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ABSTRACT OF THE DISSERTATION

Sampling Strategies in Sensor Networks

by

Xiangming Kong
Doctor of Philosophy in Electrical Engineering
University of California, Los Angeles, 2008

Professor Gregory Pottie, chair

The widespread use of network sensors have greatly improved the sensing capa-
bility of many systems. However, the resources for obtaining high fidelity data are
still very limited. Therefore, resource allocation in sensor networks remains an im-
portant issue. In many applications, especially in field reconstruction problems, the
data acquisition process takes up a large portion of resources. Efficiently deploying
sensors for data acquisition will achieve a large resource saving in these applications.
The way to accomplish this objective is discussed in this dissertation.

The approaches we take are model based. Since models are typically specific
to certain types of fields, we concentrate on the incident sunlight field under forest
canopies. The characteristics of this field are studied first. Existing models are
carefully examined before they are applied in our algorithm design. A new simulator
is created to simulate the field. New models are extracted from experimental and

simulated data.

xiil
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Based on the field models, two algorithms are designed to efficiently take samples
for the reconstruction of the field. The first algorithm is an adaptive algorithm which
adjusts the sampling density to the field roughness. It maintains an estimate of the
reconstruction quality based on a Bayesian framework. This estimate provides an
indication on the sampling sites that will improve the reconstruction result most.

The second algorithm, a multiscale sensing scheme, fuses information from dif-
ferent levels. It coordinates the operation of two types of sensor. One type of sensor
provides the high-level information, including the field partition and field models.
The field models from the real data, complemented by the models from the simu-
lated data, direct the other type of sensor to gather high fidelity measurements of
the field. The overview of the field from the first type of sensor enables the optimal
allocation of the second type of sensor, thereby greatly improving the utilization
efficiency of sensor resources. Both algorithms were tested with experimental data

and proved to be effective in resource saving.

xiv
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CHAPTER 1

Introduction

In our society, sensors are widely used. Sometimes, they work as guards around
us, sending alarms to us whenever undesired events occur. On other occasions,
they are our assistants, helping us learn about the world we live in. Depending
on the phenomena a sensor measures, its fabrication may involve several scientific
subjects, such as physics, chemistry, biology, etc. Due to the importance of sensors,
they have undergone a long history of development. In the last several decades, the
advancement in solid state integrated circuit design and its widespread usage have
greatly pushed forward the sensor development process.

The availability of a large amount of low cost, low capability sensors motivated
the deployment of integrated network sensors [12][86]. The network sensors combine
microsensor technology, signal processing, computation and communication in one
system. These sensors are typically distributed. They communicate their data
between each other and/or to a fusion center. By combining the measurements
from many sensors, the network sensors provide a new monitoring and controlling
capability that was never seen before.

One important motivation in deploying network sensors is to acquire high-quality
data. Accordingly, the primary concern in a distributed sensor network is the sensing
fidelity. Many factors can degrade measurement fidelity. These factors can be

grouped into three categories:

e Manner of sensors deployment

When data from a sensor is used to determine the location of an event, it is
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not surprising that the sensor needs to be aware of its own location. Even
if its measurements are not directly related to locations, its position is still
important information because this information limits the fidelity of the sensor
data. When sensors are assumed to be deployed randomly or when robotic
sensors are involved, knowledge about sensor locations is assumed to be very
vague. A considerable amount of work has been devoted to the localization of
sensors. The general practice is to determine the location of a sensor node by
finding its distances to seed nodes, which are aware of their own locations[39].
A better approach is adding infrastructures to sensor nodes such that sensors
are deployed with known locations. In addition, mobility of mobile sensors
with infrastructure is predictable and precise. The Networked Informechanical

Systems (NIMS) is an example of such a system[46].

e Limitation in sensor technology

Sensors are not ideal. They can be broken and give erroneous data. Their
measurements can have bias. Even the best sensor can only provide noisy data.
Choosing appropriate sensors alleviates the problem. Some of the errors, like
broken sensors and bias, can be removed through calibration. Others are not
completely removable. But fusion of data from multiple sensors can reduce

such errors.

e Characteristics of the measured phenomena

These factors are typically out of the realm we have control over, because they
are inherent in the phenomena. But this does not mean we can do nothing
to reduce the uncertainty brought by these factors. Instead, algorithms are
designed to combat the problem. As an illustration, suppose we are interested
in determining the properties of an event. A group of ten sensors are required
to reside at the location where the event happens in order to obtain the nec-

essary data. However, the time and location at which the event will occur are
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unpredictable. One way to fulfil the task is to densely deploy groups of sensors
and allow them to operate in the field all the time until we get all necessary
data. A smarter way is detecting the occurrence of the event with one sensor.
Other sensors are moved over the spot right after the event occurs. In this

way, a small fraction of the sensors dwell in the field at any time.

There are numerous applications for sensor networks. These applications cover
all aspects of our everyday life, such as traffic control, health care and security, to
name a few. Among these applications, environmental monitoring has drawn more
and more attention from people because of the deterioration of the natural environ-
ment over these years. Studies for this application are of practical importance. In
this study, we focus on the incident light distribution under forest canopies. There

are several reasons for the selection of this physical phenomenon:

e Light patterns are of interest both for the generation of energy in solar har-

vesting systems to power sensor nodes and for the growth of plants.

e It is relatively easy to identify the underlying physical causes of the resultant
patterns. Simple geometrical models suffice to closely approximate reality in

some situations.

¢ In more complicated situations which call for statistical approaches, light pat-
terns are often modelled as a realization of a two-dimensional random field.
Experience gained in studying this phenomenon can be easily applied to other

random field studies.
e We have access to data from both laboratory and field experiments.
e There are many theoretical and simulation models that can be drawn upon

when experiments are impractical.

The essence of designing algorithms is concentrating available resources in the

places where they are needed most. Because so many procedures are involved in
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a sensing process, resource saving algorithms can be carried out in any procedure.
Historically, sensors in a distributed sensor network are assumed to be wireless
and not very powerful. Therefore, sensor network studies commonly emphasize
improvements in communication and local data processing. One important step
in the sensing process, the data acquisition, has not received sufficient attention.
However, in problems like the field reconstruction, this step often absorbs a large
portion of the total resources. Resource saving in this step is essential in some
systems.

The data acquisition process often involves sample selection. This is because it
is either impossible or unnecessary to acquire all the data. The simplest approach
is taking samples randomly. There has been a long history of people using random
samples to estimate the whole population. But the subject of random sampling was
not put on a rigorous scientific basis until Gossett developed the theory of small-
sample statistics[101]. Since then, various sampling algorithms have been designed
for different data sets. Some algorithms aim at reaching optimal performance as-
ymptotically, while others aim at saving resources and meeting a certain objective
at the same time.

A good design with one objective in mind may turn out to be a very bad design
for a different objective. Therefore, it is important to clarify the objective of a design
before it is discussed. Common objectives for sampling algorithms design include:
1) detect and/or track the occurrence of an event; 2) extract model parameters for
a phenomenon; 3) predict the values at unmeasurable sites; 4) reconstruct a signal.
The scope of this dissertation will be restricted to the problem of designing sampling
algorithms for signal reconstruction within a given fidelity range.

The enrichment of resources over these years also results in more ambitious
goals. Accombanying these ambitious goals are higher fidelity requirements. To
meet these requirements, the existing algorithms demand a large number of sensors

to be deployed densely in many practical situations, which frequently is an infeasible
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solution. Such situations motivate the design of new sampling algorithms discussed

in this dissertation.

1.1 Organization of the Dissertation

The rest of the dissertation is organized as follows.

Chapter 2 examines the characteristics of the incident sunlight field. Because
sunlight is an important energy source to plants, its distribution has intrigued bi-
ologists over a long period of time. There have been numerous attempts to model
and simulate this distribution. However, available resources and existing sampling
algorithms largely limit the resolution and accuracy of these models. A new simu-
lator with higher resolution is created. Simulated data can supplement real data to
generate better models for the field. Based on the field characteristics and statistical
analysis of available data, challenges in the sampling algorithm design specific to
the sunlight field are analyzed.

To aid readers in understanding the topic of this dissertation, background knowl-
edge on sampling is given in Chapter 3. In addition to explaining the basic sampling
methods, some of the more advanced methods are also reviewed. Among these meth-
ods, some are generic and applicable to all types of fields. Others are designed for
specific fields. The methods suitable for sampling the sunlight field are detailed. The
differences between the new algorithms and the existing algorithms are explained at
the concept level.

Because of their close relationship to sampling algorithms, signal reconstruction
techniques are reviewed in the following chapter. Three popular reconstruction
methods, the polynomial, spline and Kriging methods, are elaborated. Two of the
three methods will be applied in our sampling algorithm.

Starting from Chapter 5, two new algorithms designed for reconstructing the sun-

light field are described in detail. In particular, Chapter 5 depicts the design process
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of an adaptive sampling algorithm. In this algorithm, sampling and reconstruction
processes are carried out iteratively. In each iteration, the most informative points
are selected as the new sampling points based on the reconstruction result from the
previous iteration. A second sampling algorithm, a multiscale sampling algorithm,
is described in Chapter 6. Just as its name implies, information used in the field
reconstruction does not come from one source only, which is the case in the adaptive
sampling algorithm. The results in Chapter 6 demonstrate that higher efficiency in
exploiting resources is achievable when information from multiple levels are fused
together. Both algorithms are compared with existing schemes and shown to work
effectively.

We make concluding remarks and carry out some discussion on future research

directions in Chapter 7.
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CHAPTER 2

Light Field Models

Knowledge about the physical formation of a phenomenon is important and useful
in many aspects. When we want to get a faithful reconstruction of the phenomenon
from samples, this knowledge gives us hints on sampling density. When we want
to learn some statistical properties of the phenomenon, this knowledge helps reduce
uncertainty in the estimation. We can also apply this knowledge in simulating the
phenomenon when a large amount of high quality real data is not readily available.
The formation of the sunlight field is studied in this chapter.

This chapter is organized as follows. The sunlight field is characterized in section
2.1. In the following section, the causes of these characteristics are analyzed. In
section 2.3, probabilistic distribution models are fitted to measured data in simple
fields. No simple distribution function is suitable for fitting the data in more complex
fields. Therefore a simulator is employed to model such fields. Details about the
generation and validation of the simulator are presented in section 2.4. Section 2.5

concludes this chapter.

2.1 Sunlight Field Characterization

The light distribution under forest canopies has attracted attention from many bi-
ologists since this knowledge is very important for studying the ecosystem in the
forest. In particular, it is important for calculations such as energy balance and in
answering questions regarding distribution of plant species. A lot of research has

been done to better understand this field. But until now, no study has been able
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to provide very high resolution reconstruction of this field. The primary reason is
it exhibits high spatial and temporal variation. Fig. 2.1 plots a snapshot of a light
field. This figure clearly demonstrates the quick spatial variation of the field.

Figure 2.1: Typical light filed and its intensity

The temporal variation of light fields originates from the movement of the sun
and the wind. When the wind is strong, the forest canopy and hence the shadows
cast by it keep on changing. Even in very calm days when there is almost no wind,
the movement of the sun still leads to the movement of shadows. Fig. 2.2 illustrates
the temporal variation of light. To put this variation on a quantitative ground, we
can quickly make a rough estimate of the movement speed of shadows. The sun
moves 0.00436 degrees per minute. As a result, the shadow cast by a leaf at 3
meters height moves at 1.3cm/min. That means the shadow is 13cm away from the
place where it was ten minutes ago. The change in the angle of the sun also causes
shadow shapes to change.

The complexity of light distribution patterns makes the study of light fields a
very challenging task. Therefore, it is highly desirable to simplify it before a field
is studied. The light decomposition process described in the next section fulfils this

work.
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Figure 2.2: Light intensity over time at two spots.

2.2 Understory Sunlight Decomposition

The sun radiates energy to the earth in the form of light beams. These beams
span a large frequency band. The only band of interest to us is the visible band,
which is what we mean by sunlight from now on. When these light beams reach
the atmosphere of the earth, some beams reach the ground directly while others
go through diffusion, reflection and refraction processes. The strength of these
activities differs according to the obstacles these beams encountered in their trips
to the ground. In an open area, the only obstacles are the air molecules. The light
reaching the ground in an open area is thus composed of the direct beam S and
the sky diffused light D,. The intensity of each component is closely related to the
air pressure. Weiss et al.[109] made an approximation on the intensity of these two

components based on Bouguer’s (Beer’s) Law as:

Is = 600exp[—0.185(P/P,)m|cosb
Ip, = 0.4(600 — Ig)cosf (2.1)

s

where P/ P, is the ratio of actual to sea level (101.325kPa) pressure, m is the optical
air mass and @ is the zenith angle. Under a forest canopy, these light components
are further diffused by the forest foliage. Then two more components are added

as the light reaches the ground level: a foliage scattered direct beam Hg, and a
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foliage scattered sky diffused light Hp. Since D; is much weaker than S, Hp can
be ignored. Therefore, the light under a forest canopy is composed of three possible
components: direct beam S, sky diffused light D, and foliage scattered direct beam
H,.

The range in which the foliage scattered light can reach is limited. When there
are holes in a forest canopy, the foliage scattered light reaching the areas under these
holes is very small and can be ignored. Such areas are called sunflecks. They are
the brightest among all areas. The light in such areas is similar to that in an open
area, which is composed of direct light beams and sky diffused light. Areas where
all the direct beams and sky diffused light are blocked by the foliage are called
umbras. In umbras, the only light available is the foliage scattered light. These
are the darkest areas. The third type of areas are those where light intensity lies in
between sunflecks and umbras. Such areas are denominated penumbras. These three
types of areas are mingled together, with penumbras lying in between sunflecks and
umbras as transition areas. Only a portion of the direct beams and sky diffused light
reaches penumbras. Besides, the vicinity of penumbras to the foliage also results in
stronger foliage scattered light than in open areas, which cannot be ignored. Hence
the light reaching penumbras is a mixture of direct beam, sky diffused light and

foliage scattered light.

2.3 Sunlight Models

Light models are useful in studying the change of the radiation regime. With the
help of proper light models, one can decide on ideal plant patterns that maximize
the accessible light of each plant or improve the water-use efficiency.

Many models have been developed to describe the radiation regime inside plant
canopies. These models are divided into two classes, depending on whether a geo-

metrical approach or a statistical approach is applied. A geometric model typically

10
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deals with an individual type of plants. It simulates the tree crown through a geo-
metric shape such as a cone, a sphere or a cylinder[4][76]. In statistical models,
probability density functions are classically derived by considering the plant canopy
as a horizontally homogeneous medium. The canopy is divided into N independent
layers. Depending on the leaf dispersion patterns, the probability of a light beam be-
ing intercepted by n layers can be modelled as one of four distributions[13][58]: 1) a
Possion distribution, corresponding to random leaf dispersion (/N is infinity in this
case); 2) a positive binomial distribution, corresponding to regular leaf dispersion;
3) a negative binomial distribution, corresponding to clumped leaf dispersion; 4) a
markov chain, corresponding to variable leaf dispersion. All these statistical treat-
ments deal with light penetration within a canopy and cannot be directly applied
to the study of light distribution under the canopy.

Other authors tried to model the light distribution[78][70] and correlation[9]
directly from the data measured over a transect under a canopy. In these studies,
the spatial resolution of the data is low, limiting the model accuracy. In addition,
their light models are obtained through the data measured over the whole area. The
models are applicable to a mixture of all three lights components. As illustrated
in Fig. 2.3, the typical light distribution under a forest canopy is very complex. A
different empirical density function is necessary for each field. Therefore, modelling
the light distribution over the whole field unnecessarily complicates the models.

Since different light components go through different paths, their statistical dis-
tributions also differ from each other. Consequently, light distributions at different
areas are not all the same. Instead of looking at the light distribution in a whole,
Ross[91] modelled the three types of areas separately. This approach is also followed
in this dissertation.

First, the density distribution function of each light component is analyzed one by
one here. The direct beam intensity is constant. The sky diffused light is the direct

beams being diffused by a lot of air molecules. Based on the law of large numbers,
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Figure 2.3: Typical light intensity distribution under canopy

it can be modelled as a Gaussian distribution, as Ross[91] has done. But in our
measurements, we found its variance is very small and can be safely approximated
by a constant too. The foliage diffused light has a much higher variance than the sky
diffused light. Ross[91] also used a Gaussian model with a larger variance to model
its density function. One problem with the Gaussian model is that it allows negative
values, which is impossible for light intensity. Our measurements indicate that a
log-normal distribution provides a better fit on the data, as demonstrated in Fig.
2.4. Intuitively, since this process results from many reflections (a multiplicative
process), on physical grounds a log-normal distribution is also expected. Based on
the light components contained in an area, the light distribution of each type of area

is analyzed next.

2.3.1 Sunflecks

Light in sunflecks is composed of direct beam and sky diffused light. Since the inten-
sity of both components is approximately constant, the light intensity in sunflecks

is a constant

IF:IS+IDSNCF (2.2)
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Its spatial correlation is also a constant.

2.3.2 Umbras

The only light component in an umbra is the foliage diffused light, which follows a

log-normal distribution

log Iy = log I, ~ N'(u,0) (2.3)

Depending on plant species and canopy thickness, the mean and variance of this
distribution varies in a large range. When the canopy is thick, the light is reflected
and refracted more frequently. Hence more energy is absorbed. In this case, the
mean light intensity in umbras is low and the variance is high. Fig. 2.4 shows
the light intensity distribution in umbras under two different types of canopies.
The variances of the log-normal distributions fitted to them are 0.1887 and 0.3523

respectively.

estimated density
— - — lognormal

estimate densi
- - - = - lognormal 5
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Figure 2.4: Light intensity distribution in umbras. (a) site 1; (b) site 2

The spatial correlation of the light in umbras is also affected by the canopy
thickness. The thicker the canopy is, the broader the area the same light beam
affects, resulting in a larger correlation value and longer correlation distance. This

is demonstrated in Fig. 2.5.
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Figure 2.5: Light correlation model in umbrae

2.3.3 Penumbras

The fact that the sun is not a point source creates the so-called penumbral effect.
In penumbras, the solar disk is neither fully visible nor completely blocked. This
effect is illustrated in Fig. 2.6. Direct beam intensity due to the simple penumbral
effect can be computed through geometry. Let the maximum direct beam intensity
be 1. Suppose there is an disc with radius r at d meters high. The shade casted
by this disc is a circle. Let x be the distance of a point to the center of the circle.
Inside the ring with outer radius r 4+ z; and inner radius 7 — 22, the direct beam

intensity I, decrease continuously from 1 to 0 and can be expressed as

VI =@ — cos
L=1+2 umceos 4 (2.4)
™
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where

u = h/R;
ho— xzd — Ds(x — )
d? — (z —r)?

I b+ Vb2 +ac

, = — Y- T

a

. —b+ Vb? +ac
2 =

a
o = (Dy—d?—-R} b = (Dy—d)rd, ¢ = (R?~r?)d? (2.5)

D, is the distance from the sun to the earth and R, is the radius of the sun.

—————Disc

Xz

X

[£ 231

(a) 3-dimensional view (b) 2-dimensional view

Figure 2.6: Penumbra effect

When the ratio between the radius and the height of the disc r/d is smaller than the
angular radius of the sun Ry/D;,, there are always some direct beams reaching the
shade cast by the disc. The direct beam intensity never reaches 0 in the shade in
this case. Both the normal shade intensity and small shade intensity are illustrated

in Fig. 2.7.
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Figure 2.7: Intensity of a penumbra generated by a disc at 3 meters high.

In penumbras, the direct beam is partially blocked. Similarly, the sky diffused
light is also partially blocked. Because of its vicinity to the canopy, more foliage
diffused light reaches penumbras than in open areas. The contribution of diffused
light to the total light in penumbras cannot be ignored. Thus, the light intensity in

the penumbras is the summation of all three light components:
Ip = oyl —+—aQIDs +a3]H8 (26)

In a simple penumbra as the one shown in Fig. 2.6, a; and «y are approximately
equal, as indicated in Eq. (2.4). But under a real canopy, penumbras are much
more complex and ¢;’s should be modelled as random variables. Therefore, the light
intensity in a penumbra is a summation of three random variables. Its distribution
is very complicated. Ross[91] used a Beta distribution to approximate the ensemble
light distribution of all penumbras. Even if we assume the light distribution within
an individual penumbra can be approximated by a Beta distribution, the parameters
of the Beta distributions vary over penumbras.

The path each component of light goes through is independent from each other.

16
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So the three light components are independent. Let C(4, ) denote the spatial cor-
relation between two points ¢ and j. In penumbras, the light correlation model can

be expressed as
Cp(,5) = C1,(3,7) + Cp, (4, 5) + Cn, (4, J) (2.7)

Note that although I, and D; are constant, their weights a; and a5 are random.
Traditionally the light intensity field is assumed to be a spatially stationary
process[9]. Hence the correlation between two points only depends on the distance
between the two points, i.e C(4,j) = C(|i — j|). Different areas have different
correlation curves, as demonstrated in Fig. 2.8. Usually the correlation in umbras
is stronger than that in penumbras, but both exhibit an exponential decrease over
distance. In sunflecks, since the light intensity is constant, the correlation is 0. Thus

we omit them in Fig. 2.8.
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Figure 2.8: Typical light intensity correlation
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2.4 Direct Beam Radiation Simulator

2.4.1 Simulation Model Generation

The complexity of the light distribution in penumbras and the difficulty in obtaining
data with high resolution make simulation an attractive approach to obtain light
models in penumbras. Oker-Blom[81][82] assumed a model of randomly dispersed
leaves of equal size. For each point, she located a volume that a leaf needs to reside
in to cast (at least partial) shade at that point. She then randomly generated leaves
within the volume and determined the solar radiation intensity at that point. The
assumption that leaves are of equal size and shape and are uniformly distributed
within the canopy is not very realistic. This assumption restricts the model’s ap-
plication to few types of trees. Wang et al.[107] generated a light radiation model
for an array of trees. But the resolution of their result is much coarser than what
we need. Hence, a new simulation model is created to analyze the direct beam
radiation.

The tree crown is simulated as a cone or a box, depending on users’ input.
The top and bottom of the box/cone corresponds to the maximum and minimum
height of the canopy provided by users. Leaves are assumed to be either randomly
scattered in the canopy or clumped. If the leaves are clumped, the clump model
should be given as an input. A detailed leaf distribution model is also acceptable as
the input. Leaves’ azimuth angles are assumed to be uniformly distributed between
[0—360°]. Leaves’ zenith angle are also assumed to be uniformly distributed between
[Bmin — Bmaz), Where Bpin and Bme, are specified by users. A leaf image is read in as
the prototype for leaf generation. The true leaf size should also be provided. If the
user specifies that leaves are not all of equal size, maximum and minimum leaf size
should be provided. The leaf size follows the distribution specified by the user. If
this input is absent, the leaf size is assumed to be uniformly distributed between the

minimum and maximum size. The inputs of the simulator are summarized below:
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1. Crown shape: box or cone.

2. Leaf distribution model. Default is uniform distribution within the crown.
3. Maximum and minimum leaf zenith angle.

4. Leaf image.

5. Maximum and minimum leaf size.

6. Leaf size distribution. Default is a uniform distribution between minimum and

maximum size.

The simulator is implemented as follows. Let r be a point on the ground. Assume
an observer looks up at the sun from r. Also assume his view is partially obstructed
by a leaf. The sun disc is projected at the leaf’s height level to determine the portion
of the sun that is blocked. We dub this projected sun disc ”apparent sun image”.
The apparent sun image is illustrated in Fig. 2.9. One sun image is generated at
each leaf’s height level. Each leaf image is convolved with its corresponding sun
image to compute the shade the leaf left on the ground. Generally a sun beam does
not encounter only one leaf on its path to the ground. When multiple leaves are
encountered, the intensity value of the shade generated by each leaf at the same
point is multiplied together. This approach essentially reaches the same statistical
result as counting the number of leaves a beam would encounter when the leaves
are uniformly distributed within the crown. One realization of the simulation result

is shown in Fig. 2.10.

2.4.2 Simulation Model Validation

Validation is the process of determining whether a simulation model is a faithful
representation of the system. Once the simulation program is written, an important
procedure is to check the validity of the model. Since a simulation model is always

generated for a special purpose, the first validation step should be checking whether
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Figure 2.9: Apparent sun image to an observer on the ground

Figure 2.10: Simulated direct beam intensity on the ground
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the simulation program serves that specific purpose. It should also be checked to see
if it matches the measured data. There are also many other validation techniques.
In our study, we validate our simulation model by comparing it with other available
models and collected data.

Norman et al.[69][79] analyzed the gap distribution in a tree canopy and the
penumbral effect. They derived theoretical models for sunfleck size distribution and
direct beam radiation intensity distribution. The same two distribution models are
empirically obtained from the simulated data and compared with those theoretical
models. Fig. 2.11 verifies that the gap distribution from the simulation data is
similar to the theoretical distribution. The curves from the two different sources

also match very well for light intensity distribution, as can be seen in Fig. 2.12.

gap distribution

simulation
theoretical

10° |

107"}

107}

0 5 10 15 20 25 30 35 cm
Gap Size

Figure 2.11: Gap distribution comparison

One important contribution of this simulation model is to determine the spa-

tial correlation model in penumbras. As explained before, the light distribution in
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Figure 2.12: Direct beam intensity distribution comparison

penumbras is complex and differs from area to area. Without high-resolution mea-
surements, we can use the simulated data to evaluate the correlation structure in
penumbras. Since the weight of the direct beam and sky diffused light is similar
in a penumbra while the foliage scattered light is much weaker than the other two
components, the correlation structure of the direct beam should be a good indica-
tion of the total correlation structure. To prove this, the correlation model from
simulated data is compared with the one from measured data and is shown in Fig.
2.13. It shows that the direct beam correlation has a similar shape as the total
correlation and plays an important role in the total correlation. Hence, without
measurements, total correlation level can be roughly inferred from the simulated di-
rect beam correlation. This information is important for determining the minimum

sampling density, which defines an upper limit on the total number of samples.
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Figure 2.13: Light correlation model in penumbras.

2.5 Conclusion

Light beams radiated from the sun undergo refraction, reflection and diffraction be-
fore they reach the ground level on earth. The obstacles they meet on their path
determine the light intensity distribution on the ground. Decomposing light into
components and modelling each component separately greatly simplifies the analy-
sis of light distribution. In this chapter, we examine the density distribution and
correlation models of light components from measured data. Based on the compo-
nents in the light reaching an area, the area can be categorized into one of three
types: a sunfleck, a penumbra or an umbra. The light in sunflecks and umbras is
modelled with simple density functions. However, the light in penumbras is too com-
plex to be modelled in this way. To overcome the difficulty, a simulator simulating
the distribution of direct beams, the light component that has the most impor-
tant effects on the light distribution in penumbras, is created and validated. This

simulator will complement real data to obtain the correlation models of penumbras.
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CHAPTER 3

Overview of Existing and Proposed Sampling

Methods

The concept of a sampling process has two meanings: 1) to get a representation from
a large population; 2) to convert a continuous signal into a discrete stream. Sampling
of a random variable refers to the former and is well studied by statisticians. In the
signal processing community, we usually refer to the latter when we talk about
sampling processes. Sampling a random signal involves both concepts. On one
hand, the signal is discretized in the process. On the other hand, each sampled
signal is only one realization of the signal space.

Sampling a single or a small number of random variables is much easier than
sampling a random signal because of the smaller space involved. However, methods
for sampling random variables can be extended to sampling random signals.

There are two basic sampling schemes: deterministic and random. In determinis-
tic sampling, the sampling pattern follows a deterministic rule. In random sampling,
sampling points are chosen according to a randomized rule. More complex sampling
schemes are usually a combination of the basic sampling rules.

In this dissertation, the primary objective in sampling design is to reconstruct a
signal from samples, although other statistics will also be briefly discussed in later
sections. For a random variable, this corresponds to finding the mean of the variable.
The reconstruction error is the Mean Square Error (MSE). It includes both bias and

variance:

MSE = Var + (Bias)? (3.1)
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A set of samples is only a subset of the whole population. Each time samples are
taken, a different subset is drawn from the whole population. Therefore, sampling
processing itself is also random. Thus the MSE in Eq. (3.1) is actually the ex-
pected MSE. When the whole population is not available, which is true in almost all
practical problems, the expected MSE also has to be estimated from the samples.

This chapter is organized as follows. The methods for sampling random variables
are briefly reviewed in the first section. This is followed by a review of the existing
methods for sampling signals. An overview of the two major sampling methods
discussed in this dissertation is presented in section 3.3. Section 3.4 concludes this
chapter.

The notation used in this chapter is listed below.

X a space of random variables
|X] the cardinality of X

X a random variable in X

x a realization of X

X(s),s € R? a continuous random signal
X(i),i € N® a discrete random signal
N = |X]| the cardinality of a discrete random variable space

R(7) the correlation structure of a wide-sense stationary

(WSS) random signal

o the standard deviation of a random variable. 0% = R(0)

for a WSS random signal.

3.1 Methods for Sampling Random Variables

In this section, most of the sampling methods and statistical results are given for

the discrete random variables. These results are based on Cochran’s book[21]. They
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can be easily extended to continuous random variables. Since all these methods are

unbiased, only the variance term exists in Eq. (3.1).

3.1.1 Random Sampling

The easiest way to take samples is making random draws from a space. There are
two approaches to treat these samples: the samples drawn from the whole space are
treated equally or samples from each subspace are treated differently. This difference
results in two random sampling methods: simple random sampling and stratified

random sampling.

3.1.1.1 Simple Random Sampling

This is the method that all samples are drawn from the whole space with equal

probability. The estimated mean and MSE are:
. 1 <
Estimated EX = — i
stimated mean ~ Zm

2

Mean Square Error MSE = %
If N is finite, MSE should be corrected with a multiplicative factor of 1 — z.

N

3.1.1.2 Stratified Random Sampling

In stratified random sampling, the whole space & is first divided into L nonover-

lapping subspaces &;. These subspaces are called strata. In each stratum, n; sam-

ples are taken. Some of the advantages gained from stratified sampling include:

1) precision in each stratum can be controlled separately; 2) stratification may be

required flor |convenience; 3) stratification may improve overall estimate precision.
X;

Let w; = m represents the stratum weight. The estimated mean and MSE are:
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If each sample generates a cost of 1, the optimal allocation of samples in each

L
Mean Square Error MSE = 22: —
stratum n; that minimizes the total cost is proportional to w;o;, o; being the stan-
dard deviation of i** stratum. With the total number of samples fixed, the MSE of
different allocations of samples has the following relationship: MSE,;; < MSEprqp <
MSE,q,. MSE,,;: and MSE,,, are the MSE’s of optimal and random allocation re-
spectively. MSE,,,, corresponds to the allocation when number of samples in each

stratum is proportional to its weight, i.e. n; = w;n.

3.1.2 Deterministic Sampling
3.1.2.1 Systematic Sampling

Suppose the whole population is numbered in some order. Systematic sampling is
the method of taking samples at every {** index. The index of the first sample is
randomly picked. For example, assume the index of the first sample is k£ € [1,].
Then the indices of samples are k,k + [,k + 2[... This method is commonly known

as uniform sampling in signal sampling process. The estimated mean and MSE are:
. NI I
Estimated mean EX = - Z Z;
7

02N ~1
Mean Square Error MSE = ?T[l + (n—1)p]

where p is the correlation between samples. If the population is randomly numbered
or there is no correlation between samples, and N > n, the systematic sampling has
the same expected MSE as random sampling. When samples are correlated, they

effectively form a signal. This situation is covered in more detail in section 3.2.
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3.1.2.2 Cluster Sampling

Sometimes the characteristics of the whole population can be inferred from several
groups of samples. A group of samples forms a cluster. Thereby comes the name
”cluster sampling”. Previously explained sampling methods can be employed to
select clusters. That is, clusters are chosen randomly or systematically, with or
without stratification. In random cluster selection, the probability with which a
cluster is selected is either equal among all clusters or proportional to clusters’ size.

Once clusters are fixed, depending on the way the selected clusters are treated,
this sampling method can be further classified as one-stage cluster sampling or
two-stage cluster sampling. In one-stage cluster sampling, each selected cluster is
thoroughly sampled. That is, all elements within the cluster are measured. If instead
only some samples are taken from each cluster, the method is called two-stage cluster
sampling. Within each cluster, random or systematic sampling methods can be
applied.

Each combination of sampling methods for cluster selection and element sam-
pling is associated with an different MSE. For the simplest two-stage cluster sam-
pling, random cluster selection with equal probability combined with random sam-
pling of m elements within each cluster is
Tij
mn

Estimated mean EX = z": i
i

o?N—-n oM-m

Mean S E MSE =
ean Square Error S P +mn %

where M is the number of elements within each cluster, o; is the standard deviation
among clusters, and o5 is the standard deviation within cluster (assuming all clusters
have the same intracluster standard deviation). Readers interested in other methods
can refer to [21].

Another result that is worth noting is the probability of selecting a cluster. If

the element mean and variance within clusters are not related to the cluster size,

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the methods that select a cluster with probability proportional to its size gives the

smallest overall MSE compared with other selection methods.

3.1.2.3 Double Sampling

All the sampling methods introduced up to now do not require any auxiliary variate.
Sometimes such an auxiliary variate is necessary and its characteristics is not known
in advance. Under such conditions, a number of samples need to be allocated first to
learn the information about the auxiliary variate. This information is then applied in
the chief sampling task in later phases. Such techniques are called double sampling.
To determine the number of samples for allocation in each phase, a cost function is
constructed:

C =ncp, +n'cy

where n is the number of samples allocated to the main task and n' is the number
of samples used in characterizing the auxiliary variate. ¢, and c, are the cost
associated with these two tasks.

Although there are all kinds of auxiliary variates, the one that is most interesting
to us is the weight of a stratum in stratified sampling. The expression for deter-
mining the best allocation of n and n’ is very complex. A simplified approximation
shows that the following relationship should hold:

nl

VEWwon)2ew  V/ea 2o Wi(EXy — EX)?

where W), is the true weight of a stratum, o, is the standard deviation within a

stratum, and E X}, is the variable mean within a stratum.

3.2 Methods for Sampling a Signal

Sampling a signal is much more complicated than sampling a variable. Error in

reconstructing a signal from samples originates from two sources: 1) measurement
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error; 2) aliasing. Measurement error adds noise to the measured signal and is the
source of the variance item in Eq. (3.1). Even if there is no measurement error, when
X (t) is discretized, there can still be bias in the reconstructed signal due to aliasing.
Various sampling methods have been designed to minimize the reconstruction error
and are briefly reviewed here. Since some methods are specifically designed for
sampling a two-dimensional signal, we sometimes use the word ”field” instead of

”signal” to emphasize that the signal is two dimensional.

3.2.1 Uniform Sampling

The most popular scheme for sampling a signal is uniform sampling, where sampling
points are taken on a uniform grid. For a one-dimensional signal, the samples are
X(kT),k = 1,2..., where T is a fixed period. For a multi-dimensional signal, the
periods for each dimension are not necessarily the same. For example, the samples
of a two-dimensional signal are X (mSi, nS,).

Shannon, in his classic paper, pointed out that a signal can be faithfully recon-
structed by sinc functions as long as the sampling rate is higher than the signal’s
Nyquist rate[95]. This basic sampling theorem is extended in several directions.

Vetterli et al.[105] noted that a signal is not necessarily bandlimited to reach
errorless reconstruction. They defined the rate of innovation of a signal as the
number of degrees of freedom per unit of time. They proved that signals with finite
rate of innovation (not necessarily bandlimited) can be perfectly reconstructed if
they are uniformly sampled at (or above) the rate of innovation. They also extended
their work to allow the presence of measurement error[63]. Instead of getting perfect
reconstruction, they tried to minimize the error and got an approximation of the
signal.

Unser[103] also looked at signal approximation. He extended Shannon’s model
in basis function spaces from a single sinc function to a Riesz basis. A Riesz basis

is a subset of L? whose functions have strictly positive lower and upper bounds.
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He presented a detailed approximation error analysis from the frequency domain.
Specifically, he emphasized the importance of prefiltering, pointing out that without
prefiltering, the out-of-band signal generates two sources of errors: 1) its information
is not presented by the samples; 2) it introduces aliasing. He also looked at the rate
of decay of approximation error and provided alternatives to the Nyquist rate for
selecting the sampling step.

Balakrishnan[6] discussed Shannon’s sampling theorem in the context of random
signals and proved that the sampling theorem also held in the mean square sense.
He relaxed the strict requirement on the signal bandwidth. Instead of requiring the
frequency components outside the cutoff bandwidth to be strictly zero, he proved
that as long as the following two conditions are satisfied, i.e. 1) the frequency on the
negative side and on the positive side are complements to each other in the out-of-
bandwidth region; 2) the frequency spectrum is continuous at the cutoff bandwidth,
the signal can be fully reconstructed.

The uniform sampling method is also widely used in sensor networks. Due to the
usual assumption of the limitation on the sensors’ communication capabilities, study
of sampling process is often combined with transmission rate[56][27]. Cristescu et
al.[27] claimed that there exists an optimal sampling density when the information
is relayed through sensors. When the sampling density is higher than that opti-
mal density, the approximation error would increase due to the noise added by the
relaying sensors.

Since the uniform sampling method is simplest and the most important, there
are also many other discussions on this sampling method. These discussions are not

detailed here. See [103] for a review and related references.

3.2.2 Static Design

There are two disadvantages associated with uniform sampling: 1) when the whole

signal is not uniformly distributed, the uniform sampling method doesn’t make best
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use of all samples; 2) uniform sampling pattern suffers from a lack of refinability
when the number of samples increases. Miiller[74] improved the refinability of uni-
form sampling by the solution which he denominated ”coffee house” design. But
this problem is usually solved by deploying samples adaptively and will be addressed
in the next section.

The first problem is solved by designing the sampling points based on the vari-
ance matrix of the signal. Such an approach is known as an optimal design in the
statisticians’ community. Let n be the number of samples and ¢;,1 < 7 < n be
the sampling points. A simple extension to the uniform sampling is to obtain each

sample at (n — 1)~ percentile of a density function h[14]:

Miiller[71] proved that the optimal density function for minimizing the integrated
MSE is proportional to the square root of the autocorrelation function of the signal
when constant bandwidth is used in nonparametric regression from the samples.

Johnson et al.[43] looked at the design problem from the perspective of maxi-
mizing the distance between sampling points. They provided two designs. Suppose
all points are selected from a T x T grid. The selected points are in a set S C 7.
Let d(t, s) be the distance between two points ¢ and s. The minimaz distance design
S* is chosen to be

S* = arg min max d(t, S)

where d(t,S) = rnelgl d(t,s). This design is a G-optimal design, which minimizes the
maximum entry of the residual error matrix X'(X’'X)~*X. The second design, the

mazimin distance design
S° = arg max min d(s, s')

S s,8'€S

is a D-optimal design, which maximizes the determinant of the information matrix

of the sampling points. Although both designs are straightforward in concept, their
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computational complexity is very high. Besides, they restrain the sampling points
to grid points, which may be a strong limitation in some applications.

The above mentioned design approaches require prior knowledge of the signals
to be sampled. Sometimes we lack such knowledge. Then we turn to adaptive
sampling (also known as sequential design), where we select sampling points based

on information gained from previous samples.

3.2.3 Adaptive Sampling

Various adaptive sampling methods have been proposed. These algorithms mainly
differ in the assumptions on the signal and cost functions to minimize.

Several authors tried to add new sampling points following the density of the
existing points and minimize the difference between the measurements and the pre-
diction values. Miiller-Gronbach et al.[72] assumes the signal is continuously differ-
entiable. They selected points with density proportional to the estimate of the local
Holder constant. Similarly, Faraway[33] assumed the signal was two-differentiable
and chose design points following the density of the second derivative of the signal.

All the approaches mentioned above assume a certain order of smoothness in the
signal. In reality, such a condition may be violated. Nowak et al.[80] dropped this
assumption and tried to reconstruct inhomogeneous two-dimensional fields. They
assumed a field was composed of two or more smooth regions separated by smooth
boundaries. They estimated the boundary of the field from existing samples and
allocated new samples at the boundary. Guestrin et al.[38] made a different as-
sumption on the field. They modelled the field as a Gaussian process and looked at
the sampling problem from the perspective of mutual information. They selected
sampling points that provided the maximum increase in mutual information. This
approach requires a lot of computation and is difficult to be extended to large fields
and high resolution sampling. Both works also incorporate communication costs in

their sampling consideration[55][111].
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Sometimes, the field to be sampled exhibits both spatial and temporal variation.
In such cases, we need sampling methods that can capture the temporal variation
while reconstructing the spatial field. Rahimi et al.[88] considered this temporal
variation in their algorithm. They gave lower weight to previous samples in mak-
ing prediction at the new sampling points and minimized the difference between
measurements and prediction values. They also took the sampling and movement
speed of robot sensors into account in selecting the next sampling points. Wikle et
al.[110] approached the similar problem from a different angle. Instead of a using

lower weight on previous samples, they updated the field through a Kalman filter.

3.2.4 Compressed Sensing

Although all the adaptive approaches exhibit improvement over static approaches
when there is no prior information available, a recent work by Donoho[30][102]
proved that adaptive sampling does not improve the error convergence rate. He
showed that as long as the signal is compressible by transform coding with a known
transform, the signal can be accurately reconstructed with random samples. When
the transform coefficients belong to an [, ball, 0 < p < 1, it is possible to reach recon-
struction accuracy with n nonadaptive measurements comparable to that attainable
with direct knowledge of the N most important transform coefficient. The N coef-
ficients can be extracted from the n measurements by solving a linear optimization

problem.

3.3 Our Approaches

The work by Donoho is a milestone on the sampling algorithm design. It puts an
upper bound on the improvement an adaptive algorithm can reach. But this method
is not universally applicable. First of all, it is only optimal on the signals that are

compressible in a known transform domain. The knowledge on the domain that
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a signal is compressible has to be available in the reconstruction process. If this
knowledge is not available or the signal is not compressible in any transform domain
that is known at present, the signal cannot be optimally reconstructed. Second,
although error convergence rate is important, when a large number of samples are
involved, the constant in the MSE expression also plays an important role. Sampling
an inhomogeneous field with high reconstruction fidelity is an example of such a sit-
uation. Therefore, adaptive sampling algorithms are still necessary in some practical
applications. We designed two sampling algorithms that overcome some limitations
imposed on the adaptive sampling methods reviewed in the previous section. A
brief overview of these two algorithms is given here. Details will be presented in

Chapter5 and Chapter6 respectively.

3.3.1 Adaptive Sampling

The adaptive sampling algorithm is an iterative algorithm that adapts sampling
site to the field variation. A sampling step is followed by a reconstruction step in
each iteration. At the sampling step, the most desirable sampling sites are picked
out based on the reconstruction result from the previous iteration. These sites
form a candidate pool. A certain number of samples are selected from this pool.
Instead of looking at the derivative of the signal directly, we introduce the concept
of bending energy, which is an integration of the signal’s second derivative. The
locations where the bending energy is high correspond to the locations the field
varies quickly. Intuitively, more samples are necessary in these locations. Therefore,
bending energy is a good indication of the sampling density. If the field is not strictly
differentiable, we can set an upper limit in the numerically computed derivative and
remove the indifferentiable points in the integration. In this way, we relax the strict
differentiable constraint on the field.

Without ground truth, it is hard to determine the stopping point of the itera-

tion. The common practice is to compare two consecutive reconstructions and set a
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threshold on the difference. But this approach often results in stopping the algorithm
prematurely. To avoid this problem, we setup a Bayesian framework to estimate the
probability that the fidelity constraint is not met. In additional, our algorithm also
allow source statistical models to be incorporated in the Bayesian framework when

they are available. This probability is updated after each reconstruction step.

3.3.2 Multiscale Sampling

When we study the sunlight field in Chapter 2, we have shown that the light field is
a heterogeneous field. In some areas the field varies quickly, while in other areas it
varies slowly. This field, as a whole, is compressible neither in time/space domain,
nor in frequency domain. However, if we are given extra information so that we can
partition the whole field into homogeneous subfields, each subfield being compress-
ible, we will be able to optimally sample the field. Since the extra information is
not directly connected to the field reconstruction process, it resides at a higher level
than measurements of the field. Therefore, we establish a hierarchy of information.
The concept of fusing information from different levels in sampling process is called
multiscale sensing. This concept is illustrated in Fig. 3.1.

There are many possible sources for the high-level information. They can be the
measurements of the hidden forces that drive the variation of the field, such as the
time of a day, the wind speed, etc. They can be the measurements from sensors
whose data are not directly used in the field reconstruction. Historical data can also
provide useful information if the time correlation of the field is strong.

To effectively fuse the high-level information with the field measurements, we
design a multiscale sensing algorithm that is similar to the two-phase stratified
sampling scheme we explained in section 3.1. In this algorithm, two types of sensors
with different resolution and accuracy are employed. One type of sensors provide
high-level information such as field partition and field models. Sampling points are

designed based on the models. Sensors of second type take samples at these points.
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The field is reconstructed through the samples and models.

3.4 Conclusion

In this chapter, we provide some background on the sampling process. Reconstruc-
tion errors are analyzed for simple schemes. The motivation for designing two new
sampling algorithms was explained after cutting-edge sampling algorithms were re-
viewed. An overview of the two new algorithms was given at the concept level.

Their details are left to later chapters.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4

Reconstruction Techniques

The final objective of sampling a field in this dissertation is reconstructing the field
within a certain fidelity constraint. In Chapter 3, the sampling techniques, which
discretize the field, were reviewed. The reconstruction process is the reverse process
to sampling. In the reconstruction process, the value of the field at locations without
samples are estimated. The sampled discrete field is converted to a discrete field
with much denser grid points than the sampling points or back to a continuous field.
This process is sometimes called curve fitting or regression analysis. In Chapter 3,
the reconstruction process was referred to without being elaborated on when some
sampling methods were reviewed. In this chapter, reconstruction techniques are
described in detail.

There are two types of reconstruction: interpolation and approximation. The
distinction between them is whether the reconstructed field has exactly the same
values as the measurements at the sampling points. Interpolation requires that the
fitted curve passes precisely through the sampling points, while approximation does
not impose such a restriction on the fitted curve. We will use the word "regression”
to refer to both methods.

In this chapter, our measurement model will be
y(.’L‘z) = f(.’Ei)—*'Ez’, 1= 1,2,...,’1’?,, x; € [0, 1] (41)

¢; being Gaussian noise. f(z) will be called the underlying function of the field.
The k" derivative of f(z) is denoted by f*). We say f € L if f is differentiable at

exactly k times. The reconstructed signal will be denoted by f .
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The curving fitting process can be either parametric or nonparametric. If the
curve is believed to follow a certain simple function, such as a polynomial or an
exponential function, the parameters of the function (the coefficients and maybe
the order of the polynomial as well) are estimated from the measurements, thus
getting the name ”parametric”’. In contrast, nonparametric method is used when
the function format is unknown or when the curve is so complex such that one set
of parameters is not suitable everywhere. Since the fields we study fall in the latter
class, we will only review the nonparametric method here. In this case, the curve

fitting is typically convolution based. The fitted curve is expressed as
f@) =Y fla)k(z, =) (4.2)
i=1

where k(z,z;) is a basis function (also known as a kernel function).

In interpolation, the noise is assumed to be zero. The Eq. (4.2) is equivalent to
. n

f@) =Y y(@)k(z, =) (4.3)
i=1

When the measurements contain noise, the approximation approach is more appro-
priate. In this approach, a fitted curve usually does not pass exactly through the
sampling points. Hence, the weights for the kernel function are estimated values
instead of sampled values. If there is not enough information to get an exact repre-
sentation of the true curve, approximation is a better approach than interpolation.

The quality of kernel functions can be evaluated either in the frequency domain
or in the time domain'. From the sampling theory explained in chapter 3, we know
that when a signal is bandlimited, the signal can be fully reconstructed from a sinc
function. The sinc function in the frequency domain is a rectangular function, which

has flat passband and no sideband. Since the sinc function is not time-limited, it

1We usually refer to an one-dimensional signal as a time signal and a two-dimensional signal as
a spatial signal. Both sampling and reconstruction methods reviewed in the previous chapter and
in this chapter are not limited to one-dimensional signals. But to follow the convention, we still
called the signal that is bounded in its dimensions ”time-limited” and the dual to the frequency
domain the "time domain”. Qur time signal here is not necessarily one-dimensional.
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cannot be used in reality. When the kernel functions are evaluated in the frequency
domain, their Fourier transforms are compared with the transform of the sinc func-
tion. Hence, the goal of designing a good kernel in frequency domain is to reduce
the sideband while keeping the passband flat. Lehmann et al.[57] presents a com-
prehensive catalog of kernel functions with a comparison of their Fourier transforms.

In the time domain, important characteristics of the a kernel function include its
smoothness, its bandwidth and whether the sum of all overlapped kernel functions
at a point is one, i.e. Z k(zo,z;) = 1, k(zo, ;) being the kernel function k(z, z;)
evaluated at a point :1:0.2

A lot of regression methods have been proposed. A chronological review of inter-
polation methods by Meijering[68] is a good starting point to learn the evolution of
the regression methods. The simplest method is the nearest neighbor interpolation,
where the value at a location z takes the values of the sampling point closest to it.
Its kernel is a rectangular function in the time domain. Various other kernels have
been designed. A popular family of kernels is that of polynomial kernels. Within
the polynomial family, spline functions are given a lot of attention because of their
special characteristics. Among the unbiased linear estimators, the kriging estimator
is the one that has minimum variance. It is not kernel based. Instead, it estimates
the value at a point by the weighted sum of its neighbors.

Some regression methods are developed for special applications, such as image
edge enhancement[42], unknown sampling points[65], distributed regression[37], etc.
Although these methods are useful to some extent to our study, they are not closely
related to the methods used in our algorithms and are not reviewed here.

This chapter is organized as follows. The basic polynomial regression methods
are reviewed in section 4.1. Although spline regression is essentially polynomial
regression, because of its special features, it is separately discussed in section 4.2.
Kriging is introduced in section 4.3. Reconstruction errors are analyzed in section

4.4. Section 4.5 concludes this chapter.
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4.1 Polynomial Regression

Polynomials are popular because they are smooth and their values are easy to com-
pute. We usually assume the underlying function supporting the measured data is
smooth. The family of polynomial kernels is a proper choice of regression functions
under this assumption. Its property of low computational complexity makes it es-
pecially attractive for curve fitting in computer graphics, where a large amount of
computation is involved. Chung[19] developed an algorithm for fast interpolation
using a cubic polynomial kernel.

In approximation, when the parametric method is used, the order of the under-
lying polynomial has to be determined from the data, which is not an easy task.
Higher order polynomials provide a better fit to the available samples, but they also
incur more danger in overfitting, resulting in too much noise being incorporated.
In such cases, the Akaike Information Criterion(AIC) or the Bayesian Information
Criterion(BIC) is often used to determine this parameter.

The order of polynomial kernels is also an important parameter in nonparametric
regression. For interpolation, the cubic polynomial is a frequent pick. Different cubic
polynomial kernels have been designed by imposing different boundary conditions.

The most popular form of the kernel is
Az + Bylz|2+ Cylz| + Dy, if0<|z| <1
k(z) = Aylz]P + Bolaf? + Cylz| + Dy, if 1 < Ja] < 2 (4.4)
0 if 2 < |z

By enforcing continuity and continuous differentiability requirement, seven coeffi-

cients can be determined and the kernel reduces to

(a+2)z]P+ (a+3)z]?+1, f0<|z|<1
k(z) = a|z® - 5a|z|? + 8alz| — 4a, if1< |z| <2 (4.5)

0 if 2 < |z|
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Such a kernel first appeared in [10]. Further conditions can be added to deter-
mine the value of a, such as requesting the interpolation function and the Taylor
series expansion of the underlying function agree for as many terms as possible[51].
Cubic polynomial kernels under this condition yield a fourth order approximation?
of the underlying function. A piecewise cubic Lagrange polynomial also reaches
a fourth-order approximation. But the interpolation function is not continuously
differentiable and has sharp edges at the sample points. This effect is not desirable
in many scenarios. Instead of four-point interpolation, the interpolation kernel size
can also be increased to meet the need of some applications. Lehmann[57] gives
some examples of larger kernel size.

Approximation theory stated that every continuous function on a closed interval
can be approximated uniformly to any prescribed accuracy by a polynomial. This
is not necessarily true for interpolation[68]. So polynomial kernels are often used
in approximation. Again, cubic polynomial kernels are prevalently used. A special
family of polynomial kernels, the splines, is particularly favored and explained in
the next section.

Another important parameter in kernel regression is the kernel bandwidth. Most
reconstruction methods use fixed bandwidth. Muller[73] proved that locally varying
bandwidth leads to a reduction in the leading term of the asymptotic expression
of the MSE. He also gave an expression for the optimal local bandwidth when
samples were taken in equidistance. This optimal bandwidth is determined by the
smoothness of the underlying function, the number of samples, the noise variance

and the kernel function itself.

2We call an approximation ” Lth-order approximation” if the approximation function space
reproduces polynomials of order L — 1.
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4.2 Spline Regression

Let (tp =)a < t; <ty < --- <ty < b(=tny1) be a subdivision of the interval (a, b)

by N distinct points. A spline function of order d is a function which

(1) in each open interval (¢;_,,¢;) fori =1,2,..., N+1, is a polynomial of degree<
(d-1)

(2) has (d — 2) continuous derivatives in the open interval (0, 1).

t;’s are called knots of the spline function. For each fixed set of knots, the class of
the spline functions defined above is a linear space of functions with (N + d) free
parameters. The B-spline basis for this linear space is formed by (/V+ d) normalized

B-splines
B—L(.T) = (ti+d - tz)[tz, T ,ti+d](t - :v)‘fl, 1= ]., ooy N + d (46)

where [t;,...,t;14)¢ denotes the d* order divided difference on the (d + 1) points
ti,...,tirq Of the function ¢. f. equals f if f > 0 and zero otherwise. The B-splines

defined in Eq. (4.6) have the following properties[2]:
(1) 0 < Bi(z) <1 for z € (t;,tira) and B;(z) = 0 otherwise;

(2) {Bl}fijl is linearly independent over the interval [t;;4-1,%4:41] for any [ > d—1
andany 1 <3< N+d-1

N4d

(3) Z Bi(z) =1for all z

(4) /01 BZ(IE)dCL': (tH_d—tz)/d, 1= 1,,N+d

These properties make B-splines very attractive in interpolation. Since they are
easy to construct, they have wide utilization in curve plotting. The book by Bartels

et al.[8] gives a thorough explanation of B-splines.
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Because of the smooth nature of splines, they are also often employed in function
approximation. When the knots are fixed, the weights of the splines are usually
determined by a least square error (LSE) estimator. Reinsch[90] proved that, for a
given set of points (x;,;), zo < 21 < -+ < Z,, cubic splines are the solution to the
problem

min / g"(z)%dx

9(x)€L?[z0,Zn] xo

“ (g(z:) — i)
1. 2 ) LS 4.7
’ Z ( Ay; ) - (4.7)

=0

where Ay; and S are given numbers. Since then, the m®™ derivative of the fitted
function has often been applied as the penalty in the LSE estimator. Assume the
measurement model as expressed in Eq. (4.1). The fitted spline can be expressed

as the minimizer of
n 1
w3 (gle) - w0 [ 0@ s (48)
i=1 0

The parameter )\ controls the amount of smoothing. To avoid incurring too much
smoothing in the approximation, Craven and Wahba|[25] proposed to use a general-
ized cross-validation estimate to determine A. Wahba also discussed the relationship
between spline smoothing and Bayesian estimation and derived confidence intervals
based on the posterior covariance function of the estimate[53][106).

If knots are not fixed, the space of splines is no longer a linear space of functions.
Determining both the knots location and the weights is a nonlinear least square
problem. Sometimes it is referred to as the full functional problem. Optimal solution
to such a problem requires the knowledge of the underlying function and complex
computation[2]. Various fast algorithms have been developed to reach suboptimal
solutions, such as knot insertion[61], knot selection[67], separating knot location

determination and LSE estimation[45], etc.
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Just as one-dimensional splines originate as the solution to Eq. (4.7), two-

dimensional splines are the functions that minimize the quantity

[[(3) 2 () + (52) oo 19

One family of two-dimensional splines for fitting a surface to scattered data is the

thin-plate spline. It is expressed as

g(z,y) = ao + ar +az + »_ wir} log(r?) (4.10)
=1

where r; = \/(z — ;)2 + (y — vi)?. The term U(r) = r?log(r?) satisfies the equation

@ *\
277 —
A% = ((9:1:2 + ayz) U (4.11)

and is called the fundamental solution of the biharmonic equation A2U = ([11].
4.3 Kriging

The kriging estimator is the best unbiased linear estimator. The estimated value at

a point zg is a linear combination of n surrounding data points
n
= wiy(z) (4.12)
=1
The weights w; are chosen as:

min Var(f(zo) — y(zo)]
s.t. E[f(zo) — y(z0)] =0 (4.13)

Since the kriging estimator is an unbiased estimator, the reconstruction MSE is the

kriging variance

Var[f(zo) — y(zo)] = Z Z w;w;R(z;, ;) + Var(y) — 2 sz (i, o) (4.14)

i=1 j=1
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where R(z;,z;) is the correlation between z; and z;.

Several types of kriging exist, depending on the assumption on the trend of the
underlying signal[26]: 1) simple kriging: the trend is constant and known; 2) ordi-
nary kriging: the trend is constant and unknown; 3) universal kriging: the trend
follows a linear model.

Kriging originates from the mining industry. Therefore, it is frequently used in
predicting spatial data not on regular grids. Its origin also determines that it is most
suitable for making estimation at scattered points. When the number of points to
be estimated is large, the computational complexity will be very high. Kerwin et
al.[50] extended the technique for space-time function estimation by updating the
correlation model of the data in a way similar to the Kalman filter.

Kriging and spline interpolation are closely related. As pointed out in [66], spline
interpolation is equivalent to kriging with fixed covariance and fixed degree of poly-
nomial trend. Dubrule[31] compared the two interpolation methods and concluded
that kriging is more accurate than the spline, although the latter is generally less

intensive in computation.

4.4 Error Analysis

Shannon’s sampling theory tells us that there is no reconstruction error if the samples
are taken above the Nyquist rate and the reconstruction is done through the sinc
function. For sampling rates lower than the Nyquist rate or in approximation, we
evaluate sampling and reconstruction methods through the mean reconstruction
error. With an L*-order approximation, the bound for the minimum reachable

error in reconstructing a function f € L? from uniform samples is[100]
min||f — f|l < CRH|f P, (415)

where h is the sampling step and C is a constant. Unser et al.[104] investigated

this general bound in several specific problems. In particular, they noted that
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when samples are sparse (below the Nyquist rate), the least squares approximation
performs as well as the corresponding interpolator with twice the order.

For random signals, the error can be analyzed through the correlation function
of the signals. Specifically, let ®(z) be the Fourier transform of the correlation
function and ws; be the sampling frequency. The mean reconstruction error for a

d-dimensional signal can be expressed as[84]

Blf6) - f0 = s [ 000 1= sk —Jaw (w1s)

The error convergence rate with the sample size n is another important criterion
for evaluating sampling and regression methods. Under appropriate regularity condi-
tions, the optimal convergence rate of an estimator for a function of a d-dimensional
variable f € L? is r = 2p/(2p + d). That is, ||f — fﬂq decreases at a rate of n=" for
0 < g < co. If ¢ = 00, the optimal rate is (n™! logn)[99].

4.5 Conclusion

In this chapter, several reconstruction techniques are reviewed. A signal is usually
reconstructed through the convolution of samples and a kernel function. The basic
kernels are polynomials. Reconstruction with this family of kernels is reviewed in
general. An important member of this kernel family, the set of splines, is given fur-
ther attention. In linear regression, we focus on the best unbiased linear estimator,
i.e. the kriging estimator. Reconstruction errors are briefly discussed at the end.

The splines and the kriging estimator will be used in our sampling algorithms.
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CHAPTER 5

An Adaptive Sampling Algorithm in Sensor

Networks

In traditional sampling problems in the signal processing area, samples are taken on
a known signal. The purpose of sampling is to discretize a signal for transmission.
In sensor networks, this process is reversed. There is no access to the signal before
sensors are deployed in the field. Because a dense sampling of the signal is often
prohibitively expensive, we need to learn the signal while samples are taken. This
process brings about one major disadvantage: we cannot prefilter the signal. We
have noted in Chapter 3 that out-of-band signals generate aliasing without prefilter-
ing. To alleviate the aliasing problem, we employ a nonuniform sampling approach
and try to add denser samples in the high-variation (high-frequency) regions. But
when no or only partial knowledge about the signal is available, we cannot deter-
mine in advance where such regions are. Adaptive algorithms are especially helpful
under this condition.

Although adaptive sampling has the same asymptotic behavior as random sam-
pling according to the compressed sensing theory[30], adaptive sampling still exhibits
improvement over random sampling and uniform sampling in term of MSE in sparse
sampling scenarios. Many adaptive algorithms have proved this improvement as re-
viewed in Chapter 3. In this dissertation, a new adaptive algorithm is designed.
This algorithm has also been briefly introduced in Chapter 3. The details of this
algorithm will be explained here.

In this chapter, we will assume a similar measurement model as in Eq. (4.1),
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except that we replace z; € [0,1] by s € R? to emphasize that we concentrate on a

two dimensional field:
y(s) = f(s) +e(s), s€A (5.1)

where € is a Gaussian noise with variance 2. A is a subset of R?. The reconstructed
signal is represented by f. When the noise is small, bias is the dominant term in the
MSE. We will assume this is the case and focus only on the bias of the reconstruction
error. Let D(s) = |f(s) — f(s)|? represent the reconstruction distortion at a point
S. Dper and Dyye represent maximum distortion among all points and average
distortion over all points respectively. The area of A is denoted by |A|. The design

objective is

”f - f|l2 < Dave ) IA|
If = flloo < Dinaz (5.2)

In sampling of the incident sunlight field, the application we focus on, even under
mild wind conditions, the variation in the field is too fast to adapt to. So we only
try to reconstruct the average field over a short period of time. We assume the
field is static over a short period of time and do not incorporate time variation
in the sampling design. We also assume the samples are taken by mobile sensors
with an infrastructure, such as the Network InfoMechanical Systems (NIMS)[46], so
that the locations of the sensors are not restricted to predefined grid points and are
accurately known.

This chapter is organized in the following way. An overview is given in section
5.1. Key function blocks of the algorithm are elaborated in the next few sections.
Simulation results of this algorithm are given in section 5.5 and are compared with
some other algorithms. Section 5.6 concludes this chapter.

Some important symbols used in this chapter are listed below:
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S: a set of points

Sk the set of all sampling points up to iteration k

V(S): Voronoi tessellation of S

VE: the Voronoi cell surrounding a sampling point ¢ at iteration &
Pk the probability that the fidelity constraint is not satisfied in V*

Ut average fidelity constraint in a Voronoi cell

5.1 Algorithm Overview

Some of the adaptive sampling algorithms introduced in Chapter 3 have limitations
that make them not suitable for our field. In particular, the algorithm in [38] is
computationally intensive. It assumes that the field exhibits high spatial correlation
to limit the number of samples. This assumption does not hold in our applications.
The algorithm in [80] originates from image compression applications. Just like
normal image compression techniques which begin with a panorama of the field, the
algorithm exhibits good performance only in relatively dense sampling scenarios.
The constraint on the number of samples in our application limited the usefulness
of this algorithm.

Our algorithm follows a similar train of thoughts as [33] and [72] in that sampling
density is proportionate to the roughness of a field. But we relax the smoothness
assumption. Although we still use a function of the second derivative of the field
as a criterion for selecting sampling points, we replace the second derivative by a
large constant in regions where the field is not differentiable. In this way, we avoid
clustering all samples in any such region. Thereby our method is extended to be
applicable in reconstructing a field with discontinuities as used in [80]. Besides,
using a Maximum A Posterior (MAP) sample selection criterion also takes into

account the reconstruction fidelity constraint. Following the roughness of the field
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instead of the estimated reconstruction error alone as done in [89] not only reduces
the influence of measurement errors, but also improves the efficiency in sampling
inhomogeneous fields.

The block diagram of our algorithm is depicted in Fig. 5.1. The algorithm
is initiated with a small number of samples selected based on the ”coffee house”
designing pattern[74] and a field is reconstructed from these samples. Then the
algorithm runs iteratively. A pool of sampling candidates, which closely follow the
current sampling pattern, is maintained and updated after each set of samples are
taken. At the beginning of each iteration, a new set of sampling sites are selected
from the pool based on the MAP criterion. After samples are taken, the field is
reconstructed through thin plate splines. The probability that the design objective
in Eq. (5.2) has not been reached is evaluated. A maximum number of samples can
be fixed in advance. The iterations stop after the design objective is achieved or the

maximum number of samples are acquired, whichever happens first.

Select
" Collect o] Reconstruct Update | _
Candidate Pool Qata = samples [ >|  Field > Probabilty [ ;
/ 2
Statistical
No— Stop? -t Model

Final
Reconstructed
Fietd

Figure 5.1: The block diagram of the adaptive sampling algorithm

5.2 Candidate Pool

Without enough knowledge of the whole field, we cannot design the globally opti-

mal sampling points. But results from optimal design still provide useful insight.
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Specifically, the mazimin distance design in [43] is optimal in the sense of maxi-
mizing the differential information. This design maximizes the minimum distance
between sampling points. So the candidates for new sampling sites are chosen to
be the points that are farthest away from all existing samples. These sites are the
centers of the triangles formed by existing samples. A tool for locating these centers
is Delaunay triangulation.

A Delaunay triangulation for a set S of points in a plane is a triangulation
DT(S) such that no point in S is inside the circumcircle of any triangle in DT(S)[92].
Delaunay triangulation maximizes the minimum angle of all the angles of all triangles
in DT(S). Edges of the triangles in the Delaunay triangulation are called Delaunay
edges. For each Delaunay edge, there exists a circle that passes through its vertices
and contains no other points in S. Delaunay triangulation can be obtained by
finding line segments that satisfy such a condition. The closest pair of points are
the vertices of Delaunay edges. Hence Delaunay triangulation locates the minimum
distance between samples. An example of the Delaunay triangulation is illustrated
in Fig. 5.2. Readers can refer to [92] for further details on Delaunay triangulation.

In our algorithm, Delaunay triangulation is performed on the existing samples.
The centers of the resulting Delaunay triangles are the candidates for the next
round of sampling, following the principle of the mazimin distance design. It is
possible that four or more points are on a circle such that the centers of multiple
triangles coincide. A minor problem with this choice is that some samples may fall
outside the boundary of the field. A correction to this problem is to use the centroid
instead of the center of the triangles as the candidates when this problem happens.
This correction violates the maximin design principle a little bit. But since the
problem usually happens in the triangles near the boundary, only a small portion
of candidates in the whole set is affected. These candidates will not influence the
whole design a lot.

Let S* denote the set of samples at iteration k and n, = |S*| be the number
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of points in S*. One useful property of Delaunay triangulation is that the total
number of Delaunay triangles in DT(S¥) is no more than (2n; —5). This means the
number of candidates in the pool increases only linearly with the number of existing
samples. There exists a fast algorithm for Delaunay triangulation with running time
O(ng logng). The running time can be further shortened by incremental schemes,
which only update the pool in the neighborhood of new sampling sites. Theréfore,
computational complexity will not be a big concern in locating the candidates.
Another advantage of choosing candidates in this way is that the density of
potential sites follows that of the existing samples. This means the density follows
the local heterogeneity of the field. As proved by Muller-Gronbach et al.[72], a
design following local heterogeneity is an optimal design under smooth conditions.
Even for a field with abrupt boundaries, this property is also desirable since it helps

locate the boundaries.

5.3 Sample Selection

5.3.1 The Probability of Meeting Sampling Objective

Before taking a new set of samples, we need to determine whether the fidelity con-
straint in Eq. (5.2) has been met. When the true field is not available, it is always a
challenge to determine how well the fitted curve matches the true field. This is par-
ticularly true when we also need to determine the necessary number of samples. To
avoid being overconfident on the fitted curve, we employ a probabilistic approach.
The probability is defined on the Voronoi cells of the existing samples. Voronoi
cells are formed through Voronoi tessellation. A Voronoi tessellation V(S) of a set
of points S is the dual graph of a Delaunay triangulation DT(S). It is a kind of
decomposition of a metric space determined by distances to the points in S. If
the Voronoi regions of two points in S are edge-adjacent, they are connected by

a Delaunay edge. Moreover, the centers of Delaunay triangles are the vertices of
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Voronoi cells. An example of the Voronoi tessellation of a set of points is depicted

in Fig. 5.2.

\

R —

\

T
~{ P

(a) Delaunay cells (b) Voronoi cells

Figure 5.2: Delaunay triangulation and Voronoi tessellation

Let V(S*) be the the Voronoi tessellation of the samples at iteration k and Vf*
denote the Voronoi cell corresponding to the i* sampling site. The same fidelity
constraint defined in Eq. (5.2) is imposed on all Voronoi cells. When the fidelity
constraint is met in each cell, it is also satisfied in the whole field. But the reverse
is not true. This means that requiring the fidelity constraint to be met in each
Voronoi cell is a more stringent condition. Hence, we can loosen the constraint on
each Voronoi cell a little bit by choosing a value v > D ..

Even after we shrank our fidelity test region from the whole area to each Voronoi
cell, we still cannot determine whether the constraint is satisfied within the cell
because there is only one sample within each cell. Therefore we define P} the

probability that the fidelity constraint is not met in the cell VX.

5.3.2 MAP Sample Selection

To achieve the sampling objective with the minimum number of samples, we should

first take samples at the site where the probability that the fidelity constraint is not
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met is largest. Hence, we follow the Maximum A Posterior (MAP) criterion when
sampling sites are selected from the candidates.

Each new sample generates a new Voronoi cell as well as causing some old cells to
shrink. Recall that a candidate is the center (or centroid) of a Delaunay triangle as
well as the common vertex of the Voronoi cells surrounding it. Denoting a candidate
point for the k+1 iteration by m and the set of vertices of its corresponding Delaunay
triangle by O,,, we can see clearly from Fig. 5.3 that this new Voronoi cell is mainly
composed of portions of the ij’s, j € Op. Thus the probability I-:’,’;“ that the
fidelity constraint is not satisfied in the cell V¥*! can be estimated by a weighted
sum of Pf,j € Op:

PEY =" Pf (5.3)
JEOm

Intuitively, the weight p; should be proportional to the area of the intersection
between V5! and V. But to simplify the computation, we approximate the weight
by the quantity

My X (djl + djz)/?"]', and Z =1 (54)
Jj€Om

in which d;1,d;, and 7; are defined as in Fig. 5.4. Note that r; is the same for all
p; unless the centroid instead of the center of a Delaunay triangle is used.

The quantity 15,’,‘;” of all candidates is computed and compared. The candidates
with the largest probabilities are chosen to be the sampling sites in the next iteration.
It is not necessary that we only take one sample at each iteration. Hence, this set
can contain multiple sampling sites. The whole set of samples is then updated by

including new sampling sites.

5.3.3 Probability Update

Once samples are collected and Voronoi tessellation is performed on the updated set

of samples, we should update the probability P* in all Voronoi cells to Pf*!. The
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Figure 5.3: The boundary of the Voronoi cells before a new sample is added is shown
in solid lines. After a sample is added, a new cell is generated, whose boundary is
shown in dashed lines. Outside this cell, the old boundaries remain unchanged.

(a) A normal Delaunay triangle (b) Two triagles coincide on a circle

Figure 5.4: Variable definition for determining weights. Dashed lines are boundaries
of Delaunay triangles and solid lines are boundaries of Voronoi cells.
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estimated error at a sampling point m, being denoted by

A= f(xm; ym) - f(:E?m ym)

is tested against the fidelity constraint. The way the probabilities are updated
depends on the testing result. If A > v, we know that the fidelity constraint is more
likely to be unsatisfied in the Voronoi cell containing m and its neighbors. Their
probabilities of unsatisfying the fidelity constraint should be increased. Otherwise,
they should be decreased. There are three different scenarios. Under each scenario,
PF is updated differently (Readers can refer to Fig. 5.3 for an example of each type
of cell):

1. V¥+1 contains a new sampling point m

‘ 1 ifA> Dmaz
P:{H = aZjEOm :U’J'ij ifv<A < Dmam (55)

B seon miPE A<
2. ij“, j € O,, is one of the cells surrounding m

ui pko
PR _ aJPj ifA>v
ARRIES

BHPE A <u

3. V; is far away from m
The testing result at m does not provide much knowledge on V; and its prob-

ability of not satisfying the constraint should remain unchanged:

In these equations, @ > 1 and 8 < 1 are two constants set according to v.
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5.3.4 Incorporating Field Models

In Chapter 2, we emphasized the importance of a field model. A field model provides
us some prior knowledge about the field to be sampled. It usually helps improve
the efficiency of an algorithm. Although we often assume that the field is unknown
when we design an adaptive algorithm, if a certain field model does exist, it will
be helpful to incorporate this field model in the algorithm. As analyzed in Chapter
2, the incident light field is a heterogeneous field. In different subfields, spatial
correlation is different. Algorithms will be more efficient if we account for this
heterogeneity.

Since the field heterogeneity directly influences the sampling density, it is most
convenient to absorb a field model in the estimated probability PX*1 of candidates.

Hence, we apply a compensating factor h; to Eq. (5.3) and define
Cp = hy PEF! (5.8)

We then select the candidates with largest C,, instead of largest P,ﬁ"‘l as the new
sampling sites.

There are several statistical models we can consider. The most direct one is the
correlation model. But to use this model requires knowledge on what subfield a
sample is in. This knowledge cannot be obtained from one sample value.

The second candidate model is the field roughness, which is typically measured
by the second derivative of the field. Considering that the size of a Voronoi cell is an
indication of the sampling density in the area around it, we want to combine the two
to avoid following the roughness of the field blindly. The following compensation

factor is applied:

- 2 - 2 a 2
o azf(xm,ym) azf(xmv ym) 82f($m’ym)
ho = (——axz ) +2 (————ax By ) + (————ay2 ) An  (5.9)

where A,, is the size of the Voronoi cell V1. The roughness of the field is readily
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available when the thin plate spline is the reconstruction kernel, as shown in the
next section.

The third model we consider is the field variation model, which characterizes
the uncertainty in the gaps between sampling points. This model measures the
difference in value between two points d units away from each other. Let p, ¢ be two
points and the Euclidean distance between the two points be d. The field variation

over distance is calculated as

Y(d) = E[f(xp, Yp) — f(24, yq)]2 ) \/(xp — 22+ (Yp — Yg)? =d (5.10)

Since the field is heterogeneous, the field variation is not uniform over the whole
field. Asshown in Chapter 2, the field exhibits fast variation in penumbras and small
variation in umbras and sunflecks. Due to this characteristic, the field variation
model is different in different areas. Since we cannot determine what area a point
is in, we construct the model based on the value at a point p, assuming sunflecks
are in general small. If f(z,,y,) is above a threshold I, it is more likely that the
variation around p is high. Otherwise, it is low. Thus, two models are extracted
from experiment data and are shown in Fig. 5.5. In both models, v(d) is fitted with
a rational quadratic model:
a;d* + b;d 1 if fz,y) > I

vi(d, f(z,y)) = BT 1= . (5.11)
2 otherwise

These models are applied in the compensation factor as

B = #i%5(dmgs £(@5,95)), dms = \/(xm — 2;)2 4 (ym — y;)? (5.12)

JEOR,
where m is a candidate point. Other parameters have the same definition as in Eq.
(5.3).
Since the latter two models are rough and do not correctly characterize the field

all the time, both models are used in our algorithm so that one model may still
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Figure 5.5: Sunlight field variation model

work should the other model fail. Hence, in the algorithm, two sets of samples are
selected in each iteration: one is compensated by the field roughness model and the

other by the field variation model.

5.4 Field Reconstruction

The field is reconstructed with the thin plate spline. The thin plate spline(TPS)
has been briefly introduced in Chapter 4. Here, we will focus on some aspects that
are particularly useful in our algorithm.

The kernel function of the thin plate spline is

9(z,y) = ap + a1z + axy + Zwirf log(r?) (5.13)

=1

where r; = \/(z — 2;)? + (y — ¥;)®. This function, as a solution to the biharmonic

equation (4.11), minimizes the bending energy defined as

82 2 82 2 82 2
I(g):// <-a?§> +2(6xgy) + (-a—y§> dzdy (5.14)
R2

Hence, g(z,y) is the the physical shape a weightless elastic plate would take when
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point forces are applied on it. This physical interpretation gives rise to some useful

properties:

e The bending energy is non-decreasing over the number of point sources ap-
plied. Therefore, in our algorithm, the bending energy is non-decreasing over

iterations.

e The thin plate spline converges to the true field. The reconstruction error is
bounded by the difference in the bending energy of the true field and that of
the reconstructed field[87]:

1£(@,9) — F(z,9)| < BII(F) = I(F))(10g3)/(247) (5.15)

where h is the longest side of the triangle formed by interpolation points that

encircle (z,y).

Since the bending energy indicates the roughness of the field, Eq. (5.15)
suggests that we should sample more densely in the area that is not smooth,
as being done in our algorithm. This matches our intuition and also provides

a theoretical basis for the effectiveness of our algorithm.

If the measurement noise can not be ignored, the smoothing TPS should be used
instead of the interpolation TPS. The weight for a; in Eq. (5.13) is different. But
the property of the spline does not change much. Therefore our algorithm remains
the same.

If there is no field model available, the algorithm follows the roughness of the
field. One problem is that it tends to clugter all samples in a small region when there
is a discontinuity in the field. To overcome this problem, a small modification is
made in our algorithm. We set an upper bound on the second derivative of the field.
In places where the absolute value of the numerically computed second derivative of
the reconstructed field is larger than the upper bound, the second derivative is set

to equal the upper bound. The distance between samples is also properly chosen to
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avoid too much clustering. A contour detection algorithm such as Snakes[49] can
also be applied to track the edges in the field based on the estimated roughness. If
such a step is executed, the field can be divided into two separate regions. Each

region is then reconstructed separately to further improve the result.

5.5 Simulation

5.5.1 Algorithm Implementation

At the initialization, a number of sampling sites are selected based on the ”coffee
house” design. The probabilities of not satisfying the fidelity constraint P} are set
to equal values. All samples are collected in a set S.

During each iteration, the number of chosen candidates can be larger than one.
This number is represented by N, and N, for candidates compensated by field
variation model and field roughness model respectively. At the beginning, the field
roughness model is very inaccurate due to lack of samples. At this phase, we rely
more on the field variation model. At later iterations, the field is estimated more
and more accurately and the field roughness model improves over time. So later on,
more confidence is put on field roughness model. Therefore, N, and N, vary over
the iterations to reflect this change.

At each iteration, whenever a new candidate is chosen, C; is updated to avoid
picking two candidates that are too close to each other.

The algorithm implementation is summarized below:
1. Select initial set of n sampling points. k=1. Candidate pool S, = @.

2. Collect samples and reconstruct the field with the thin plate spline. Set
Pt i€ 8.

(3

3. Determine the new set of sampling candidates SF. Update the candidate pool

S.=S.U Sk,
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4. Compute P¥+1 m € S, according to Eq. (5.3).

5. Compute the compensation factor A} based on the field variation model in
Eq. (5.12). Let C¥, = b Pk+1,
(a) Pick the candidate m, with largest C},. N, = N, — 1.

(b) S =S.—m,. S=S+m, n=n+1. Update C by treating m, as a
sampled site. If NV, > 0, go back to ba.

6. Compute the compensation factor h] based on the field variation model in

Eq. (5.9). Let C7, = hT PE+L.

(a) Pick the candidate m, with largest C,. N, = N, — 1.

(b) Se =S.—m,. S=S+m,. n=n+1. Update C", by treating m, as a
sampled site. If NV, > 0 go back to 6a.

7. Collect samples and reconstruct the field.
8. Update the probability P*™ i € S according to Eq. (5.5)-(5.7).

9. If PF*'Vi € S is below a certain threshold or if n is larger than a given

number, exit. Otherwise, £ = k£ + 1; go back to step 3.
Note that h?, and h], are computed only if there is a model available. If no
model is available, C}, = C] = P£+1. Step 5 and step 6 merges into one step.

5.5.2 Simulation Results

Our sampling algorithm was tested on a variety of fields. For comparison, results
from uniform sampling and a modification of the adaptive algorithm given in [89]
are also presented. The adaptive algorithm in [89)] is an iterative stratified sampling
algorithm. Our modification to it is to reduce the number of samples added in

each iteration without deteriorating its effectiveness a lot so that it is comparable

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



with our algorithm. We call this modified algorithm the Q-method. Its basic idea
is: 1) divide the field into four cells and take a sample in the center of each cell;
2) reconstruct the field and locate the cell with the biggest reconstruction error;
3) remove the sample in the located cell, further divide it into four cells and take
samples in each of the new cells. Steps (2) and (3) are repeated until the fidelity
constraint is met or the preallocated number of samples is reached. The way new

sampling sites are added in the Q-method is illustrated in Fig. 5.6.

(a) (b)

Figure 5.6: Adding new sampling sites in the Q-Method (a) Original cells. The dots
represents sampling sites and the shaded area represents the cell with the largest
estimation error. (b) Cells and sampling cites after new sites are added.

Our algorithm was first tested on a smooth field. The purpose of this test is to
complete the proof that our algorithm works on both homogeneous and heteroge-
neous fields. Our algorithm samples such a field with almost uniform density as we
have expected.

The next test was done on a real incident sunlight field shown in Fig. 5.7,
which is inhomogeneous and varies quickly in some regions. The reconstruction
results shown in Fig. 5.8 demonstrate that our algorithm largely outperforms the
uniformly sampling and is also better than the other adaptive algorithm. The plots
of the MSE and bending energy vs. the number of samples in Fig. 5.9 and Fig.
5.10 further prove that our algorithm converges to the truth field faster than the
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other two algorithms. To better understand our algorithm, the sampling patterns of
the three algorithms are plotted in Fig. 5.11. From this figure, we can see that our
algorithm closely follows the heterogeneity of the field and samples are more densely
deployed in the fast varying region. The other adaptive algorithm also puts more
samples in the high spatial frequency region. But it tends to overlook the regions

with low spatial frequency.

Figure 5.7: Ground truth of the light field

The most challenging test is reconstructing a field with discontinuities. We per-
formed this test on a simulated field, which is composed of two flat regions with a big
jump between the two regions, as shown in Fig. 5.12. The modification mentioned
at the end of section 5.4 helps locate the discontinuities and avoid clustering. Fig.
5.13 presents the reconstruction results. Since our algorithm follows the roughness
of the field closely, it also outperforms the Q-Method and the uniform sampling in
such a field.

5.6 Conclusion

In this chapter, a newly designed adaptive sampling algorithm for reconstructing a
static (or time-average of a) field is elaborated. This algorithm iteratively selects new

sampling points where a predefined fidelity constraint is most probably not satisfied
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(a) Adaptive sampling algorithm. Number of samples=88. MSE=0.0717
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(c) Q-Method. Number of samples=87. MSE=0.0881

Figure 5.8: Reconstruction result for real sunlight field.
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Figure 5.11: The pattern of the sampling sites for the light field
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Figure 5.12: Ground truth of the piecewise constant field

based on previous reconstructions. Simulation results prove the effectiveness of this
algorithm.

In designing the algorithm, a mobile sensor is assumed. The employment of a
mobile sensor removes the constraints on the possible sampling sites. Hence, the
algorithm can always choose the sites that maximize the utilization function. Since
no cost associated with the mobile sensor is considered, routing schemes for moving
the mobile sensor are not discussed here.

In the next chapter, another sampling algorithm, the multiscale sensing, is de-
scribed. In that algorithm, the sampling density is also adapted to the field variation.
The difference from the adaptive sampling algorithm is that it gets this information
from a different type of sensor. The algorithm’s efficiency is greatly increased be-
cause of the second sensor type, which also provides field models at the sensing time
without relying on prior information. However, its dependence on the second sensor
type also limits its application to the problems where multiple types of sensors are
able to measure the field. This limitation does not exist in the adaptive sampling

algorithm.
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Figure 5.13: Reconstruction result for the piecewise constant field.
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‘CHAPTER 6
Multiscale Sensing

6.1 Introduction

With the advancement of sensor technology, sensors for observing all kinds of phe-
nomena have been developed. For a certain phenomenon, there may exist several
different types of sensors. These sensors possess different capabilities and their costs
may vary over a wide range. Hence, they are usually deployed in different situations.
As more and more sensors are deployed in the field, fusing information from sensors
becomes increasingly important. Multisensor data fusion thus becomes a rapidly
evolving research area.

- Multisensor fusion refers to the combination of data from multiple sensors to
provide more reliable and accurate information. Sensor data fusion can happen at

different levels[60]:

e signal-level fusion: fusion at this level is popular in real-time applications

where signals are directly combined.

e Pixel-level fusion: this is similar to the signal-level fusion. It is regularly
used in image processing to improve the performance of image processing

techniques, such as image enhancement, image segmentation, etc.

e Feature-level fusion: features are extracted and form a feature space from each
set of data. Feature spaces from different sets of data are then combined into

one larger feature space.
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e Symbol-level fusion: data are abstracted to the symbol level. Symbols are

then combined.

Sometimes fusion happens at a single level, like the fusion in [15] where fea-
tures (segments and landmarks) are extracted from the data and combined to cross-
validate the data and enhance map accuracy. More often, data are fused at several
different levels. For example, in [112], features (activity levels) are first fused to
form a new feature space. Based on this new feature space, data are combined to
finish the fusion process.

In recent years, more and more studies confirm that fusing redundant and com-
plementary data from multiple sensors provides advantages over single sensor data
processing. Various algorithms have been developed to fuse the data. These algo-
rithms can be broadly classified into four categories[60], which are loosely correlated

with the four fusion levels:

e Estimation methods
These methods are suitable for real-time processing of low-level data and are
successfully applied in signal-level data fusion. Popular algorithms include
weighted average, least squares and Kalman filtering. Among these algo-
rithms, Kalman filtering is the most preferred one because it reaches optimal
performance in a statistical sense while maintaining the same level of compu-
tational complexity as other algorithms. Data from multiple sensors can be
either grouped and updated together or updated sequentially[32]. Because of
the linear nature of the Kalman filter, sometimes the extended Kalman filter

has to be resorted to for handling nonlinear models.

e Classification methods
A feature space extracted from data can be partitioned into distinct regions,
each representing an identity class. Many classification algorithms exist, in-

cluding parametric template classification, cluster analysis, learning vector
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quantization, Kohonen feature map, etc. When the final objective is beyond
classification, data are assigned to one of the regions based on similarity cri-
teria before they are further processed. Classification methods are commonly
used at the pixel and feature level data fusion, such as the data fusion in

remote sensing[98].

e Inference methods
A higher level of information than features can be extracted from the data.
Generally this information is expressed as the probability distribution. Such
extraction allows information to be combined according to the rules of the
probability theory. Fusion methods at this level include Bayesian inference,
Dempster-Shafer method and generalized evidence processing. Among these
methods, Bayesian inference is the basis while the other two methods are the

extensions of the Bayesian method.

The Bayesian method combines likelihood ratios obtained from the data with
prior information on the parameters to make decisions. Depending on the
confidence we have on prior information, we can set the prior distribution to
be concentrated if we want to put more emphasis on the prior information, or
flat if we have little confidence. The more observations that are available, the
more that decisions are dependent on them. Therefore the Bayesian method

is essentially objective.

In sensor networks, the Bayesian method is prevalently applied in detection
and tracking problems, such as in [24][113]. Since the Bayesian update proce-

dure can be interpreted as[62]
posterior information = prior information + observation information

the Bayesian method is very intuitive from an information-theoretic point of
view. This observation leads to the application of information utility in the

data fusion process{113].
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e Artificial intelligence methods
High-level inference requires high level intelligence and a learning process. It
may also involve human reasoning. It is an advanced version of the other three
methods. Expert systems, neural networks and fuzzy logic are popular forms

of artificial intelligence.

A fifth fusion method that is related but does not strictly belong to the four
categories is a cuing type of sensory processing. In this situation, one sensor guide
the operation of other sensors. It is typically used for fusing information from
different types of sensor. Usually robotic sensors are involved so that they can react
to the guidance, as done in [96].

Multiscale sensing refers to the process when sensory data are obtained and
processed at different levels. There are two possible scenarios: 1) data come from
only one type of sensors; 2) data come from at least two different types of sensors. We
denominate the first scenario as multi-resolution analysis and the second scenario as
multi-modal analysis. These two scenarios often convolve together. Data of different
resolution usually comes from different types of sensors, while different types of
sensors can hardly provide data at exactly the same resolution. Hence, as long as
the data from different sensors are of the same nature and can be directly fused at
the signal or pixel level, we will term such fusion as multi-resolution analysis. If
higher level data fusion is involved, the process will be named multi-modal analysis.

Wavelet decomposition is a very popular method for multi-resolution analysis.
Because it is local in both the frequency domain and the time domain, it has been
successfully applied in many signal and image processing problems and attracted a
lot of attention. Kolaczyk et al. even applied the concept in likelihood analysis[54].

Similar to the Wavelet method, Chou et al.[18] also generated a pyramid-like
representation of the signals from sensors. The signal processing in their approach

involves a fine-to-coarse filtering sweep followed by a coarse-to-fine smoothing sweep.
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The fine-to-coarse sweep corresponds to a generalization of the Kalman filter to mul-
tiscale models on trees. It consists of a three-step recursion of a measurement up-
date, two parallel fine-to-coarse predictions and fusion of these predicted estimates.
The coarse-to-fine smoothing sweep has the same form as a standard Rauch-Tung-
Striebel (RTS) algorithm, which involves a forward Kalman filtering sweep followed
by a backward sweep to compute the smooth estimate. This multiscale framework
not only achieves large computational savings, especially in 2-D data processing, but
also allows the fusion of multi-resolution data. The application of this algorithm
in {34] exhibits a substantial reduction in computational complexity in estimating
ocean surface data from a satellite altimeter.

The advantage of fusing data at multiresolution enabled by this framework
is presented in [29]. In that study, the multiscale framework is applied to air-
borne microwave radiometer data to estimate the snow-water-equivalent distribu-
tion. Processing the data in the multiscale framework makes it compatible with in
situ measurement for evaluation and variation determination. Spaceborne Special
Sensor Microwave/Imager data is also processed through the multiscale framework
and is used to aid the interpretation of the microwave data.

The multiscale framework can also be applied in multi-modal analysis, as long as
data of different natures are transformed into a common set of parameters, as done
in [97], where interferometric radar and laser altimeter data are fused to estimate
surface topology and vegetation height. Because of the underlying Kalman formula-
tion in the multiscale framework, it can accommodate irregularly spaced and sparse
observations. This feature is also exploited in [97]. But the linearity of the Kalman
filter also brings a limitation to the framework, which necessitate the decoupling of
nonlinearity of the model from the multiscale estimation, an extra step in the data
processing.

Instead of partitioning data into different scales, the multiscale concept can also

be applied to the formulation of data processing. Clark[20], in his Hierarchical
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Bayesian (HB) structure, represented the processing in multiple levels: data, process,
parameter and possibly latent variant and/or hyperparameters. The level partition
is realized through the decomposition of the probability density function. It is
similar to the work in [54] in this sense.

The usefulness of multiscale sensing prompt us to apply it to our sunlight field
estimation problem. Due to the lack of an existing field model suitable for the
Kalman filter, it is difficult to apply the multiscale framework reviewed in this
section directly. Instead, we developed a new scheme for solving our problem, which

is explained in the next few sections.

6.2 Multiscale Formulation of Sunlight Field Estimation

During photosynthesis, plants use energy in the region of the electromagnetic spec-
trum from 400-700 nm. The radiation in this range is referred to as Photosynthet-
ically Active Radiation (PAR). Biologists and environmental scientists usually use
special PAR sensors to measure this radiation. The spectral response of a popu-
lar PAR sensor LI-COR LI-90 is shown in Fig. 6.1. Since it is specially designed
for measuring PAR, PAR sensors are highly sensitive to this radiation and provide

accurate measurements under natural light environments.
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Figure 6.1: The spectral response of LI-90 PAR sensor
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The spectrum of PAR falls in the range of the observable light. Hence, it can
also be measured with a second type of light sensor: a camera. Unlike the PAR sen-
sors which measure the light intensity one point at a time, the camera can measure
the light intensity over many points simultaneously. This capability is an impor-
tant complement to the PAR sensors in sampling and reconstructing a field with
high spatial and temporal frequency. With PAR sensors alone, the reconstruction
of such a field with high fidelity requires a large amount of PAR sensors, which is
prohibitively expensive. But shortcomings of the camera also limit its usage as a
light sensor by itself. The camera is not specially designed for measuring PAR. Thus
its response is not flat within the range of the PAR’s spectrum, as illustrated by a
typical camera’s spectral response in Fig. 6.2. Besides, the camera’s typical char-
acteristic curve shown in Fig. 6.5 exhibits linear response only over a very limited
intensity range. While intensity can vary ten-folds between sunflecks and umbras,
both may end up in the nonlinear response range of the camera. Most importantly,
if the camera is placed at the ground level and faces up to the canopy, it behaves
just like a PAR sensor with less accuracy. To explore its capability of measuring the
light intensity at ground level over a large area, the camera needs to face down from
above. In this way, it measures the reflected light intensity instead of incident light
intensity. The ground reflectivity would strongly affect the measurement results,
rendering the incident light measurement completely unreliable.

Although either type of sensor, the PAR sensor or the camera, can hardly ful-
fil the requirement of reconstructing the incident light field with high fidelity by
itself, the combination of the two may achieve the goal, since their data are good
complements to each other. The major challenge is finding an effective data fusion
approach to combine the two data sets.

Even though both sensors measure the light intensity, their data are of different
natures. The camera measures the reflected light while the PAR sensor measures

the incident light. This rules out the possibility of fusing data at the signal or pixel
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Figure 6.2: Typical camera spectral response

level. A higher level of data fusion is necessary.

The camera provides measurements over a large area with high resolution. These
measurements give an overview of the field and are useful in obtaining global infor-
mation. From these measurements, features such as field partition and field models
can be obtained. Hence, feature level data fusion is a proper choice. Based on
these features, various sampling schemes suitable for each segment of the field, such
as uniform sampling or random sampling, can be applied to get local information
through the PAR sensors. With the assistance of the field models extracted from
the global information, the whole field can be reconstructed from the PAR data.

The remainder of this chapter is organized as follows. The processing of the
camera data involves a lot of image processing techniques. These techniques are
discussed in the next section. In section 6.4, model fitting and selection process
is explained in detail. The following section elaborates on the sampling and re-
construction process adopted in our multiscale sensing scheme. The experimental

results in this section demonstrate the effectiveness of the whole scheme.
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6.3 Image Processing

The camera data fulfill two tasks: field partition and field model extraction. Through
field partition, ground reflectivity can be classified and modelled. As the types of
ground reflectivity in an area are very limited, a model library is setup to collect
all the models. After enough training, most of the ground reflectivity types in the
neighborhood of the studied area would be covered. The biases in the camera data
resulting from ground reflectivity can then be removed so that the camera data can
be used in estimating the incident light models.

The field partition task is implemented through image segmentation techniques.
The objective of general image segmentation is to partition an image into subregions
that are homogeneous with respect to color and texture variation. These subregions
are considered as objects, each following a type of intensity distribution, which are
known as features of the image. The intensity distribution of the whole image is a

mixture of the distributions of these objects.

6.3.1 Existing Segmentation Methods

Due to its complexity, image segmentation is still an active research area. There
exist many segmentation techniques. In general, image segmentation can be im-
plemented either as a bottom-up procedure whose result depends only on intrinsic
image intensity, or a top-down procedure guided by the knowledge on the particular
problem. Most techniques reviewed here are bottom-up procedures since we do not
assume any prior knowledge on ground reflectivity.

The simplest and often adopted approach for image segmentation is setting a
threshold in the histogram. In this sense, each object is assumed to correspond
to a mode in the histogram. These modes are the cluster centers in the feature
space. Hence, a popular clustering scheme, k-means clustering, is often applied in

the image segmentation problem[35]. The basic solution for the k-means problem is
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an iterative algorithm that finds a local minimum of a penalty function. There are a
number of variants to this algorithm, such as gradient descent or ascent methods and
mean-shift methods. Cheng[17] generalized the mean-shift methods and proved that
it is more effective than other methods in terms of adapting to the right step size.
To reduce the computational complexity, Kanungo et al.[48] presented an efficient
algorithm which was shown to be much faster than other algorithms.

The simplicity of the k-means scheme comes at the price of low accuracy. With
randomly chosen initial centers, the algorithm generates arbitrarily bad clustering
results with high possibility. Arthur et al.[5] augmented the k-means algorithm with
a simple seeding technique and effectively reduced the probability of obtaining bad
clusters. Another problem associated with the k-means scheme in its application in
image segmentation is that it requires prior knowledge on the number of segments,
which is often unavailable. Comaniciu et al.[22] tried to solve this problem by
combining the analysis in the feature space and in the image domain. They applied
the mean-shift algorithm in the feature space analysis. Connectivity of pixels in each
cluster were then checked in the image domain to remove unnecessary features and
to separate objects. Similarly, Kam et al.[47] also obtained feature clusters through
the mean-shift algorithm. Instead of assigning a feature label to a pixel by only
looking at its distance to the feature center, they used MAP estimation based on
all the neighbors of the pixel to select a proper feature label. The added complexity
enables this algorithm’s application in texture segmentation.

Instead of obtaining features from the intensity domain, some authors tried to
extract features in the frequency domain. Liu and Pok[59] transformed the intensity
image into frequency domain through a Gabor filter. They predicted the feature of
a pixel from its neighbors and got a map of prediction variance. The edges in the
prediction variance map were used as the boundary of the features. Segmentation
was then done based on the pixels’ feature values.

Another thread of segmentation techniques segments images by locating edges
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between objects. The edge map is obtained from first-order differentiation max-
ima or second-order differentiation zero-crossings. Various filters for obtaining the
differentiation have been designed[41]. In practice, the edge map is often noisy
with many broken edge lines. Therefore, edge tracking and linking is frequently
required to obtain closed boundaries of objects. Among the edge tracking methods,
the "snake” method is a very popular one[49]. Schneider et al.[93] also segmented
images by finding the object boundaries. But their edge map did not come from
direct filtering. Instead, they defined energy functions for both the image and the
edge strength. By minimizing both energy functions, they accurately located the
object boundaries.

The method in {93] is more region based than boundary based. Region based
methods look at much larger neighborhoods than boundary based methods in doing
hypothesis testing. Although the former’s complexity is higher, their results are
usually better too. Thus they have attracted a lot of attention. These methods grow
a region around a seed pixel inside an object until the whole object is filled up[1], or
perform global optimization based on energy functions[16][75]. A common drawback
of these methods is that they cannot distinguish between two distributions with the
same mean but different variances. Zhu and Jullie [114] attacked this problem by
applying MDL criterion in the optimization step. They showed that region growing
algorithms can be directly derived from their method.

Recently, there has been a considerable amount of work using the curve evolution
technique. It is also a region based method. It is inspired by the minimum surface
problem in physics. A closed curve can be either explicitly represented as a one-
dimensional function y = f(z) or implicitly represented by the zero-level set of a
two-dimensional surface z = f(z,y). When the surface is diffused over time due to
forces on it, its zero-level set also evolves. Correspondingly, the region enclosed in
the curve grows or shrinks depending on the forces on its boundary. This is similar to

the region competition concept in [114]. A smooth surface such as a signed distance
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function is often adopted in the curve evolution. There are three basic types of
forces: a force on the normal direction to the curve Vy, an external vector field .S
and a force based on the curvature of the curve a. The speed of the curve evolution

is determined by all three forces as:

0
Tv Bvi o+ wv = vyl (61)
t N o’ N e’ N——
Vector field based In normal direction Curvature based

The basic usage of the curve evolution method in image segmentation is defining
an edge function, pulling the curve towards the edges by a vector field force, and
stoping the curve around the edges. The forces are often defined as a function of
the probability density of the intensity values inside or outside a region, as done in
[3]. Fisher et al.[40] argued that minimizing the mutual information between the
features and the classifiers lowers the lower bound of the classification error. Inspired
by this idea, Kim et al.[52] proposed to use the mutual information between the
pixel intensity value and its segmentation label as the force in the normal direction.
They proved that minimizing this force resulted in correct segmentation. The use
of nonparametric density estimation in their work also broadened the horizon of the

covered density functions than that in [114].

6.3.2 Image Segmentation Procedures

Although field partition from camera data can essentially be fulfilled by image seg-
mentation techniques, our objective in segmentation is slightly different from typical
image segmentation tasks. Separating objects in the image is still important because
different objects correspond to different reflectivities. But our primary interest in
field partition is locating the three type of fields: sunflecks, umbras and penumbras.
This information is not available from normal segmentation results since they tend
to focus on objects and ignore the slight lighting difference on different regions of
an object. Therefore, existing segmentation techniques cannot satisfy our needs.

Instead of designing a brand new segmentation technique, we obtain the necessary
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information through controlling the camera and combining several different segmen-

tation techniques.

6.3.2.1 Image Series

One important difference in our procedure from ordinary image segmentation tasks
is that we have some degree of control over the source data. This added flexibility
facilitates us in obtaining desired results in image segmentation.

As shown in Fig. 6.5, the camera saturates at both high and low intensity.
Although this phenomenon is not welcomed in general as it adds nonlinearity to the
camera data, it can actually be exploited in controlling the image data. In umbras,
except when the reflection of an object is very strong, pixel intensities are low and
often in the saturated region in the camera response curve. Due to the compressed
value range, the variance among these pixel values is reduced. The deeper the
saturation, the smaller the variance. As a result, these pixels have a very different
density distribution from the pixels in the linear intensity range. Since the curve
evolution segmentation technique in [52] is very good at partitioning pixels with
different variance, it can easily separate out the umbras. To enhance the result and
reduce classification error, we make the image darker than usual by reducing the
camera aperture and shutter speed. Such a maneuver pushes the intensity of pixels
in umbras and penumbras into the saturation region. It also pulls the intensity of
the pixels in sunflecks into the linear region by reducing their intensity value. Thus
sunflecks are distinguished from a dark image. Pixels with low intensity values are
in the same situation when we increase the brightness of the image by increasing
the camera aperture and shutter speed.

Another advantage of controlling pixel intensity is that we get more pixels in
the linear range. For example, intensity of the pixels in a sunfleck may be in the
saturated region in a normal image. But in a dark image, it would be in the

linear region. Hence, with three different images for the same scene - one dark,
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one normal and one bright - almost all pixels are in the linear range in at least one
image. Although a calibration procedure can reduce the nonlinearity problem of
the camera (explained in section 6.3.3), its effectiveness is limited and renders this
intensity control necessary for image data to be used in model extraction.

One problem with the curve evolution segmentation technique is that it some-
times puts very bright and very dark areas into one class since both have small
variance. Such a scenario occurs when an area is too bright or too dark such that
even the intensity control cannot shift its intensity into the linear region. But be-
cause of their big intensity difference, the two classes of pixels can be very easily
separated. The k-means algorithm is chosen to solve this problem.

Objects are further separated by segmenting the normal image. At this time,
segmentation in the three types of subareas, the umbras, the sunflecks and the
penumbras, is performed separately. The reduced intensity range enables us to
assume a different set of parameters from those used in segmenting the bright and
dark images. Strong reflectivity sometimes causes misclassification of a subarea.
This problem is alleviated by the normal image segmentation because subareas with
saturation intensity in the other two images are more separable in a normal image.

Because the curve evolution segmentation technique only works on intensity
images, we apply it to the three color components of each image to get better object
separation.

In summary, a series of three images are taken at each training/reconstruction
step with different apertures and shutter speeds. In the field partition step, the
image taken with a small aperture and a low shutter speed, i.e. the dark image,
is used to locate the sunflecks. The image taken with a large aperture and a high
shutter speed, i.e. the bright image, is used to locate the umbras. The normal
image, which is taken with best balance between the high and low intensity values,
is used to identify objects. All three images will be used in model extraction step

too. Fig. 6.3 illustrates a series of images and their respective segmentation results.
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Figure 6.3: Image series and its corresponding partition

6.3.3 Image Calibration

Although saturation in the camera intensity response is useful in field partition,
it is harmful to field model extraction. Since the saturation effect increases the

spatial correlation between pixels, it not only leads to erroneous sampling density
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estimation, but also deteriorates the reconstruction result. Hence, it is desirable to
remove this saturation effect as much as possible before the image data is used for
model extraction. This task can be completed through image calibration.

A simple calibration tool used in this research is a Kodak gray scale, as shown

in Fig. 6.4. The gray scale is a quality-control device of stepped, neutral values. It

Figure 6.4: Kodak gray scale

helps photographers to compare the tone values of reflection originals with the tone
values of their reproduced images. It is composed of 20 density steps. The relative
density values range from a nominal "white” of approximately 0.05 to 1.95. The
density increment of each step is 0.1. These increments are tightly controlled and
vary only slightly from the nominal density value. The relationship between the
density value and the reflectance, which is proportional to the reflective intensity

under same incident light conditions, is
Density = —logioRe flectance (6.2)

A typical density/reflectance vs. intensity curve is given in Fig. 6.5.

One calibration image is captured for each aperture and shutter speed used in
taking image data. From the calibration image, the intensity value of an array of
pixels of each density is read out and the median is taken as the representative value.
A third order polynomial fits well to the intensity-density curve, as can be seen in
Fig. 6.5(a). When the image using the corresponding aperture and shutter speed
is calibrated, pixel reflectance is computed from its intensity value using the fitted
polynomial and Eq. (6.2). From Fig. 6.6, we can clearly see that the pixel values

in the calibrated image stretch out in the saturated regions.
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Figure 6.5: Camera characteristic curve

6.4 Model Fitting and Selection

A model is a description of an object. Described from different aspects, an object
can have many different models. For example, a function describing a surface is
often referred to as a model in literatures. The spline fitting for the field given
in Chapter 5 is in line with such a model. In reconstructing the field through the
multiscale framework explained in this chapter, we also need to find the fitted surface
for the field. In the context of this dissertation, we will use the term ”field” to refer
to the surface. When we talk about models, we refer to the statistical models,
including probability density functions and correlation functions. The probability
density functions will be used to classify the ground reflectivity, while the correlation

functions will be applied in determining the sampling density.

6.4.1 Probability Density Function Estimation

Probability density function estimation is the process of fitting a curve to the (value,

probability) pair. In this sense, it is similar to the function regression explained in
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(a) Intensity before calibration
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(b) Reflectance after calibration

Figure 6.6: Effect of calibration
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Chapter 4. Therefore, some of the concepts in the function regression are also ap-
plicable here. But there are two major differences between them: 1) there is no noise
in density fitting. Hence, when a nonparametric fitting method is used, interpola-
tion instead of approximation is more applicable. Basic density functions instead of
polynomials or spline functions typically serve as kernels. Among the kernels, the
Gaussian kernel is the most popular one because of many nice properties associated
with the Gaussian distribution. 2) In parametric estimation, the underlying curve
belongs to a known family of probability distributions. Statistical measures such as

mean, mode, etc are estimated for the fitted distribution.

6.4.1.1 Nonparametric Method

Given a sequence of i.i.d random variables Xi, ..., Xx, to estimate their probability
density function, we can start from estimating the cumulative distribution function
(CDF), which completely describes the probability distribution of a random variable.
The most straight forward estimation of the CDF is

Fy(z) = 1/N {# of observations < z among X, ..., Xn} (6.3)

The density function, which is the first derivative of the CDF, can be estimated as
the finite difference of the CDF:

1 o x—X,-
= M;K( - ) (6.4)

Eq. (6.4) naturally leads to the nonparametric density estimation with the kernel

being

K(z) = -;- o < 1
=0, Jz|>1 (6.5)
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Parzen[83] proved that with a bounded kernel satisfying

lim [zK(z)] =0

T—00

the nonparametric density estimation in Eq. (6.4) is a consistent estimation of the
true density function.

The density estimation with the kernel in Eq. (6.5), which is a rectangular
function, provides the same result as a histogram does. Histogram estimation is an-
other popular nonparametric method. Histograms are usually very bumpy. Hence,
smoother kernels are often resorted to for density estimation. Parzen[83] gave a
list of kernels that satisfy the required condition. In univariate density estimation,
the Gaussian kernel is a frequent choice. Multivariate density estimation usually
calls for more complex kernels. Although there have been many efforts in designing
good kernels, it is now widely recognized that the estimation quality is primarily
determined by the kernel bandwidth and much less by the choice of the kernel [94].
Fig. 6.7 illustrates the effect of an improper bandwidth. When the bandwidth is
too large, it smears the structures in the density function; when it is too small, it
reveals fake modes in the density.

Jones et al.[44] surveyed the bandwidth selection methods for density estimation.
They divided the existing bandwidth selection methods into ”first generation”, and
”second generation”. Most ”first generation methods” were developed before 1990,
while ”second generation methods” were developed more recently. The principal
distinction between the two generations is in the rate of convergence. Most first
generation methods are surveyed by Marron[64]. In [44], the best known " first gener-
ation methods”, including the rule of thumb, least square cross-validation and biased
crossed validation method, and some ”second generation” methods, including plug-
in approach and smoothed bootstrap, are compared. The authors concluded that

the ”second generation” methods outperform the first generation ones. They also
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Figure 6.7: Effect of bandwidth of density estimation

showed through simulation that the rule of thumb and biased cross validation meth-
ods tend to oversmooth the density function while the least square cross-validation
method undersmooths the density function. In general, the smoothed bootstrap
method has the best performance.

When the number of variables increases, a big problem that plagues density
estimation is the so-called ”curse of dimension”. It describes the phenomenon that
almost all neighborhoods of given samples are empty in high dimension such that
the samples are not sufficient for meaningful density estimation. Clustering the
samples usually can effectively solve the problem. When the data are clustered,
local estimates are made near the cluster centers. Comaniciu and Meer[23] modified
the mean shift algorithm given in [17] for multivariate data cluster and density

estimation and showed their approach is more robust to noise.

6.4.1.2 Parametric Method

Parametric methods assume the data are random realizations of a probability dis-

tribution from a known family. The parameters for the distribution are estimated
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from the data. Knowledge of the true family of distributions is important for good
estimation. But this knowledge is often absent. To avoid relying too much on this
knowledge, Gaussian mixture density estimation is often used.

A probability mixture model is a probability distribution which is a convex
combination of other probability distributions. Suppose a random variable X is a
mixture of kK component random variables Y;,7 = 1,. .., k, each having a distribution
fv;- This means that with probability A;, X follows the distribution fy,. Then the

distribution of X is a weighted sum of its component distributions

k
fx(z) = Z Xify(z) (6.6)

Although fy,(z) can be any distribution, without any knowledge on what these com-
ponent distributions are, the Gaussian distribution is a popular choice. The wide-
spread use of Gaussian mixture density lies in the fact that a univariate Gaussian
distribution has a simple representation with only two parameters. It assumes the
least prior knowledge in terms of entropy of the distribution in estimating a density
function.

The Gaussian mixture model can be thought as the interim between the non-
parametric model and the simple parametric model. If there is only one component
in the mixture, it reduces to a simple parametric model. If each data is taken as
a component in the mixture, with the mean and variance of the component being
the data value and a given kernel bandwidth respectively, the mixture model in Eq.
(6.6) is equivalent to the nonparametric model in Eq. (6.4).

The maximum-likelihood method has been most widely adopted for estimating
the parameters of a Gaussian mixture model. An expectation-maximization(EM)
algorithm originated from [28] is often used for finding the maximum likelihood
estimation. The EM algorithm alternates between an expectation(E) step, which
computes an expectation of the likelihood, and a maximization(M) step, which

computes the maximum likelihood estimates of the parameters by maximizing the
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expected likelihood obtained from the E step. The EM algorithm is prevalent be-
cause the EM iteration does not decrease the likelihood function of the observed

data. But it also encounters the following problems:

e The number of components in the mixture distribution has to be known a
priori.
e The solution for maximizing the log-likelihood function is sensitive to the

initial value used in the numerical procedure.

e The estimated parameters often come from the local maxima of the log-

likelihood function instead of the global maxima.

e Existence of outliers will lead to erroneous estimates.

To solve the problems, Popat et al.[85] proposed to cluster the data before esti-
mating the model parameters. This is essentially the same as the dimension reduc-
tion approach in the nonparametric method. Their clustering algorithm does not
require prior knowledge on the number of clusters. Besides, parameters can be easily
estimated from each cluster since the number of modes within each cluster is very
small. The parameters are then optimized using the EM algorithm. Because the
original estimates from clusters are already pretty good, the optimized parameters
after the EM algorithm tend to reach the global maxima of the likelihood function.
Another advantage of clustering is that it reduces the effect of outliers since they
are treated as coming from a separate component in the model.

Instead of clustering the data, Zhuang et al.[115] modelled one component ex-
plicitly and modelled all other components as the uncertainty such that the density

function is expressed as
f(z) =(1-¢)G(z) +eH(x) (6.7)

where G(z) is the Gaussian distribution and H(z) is the density of all other com-

ponents. They denoted such a model ”the contaminated Gaussian density”. They
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identified the data belonging to the Gaussian model through the criterion

eH(xi)} (6.8)

G={z':G(z") > oo
There exist an infinite number of models that satisfy the classification criterion,
among which H(z') = § assumes the least configurational information and can be
used to estimate the parameters for the Gaussian component. The Gaussian com-
ponent is then subtracted from the mixture model and the previous procedures are

repeated until all components are identified. This iterative algorithm is independent

of initial conditions and robust to outliers.

6.4.2 Model Selection

Models obtained through different estimation methods are different. Each model has
its individual strength and weakness. Under a certain circumstance, some models
will be closer to the truth than the other models are. But under another circum-
stance, it may be farther away from the truth. Therefore, it is important to select
the proper model for one’s specific objective and circumstance.

A measure of lack of fit between the estimated model and the true model is
called discrepancy. It is composed of two parts: discrepancy due to approximation
and discrepancy due to estimation. Discrepancy due to approximation measures the
distance between the selected model family and the true model. It does not depend
on the sample values. It is the discrepancy between the true model and the best
approximating model from the family. How good an estimated model is depends on
both the model family it belongs to and the sample values because the parameters
for the model are estimated from the samples. The estimation error results in the
second component of the discrepancy.

Similar to curve fitting, the integrated mean square error (IMSE) is a common
criterion to judge a model. This criterion is also known as the Gauss discrepancy[116].

Let f(z) represent the true model and f(z) represent the estimated model. The
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Gauss discrepancy is defined as
. . 2
Bolf.f) = [ (#@) = f(@)) da (69)
Using IMSE as the density estimation criterion is often questioned because the
purpose of estimating density is often not to obtain the exact same curve as the
true density, but to gain more information about the data. This critique leads to
another popular discrepancy criterion, the Kullback-Leibler discrepancy, which is

also known as relative entropy in information theory:

Axn(f, f) = —E;log f(z) = — / log f(z) f(z)dz (6.10)

A third general-purpose discrepancy criterion is the Pearson chi-square discrepancy:
. . 2 .
Ap(f, ) = (F@) - f@) /i), fla)#0 (6.11)
z
This discrepancy is useful for grouped data and is consistent with the use of mini-
mum chi-squared estimation as the parameter estimation method.

Expected discrepancy is closely related to the complexity of a model family. The
discrepancy due to approximation favors flexible complex model families, while the
discrepancy due to estimation favors rigid simple families. Consequently, the proper
model complexity needs a tradeoff between the two discrepancies. Besides the model
complexity, the expected discrepancy also depends on the sample size. Small sample
size leads to large estimation discrepancy.

Since the true model is not available in reality, an estimator is needed for the
expected discrepancy. Sometimes, an analysis of variance and covariance of a fitted
model exists for finite samples. When such an analysis is not available, there are
three prevalent approaches to do the estimation: asymptotic methods, bootstrap
methods and cross-validation methods[116]. Asymptotic methods only analyze the
model under the condition that the sample size goes to infinity. Hence, their practical

usefulness is determined by how well they estimate the expected discrepancy with
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finite sample size. They can also simplify the discrepancy function. In particular,
if the true model belongs to the approximating model family, the Kullback-Leibler

discrepancy is equivalent to the well-known Akaine information criterion (AIC)
Ckr = AIC/2n, where AIC = —2log(L) + 2p (6.12)

where L refers to the likelihood and p the model order. Another criterion which is
similar to AIC in form, namely the Bayesian information criterion (BIC), is also a

frequently used simplified discrepancy criterion
BIC = —2log(L) + plog(n) (6.13)

where n is the number of samples. Clearly, as the number of samples increases, BIC
favors simple approximating families (corresponding to smaller p) because it puts
less emphasis on the prior distribution.

Besides being discrepancy estimators, the above mentioned criteria are also used
to determine the proper model complexity. These criteria are reviewed in [44] as
explained in the previous section. When applying these criteria, we make an im-
plicit assumption that there is a true model, from which the data are sampled.
The goal of model selection is finding the model that best approximates the true
model. But this assumption may be incorrect. This concern kindles the Minimum
Description Length (MDL) principle. The goal of the MDL principle is not approx-
imating the assumed true model, but finding a good probability model that helps
separate useful information in the data from noise. The MDL principle is closely re-
lated to Bayesian inference, but it avoids some of the interpretation difficulty of the
Bayesian approach. One important advantage of the MDL principle is it automati-
cally protects against overfitting. [36] provides a good starting point for learning the
MDL principle. Many algorithms have been developed to realize the MDL principle.
The latest development dubbed Normalized Maximum Likelihood (NML) provides

a theoretically elegant solution. Without assuming any true model, it minimizes the
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worse-case discrepancy as[77]

p* = argminmax E; |log L(xw—z)] (6.14)
pooq

p(z)

where g ranges over the set of all probability distributions satisfying E, [log le(:lvé) )] <
T|Ug
0o, and f is the best approximating model for the given family. The resulting solu-
tion is[7]
. f(z|6,
p'(z) = _Slalf)
f f (y!9y)dy
The quantity — Inp*(z) indicates the model complexity. Asymptotically it can be

simplified to the form

MDL = —2log f(z|0,) + plog (%) (6.15)

In reality, with only samples available, the best approximating model f(z|f,) is the
fitted model. Eq. (6.15) is then reduced to a similar form as AIC and BIC. Abusing
notation a little bit, we refer to the resulting quantity as the MDL criterion:

MDL = —2log(L) + plog (%) (6.16)

According to Wax and Kailath[108], the MDL criterion yields a consistent es-
timate of the number of signals in the signal detection problem, while the AIC
criterion yields an inconsistent estimate that tends to overestimate the number of
signals. In a mixture model, each mixture component can also be thought of as a
"signal”. Therefore, a similar conclusion is expected for determining the order of
a Gaussian mixture model. But this conclusion may not be true for a small num-
ber of samples. The performance of the three criteria are compared on simulated
data from three different Gaussian mixture distributions. The parameters of these
distributions are listed in Table 6.1.

Given a set of data, five hypotheses, namely 1, 2, 3, 4 or 5 components in the

mixture, are assumed. Under each hypothesis, a Gaussian mixture density function
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Model 3

Model 1 Model 2
No. of components 1 2 3
Component weights 1 0.435, 0.565 | 0.333, 0.333, 0.333
Component means 0 1,5 1, 8, 16
Component variances 1 3,2 2,2,2

Table 6.1: Parameters for simulating Gaussian mixture data

is fitted to the data. The mixture parameters are optimized with the EM algorithm.

These hypotheses are tested and the one giving the minimum criterion value is

picked under each criterion. Two scenarios are considered: one with a large number

of data samples and the other with a small number of samples. The hypothesis test

is repeated 200 times under each scenario. In each run a new set of data is generated

using the parameters in Table 6.1. The number of times a hypothesis is selected is

counted and shown in Table 6.2 for a small number of samples and Table 6.3 for a

large number of samples respectively.

Model 1 Model 2 Model 3
1 2 3 4 5|1 2 3 45|12 3 4 5
AIC {177 15 5 1 2| 27 152 18 3 0|0 0 135 56 9
BIC (200 0 0 O 0135 64 1 0 0|0 2 158 38 2
MDL|{192 6 1 1 05 140 1 0 0|0 O 149 45 6
Table 6.2: Comparison between criterions for selecting mixture models. No. of

samples = 100.

Model 1 Model 2 Model 3
1 2 3 4 511 2 3 4 5|1 2 3 4 5
AIC |18 9 4 1 2|0 191 9 0 0|0 O 179 21 O
BIC [200 0 0 0 0|0 195 5 0 0{0 0 184 16 O
MDL {200 0 0 0 OO0 195 5 0 0|0 O 184 16 O

Table 6.3: Comparison between criterions for selecting mixture models. No. of

samples = 1000.
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From these tables, we have the following observations: 1) BIC favors simple
models, especially when the confidence is low. Hence, when the modes of some
components are close, it tends to underestimate the number of mixture components.
This can be clearly seen in Table 6.2. The two modes in Model 2 are close together.
Then BIC chooses the one-component hypothesis most of the time when only 100
samples are available. When there are 1000 samples available, it makes the correct
judgement most of the time. On the contrary, when the modes of all components
are far from each other as in Model 3, BIC has a lower tendency to overestimate
the number of mixture components then the other two criterions. 2) AIC tends
to overestimate the number of mixture components. This is true even for large
data sets. 3) Overall, MDL makes the best tradeoff between overestimation and
underestimation.

Parametric and nonparametric methods for density estimation were also com-
pared on simulated data of two different sample sizes. Data were generated using the
previous three mixture models (Model 1-3) and four other distributions: 1) Model
4: a uniform distribution; 2) Model 5: a Beta distribution; 3) Model 6: a mixture
of a Beta distribution and two Gaussian distributions with mean 0 and 1 respec-
tively. This distribution is simulated because it resembles an incident sunlight field
modelled by Ross[91]; 4) Model 7: a mixture of a uniform distribution, a Beta dis-
tribution and a Gaussian mixture. The parameters of Models 4-7 are listed in Table
6.4. The algorithm in [115] is followed to estimate the Gaussian mixture density and
the MDL criterion is used to determine the number of components in the Gaussian
mixture. The KL discrepancy between the estimated distribution and the true dis-
tribution was computed for both the parametric and nonparametric methods. The
extra discrepancy of using the nonparametric method vs. the parametric method
(i.e. KLyp—KLp) isshown in Fig. 6.8. Some of the estimated densities are plotted
in Fig. 6.9.

As expected, the parametric method outperforms the nonparametric method
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Figure 6.8: Extra discrepancy of using nonparametric method than using parametric
method. Values above zero mean the nonparametric density has a larger discrepancy.
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Uniform Beta Gaussian Mixture
w range w a B A U o
Model 4 | 1 [v3,V3]
Model 5 1 1.7 4
Model 6 045 1.5 181|055 07,03 0,1 0.13,0.06
Model 7 | 1/3  [-5,9] 1/3 1.7 4 | 1/3 045055 1,5 3,2

Table 6.4: Parameters for simulating data. w is the weight of the distribution, «
and § are shape parameters for Beta distribution, A is the component weight in
the Gaussian mixture, x4 and o are mean and standard deviation of each Gaussian
component respectively.

when the true distribution is a Gaussian mixture, especially when all components
are far apart. If some components are close together, the parametric method may
not perform as well since it makes the wrong decision in the number of components
when the number of samples is small, as in the case of Model 2. It is clear that
the parametric method is better at tracing modes in the density function than the
nonparametric method. This is partly because a global bandwidth is used in the
nonparametric method. When relatively large bandwidth is used to avoid overfitting,
the nonparametric method misses some local structure, as in the case of Model 6
and 7. When the true distribution is relatively flat, the nonparametric method often
beats the parametric method because the parametric method sometimes generates
fake modes in the estimated density function, as seen in Model 5.

When the true model is far from a Gaussian mixture, such as the uniform dis-
tribution of Model 4 and the Beta distribution of Model 5, one would expect that
the nonparametric method should outperform the parametric method. This is true
for small data sets. But surprisingly, the reverse is observed for large data sets.
It seems that the parametric method improves faster with the number of samples
than the nonparametric method with respect to the KL discrepancy. Of course,
this observation may not be true for other distributions. Further study is needed to

draw a conclusion on this point.
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Figure 6.9: Estimated density functions
6.4.3 Field Model Library

The purpose of estimating density functions from the image data is to classify the

ground reflectivity. As we have noted, the incident light in sunflecks has very small

variance and can be taken as constant. Hence, except for a shift in the mean

value, the reflected light in sunflecks has the same distribution as that of ground
reflectivity. If every spot in the area we study is in a sunfleck for a while over the
whole day period, we can save the trouble of classifying ground reflectivity and learn
its distribution directly. But this is often not the case, especially when the canopy is

thick such that most of the area is shaded. As illustrated in Fig. 6.10, the incident
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light intensity is measured with static PAR sensors at two spots and recorded over
time. One spot enjoys a long period of sunshine during day time while the other
spot hardly has a view of the sun. Under this circumstance, another choice is still

available, i.e. learning the ground reflectivity through close-by areas.

1500 + \ﬂ

1000 |

S00

S s S
7 9 11 13 15 17 19

Time of day (hour)

Figure 6.10: Light intensity over time at two spots.

The types of ground reflectivity are limited and often repeated within a con-
tained area. This means if we learn the reflectivity in a subarea, it is very possible
that we will find other subareas that have the same reflectivity. Therefore, we can
learn the reflectivities in all sunflecks and match them to those not in sunflecks.
Here we encounter another problem. Since the reflected light is the summation of
incident light and reflectivity (in the log-transformed domain), the density of the
reflected light, which is the only density we can obtain from the camera data, is the
convolution of the density of incident light and that of reflectivity. In this situation,
the incident light behaves like a noise and degrades the classification results. In
umbras, the noise distribution is lognormal. In penumbras, the noise distribution is
unknown and complex. This complex distribution prevents us from obtaining mean-
ingful classification results from penumbras. Hence, we only classify the reflectivity
in umbras. As the sun moves in the sky over a day, sunflecks and umbras shift in
locations. Ignoring the penumbras should be good enough to cover most portions
of the whole area.

Bases on our previous analysis, we choose the parametric method to estimate the
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density functions of reflectivity. The reason is two-fold. First, the density functions
usually contain multiple modes. The parametric method is better in estimating
such densities. In the field partition step, the field has been partitioned into small
subareas such that the reflectivity in each subarea is more homogeneous and its
density function contains a smaller number of modes. But in that step, we want
to focus on the variance of each subarea and set the bandwidth for nonparametric
density estimation used in the image segmentation algorithm to a relatively large
value. Hence, many local features may be overlooked. These features need to be
identified in the density estimation step.

The second reason is that the convolution of a Gaussian distribution and a
Gaussian mixture distribution is still a Gaussian mixture distribution. Hence the
convolution of the reflectivity distribution with the incident light distribution in um-
bras, which is Gaussian in the log-transformed domain, is still a Gaussian mixture.
This property facilitates obtaining good classification results.

All the reflectivity models obtained from sunflecks are collected in a model li-
brary. There are two sources for the reflectivity model library: the models from
the sunflecks in the same area to be studied, and the models from sunflecks in a
nearby area or even a nearby open area if one is available. When a new model from
a sunfleck is available, it is first compared with all the models in the library. If it is
believed to cover the same reflectivity type as an existing model, the old model is
updated with the new data set. Otherwise, it is added to the library. After training
over time, the library will contain the models of most reflectivity types in the area.
Fig. 6.11 presents a couple of estimated density functions in the library. It is also
possible that some types of reflectivity never appear in the library. For example,
some plants are light averse and only grow ih the shades. In this case, human in-
volvement may be needed to recognize these types of reflectivity and their models
have to be obtained through other ways. Further study is needed to handle this

case.
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Figure 6.11: Light intensity over time at two spots
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Reflectivity models are classified by the average likelihood value

—_— a i d 6-17
1 = arg HlfiX E:c ( )

n
where Ly, () is the likelihood value of = under model f; and n is the size of the data
set. At the beginning, the model library is incomplete and the classification error
is high. But as more and more models are available, the classification results will
improve. This process is demonstrated in Fig. 6.12. Comparing Fig. 6.12(a) and
Fig. 6.12(b), we can easily see the difference made by the addition of the model for

a green branch.

Incomplete fibrary Complete library

(a) Incomplete model library (b) Complete model library

Figure 6.12: Umbra reflectivity classification represented in pseudo-color. Each color
corresponds to one type of reflectivity.

Misclassification due to an incomplete library is very undesirable. As can be
seen from Table 6.5, the average likelihood values under different models are very
different. Therefore, it is possible to set a threshold to determine whether a subarea
should be assigned a model. But the thresholds among models should be different
too. The initial threshold for a model lies in between the average likelihood value
of its own data set and the maximum average likelihood value of all other data sets.
The threshold is updated dynamically as the training process goes on.

An umbra that has been a sunfleck is not reclassified in general. But its reflec-

tivity value is still closely monitored by checking its likelihood under its assigned

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Model 1 Model 2 Model 3 Model 4
Umbra 1 | 0.211 0.656 -0.269 -0.933
Umbra 2 | 0.558 0.016 -4.811  -0.0284
Umbra 3 | 1.029 0.297 -3.99 1.254

Table 6.5: Average likelihood under different models for three umbras

reflectivity model. If there is a sudden jump in the likelihood value, the subarea is
believed to have undergone a change in its reflectivity due to events such as new
objects flying in this subarea. Then the subarea is back to the classification process
again.

In addition to the density model, a spatial correlation model is also associated
with each reflectivity type. The spatial correlation of the incident light field de-
termines the bandwidth of its power spectrum, which consequently determines the
proper sampling density. Without enough incident light data, the correlation of the
incident light, which is the difference between the correlation of the reflected light
and that of the reflectivity, can be obtained from the reflected light for the subareas

with known reflectivity.

6.5 Simulations

6.5.1 Algorithms Implementation

Once the field is partitioned and modelled, PAR samples are taken and the whole
field is reconstructed. The sampling density in each subarea is determined by its
correlation model. To minimize the reconstruction error over the entire field, the
water-filling principle is adopted. All the sampling methods reviewed in Chapter 3
are applicable in subareas. The good choices are those that allow a small increment
in the number of samples to best execute the water-filling principle. At this stage,
the uniform sampling method is used for simplicity.

Ideally we should be able to reconstruct a sunfleck without taking any samples
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(assuming the light intensity above canopies is available). In reality, the image
segmentation result is not perfect. A portion of penumbras surrounding a sunfleck
may be included in the sunfleck. Therefore, if the fidelity requirement is high, it is
also necessary to take several samples in a sunfleck and reconstruct it with linear
interpolation.

The kriging method is chosen as the reconstruction method for two reasons.
First, it is able to predict values on ungridded data. This capability is necessary
because of the irregular shape of each subarea. More importantly, the expected
prediction error is readily available. This error is useful in determining the subarea
to be sampled next based on the water-filling principle. The disadvantage of the
kriging method is that it is computationally expensive. If the computation power
or computation time is limited, the thin plate spline can serve as an alternative
reconstruction method. |

The entire algorithm is summarized below:

1. Take a series of three images, a bright one, a dark one and a normal one.

(a) Segment the bright image to locate umbras.
(b) Segment the dark image to locate sunflecks.

(c) Partition each type of areas into subareas through the normal image.
2. Calibrate the images to remove the nonlinearity in the camera data.
3. Build the model library.

(a) Take a PAR sample at the center of a sunfleck. Verify that it is a true
sunfleck instead of an subarea with strong reflectivity.

(b) Estimate the density distribution model of the reflectivity in the sunfleck.

(c) Compare the model with those in the model library. If it is similar to an
existing model, update the existing model with the new set of data. If

no similar model exists, add the model in the library.
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(d) Repeat the above steps until all sunflecks are processed.

(e) Obtain the correlation model for each type of reflectivity.
4. Assign models in the library to the reflectivity in umbras.
5. Reconstruct the field

(a) Pick a subarea. If its reflectivity is known, estimate the spatial correlation
of the incident light through the reflected light and the reflectivity model.
If its reflectivity is unknown, apply the correlation model from simulated

data as explained in Chapter 2.

(b) For a given fidelity requirement, estimate the sampling density for the

subarea based on the correlation model.

(c) Take samples uniformly and reconstruct the subarea with the kriging

method. Estimate the reconstruction error in the subarea.

(d) Refine the sampling density in each subarea based on the water-filling

principle and its estimated reconstruction error.

6.5.2 Simulation Results

This algorithm was tested on a set of data taken at the edge of a canopy over a
period of an hour. 13 sets of images were taken at an interval of every five minutes.
At each interval, the ground truth of the field was also measured. Because there
is no easy way of getting a real ground truth without a very large number of PAR
sensors, the ground truth is also obtained from the camera data. To get the ground
truth, a white board with uniform reflectivity is placed in the field. The reflected
light is measured with the camera. The camera data is then transformed into PAR
data through a transfer function obtained from densely deployed PAR sensors in a
small area. The calibrated camera data should closely resemble the ground truth

and is good enough for our testing purpose.
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During the testing period, the sun moved substantially such that everywhere
in the field had been covered by sunflecks for a while. To test the classification
results, only several images were selected for establishing the model library. After
training, the field is reconstructed and compared with the ground truth. One of the
reconstruction results for the ground truth in Fig. 6.13 is presented in Fig. 6.14.
For comparison, the reconstruction result with uniform sampling and the wavelet
reconstruction are also shown. The wavelet reconstruction is presented here because
the wavelet domain is the domain we are aware of that can best compress the field
without the multiscale scheme. Therefore, it is the best possible result we can get
with the compressed sensing approach. For the wavelet reconstruction, a threshold
is set based on the fidelity requirement. All coefficients below the threshold are set

to 0.

Figure 6.13: Ground truth

The sampling pattern of the multiscale sensing scheme is shown in Fig. 6.15.
Because the spatial correlation in penumbras is smaller than that in umbras, the
sampling density in penumbras is much higher. Since the final MSE is relatively low,
we take more than one sample in sunflecks. When we lower the fidelity requirement
such that no samples are needed in sunflecks, the reconstructed field in the sunflecks

is completely flat, as shown in Fig. 6.16.
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(b) Uniform sampling. Number of samples=546. MSE=0.0452

(c) Wavelet reconstruction. Number of samples=338. MSE=0.0467

Figure 6.14: Reconstructed field with different sampling schemes
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a

Figure 6.15: Multiscale sensing sampling pattern

Figure 6.16: Reconstructed field with multiscale sensing scheme under low fidelity
requirement
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The reduction of MSE with the number of samples for all three methods is given
in Fig. 6.17. Obviously, the uniform sampling method has the lowest convergence
rate. The multiscale sensing scheme exhibits a better convergence rate than the
wavelet reconstruction. As explained in [30], the convergence rate depends on the
compressibility of a signal in a domain. In a sense, the field partition provides a
new domain in which the signal is more compressible than in the wavelet domain.
Although the domain in which the signal is compressible does not have to be known
at the sampling time, this knowledge is necessary at the reconstruction time. Mul-

tiscale sensing enables us to access this new domain.
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Figure 6.17: MSE convergence rate

6.6 Conclusion

The details of a new sampling scheme, the multiscale sensing scheme, are explained
in this chapter. In this scheme, information on the field comes from more than one
type of sensor. The information from different sources is combined at feature and

higher levels. In particular, field partition and field models are provided by one
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type of sensor. The field partition provides us with access to a new domain in which
the signal is highly compressible. A second type of sensor takes samples for the
reconstruction of the field in this new domain. The scheme was tested on the real
data and proved to sample the field more efficiently than existing methods. This
result demonstrates that this scheme can efficiently fuse information from multiple
scales. This scheme can be further improved by combining it with other sampling

methods, such as the adaptive sampling methods in the subfield sampling process.
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CHAPTER 7

Discussions and Future Directions

New sampling strategies in sensor networks were introduced in this dissertation. The
characteristics of the incident light field under a forest canopy, the field we concen-
trate our discussion on, was first analyzed in Chapter 2. The light was decomposed
into three elements according to the path it travels through. Based on the compo-
nents contained in the light reaching an area, the light field was classified into three
types. All three types of fields were characterized with statistical models. A simula-
tor was implemented to study the most complex field type. Existing sampling and
reconstruction techniques suitable for the light field were reviewed in Chapter 3 and
Chapter 4 respectively. In the next two chapters, the design of two new sampling
algorithms was elaborated. The first algorithm, an adaptive algorithm, adapts the
sampling density to the roughness of the field. It evaluates potential sampling sites
by their probability of meeting a predefined fidelity requirement. The most infor-
mative sites, i.e., the sites corresponding to the highest probability of not meeting
the fidelity requirements, were chosen to be the final sampling sites. The second
algorithm, a multiscale sensing scheme, combined information at different levels. In-
formation from a higher level direct the movement of sensors collecting information
at a lower level. Both schemes are able to efficiently sample the incident light field.

Although adaptive algorithms have been proved to have no effect on the error
convergence rate, they are still useful in the applications where a relatively small
number of samples are permitted. Tsaig and Donoho[102] demonstrated that the

constant term in the MSE of the reconstructed field is not small for many signals.
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Therefore, in the case of a small number of samples, the constant instead of the error
rate dominates the final error. If an adaptive algorithm can reduce the constant
term, it still provides a big advantage over random sampling, as proved by our
simulation results in Chapter 5.

The multiscale sensing scheme makes improvements over existing sampling algo-
rithms not only on the constant term, but also on the error convergence rate. This
is because with this scheme the field can be reconstructed in a new domain where
the signal is more compressible. Unlike the adaptive algorithm, which is applica-
ble to any field, the utilization of the multiscale sensing scheme is restricted to the
fields which can be measured with different types of sensors. At least one type of
sensor has to be able to get a global view of the field. At the current stage, it is
specially designed for the incident sunlight field. More generalization is needed for
this sampling concept. There are several directions in which this generalization can

happen:

e The improvement in the multiscale sensing scheme comes from the access to the
domain information in which the signal is more compressible. The information
stems from a global view of the field through one type of sensor. The current
design relies on the image segmentation to obtain the information. However,
in many applications, a global view is available in forms other than images.
Therefore, a general scheme for determining the sparse domain of a signal from
a global view of the signal will be very helpful in sampling algorithms design.
Moreover, the high lever information is assumed to be free in our study. When
this is not the case, a cost function should be associated with both the high
level information collection process and the low level information collection
proéess. A resource allocation decision should be made on obtaining these

two levels of information as in the double sampling.

e The field modelling process can be extended and generalized. Currently, no
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prior knowledge of the field is assumed. Therefore, the field models are ex-
tracted from the data at the time of sensing. In the applications where field
models do exist, a general way of incorporating the existing field models can
be developed. Data fusion schemes that based on field models, such as the

Kalman filtering scheme, can then be incorporated in the design.

e A simulator was implemented to simulate the light distribution in penumbras.
The models extracted from the simulated data are only used in subareas where
empirical models from the real data are not available. The utilization of the
simulator can be expanded to provides priors in the subareas where an em-
pirical model is also available. More generally, when models from simulated
data and real data are both available, effective combination of the models and
the interaction between the simulator and the real measurements is worth a

further look.

e In the present development, only the spatial correlation of the field is taken into
account. But the field varies both spatially and temporally. True temporal-

spatial models should be applied to catch both variations.
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