic at best as the number of sensors and the distance to

the sensors increase.

Coverage area as a utility metric is considered in a lattice deployment and a random

deployment scenario. In both cases small neighborhood cooperation provides noticeable

improvement.

In reconstruction problems the effectiveness of global versus local cooperation de-

pends heavily on the model relating the measurement and the source. When the model

describes the relationship accurately, reconstruction, regardless of cooperation size, will

work well. This problem illustrates that the model has a larger impact than cooperation

size.
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Chapter 1

Introduction

In a sensor network, cooperation size among sensors impacts communication re-

sources consumption. At the same time too few measurements may results in very complex

computation problems or high uncertainty in the results. An appropriately sized coopera-

tion neighborhood enables the sensor network to meet the desired sensing quality without

consuming excessive communication or computing resources. We will see that a relatively

small cooperation size is sufficient to provide noticeable benefits from cooperation.

In [1, 2, 3, 4] the authors discussed how to select a sensor that will provide the most

utility among sensors based on the utility each sensor is expected to contribute. We will

extend their observation to consider how the size of cooperation impacts the performance of

these various strategies. We will see that the first few sensors provide the bulk of the utility.

We will start off in chapter 3 considering the case where every sensor contributes the same

utility to the sensing objective. In this case, we will see that although arbitrary utility can

be achieved, the marginal utility from each individual sensor diminishes. Using localization

1



as an example, we will see that with a small number of sensors cooperating, selection of a

good set of sensors is important. On the other hand when a large number of sensors are

involved, overall utility improves only marginally from the small set. In addition, when a

large numbers of sensors are involved, selection algorithms have little impact on the overall

utility.

In chapter 4, we will consider a more realistic utility model where an individual

sensor’s utility falls off as a function of distance. From [5, 6] we learn that some level of

cooperation can help mitigate channel degradations such as fading. Those results established

the usefulness of small scale cooperation in a communication setting. We extended the

cooperation size to larger neighborhoods, and see that cooperation does not provide any

additional benefit over the small neighborhood. We will observe that under a fixed density

condition, under most distance loss exponents the total utility of the sensor network is

bounded even when we allow the total number of sensors to be arbitrarily large. This

result reinforces the observation in chapter 3 that a few sensors dominate the overall sensor

network performance for a particular source. We will also see that few sensors cooperating

can help mitigate degradations such as fading effectively, but cooperation alone cannot be

used to achieve any arbitrary quality of service goal.

A very popular problem in sensor networks is coverage of the network. There are

various forms to the coverage problem, such as density of sensors necessary for a certain

coverage rate [7, 8, 9], coverage under a multiple view requirement [10] and redundancy

problems such as those studied in [11, 12]. Coverage inherently is typically a multi-sensor

problem, but it does not necessary require explicit cooperation among sensors. In chapter

2



5 we will consider coverage as the utility objective and observe how small scale cooperation

improves coverage. Small gaps of coverage can be filled by cooperating with a few neighbors.

On the other hand, large cooperation cannot be used to fill a large gap due to the bounded

utility that can be achieved by cooperation, as we have seen in chapter 4.

Reconstruction from samples is another one of those problems that requires some

form of cooperation. Many studies on this topic exist. The Nyquist [13] and Shannon [14]

sampling theorem is one of the fundamental concepts in communication. In reconstruction

problems, a model relating the samples and the source must be provided. We will compare

several models and their corresponding reconstruction algorithms. Some of those models

require all of the samples to be used to reconstruct the source, while other models reconstruct

a small piece of the source with a few samples at a time. We will observe that with an

accurate model a local reconstruction technique can be effective. We will also observe

that with an inferior model, even using all of the measurements the global reconstruction

technique will still result in poor reconstruction performance.

Thus, whether we consider sensing of a single source, coverage, or reconstruction,

in this thesis we show that local small-scale cooperation can be useful, but large scale

cooperation will not overcome an insufficient density of samples (or a poor model of the

phenomenon.) This result is both reassuring in that we can usually slightly oversample

and make use of low complexity algorithms, and a warning that physical limits and models

cannot be abstracted away. In the conclusion we state some open research problems in the

domain of sensor network cooperation.

3



Chapter 2

Background

In chapter 3, the first case study subject is localization. Localization is a very

popular subject in sensor network, and with good reason. In many situation where sensor

networks are deployed, we are interested in where events take place. Broadly speaking there

are three approaches to locate a source: triangulation, scene analysis and proximity[15]

Triangulation requires the use of multiple sensors that provide simple data and geometry,

where scene analysis makes use of more complex data streams such as images to locate items.

This is the classical approach to localization. Localization via scene analysis itself is a broad

research topic under computer vision. A few examples are shown in [16, 17, 18, 19]. The

proximity approach was used in many sensor networks and cell phone localization problems

[20]. We will focus on triangulation, where the fusing of data among sensors is more explicit

and scaling of cooperation with multiple sensors is simpler.

As with any estimator (in our case a location estimator), one metric of quality is

the Cramer-Rao Bound (CRB)[21]. It provides a theoretical bound of the estimator based
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on the relationship between the measurement and the estimate, and the noise model of

the measurement. The CRB bounds the variance of any unbiased estimator. Although we

cannot compute CRB during runtime because we do not actually know the ground truth,

CRB produces insight in expected system performance and verifies implementation during

calibration. In higher dimensions, the inverse of the CRB may not exist when it is not full

rank, but the inverse of CRB, the Fisher Information Matrix (FIM) can still be determined

and inform us of the dimension where the ill condition occurred.

In sensor networks there is a new problem that previous remote sensing did not

often face: sensor selection. In the classical remote sensing problem, there are far fewer

sensors available. Typically we need all the sensors available in the classical case. In the

sensor network setting, we may have multiple sensors detect and observe the same source.

For various reasons such as reduced congestion or increased life time of the network, we

want to select only a few of the sensors within the network to respond to the source. In

order to decide which sensors to select in an intelligent fashion, we need to define some form

of utility from each sensor. The utility obtainable from each sensor and its contribution to

the overall utility depends on the application. Total utility as a function of each sensor’s

utility may be either sub modular or super modular [22]. Sub modular utility functions

are utility functions such that the total utility from all sensors is equal to or less than

the sum of the individual sensors’ utility. The sensor selection problem with this kind

of utility function can be solved efficiently[22]. On the other hand sensor selection under

a super-modular utility function, where the aggregated utility is greater than the sum of

the individual sensors’ utility, is a more difficult problem. These types of utility function

5



arises in applications that depend on specific sequences of measurements or conditions that

require a minimum number of sensors. Entropy difference[2] combines sensor selection with

estimation quality by using entropy as the utility function.

Tracking is the natural next step after localization. While one way to think of

tracking is a sequence of localizations, the knowledge of the previous location of the source

can reduce the number of sensors we must explicitly deploy. Although we will not deal with

tracking explicitly in this thesis, the sequence of past observations can be treated as other

observations. However, the additional time dimension needs to be considered, both in term

of when the measurement was taken place and the time it takes to resolve an estimate of

the solution. The standard approach to solving tracking problems is the Kalman Filter[23].

The Kalman Filter solves the linear state space model with Gaussian noise corrupting the

measurement. Another class of newer tracking solvers is the particle filter which solves the

tracking problem using the Sequential Monte Carlo Methods (SMCM) [24]. The particle

filter admits a more general model compared to the Kalman Filter, with a more complex

implementation. Essentially the SMCM constructs a simulation of the model, constructs

the probability distribution based on the measurements and evaluates various parameters

of the problem from the computed distribution at each iteration.

To analyze the consequence of distance loss, we turn to order statistics[25]. While

we may place our sensors in an independent, identical distribution (iid) fashion, the distri-

bution of the closest, the next closest, and the farthest sensors are certainly not identical.

Order statistics construct the distribution of the closest to the farthest sensors from the

distribution of how the sensors are scattered in the field.
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If synchronism can be achieved among sensors for the sensing, the optimal combin-

ing technique is Maximal Ratio Combining(MRC)[5]. MRC effectively adds each sensor’s

signal to noise ratio by coherently combining the signal (e.g. add in voltage) while noise

combines in power. This is the upper bound of signal combining. In some cases coher-

ently combining is not possible due to the nature of the source or when synchronism is not

available. In that case the benefit of cooperation will be reduced.

A lattice structure allows us to analyze coverage problems in arbitrarily large fields.

With the rich structure in the lattice we can expand the analysis easily. We will use the

hexagonal lattice due to the nice packing property[26] in the two dimensional space in our

analysis. Analysis of random deployments is more challenging, because although we may

place the sensors in an iid fashion, we may be subject to edge effects which makes large

field analysis difficult. In the analysis of capacity of wireless networks[27] the authors use a

specific deployment distribution (on the surface of a sphere) to avoid the edge effect.

In the reconstruction chapter, there are several topics in which we only made use of

a very small portion of a vast subject: wavelet transform, compressed sensing and statistical

techniques. In this thesis we will focus on the one dimensional version of these topics. This

will simplify our problem and allow us to maintain the focus of this thesis in studying the

benefit of various cooperation neighborhood sizes. The wavelet transform[28] expands upon

the Fourier transform and has been an active research area. The wavelet transforms has

seen extensive applications in image processing and as part of the JPEG 2000 standard

[29]. The wavelet transform is very attractive in signal compression and processing, partly

due to its ability to describe both high and low frequency content of the source efficiently,

7



compared to the Fourier transform. Many applications of compressed sensing and tutorials

can be found at [30]. Compressed sensing can make use of the wavelet transform’s ability

to enable efficient sampling of large class of signal, although we did not implement it in

that fashion in this thesis. As we will discuss in chapter 6, the success of global algorithms

depends on the correctness of the model.

This idea of matching a model to the source led to the next class of algorithms:

statistical algorithms. Using an iterative procedure, the algorithms can learn and approxi-

mate the underlying distribution of the parameters of interest. In many cases, however, the

parameters we should use require other prior knowledge and are application specific. [31]

provides an excellent introduction to such techniques.
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Chapter 3

Uniform Contribution

3.1 Introduction

In a sensor network, there are multiple sensors observing the source. With multiple

sensors, we may only need a subset of the sensors within the network to achieve our sensing

objective. Since only a subset of the sensors is needed, the natural question becomes ”which

sensors should we select?” Unfortunately, as [1] points out, even when the utility function

from each sensor is well behaved, the selection of the optimal subset can be challenging.

Nonetheless, as we will show in this and subsequent chapters, we only need to select a few

sensors to get most of the utility.

In this chapter, we will consider the case that all sensors provide identical utility,

using the case study of localization to illustrate the identical utility model.

9



3.2 Uniform utility and its consequence

Suppose each sensor contributes an identical amount of utility, and the overall

utility of the fused data will be the sum of the individual utilities, i.e. the utility for n

sensors will be simply n.

At the n-th iteration of data fusion, the existing sensor set provides n− 1 units of

utility, and the relative utility ur of the existing set to the n-th iteration is

ur(n) =
n− 1

n
(3.1)

The difference is

∆ur(n) =
2n− 1

n(n+ 1)
(3.2)

To increase the utility n by factor k, it will require nk sensors, and the utility will

approach nk in O(1/n).

We can achieve an arbitrary utility by deploying a sufficiently large number of

sensors. However, the rate of each sensor’s actual contribution to the overall utility decreases

geometrically as the total utility increases, as seen in figure 3.1.

The implication is that in a very dense deployment, some overlap or otherwise a

reduction in individual sensor utility will not be noticeable. Figure 3.2 shows that when

individual sensor utilities are uniformly distributed between 0.5 to 1.5, as the number of

sensors increases, the new sensor’s contribution to the overall utility still diminishes geomet-

rically. In addition, the variation in realization of this prior utility rate due to individual

sensor utility variations diminishes as the number of sensors increases due to the law of

10



large numbers. Figure 3.2 displays the result of 10k trials, each with 25 sensors. The bar

limit is the maximum and the minimum utility for a given number of sensors out of the 10k

trials.

A more in-depth example can be seen in [9]. Even in their complex deployments

the saturation effect is readily seen.

There are situations where the utility from sensors increases at more than a linear

rate. They arise when the number of sensors used is less than necessary to provide the

desired quality of service and the underlying utility has ambiguity. A typical example is

localization when the observations available are less than required to form a unique solution.

Such utility functions exhibit super modular behavior [22]. Under such utility functions, the

benefit of cooperation among sensors is application specific. Suppose our goal is to meet a

certain fixed amount of utility, and each additional sensor provides additional utility , i.e.,

un+1 = (1+ ǫ)un, ǫ > 0 where un is the utility of the n-th sensor. The overall utility U with

N sensors is then simply

U = u1

N
∑

i=1

(1 + ǫ)i−1 (3.3)

This geometric series in eqn. 3.3 is also unbounded and can also reach any arbitrary

utility for sufficiently large N . Even in this case, we can see that certain sensors provide

the majority of the utility, but in this case it is the last few sensors as opposed to the first

few sensors.

11



1 2 3 4 5 6 7 8 9 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of sensors

ra
tio

 o
f e

xi
st

in
g 

co
nt

rib
ut

io
n 

at
 n

ex
t i

te
ra

tio
n

Figure 3.1: Prior utility rate to the total utility

0 5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.2: Prior utility rate to the total utility with random sensor utility

12



3.3 Localization case study

In this case study, we will consider the utility that can be derived from each

sensor in a localization problem. Localization of sources can typically be achieved by three

techniques: triangulation, scene analysis and proximity sensing [15]. We will focus on a sub

class of the triangulation technique: range/time of travel (RNG), angle of arrival (AOA) or

time difference of arrival (TDOA) measurement.

The problem of localization requires a certain number of observations be available

to form a unique solution. The number of sensors required depends on the observation type.

Utility will somewhat depend on the selection algorithm. While the utility of each

sensor depends on its relative location to the source, the total utility available from the sets

depends on the sensor set selected. In the following section we will use selection algorithms

to observe the total utility as the size of the sensor subset increases.

3.3.1 Observation uncertainty model

We model the observation as a Gaussian distribution centered around the true

reading. The following notation is used: the range is ρi ∼ N (ρ̄i, σi) for i-th range sensors,

i = 1, . . . , kR, the angle is θi ∼ N (θ̄i, σi) for i-th AOA sensors, i = 1, . . . , kA, and the delay

is denoted τi ∼ N (τ̄i, σi) for i-th TDOA sensors, i = 1, . . . , kT .Each sensor may report

a range, an angle of arrival or a time difference of arrival estimate. The estimation of

the range or time of arrival, angle of arrival, TDOA are abstracted here, i.e., each sensor

individually handles the estimation and reports the final estimated observation. We assume

observation noise in each sensor is independent of that from other sensors.
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By contrast, [2] did not require the noise process to be Gaussian. Noise in [2]

can follow a more general distribution as long as the conditional differential entropy of

observation, given the source’s location estimate, exists. [2] thus allows for a more accurate

evaluation of uncertainty when the noise is non-Gaussian. Entropy difference [2] is described

below for comparison as a sensor selection algorithm. With a small number of sensors,

the entropy difference selection algorithm selects a set of sensors that can achieve a higher

quality localization solution. When a large number of sensors cooperate to localize a source,

the performance difference between selection algorithms diminishes.

[32] focused on AOA based sensors. Each of those sensors trace out two rays,

originating from the sensors and angled at θ̄i ±αi/2, αi the bounded uncertainty for sensor

i. Using this model, the localization problem becomes a series of slices of polyhedra. The

slicing of the field of view can be performed efficiently. The final localization product is

a polyhedra, where its area can also be computed efficiently [33]. However, if the angle

αi is too small that leads to error during selection of the slice of the polyhedra, and the

algorithm will produce erroneous and inconsistent results. The inconsistency is a threat

especially when there is a large number of sensors. Therefore angle αi must be selected

sufficiently widely across the AOA sensor range, which may include large targets at short

distance.

3.3.2 Localization uncertainty

Due to the observation uncertainty, localization will have limited accuracy. A

common criterion for accuracy of estimating parameters is the Cramer-Rao bound. From

[34],[35],[36], based on the observation uncertainty model used in 3.3.1, in a planar localiza-
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tion problem, the CRB matrix and Fisher Information Matrix (FIM) for range and (AOA)

localization are as follows:

CRB = FIM−1 = (H∗H)−1

Range: HRNG =

















...

rs−ri

σi‖rs−ri‖

...

















(3.4)

AOA: HAOA =

















...

ys−yi,xs−xi

σi‖rs−ri‖2

...

















(3.5)

where rs = [xs, ys] is source location and ri = [xi, yi] is i-th sensor’s location. σ2
i is the i-th

sensors observation variance.

With time difference of arrival (TDOA) localization, in the case of unknown prop-

agation velocity, the CRB matrix for location parameter and propagation velocity can be

expressed as follows [37]:

TDOA: H =
1

v



















...

1
σi

(

rs−ri

‖rs−ri‖ − rs−rref
‖rs−rref‖

)

,−τi
...



















(3.6)

where rref = [xref, yref] is the reference sensor location, v is the propagation velocity and

τiref is the time difference between the i-th sensor and the reference sensor.
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Note that while the CRB for range and AOA sensor modes can be computed

without actual observations, it does require actual source location in all sensing modes.

Hence we cannot compute the true CRB in any actual implementation. Nevertheless, the

CRB can be used to compare the performance of sensor selection algorithms, by comparing

each selections’ best possible performance with an ideal estimator in term of localization

co-variance. In contrast, [2] uses the probability distribution of source location as the

metric of localization uncertainty while [32] uses the area of the source’s possible location

as the metric. Unlike true CRB, both entropy difference and source location uncertainty

area under the bounded uncertainty model can be computed in an actual implementation

if distributions of sensors’ observations are accurate or the uncertainty in observation from

sensors is indeed bounded.

Since FIMRNG and FIMAOA have the same dimension, for mixed mode operation

with range and AOA sensors, we can simply add the FIM from each mode. If we also have

TDOA sensors, we can zero pad FIM from the range or AOA mode with a row of 0’s and

a column of 0’s, i.e.

˚FIM{RNG, AOA} =









FIM{RNG, AOA} 0

0 0









(3.7)

FIM = ˚FIMRNG + ˚FIMAOA + FIMTDOA

Note that the above derivation did not explicitly assume any distance loss in signal

quality, i.e. σi in reality may also be a function of distance r. This simplification has little

impact when the source is ‘far’ away from the sensors group and most sensors actually
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observe similar signal strength.

However this simplification has considerable impact when the relative distances

between the source and the sensors vary significantly among sensors, which will be the case

when the source is ‘near’ the sensor group. This distance dependent interaction is affected

by the distribution of sensors around the source and will be considered in section 4.1.

3.3.3 Localization Utility Simulation

In the following simulation, the source was placed within the field of sensors. We

ran 300 trials of the experiment. In each trial, there were 16 RNG and 16 AOA sensors,

with .08 standard deviation on observations for both types of sensors. Therefore the dbe

is 1. AOA sensors within radius 1 will be selected first, followed by the entire set of RNG

sensors followed by the remaining AOA sensors. The sensors are distributed uniformly over

a [ -1, 1] × [ -1, 1] square and the source is placed uniformly over a [-.1, .1]× [-.1, .1] box.

λ in Fig. 3.3 is the sum of the eigenvalues of the FIM and is the utility metric

for this localization simulation. Note the rapid saturation of the utility after a few sensors,

regardless of the selection algorithm used in selecting sensors. In this case the minimum

number of sensors is three for the RNG sensors.

Several algorithms were used to select sensors in a sequential fashion among the

entire set of sensors. The different selection algorithms show that the underlying localization

problem renders the sensor selection problem trivial when sensors are sufficiently densely

deployed. The algorithms we used are as follows:
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Random

We simply pick sensors randomly. This is the simplest method; it requires no

prior information. The density of the deployment determines the success of this method.

In particular, this method will be successful in a dense deployment, and will fail easily in a

sparse deployment.

Entropy Difference

From the observation model, each sensors’ observation has a certain probability

distribution. From [2], we may use a heuristic based on information theory to sort sensors

according to their potential benefit in improving our accuracy in the localization problem.

This method considers the problem in its entirety; both the sensor’s observation variance

and the geometric factors are considered.

This method requires two parts. First the entire observable space has to be dis-

cretized once to compute Hv
i ((9) in [2]) for each sensor to compute the a priori entropy of

observation.

Hv
i = −

∫

p(z) log p(z)dz

where z is the field of view of the sensors. This Hv
i only depends on sensors location and

the geometry of the observable space.

At each iteration, based on the previously picked sensor, across the entire observ-

able space, we need to compute Hs
i ((11) in [2] ), where Hs

i represents the entropy of the

sensor observation given that the source location is estimated based on knowledge available
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up to present:

Hs
i = −

∫

p(z|x̂) log p(z|x̂)dz

where x̂ is the latest maximum likelihood estimate of source location.

[2] detailed how Hv
i −Hs

i approximates the mutual information comparison at each

sensor and the difference from the actual mutual information. All of this is very computing

intensive. In fact, according to [2], it’s O
(

w3
)

, assuming the observable space is gridded

into a n × w matrix. If sensors are to compute the entropy difference in a distributed

fashion, each sensor requires the probability distribution of the source location. At the end

of each iteration the probability distribution of the source location will be updated with the

selected sensor’s observation.

Nearest Sensor First

Another heuristic method is to sort the sensors according to their distance from

the estimated source location, then pick the closest sensor first. Presenting the selection

algorithm as an optimization problem, we want to select the i-th sensors that

min
i

‖rs − ri‖

All that is required is some kind of estimation of source location and all sensors

locations. The complexity of this is O(m × p), where m is the number of sensors and p is

the dimension of the localization space if we execute all the distance calculations only one

time and do not update the source location as we progress. Of course, in practice to guard
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against large initial errors some additional updates are advisable for robust operation.

Angle-Range-Angle

Yet another heuristic method is to select some AOA sensors first, then select all

the RNG sensors and then the remaining AOA sensors. Suppose for all RNG sensors the

observation variance is σR and for all AOA sensors the observation variance is σA. All

RNG sensors are equivalent in terms of their utility toward the localization application,

since hRNG are unit vector scaled by σR. On the other hand, AOA sensors that are closer

to the source provide more utility than the farther away counterparts.

3.3.4 Localization Conclusion

A typical realization of utility progress, with a variety of sensor selection algorithms

is shown in Fig. 3.3. Fig. 3.4 shows the number of sensors needed for a variety of sensor

selection algorithms to achieve 90% of the utility achieved by using all sensors.

The selection algorithm can have a great impact on the overall aggregated per-

formance because the first few sensors are going to indicate the aggregated performance.

In this stage of selection, a more expensive algorithm is worthwhile because we can reach

the desired quality of service faster. We don’t need the best at each stage, but a greedy

algorithm probably should work. In our localization example, entropy difference performed

best via a more accurate prediction of sensors contribution given the selected sensors set.

While it is more complex to perform at each iteration, entropy difference meets the QoS

with only half as many sensors as other algorithms. On the other hand, if we will use a

large number of sensors, the particular selection algorithm has little impact because utility
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Figure 3.3: One realization of of localization utility

grows at a slow rate after the first few sensors.

Clearly the first few sensors contributed the majority of the utility of the data

fusion, under this simplified utility function. If some sensors actually have a higher utility

function than other sensors, even fewer sensors will contribute most of the utility. The

selection algorithm is important for selecting those first few sensors. In the above example,

the entropy difference selection method performed the best, ARA is next and select the

next nearest sensor performs similarly to randomly selecting sensors. Note that the nearest

sensor performs so poorly partly due to the fact that there is no distance dependency for

the utility of the sensor observations. However, even with a simple selection algorithm,

a few additional sensors can achieve the desired utility. Consequently, while there are

some differences among the algorithms’ performance with a small number of sensors , the

utility function here penalizes the simple selection algorithm only slightly compared to more

complex algorithms, assuming a few more sensors are available.
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Figure 3.4: Number of sensors to achieve 90% of total utility

From the above exercise, we can see that a few sensors in addition to the minimum

required to resolve the source location uniquely will be sufficient to localize the source,

echoing a result observed in [32]. In the next chapter, we will consider cooperation utility

with distance dependency.

22



Chapter 4

Non-Uniform Utility Metric

4.1 Introduction

In this chapter, we will consider non-uniform sensor utility that arises due to the

sensors’ geometric distribution and the resulting distance loss effect on the expected utility.

Order statistics will play a key role to transform the sensors distribution to the expected

utility.

In this scenario, we place the source at the origin, and sensors are placed in an IID

fashion. We will consider two distributions: uniform disk and two dimensional Gaussian

distribution. We then compute the expected k-th closest sensor with order statistics. That

in turn allows us to compute the distribution of the utility of the k-th sensor.

From this expected utility we then show the rapid fall off of sensor utility from

the nearest sensor to the farther away sensor. This observation implies that the closest few

sensors contribute significantly larger utility than those that are farther away.

Additionally, we will apply fading to the observations. Since fading can degrade or
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improve signal strength significantly, we will see that cooperation of the few closest sensors

is necessary because the closest sensor may experience fading that will erode the distance

advantage a sensor may otherwise enjoy.

From the order statistics results, we can also compute the expected total utility.

We observe that large scale cooperation utility is always bounded when the distance loss

exponent is greater than 2 for fixed density.

In addition, we will observe that a small number of sensors cooperating helps in

overcoming outage due to fading.

4.2 Sensor Utility Statistics

4.2.1 Order Statistics

The distribution of the k-th statistic out of n IID drawn random variables can be

written as follows [25]:

fX(k)
(x) = n









n− 1

k − 1









F (x)k−1(1 − F (x))n−kf(x) (4.1)

From eqn. 4.1, we can obtain the distribution for the nearest k-th sensor distance

to the source given the number of sensors that are drawn, along with the sensor-source

distance distribution, assuming all the sensors are drawn in an IID fashion. In the following

we will consider two distributions: sensors are distributed in the unit disk uniformly, and

sensors are distributed according to a normal distribution in a plane.
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4.2.2 Uniform Disk

Layout and Assumptions

We will assume a source is at the origin and all sensors are distributed uniformly

within the unit disk. The utility function for a given sensor is the distance of the sensor

and the source, i.e. r−α
i for the i-th sensor which is ri away from the source and 2 ≤ α ≤ 4.

Theoretical distribution of distance

All the sensors are placed in an IID manner, and the distances are distributed

according to fR(r) = 2r, r ∈ [0, 1], a triangular distribution. The ordered statistic for the

k-th closest sensor distance for n sensors total is as follows after putting the appropriate

terms into eqn. 4.1.

fR(k)
(r) = n









n− 1

k − 1









r2(k−1)(1 − r2)n−k2r (4.2)

As fig. 4.1 shows, the first few distributions are similar and eqn. 4.2 matched

well with the simulation. This similarity between the first few distributions is the key to

understanding how to overcome fading as will be discussed in section 4.3.

4.2.3 2D Gaussian

Layout and Assumptions

We continue to assume a source is at the origin but now all the sensors are dis-

tributed in a planar standard normal distribution. The utility function for a given sensor is
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Figure 4.1: Simulation and theoretical order statistic of distance to origin, uniform disk

the distance of the sensor and the source, i.e. r−α
i for the i-th sensor which is ri away from

the source and 2 ≤ α ≤ 4.

Theoretical distribution of distance

All the sensors are placed in an IID manner, and the distance is distributed ac-

cording to a Rayleigh distribution, with fR(r) = re−r2/2. The extreme ordered statistics

are as follows.

fR(k)
(r) = n









n− 1

k − 1









(1 − e−r2/2)k−1(e−r2/2)n−kre−r2/2 (4.3)

As fig. 4.2 shows, the first few distributions are also similar to each other. This

distribution also shares a similar shape with the uniform disk distribution, with the excep-

tion that we no longer have a hard boundary limitation as in the disk model. However,

our interest is in those that are close to origin. Thus the tail of the distribution has little

impact.
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Figure 4.2: Simulation and theoretical order statistic of distance to origin, planar normal

4.2.4 Expected Utility by varying k, n

The expected utility of the k-th sensor is

E[uk] =

∫

r−αfR(k)(r)dr (4.4)

From eqn. 4.4, and the respective order statistic distributions from eqn. 4.2 and

4.3, we obtain the following figures, illustrating evolution of utility derived from the nearest

sensor as the total number of sensors increases in the respective environments.

As shown in figures 4.3 and 4.4, both distributions behave similarly. Both experi-

ence a sharp increase in utility initially, and then the relative utility growth diminishes.

As seen from the figures 4.5 and 4.6, the utility is dominated by the nearest sensor.

The relative utility is plotted, where the nearest sensor is the reference, and the level curve

is the utility below, the reference, in dB.

The implication of the above result is that the one or two sensors that are closest

to the source will generate most of the utility. This further implies that cooperation will not

be an effective means to increase the utility of sensors. Thus cooperating beyond necessary,
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Figure 4.3: Nearest sensor expected utility evolution from n to n+1 in a disk
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Figure 4.4: Nearest sensor expected utility evolution from n to n+1 in a 2D normal
distribution
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Figure 4.6: Relative utility in 2D normal distribution
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e.g. the minimum number of sensors required to uniquely localize a target, will not provide

much increase in utility. However, some level of cooperation should be considered in a

sensor network to defend against uncertain environments as discussed below.

4.3 Cooperation

Assume that all sensors have equal performance and the only differences among

the sensors are their distances to the source (at origin). Thus the signal to noise ratio

differs from one another only by their distance loss, i.e. the SNR for the k-th sensor is

SNRk = S0/N0 × r−α
k , 2 ≤ α ≤ 4 and rk is the distance between the source and sensor k.

Using maximal ratio combining (MRC), which is the optimal combining method, the fusion

solution yields the sum of the SNR, i.e.

Total SNR =

n
∑

k=1

SNRk = S0/N0

n
∑

k=1

r−α
k (4.5)

With this observation, the evolution of
∑N

k=1 r
−α
k can yield insight on how the

total utility changes as the number of sensors increases.

Note that this is not the same as equal gain combining. Equal gain combining,

where all the sensors are weighted equally, will yield a lower SNR than the MRC.

One infelicitous environmental factor is fading. Fading can occasionally cause

significant degradation to signal strength. Here we consider the utility function (r−α) is

multiplied by a fading factor g distributed according to the Rayleigh distribution:

fG(g) = g/σ2
f exp(−g2/(2σ2

f ))
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Figure 4.7: Fading outage in a disk

For a given geometry, we will draw a set of Rayleigh distributed random variables

to simulate the fading effect and collect the statistics over multiple instances of the fading.

We declare an outage if the sum of the faded utility is less than the nearest utility when

there is no fading.

In figures 4.7 and 4.8, outage probability, as defined above, is shown with σf = 0.8.

Both types of distributions experience improvement with a small number of collaborators

and differ only in the tail region when outage is below 15%. As the number of sensors

needed to mitigate fading increases, the difference between the two order statistics become

apparent.

Not surprisingly, the outage is independent of the number of sensors in the entire

deployment, as seen in figures 4.7 and 4.8 that the given probability of outage depends

only on number of sensors used (k), and not on the total number of sensors (n). That is

due to the outage definition above, where outage is related to the nearest sensor utility in
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Figure 4.8: Fading outage in 2D normal distribution

a non-fading environment. For a given fading environment, a few sensors cooperating is

necessary to provide acceptable performance. This is in contrast to the previous scenario.

In the scenario where there is no fading, the nearest sensor alone is sufficient. Nonetheless,

even in this case a small number of sensors suffices.

Suppose we define outage as a certain quality of service (QoS), in this case as

the expected utility from two sensors in a non-fading environment. The outage is shown

in figures 4.9 and 4.10. With the fixed QoS, it is not surprising that as the total number

of sensors or the number of sensors used in cooperation increases the outage decreases.

Note also that as the total number of sensors increases, the number of sensors for actual

cooperation can be reduced in order to reach the target QoS. That is achieved by sensors

being closer to the source such that those sensors can provide the target QoS even in a

fading environment.

32



0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.60.7

n, total number of sensor

k−
th

 n
ea

re
st

 s
en

so
r 

se
le

ct
ed

Expermential Outage Probability

2 4 6 8 10 12 14
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Figure 4.9: Fading outage in a disk, fixed goal
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Figure 4.10: Fading outage in 2D normal distribution, fixed goal
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4.4 Very large number of sensors

Continuing with utilities from sensors that depend on distance loss, in the following

we show that the utility increases logarithmically as the total number of sensors increases

when the density of deployment remains constant.

When we consider total utility, we can dispense with order statistics considerations,

because the aggregated result averages across the entire set of sensors.

It can also be shown by noting that the combinatoric term in the order statistics,

when we sum from sensor 1 to n, drops to 1, in particular,

n
∑

k=1









n− 1

k − 1









FR(r)k−1(1 − FR(r))n−k = 1 (4.6)

by the binomial theorem. Therefore the aggregated total utility from all n sensors can

simply be obtained by multiplying the expected utility of one sensor by n.

Note that when considering utility functions in the form of r−α, the rate that

the probability approaches 0 when distance approaches 0 must be taken into account. A

uniform disk, where the distance distribution is a triangular distribution, does not decrease

to 0 fast enough, thus a minimum distance ǫ is introduced to avoid unbounded utility when

taking the limit on the number of sensors.

For deployment within a uniform annulus with radii ǫ and R, the probability

distribution function is

fR(r) =
2 (r − ǫ)

(R− ǫ)2
(4.7)
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A sensor’s expected utility in such a deployment, for α > 2 is simply

E[u] =
∫ R
ǫ r−αfR(r)dr

= 2
(R−ǫ)2

[

r2−α

2−α − ǫr1−α

1−α

]R

ǫ

(4.8)

and for α = 2, the expected utility is

E[u] =
2

(R− ǫ)2

[

log
R

ǫ
+ ǫ(R−1 − ǫ−1)

]

(4.9)

In the case of constant density M = n/(πR2 −πǫ2), the total utility is n times the

expected utility of one sensor (eqn. 4.8, 4.9),

limR→∞
2n

(R−ǫ)2

[

r2−α

2−α − ǫr1−α

1−α

]R

ǫ
, α > 2

= 2Mπǫ2−α

(α−2)(α−1)

(4.10)

limR→∞
2n

(R−ǫ)2

[

log R
ǫ + ǫ(R−1 − ǫ−1)

]

, α = 2

= limR→∞
2Mπ(R2−ǫ2)

(R−ǫ)2

[

log R
ǫ − 1

]

= limR→∞ 2Mπ
[

log R
ǫ − 1

]

(4.11)

The above limits in eqn. 4.10 show that for α > 2 the total utility is bounded

regardless of the number of sensors in a fixed density disk. For α = 2 the total utility

is unbounded, and grows logarithmically with respect to the number of sensors in a fixed

density disk.

Fig. 4.11 shows the aggregated utility of n sensors for α = 2. As the number of

sensors increases, the maximum distance R increases to maintain constant density. The

linear behavior in the large number of sensors regime confirms that the utility grows loga-

rithmically.
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Figure 4.11: Expected aggregated utility from constant density in an annulus

Also note that the utility appears to decrease slightly as the number of sensors

increases for larger α values. Intuitively, for a larger α value, where distance loss is more

significant, the optimal sensor is more critical to the overall utility. As the number of sensors

increases, the expected distance for the nearest sensor increases slightly according to the

order statistic due to the exclusion zone ǫ in the distribution, shown in Fig. 4.12. In reality,

utility would be flat.

4.5 Non-uniform utility conclusion

In summary we have shown that cooperation utility is bounded in most cases for a

given distance. This limitation is based on distance loss. Therefore large scale cooperation

is both unnecessary and ineffective. However, a local scale cooperation can provide great

benefit to deal with degradations such as fading. In the next chapter will we see how small

scale cooperation enhances coverage area.
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Chapter 5

Coverage

5.1 Introduction

The coverage problem is a mixture of both uniform and non-uniform utility. On

the one hand, if we assume total coverage area as the utility metric and each sensor provides

identical coverage area, then this is a uniform utility scenario. At this scale the ‘cooperation’

among sensors is by merely sensing a different area. On the other hand, if a more advanced

cooperation method is available, then sensors coverage utility is non-uniform, and is modified

by how sensors cooperate with their neighbors. In this chapter we will focus on the latter

setup: how does local cooperation among neighbors impact coverage provided.

We will consider a regular lattice deployment and a random deployment of sensors

to observe the effect of cooperation on coverage area. As we have seen in previous chapters,

small scale cooperation among a handful of sensors can provide a noticeable increase in

utility. On the other hand, large numbers of sensors cooperating to sense a common source

provides diminishing returns. In both deployment scenarios we will observe that a small
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scale cooperation will provide enhanced coverage area to the field.

5.2 Prior art on coverage

The coverage problem had been studied extensively in the literature in various

forms. One typical question is the density necessary for a certain coverage rate [7, 8, 9].

Each sensor operates independently within its coverage area (typically a disk). In [38, 39]

the impact on the overall coverage by a more realistic coverage model from each sensor was

explored. A heterogeneous mixture of sensor capability and their impact on the network

coverage is considered in [40].

Localization requires multiple sensors to achieve a solution. [10] considered the

coverage problem in the localization context. Similarly, for reliability purposes, it is desir-

able to have redundant sensors so that the network can continue to achieve its objective

even when some sensors become unavailable. [11, 12] explored this particular type of prob-

lem. Typically this type of problem is cast as a k−coverage problem. In contrast to an

independent sensors setup, in this problem we requires k sensors providing identical utility,

whether for the communication link or sensing coverage.

Another large set of literature on coverage is on controlling placement of sensors

to achieve such coverage in both static placement [41] and dynamic sensor networks with

robots [42, 43, 44]. Another deployment approach is to deploy sensors in a random fashion

[45].

In the following, the effect of cooperation among sensors to improve coverage

is considered. Similarly to [45], we will consider using multiple sensors cooperating to
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achieve an increased coverage area. In particular, we will use multiple sensors to provide an

equivalent one sensor coverage. This objective is in between the independent sensor coverage

and the k coverage problem. In the independent sensor approach , the source level within

the coverage area must reach the detection threshold at a given sensor. Likewise in the k

coverage problem, k sensors observe the source above the detection threshold within the

coverage area. In contrast, we will consider the case where we are allowing several sensors

cooperating where none of the sensors observe the source at the detection threshold. We

will declare a source within the coverage area if after combining the cooperating sensors

measurements, the combined signal meets the same detection threshold.

5.3 Sensor model and utility metric

We will model the coverage of a sensor as a disk of radius r and a distance loss

exponent of α throughout this chapter. For cooperation in sensing among sensors, we will

assume maximal ratio combining, the same cooperation model as section 4.4. In particular,

cooperation SNR will be the same as equation 4.6.

We will define the utility function as follows: for a given point x, with m cooper-

ating sensors, then point x is covered if the combined SNR from the m highest SNR sensors

is equivalent to being r away from one single sensor. We will further assume the difference

between sensors’ SNR is due only to the distance of the sensors. Therefore the m closest

sensors will provide the highest SNR. Let si be the location of the i-th sensor. Then the

point x is covered under m cooperation when,
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Figure 5.1: Sensor in Lattice example

m
∑

i=1

r−α
i ≤ r−α, ri = ||si − x||2 (5.1)

5.4 Regular deployment

We place the sensors according to a hexagonal lattice. Hexagonal packing of the

disk places all neighboring sensors at equal distance, greatly simplifying the analysis.

In particular, each sensor s will have six neighbors, distributed evenly at a distance

of d = kr away from s. The neighbors are separated by π/3 radians angularly from each

other with respect to the center sensor. k scales the spacing between neighbors and the

coverage area. Fig. 5.1 shows an example of the lattice, with k = 2. We will consider the

lattice of fixed density and use k as the utility metric in this section. The scaling factor k

is proportional to the coverage area.
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Figure 5.2: Complete coverage with independent sensors

5.4.1 Independent sensors

In fig. 5.1, we will notice there is some space that is at a distance greater than r.

The distance between the farthest point away from any sensor to the center of a sensor is

d
√

3/3 (5.2)

by the lattice configuration. In order to place all points within a sensor range r, k must be

less than or equal to
√

3. Therefore k =
√

3 is the lower bound of the coverage area with no

cooperation and no void in coverage. Fig. 5.2 shows the lattice and coverage with k =
√

3.

The overlap area of per each sensor with this complete coverage is 2r2(π−3
√

3/2)

per sensor. Compared to the individual sensor area of πr2 for each sensor there is approxi-

mately 35% of resources that provide no added utility because those areas are also covered

by other sensors.
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Figure 5.3: Sensors surround origin

5.4.2 Local cooperation sensors

By enabling cooperation among sensors we can set k ≤
√

3 and still achieve com-

plete coverage. Without loss of generality, we can select one of those points that is farthest

from the nearest sensors and place it at the origin.

Let’s consider a cooperation size of 3 sensors. With three sensors cooperating, k

can be set as follows

3(kr
√

3/3)−α = r−α

k = (3)1/α
√

3

This will maintain maintain complete coverage. In addition to eliminating overlap of cov-

erage areas by sensors, the single sensor’s coverage areas actually do not contact their

neighbors.

If we add additional sensors for cooperation, those additional sensors will be farther

away. For a given ring, there will be more of such sensors. The next closest set of sensors
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Table 5.1: Number of sensors and the ring distance multiplier

Ring nc dn

1 3 1

2 3 4

3 6 7

4 6 13

5 3 16

6 6 19

are d
√

4/3 away from the origin. At 6 sensors cooperation, k can be set up to

3(kr
√

3/3)−α + 3(kr
√

4/3)−α = r−α

k =
√

3
[

3 + 3
2α

]1/α

Continuing to the next few rings, the distance d
√

dn/3 and the number of sensors

nc on that ring are listed in table 5.1. The maximum scaling factor that achieves complete

coverage for the first few rings is

k =
√

3





∑

ring

nc(
√

dn)−α





1/α

(5.3)

The scaling factor k suggests the coverage area that can be achieved at a given level

of cooperation. In fig. 5.4, the k that resulted from various numbers of sensors cooperating

and different distance loss exponents were plotted. The diminished return with respect to

the number of sensors is apparent.
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Figure 5.4: Diminishing return of cooperation

5.4.3 Large scale of cooperation between sensors

We can express the cooperation and scaling trade off as

∑

mnd
−α
n = r−α (5.4)

where dn is the distance of the n-th ring of sensors. From the setup in the previous section,

we will use scaling factor k as the metric of cooperation which is identical for the entire

field. The differences among each ring of sensors are due to their distances from the origin,

expressed as gn. Although each ring of sensors actually lies on a hexagon, we will use the

closest sensor as the distance to that ring to bound the utility provided by the n-th ring.

Substituting for dn by kgnr, eqn. 5.4 reduces to
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Figure 5.5: The closest point of the hexagon to the origin

k−α
∑

nmng
−α
n = 1

k = (
∑

nmng
−α
n )1/α

(5.5)

Computing gn

The entire sensor hexagonal lattice can be described as rings of sensors with a

sensor at the origin. At each ring n, there are 6n sensors with n ≤ 1. Sensors at the

hexagon vertices will be nd away from the origin. Distance of the sensors to the origin

sensor at the nd ring can be computed by scaling a normalized hexagon. We will use the

hexagon shown in figure 5.5 to evaluate the distance from the sensors to the origin.

Define j as a sensor in the n-th ring, j = 0, . . . , (6n−1). Segment s as ⌊j/n⌋ where

⌊•⌋ is the greatest integer smaller or equal to •. The segments corresponding to the edge
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Table 5.2: Sensor Location in lattice

s V m

0 1 0 -1
√

3/2

1 1/2
√

3/2 -1 0

2 -1/2
√

3/2 -1/2 -
√

3/2

3 -1 0 1/2 -
√

3/2

4 -1/2 -
√

3/2 1 0

5 1/2 -
√

3/2 1/2
√

3/2

of the hexagon in fig. 5.5 ab, bc, . . . , fa respectively. Within a given segment, a sensor is

mod(j, n) away from the hexagon vertices a, . . . , f . Define ∆j as j sensor’s location relative

to the vertices sensor in the segment that j belongs to.

The segment is the line connecting the hexagon vertices. All sensors will be on the

segment, spaced out evenly on the segments. Since all the hexagons in the lattice are scaled

versions of each other, we will proceed with the normalized hexagon with the vertices at

distance of 1 to determine the location for sensors that are not at the vertices. The vertices

are located at V = [cos(sπ/3), sin(sπ/3)], s = 0, . . . , 5. Segments are defined by the vertices

with the slope m = [cos((s + 1)π/3) − cos((s)π/3), sin((s + 1)π/3) − sin((s)π/3)] . The

location of the j-th sensor is on segment s weighted by ∆. The location for the j-th sensor

on the n ring of the lattice can be expressed as V + ∆m with appropriate s. Table 5.2 lists

V and m for each segment.

We will call the lattice with a sensor at the origin, described above, as Ls with

origin at os. The point farthest from any sensor, pg, is located between 3 sensors (i.e. origin
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in fig. 5.3.) We can characterize the distance between pg and all sensors in the lattice by

shifting the origin of the lattice by adding [0, d
√

3/3] to the location of all the sensors in the

lattice. We will call the shifted lattice as Lg with origin of the lattice at og in figure 5.5.

Bounding gn

We can bound the maximal utilities from geometric effect gn for each ring of sensors

by assuming all sensors in a given ring n are at the same distance to the shifted lattice origin

og as the closest one in the ring. This will form the upper bound of the cooperation effect

at each ring when we select the closest sensor for a given ring of sensors.

In the lattice where the void is at the origin, the closest point for each hexagon is

at location g in fig. 5.5 because the lattice in Lg is shifted up, hence the bottom edge ef

is closer to the origin og. The vector of this closest edge ogg is [0,−n
√

3/2] + [0,
√

3/3] for

the n-th ring. The distance osg is

||ogg|| = |
√

3/3 − n
√

3/2|

=
(

n− 2
3

)√
3/2

(5.6)

with n ≥ 1.

Bounding cooperation utility

Substitute gn from eqn. 5.6 into eqn. 5.5, and from the fact that mn = 6n for

n ≥ 1, we obtain the following
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k =
∑

n
6n

[(n−2/3)
√

3/2]
α

≤ c0
∑

n n
−(α−1)

(5.7)

where c0 is some constant. By the integral test we can show k is bounded for α > 2 since

∫ ∞
1 n−(α−1)dn exists. For α = 2, the rate of growth is logarithmic.

Therefore even allowing arbitrarily large scale cooperation, for α > 2, the coop-

eration utilities will be finite. This bound, while not exact, shows the diminishing return

in the total utility at the large cooperation scale. For the case of α = 2, the above bound

shows that the utilities increase only at a logarithmic rate with respect to the number of

sensors cooperating. This result mirrors those of section 4.4.

5.5 Random deployment

In this section we present some simulation results of cooperation size and coverage

area trade off using a random placement of sensors. Unlike the regular deployment in

section 5.4, there is no guarantee that a random deployment can achieve complete coverage.

Instead we will use coverage rate as the measure of utility. The scaling factor k is replaced

with the number of sensors in the field as an indicator of how densely the sensors need to

be placed.

The sensors are distributed uniformly in the field. A realization of one of the

simulations is shown in figure 5.6. The threshold of coverage is the white area.

As seen in Fig. 5.7, the utility improvement saturated quickly as the number of

sensors cooperating increases. The configurations of that simulation are as follows: ran-

domly placing sensors according to a uniform distribution, declaring a point is covered when
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Table 5.3: Numerical example of cooperation size and deployment density trade off to
achieve 95% coverage

Cooperation size Sensors deployed

20 68

10 85

5 120

2 220

Table 5.4: Numerical example of cooperation size and deployment density trade off to
achieve 90% coverage

Cooperation size Sensors deployed

10 <68

5 100

2 150

the utility of the best group of cooperating sensors meets a threshold. Table 5.3 and 5.4

compare two numerical examples that illustrate that a larger cooperation scale or density

is needed to achieve a higher threshold.

Recall from chapter 4 that at a fixed density large scale cooperation is bounded

when α > 2 for a given point. The result is applicable to the random coverage problem

here. Cooperation can provide only a finite benefit in terms of reduced density required.

Conversely, whether cooperation is helpful depends on sensor density. At low density coop-

eration is helpful.

We can see that the geometry coupled with the fixed density is causing this be-

havior by the model used in sec. 4.4. The utilities contributed by far away sensors fall off
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faster than the number of sensors increases as a function of distance. Therefore under the

random deployment scenario we can also expect a diminishing return of cooperation similar

to a lattice deployment strategy.

5.6 Conclusion

As we saw before in chapter 4, cooperation utilities provide significant utility

improvement compared to no cooperation at all, but tend to provide only diminished returns

with respect to large cooperation size. As we can see in fig. 5.7, 10 sensors cooperation

yields similar performance to a cooperation size that is quite a bit larger. On the other

hand, also seen in fig. 5.7, to achieve a given coverage rate, non-cooperation will require

significantly more total resources.

Cooperation also enables us to reach a utility that would otherwise be unattainable.

The cooperation size one should use is application dependent. As shown in fig. 5.4, at least

in deterministic cases, the cooperation size and maximum attainable cooperation utility

depend on α.

52



Chapter 6

Reconstruction

6.1 Introduction

In this chapter, we will consider the problem of reconstruction from samples. The

grand question is the trade off between the number of samples needed and the complexity

necessary for the reconstruction technique. We will use several examples to demonstrate the

trade off between the two. As expected, more samples allow for simpler reconstruction tech-

niques and less samples are needed when more complex reconstruction is used. Fortunately,

in some cases, the excess number of samples required for a simpler reconstruction technique

is not necessarily much more than a more complex technique, for similar performance.

Simple reconstruction techniques tend to be more localized and require fewer as-

sumptions, and thus are more robust. The trade off is that more samples will be needed.

This can be thought of as a coverage problem, and simpler reconstruction techniques effec-

tively reduce each sample’s coverage of the source. More complex reconstruction, by making

more assumptions about the source, effectively increases each sample’s coverage. The trade
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off is that those assumptions, in the form of a model, may be inaccurate to describe the

source.

Many factors will drive the sampling strategy and reconstruction method. Factors

such as the knowledge of the source, when the knowledge becomes available, difficulty of

acquiring additional samples, and the dynamics of the source all contribute to this trade

off. If detailed a priori knowledge of the source is available to both the sampling and the

reconstruction entity, an accurate model based sampling and reconstruction technique can

provide optimal performance with respect to sampling density and reconstruction accuracy.

If the dynamics of the signal are slow, and acquiring additional samples is possible, an

adaptive sampling technique can relax the prior knowledge requirement, and thus increase

robustness. Even in the case of fast dynamics where an adaptive technique is not possible,

knowing a model may enable a small number of observations to be sufficient to reconstruct

the signal.

In this chapter, first we will use the well studied band limited signal as our source.

From the Nyquist [13] and Shannon [14] sampling theorem, we know the theoretical minimal

number of samples necessary to achieve perfect reconstruction. We will compare that with

linear interpolation and spline reconstruction [46], [47]. We will run an experiment to

observe their performance.

Next we will introduce a few step discontinuities to the source. This modifica-

tion will demonstrate the sensitivity of model specific reconstruction when a mismatch is

introduced. Here we will show how a modification to the spline can help us recover from

the discontinuity. An adaptive sampling technique is used to find the location of the dis-
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continuity and a decision based on a few adjacent samples will be needed to estimate the

location of the discontinuity. We can estimate if a sample crosses the discontinuity with the

Expectation-maximization (EM) algorithm [31]. This demonstrates that local cooperation

remains viable if the modification to the baseline model is known.

We will then replace the band limited source with a source that consists of a few

discrete tones with unknown frequency and phase. The frequencies of the tones will be

drawn randomly, and allowed to be very high. Compressed sensing [48] can reconstruct

this type of signal with a significantly fewer number of samples compared to conventional

techniques. Using the sparse in frequency domain model, compressed sensing can accomplish

this reconstruction using more complex algorithms with less samples. We will then add

discontinuities to the source, and compare reconstruction quality with number of samples

needed. The wavelet transform, which can represent discontinuities in a smooth signal

efficiently, will serve as a bench mark in that section.

In this chapter we will see that local cooperation can be competitive with respect to

global cooperation in terms of resource use in some situations, but this is not universal. The

local cooperation strategy also has the inherent advantage of limiting local model mismatch

to the locality where the mismatch occurs. For some other situations such as sparse sources,

global cooperation such as compressed sensing reconstruction provides superior utility with

a significantly reduced number of samples.
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6.2 Source and Classical reconstruction technique

We will consider the band limited signal as the source for the reconstruction prob-

lem. We obtain the band limited signal by band pass filtering of white Gaussian noise.

We will consider the following methods of reconstruction and compare their performance

in reconstruction quality and number of samples needed. The quality of reconstruction is

measured by the mean of the squared difference between the reconstructed signal x̂(t) and

the source x(t).

The reconstruction problem can be stated as follows. Source x(t) is sampled with

yi = x(ti). The reconstruction algorithm is f(Y ) where Y contains several samples and

produces x̂(t) = f(Y ).

6.2.1 Nyquist sampling

A signal x(t) is said to be band limited if the Fourier transform of the signal

X(f) =

∫ ∞

−∞
x(t)e−i2πftdt (6.1)

is 0 for all |f | > B andB is the highest frequency of the signal x(t). From the Nyquist/Shannon

sampling theorem, samples 1/2B apart will be sufficient to reconstruct the signal perfectly

using a sinc function to interpolate between samples [14]. A sinc function s(t) is defined as

s(t) =
sin(πt)

πt
(6.2)

The Nyquist sampling theorem establishes the minimum number of samples neces-

sary to completely recover the signal. The reconstruction depends on every sample because

the sinc function exists between −∞ to ∞.
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6.2.2 Nearest sample

The simplest reconstruction technique is to assume the value at any other location

is identical to the nearest sample. If sampled at sufficient density, this simple technique

will meet the quality criteria. However, the density may be very high compared to other

reconstruction techniques.

6.2.3 Linear Interpolation

Instead of reconstructing using a sinc function, a linear interpolation between two

samples may also be used. This approach limits a sample’s contribution to the region

between only two samples. For example, the interpolation between x̂(ti) and x̂(tj) from

samples ti to tj is

x̂(t) = mix+ bi, ti ≤ t ≤ tj

where mi =
yj−yi

xj−xi
,

bi = yi −miti

(6.3)

By taking this similar reconstruction approach, more samples will be necessary to

achieve the desired quality unless the source is also piecewise linear and sampled at the end

points of each line segment.

6.2.4 Spline Interpolation

We can improve upon linear interpolation by using a higher order polynomial that

takes more samples locally to reconstruct. For comparison we will use the cubic spline,

which is a third-order polynomial, for reconstruction. [46] contains additional theoretical
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background on splines.

Basically, the idea is to go one step beyond the piecewise linear approximation to

obtain a smoother reconstruction. Using a piecewise polynomial of higher order is necessary

if an additional refinement such as smoothness is desired. A popular choice is to use a cubic

approximation as the model of interpolation. Spline interpolation assumes that both the

first and second derivative are continuous.

6.2.5 Performance comparison

Simulations to compare the performance of the above reconstruction techniques

were performed. The simulation consists of 100 trial runs of generating the band limited

signal, sampling at regular intervals, and then performing reconstruction based on the

methods above. An instance of the reconstruction and sampling is shown in figure 6.1. A

reconstruction is declared a success when the mean square error is less than 2 × 10−5.

Summary results presented in figure 6.2 show the performance change as the num-

ber of samples increases. As we can see in the figure, the spline performs relatively well.

Linear reconstruction takes about 4 times the number of samples. Reconstruction using the

nearest sampled value for a band limited source is unsuccessful. This simulation reinforces

the conclusion that local cooperation at a small scale can provide most of the performance.

No cooperation, as in the case of nearest value only will incur a great performance penalty.

58



1.65 1.7 1.75 1.8 1.85

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

t

y

Sampling at  1.20 x Nyquist Rate

Source
Samples
spline

Figure 6.1: Reconstruction example

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Over sample rate

S
uc

ce
ss

 r
at

e

Rate of meeting 2.000e−005

Fourier
nearest
linear
spline

Figure 6.2: Performance comparison between reconstruction method and resources trade-off
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6.3 Modifying the source

In this section we will investigate the impact of model mismatch to cooperation

size by modifying the source. Specifically, we will introduce several steps in the signal as

follows:

1. Randomly select d points in the source according to the uniform distribution as the

location for a discontinuity

2. Randomly select the step direction, either +s or −s with a probability of p for the

direction

3. Shift the source in between a pair of selected points by the direction selected in

previous step.

Figure 6.3 shows one instance of this step.
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By introducing this type of discontinuity, we added many high frequency compo-

nents to the source. Fig. 6.3 also shows the result obtained with spline reconstruction used

in the previous section.

The discontinuity introduced is a local phenomenon. If we can estimate the loca-

tion of the discontinuity, then we can apply the results in the previous section by excluding

the discontinuity itself.

6.3.1 Determine where the breaks are

Adaptive sampling techniques will allow us to obtain additional samples near the

discontinuity in a discrete manner without significantly raising the overall sampling rate.

Multiple iterations of sampling will be performed. At each iteration, sample points are

decided based on the previous iteration. The problem then is how to decide if points between

two sampled point contain the step introduced by the discontinuity. Once a boundary is

estimated, using the bisection approach we can quickly (O(⌈(u − l)/ǫ)⌉) [33] narrow down

the location of the steps. u, l are the upper and lower boundary respectively where a break

at p∗ is present, and ǫ is the allowable uncertainty of the boundary at the end of the bisection

procedure.

The bisection we will use can be described as follows [33]:

given l ≤ p∗, u ≥ p∗ tolerance ǫ > 0

repeat

1. t := (l + u)/2

2. Compute the slope ml = (x(t) − x(l))/(t − l) and mu = (x(t) − x(u))/(t − u)
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3. if |ml| > |mu|, u := t; else l := t.

until u− l < ǫ

6.3.2 Finding the breaks in the first place

Using the above procedure we can quickly find the break point if an initial bound-

ary is given. The next question is how to decide if a break occurs between two sampled

points. The discontinuity introduced leads to a step size of s. A sufficiently large step s will

introduce a large derivative compared to the source derivative. Therefore by comparing the

derivative between the samples and its neighbor we can estimate if a given sample is the

closest sample to a discontinuity. This collection of derivatives and comparisons can also

be performed at a local scale. The cooperation size locally will determine the prevailing

‘typical’ derivative.

To perform this estimation of the boundary, we will use the expectation maxi-

mization (EM) algorithm [31]to separate the derivative between two classes using only local

data.

The EM algorithm is an iterative algorithm consisting of two parts:

1. Compute the conditional expectation of the log-likelihood, and

2. Set the likelihood of each distribution equal to the value that maximizes the log-

likelihood.

We will run the absolute value of the difference between samples

|x(ti+1) − x(ti)| (6.4)
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through the EM algorithm to identify the samples that are adjacent to the break. Using

absolute value simplifies the initialization because we assign the distribution with the larger

mean a smaller prior probability, as this distribution represents the discontinuity.

The EM algorithm will provide a distribution that consists of a mixture of different

distributions and their weightings. In turn we will use that to decide if a given point is

likely to be an edge of the discontinuity. This point will most likely NOT be the actual

break point, but merely the closest point in the present sample set. With the selection of

the derivative calculation used in 6.4, the matching index will be the left boundary of the

discontinuity. We will start the bisection algorithm described in section 6.3.1 with sample

point x(tl) as the left edge and x(tl + 1) as the right edge if |x′(tl)| is declared to be the left

boundary of the discontinuity by the EM algorithm.

6.3.3 Simulation result

Using the simulation frame work in section 6.2, we added the discontinuity and

a mechanism that handles the discontinuity. We continue to use the spline reconstruction

algorithm and use mse of 2−5 as the pass/fail criterion of the reconstruction for a given trial.

The result of this reconstruction exercise is shown in figure 6.4. To see how the discontinuity

impacts our performance, we will also monitor the performance of the QoS but dropping

the worst 0.1% of the sources, and declaring those last 0.1% of points as outage. Figure 6.4

shows that the few worst case points dominate the performance of the overall QoS.

In figure 6.5 we turn around and ask how many of the sources have to be de-

clared as an outage to meet the mse criteria. The connected line shows the mean of the

outage rate and the error bar denotes the maximum and the minimum outage rate in the
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Figure 6.4: Rate of meeting the QoS for a given initial sampling rate

experiment. Here once again the few points continue to dominate the overall reconstruction

mse. As expected, spline with EM performs better than reconstruction with spline only

for a given initial sampling rate. That is because EM mitigated errors near the disconti-

nuities. Discontinuities require high density sampling. Without the outage relaxation we

must sample everywhere densely. However, as figure 6.5 shows, it is the very sharp discon-

tinuities that dominate overall performance. Note the mean outage rate under spline with

EM reconstruction is near 0, with the worst cases outage around 1.5%.

6.4 Trade off of sample size and reconstruction complexity

We will explore the trade off between sample size and reconstruction complexity

with a case study. The modified source we used in section 6.3 can be represented with

few coefficients by a wavelet transform. Wavelet transforms can describe the discontinuities
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accurately while retaining a compact description of the smooth part of the source. The

wavelet transform takes a dense sampling of the source to produce the final compact rep-

resentation of the source. Compressed sensing on the other hand uses a few samples of the

waveform to reconstruct a source accurately under the right condition. If the source and

model mismatch in certain aspects, compressed sensing breaks down. Spline reconstruction

with EM used in section 6.3 falls somewhere in between the two methods, in that rela-

tively few samples are taken (as in compressed sensing) but with a somewhat less compact

representation than using wavelets.

6.4.1 Wavelet Compression

Wavelet analysis breaks down the signal into multiple level of resolution. With

this multiple resolution wavelet analysis can detect and handle discontinuities much more
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efficiently than the Fourier transform. Additionally, by using different wavelets as basis

functions, different local properties of the source can be emphasized.

A wavelet transform, instead of using a complex exponential function as the basis,

uses a wavelet basis Ψ(s, p, t)to perform the transformation. Scale s describes the stretching

or compression of the wavelet basis and conceptually is similar to frequency in the Fourier

transform. Position p is similar to phase in the Fourier transform. It describes where

features of the source are located. A continuous wavelet transform of f(t) is computed by

C(s, p) =

∫ ∞

−∞
f(t)Ψ(s, p, t)dt (6.5)

By stretching and compressing the wavelet, instead of only varying frequency, the

wavelet transform essentially introduces different time scales in the transformed domain. In

fig. 6.6 is a representation of the Fourier transform domain. Each frequency bin is present

in time between −∞ and ∞. In fig. 6.7 a similar representation for the wavelet transform

is presented. The wavelet transform does not require a given scale of wavelet to be present

at all positions. A windowing of the source is present. This allows the wavelet to handle

discontinuities more efficiently compared to the Fourier transform.

Similarly to the discrete Fourier transform, there is a discrete implementation of

the wavelet transform. An efficient way to perform the wavelet transform was presented in

[49] where the wavelet transform is implemented as a sequence of high pass and low pass

filtering, followed by a down-sampling operation.

We can describe the discontinuities that we introduced with a compression wavelet

located at the position of the discontinuity in the source. The Haar wavelet, which is
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Figure 6.6: Fourier Transform domain

Figure 6.7: Wavelet Transform domain
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basically a step, can describe the discontinuity we introduced to the signal in section 6.3

with a few parameters. On the other hand, the Fourier transform requires a large number

of parameters to describe the same type of discontinuity.

6.4.2 Compressed Sensing

The compressed sensing problem can be expressed as follows: suppose a source

f ∈ R
n is s sparse in some orthonormal basis Ψ = [ψ1ψ2 . . . ψn]

f(t) =
n

∑

i=1

xiψi(t)

where xi is the coefficient of f(t) in basis ψi. Then with m observations y of f(t), each

observation made with φk(t), k = 1, . . . ,m, we have

yk = 〈f, φk〉 (6.6)

All of the observations yk are not merely time sampled values of f as in the classical sampling

and reconstruction. Instead, each observation, as stated in the eqn. 6.6, consists of the inner

product between the source and a column of Φ. In other words, each observation used by

the reconstruction is a combination of time sampled values of f . However, a column of Φ

can be all 0, i.e. a time instance that is not sampled at all. The reconstruction process

does not require all time instances to be sampled. This allows for reconstruction with a

significantly fewer number of time samples. We do not need to form this Φ entirely at the

sampler either. We only need the time sample of f where a corresponding column in Φ

contains a non-zero entry. In our example below many of those columns are in fact all zero.

When Φ = [φ1;φ2; . . . φm] and Ψ satisfies the compressed sensing condition we can recover
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f with m = O(s log(N/s)) observations[50]. The observations use by compressed sensing

can be thought of as a parallel bank of random sequence ‘matched filters’[48].

[48] along with the rest of the issue of IEEE Signal Processing Magazine in March

2008 provided a good overview of compressed sensing. [51, 52, 53, 54] are a few references

that establish the theoretical basis of compressed sensing. Extension to a continuous spar-

sity model is discussed in [55]. Using compressed sensing to detect sparse signals in wide

bandwidth was presented in [56, 57].

Techniques to sample below the Nyquist rate and reconstruct had been attempted

previously. By studying the signal structure, one can reconstruct perfectly with a sampling

rate below the Nyquist rate. The difference between the prior sub-Nyquist sampling tech-

niques and the compressed sensing are that in the prior techniques the sampler needs to

know or be adaptive to the signal parameters, while in compressed sensing randomness is

used to handle the variation in signal parameters. In [58], direct sequence CDMA signals

were sampled below the chip rate. Speech signals were sampled below Nyquist rate in [59].

Channel state estimates using subspace techniques allowing sampling below the Nyquist

rate were presented in [60]. Using the subspace technique also allowed signal reconstruction

with sampling rate below the Nyquist rate when the signal rate of innovation is finite [61].

A signal rate of innovation corresponds to degrees of freedom per unit time [62]. Another

strategy is using non uniform sampling [63, 64, 65]. Non uniform sampling is applicable

when the signal is multi band, i.e. energy is not flat across the entire spectrum. For non-

uniform sampling to work, we also will need to learn of the concentration of the signal either

a priori or adaptively at the sampler.
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[52] established that with a random basis such as i.i.d. Gaussian or Bernoulli with

probability of 0.5 of ±1 as elements of Φ, solving the optimization problem

minx∈RN ||x||1

s.t. Φx = y

(6.7)

will recover x exactly. Therefore we can reconstruct the source in the sparse domain from

observations by solving the convex optimization problem in eqn. 6.7, which can be solved

efficiently [33]. Alternatively, the reconstruction problem can be solved by an iterative

algorithm CoSaMP: Compressive Sampling Matching Pursuit [66]. CoSaMP is a ‘belief

propagation’ algorithm that iteratively performs the following steps:

1. Forming a proxy to the signals residual,

2. Selecting the largest components within the proxy,

3. Merge the selection with the previous selection,

4. Solve a least squares problem with the merged proxy

5. Prune the solution of the least squares problem down to the sparsity size

6. Update the signal residual

Section 2 of [66] describes the algorithm in detail. The complexity of each iteration is

O(mN) [66].

Clearly, the reconstructions are more complex when compared to classical tech-

niques. Reconstruction of signals with classical techniques such as interpolation is simpler

compared to solving eqn. 6.7. In the classical approach, the communication between sam-

pling and reconstruction is typically handled separately. In particular, the samples are
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compressed down from the sampling rate to the necessary reconstruction rate and then

transmitted. That implies some samples may be discarded, if the sampling rate is higher

than the reconstruction rate. The reconstruction rate depends heavily on the reconstruction

method and the source structure.

One of the advantages of compressed sensing is that the sampling operation does

not need to know the transform Ψ necessary to map f to the sparse representation. Only

the reconstruction operation needs to know that transformation if f itself is not sparse.

All the sampling operation needs to provide are the m measurements and the Φ used to

generate the measurements. Additionally, the value of m needed for reconstruction depends

on the incoherences between Φ and Ψ. Coherence between Φ and Ψ is defined as [48]

µ(Φ,Ψ) =
√

(n) max
1≤k,j≤n

|〈φk, ψj〉| (6.8)

Smaller µ implies less coherence between Φ and Ψ, which in turn implies fewer measurements

are needed.

The implication of incoherency between the measurement matrix Φ and the sparse

representation Ψ is that each measurement obtained will have some contribution from each

of the sparse components. This property enables the solution to the optimization problem

of eqn. 6.7 to recover the sparse representation x [52].

Although most signals in real life are not strictly sparse, compressed sensing also

applies to compressible signals where the sorted magnitude of coefficients xi decay quickly.

[52] uses power law decay, and shows compressed sensing results hold in those cases.

Compressed sensing can also be viewed as a compression technique, compressing

the source to the sparse representation via the measurement matrix Φ. Thanks to the
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randomness nature of Φ, compressed sensing is nearly universal[52], since it is very unlikely

for a structured Ψ to be coherent with a randomly generated Φ. However, in order to deploy

compressed sensing effectively, one must verify the sparsity of the signal. While one can

always increase the dimensions of the observation until the signal becomes sparse relative to

the dimensions of observation, classical techniques in lower dimensions in some cases may

provide a more effective solution, as we will see in section 6.4.4.

The parameter in compressed sensing is the sparsity of the source. The sparsity

of the source determines the number of observations the reconstruction needs. Or in other

words the number of adaptations available at the sampler is limited to the number of

measurements the reconstruction can use. For a strictly sparse signal, this is not very

interesting other than determining if we can reconstruct perfectly or not at all. For a

compressible signal, this adaptation in effect controls the reconstructed signals SNR[67].

An Example of Compressed Sensing

We will use a source that is sparse in the frequency domain and measure samples

in the time domain. We intentionally placed a high frequency component in the signal.

With conventional sampling, the high frequency component will require dense sampling.

With compressed sensing, the example shown in Fig. 6.8 only requires m = 60 samples to

reconstruct the n = 1024 points waveform.

We will also add discontinuities to the source, similar to the previous section.

When discontinuities are introduced to the source, the signal is no longer strictly sparse,

but remain compressible and therefore compressed sensing still applies. In Fig. 6.9, m = 260

samples are needed, to achieve a mean square error of 0.0101.
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Figure 6.10: Comparing compressed sensing with classical reconstruction

6.4.3 Comparing Compressed Sensing with classical technique

We will next illustrate the different strengths of the compressed sensing technique

and the classical reconstruction technique. We will use a source similar to those in section

6.2, but replace the band limited noise source with multiple discrete tones. The frequency for

each tone is drawn randomly according to a uniform distribution between 0.5 to 0.039Fs.

The number of samples required for perfect reconstruction under the Nyquist-Shannon

sampling theorem for this source is up to 0.078 × n. Figure 6.10 shows the success rate

of meeting the mse of 2 × 10−5 by various reconstruction techniques, similar to fig. 6.1.

Compressed sensing performed better when the number of observations is below the Nyquist-

Shannon Sampling theorem requirement. As the number of observations grows beyond the

minimum required by the sampling theorem, the classical techniques are able to meet the

mse goal as in section 6.2.
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The advantage of compressed sensing is clear when the signal is sparse with po-

tential high frequency components. Compared to the previous solution of sub-Nyquist

sampling, we have more flexibility with compressed sensing because we can operate with

different sparsity transformations without any change in sampling strategy. However, if the

signal is non sparse the classical techniques will perform better.

6.4.4 Comparing Compressed Sensing with classical technique with mod-

ified model, using wavelet representation as reference

Similarly, a comparison of performance between compressed sensing and recon-

struction techniques in section 6.3 was performed when the signal contains steps. With this

type of source, the spline reconstruction with EM is more robust compared to compressed

sensing. In particular, the discontinuities caused large amounts of artifacts in the frequency

domain which in turn breaks the sparsity model assumption used in this simulation. Fig.

6.12 shows one example of compressed sensing reconstruction of this type of signal. There

are a large number of residuals in the frequency domain disregarded by the compressed

sensing reconstruction. Although the reconstruction is able to capture the majority of the

trend of the signal, splines with the EM algorithm outperform compressed sensing in this

regime where the maximum frequency is not too high. The discontinuities caused diffi-

culty for the Fourier transform from the frequency domain to the time domain because the

frequency domain is not strictly sparse under the Fourier transform.

The spline reconstruction with EM performs well given the number of samples it

used. From the wavelet compression reference, our spline with EM performs close to the

wavelet compression performance given a number of observation similar to the number of
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Figure 6.11: Comparing compressed sensing with classical reconstruction and steps in signal

non-zero coefficient in the wavelet representation. In other words, the spline with EM made

good use of the samples provided with only a local approach.

As in the smoothed signal case in sec. 6.4.3, compressed sensing outperforms the

classical technique only when the source is sparse but with tones at high frequency. However,

for the compressed sensing to have significant advantage, the highest frequency needs to be

higher in the case with discontinuities. In the following we increase the highest frequency

limit to 0.146Fs from 0.039Fs. Instead of showing the success rate of meeting a mse of

2 × 10−5, the mse statistics are shown in fig. 6.13. When the number of samples is small,

the conventional technique outperforms compressed sensing. However, compressed sensing

can identify the fundamental tones present in the signal with less observations compared to

classical techniques. Thus compressed sensing performs better when the maximum possible

tone frequency is high. The error bars show the maximum and the minimum reconstruction

error mse in the 500 trials.
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In [50], wavelet transforms were used as the sparse transform in the compressed

sensing. By using a more accurate model, compressed sensing can be more competitive

compared to what we have seen above. This illustrates the importance of an accurate

model. Inaccurate models can degrade reconstruction quality as for the case of using the

Fourier transform as the basis for compressed sensing on signals with discontinuities. With

an accurate model local methods such as the spline can be competitive with respect to

global methods such as wavelet compression.

6.5 Conclusion

In the classical reconstruction problem, a few samples cooperating can provide a

simplified reconstruction method with high quality at a low cost. In addition, a change in the

source may only require a minor modification to the reconstruction technique to handle the

changes of the source. In these cases massive global cooperation is not necessary. Instead, an

adaptive sampling technique guided by local statistical inference such as the EM algorithm

is sufficient to handle the modified source. However, when the source model is changed

significantly, in our example from band limited to a sparse source, global cooperation can

significantly reduce the number of samples necessary for reconstruction to meet a desired

QoS. Nevertheless global cooperation with an inaccurate model cannot compete against

local cooperation with more a accurate model.
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Chapter 7

Conclusion

From the previous chapters we saw that small, local scale cooperation provides

noticeably improved quality of service such as improved coverage area, mitigation of fading

outage, or reduced reconstruction error in the sensor. On the other hand there is little

benefit in having a large number of sensors cooperating. This in turn simplifies cooperation

algorithms because we only need to consider a small scale of cooperation.

From the localization example in chapter 3, we saw that it is beneficial to use

a more complex sensor selection algorithm to determine the sensor set. The small scale

nature of the problem limits the complexity, making the more complex algorithm problem

tractable, and at the same time the more complex algorithm quickly extracts most of the

utility obtainable within the sensor network. With this result, we know that most of the

overall utilities are derived from the first few sensors. Therefore we should focus on selecting

the first few sensors using techniques discussed in [1, 2, 3, 4].

In chapter 4 we saw that a distance loss model with fixed sensor density places a
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limit on the total utility possible with cooperation. Local cooperation provides a noticeable

benefit, but global cooperation provides only limited improvement. Thus a small scale of

cooperation to mitigate channel degradation should be part of the design consideration of

a sensor network[5, 6], but a large scale, global cooperation is not necessary.

Similar effects can be seen in chapter 5 with respect to the coverage problem.

We have shown that cooperation can help bridge small gaps in coverage, but cooperation

cannot be used to cover arbitrarily large gaps. The coverage is an improvement over non-

cooperating sensors such as modeled in [7, 8, 9] because the gap can be filled via local

cooperation.

In the reconstruction problem, similar results are observed, as we saw in chapter

6. We showed that while local reconstruction algorithms use slightly more resources com-

pared to the optimal global algorithm, the local algorithm is less sensitive to model error.

While wavelets can provide a very compact description of the source with high quality re-

constructed solutions, we must sample densely at first. On the other hand, compressed

sensing may not give a satisfactory reconstructed solution if the model used in the recon-

struction deviates too much from the actual model of the source. Local algorithms such as

spline reconstruction offer something in between in terms of sample size and reconstruction

quality. In addition, local algorithms are simple to modify to include adaptive sampling.

From the examples presented in this thesis, we can see that cooperation at a local

scale provides great improvement over non-cooperative modes of operation. Large scale

global cooperation in most cases provides only marginal benefit. This limitation depends

on the global relationship between individual sensors or samples. Only when the global
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model is accurate could global cooperation be attempted.

An interesting question is how to verify model accuracy. All cooperation depends

on the model that relates different observations together. Without a sufficiently accurate

model cooperation is impossible. The accuracy required is an application specific require-

ment. A more flexible model enables more adaptable global algorithms, such as combining

the wavelet transform with compressed sensing. However, there is a trade off between

quality and complexity in implementation.

81



Bibliography

[1] A. Krause, H. B. McMahan, C. Guestrin, and A. Gupta, “Robust submodular obser-

vation selection,” Journal of Machine Learning Research, vol. 9, pp. 2761–2801, 2008.

[2] H. Wang, K. Yao, G. Pottie, and D. Estrin, “Entropy-based sensor selection heuris-

tic for target localization,” in Information Processing in Sensor Networks (IPSN’04),

Berkeley, CA, Apr. 2004.

[3] J. Byers and G. Nasser, “Utility-based decision-making in wireless sensor networks,”

in MobiHoc ’00: Proceedings of the 1st ACM international symposium on Mobile ad

hoc networking & computing. Piscataway, NJ, USA: IEEE Press, 2000, pp. 143–144.

[4] P. V. Pahalawatta, T. N. Pappas, and A. K. Katsaggelos, “Optimal sensor selection for

video-based target tracking in a wireless sensor network,” in International conference

on Image Processing, ICIP, Singapore, Oct. 2004.

[5] M. D. Yacoub, Foundations of Mobile Radio Engineering. CRC Press, 1993.

[6] J. G. Proakis, Digital Communications, 4th ed. McGraw-Hill, 2000.

[7] S. Adlakha and M. Srivastava, “Critical density thresholds for coverage in wireless

82



sensor networks,” in Wireless Communications and Networking, 2003. WCNC 2003.

2003 IEEE, vol. 3, March 2003, pp. 1615–1620 vol.3.

[8] S. Megerian, F. Koushanfar, M. Potkonjak, and M. Srivastava, “Worst and best-case

coverage in sensor networks,” Mobile Computing, IEEE Transactions on, vol. 4, no. 1,

pp. 84–92, Jan.-Feb. 2005.

[9] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. Srivastava, “Coverage prob-

lems in wireless ad-hoc sensor networks,” in INFOCOM 2001. Twentieth Annual Joint

Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE,

vol. 3, 2001, pp. 1380–1387 vol.3.

[10] W. Wang, V. Srinivasan, B. Wang, and K.-C. Chua, “Coverage for target localization

in wireless sensor networks,” Wireless Communications, IEEE Transactions on, vol. 7,

no. 2, pp. 667–676, February 2008.

[11] D. Wang, Q. Zhang, and J. Liu, “The self-protection problem in wireless sensor net-

works,” ACM Trans. Sen. Netw., vol. 3, no. 4, p. 20, 2007.
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