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Abstract of the Dissertation

Energy Efficient Sampling, Source Coding, and

Data Routing in Wireless Sensor Networks

by

Huiyu Luo

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2005

Professor Gregory Pottie, Chair

One important problem in wireless sensor networks is how to efficiently utilize the

limited network resources to observe and estimate physical phenomena. In this

dissertation, we take a divided approach to this problem and separately devise

efficient algorithms for field sampling, source coding, and data routing.

Before we start, various types of distortion during the process of sensing,

quantization, communication, and reconstruction are examined. It is observed

that the bounds on these errors are fundamentally tied to the scarce network

resources, e.g. node density, sensor energy, and communication capacity.

Nodes with limited and controlled mobility have been proposed recently for

use in wireless sensor networks. The problem of efficiently relocating sensors

to sample a distributed field is investigated. We propose an adaptive algorithm

based on the Bayesian framework. This scheme maintains an estimate of how well

the current reconstructed field approximates the true field based on all collected

samples, while iteratively sampling the field by picking the most desirable set of

sampling sites from a candidate pool. With minor modifications, this method

can also be used in a distributed implementation where static sensors are woken

xviii



up from sleep to collect measurements.

Due to the high data correlation in a sensor network, source coding should

be used to remove redundancy among data streams from different sensors even

before they are transmitted to the fusion center to reduce communication cost.

We give a brief overview of distributed source coding, where sensors indepen-

dently conduct data compression without interacting with one another. Then,

our attention is shifted to source coding with explicit side information. A two-

stage DPCM (differential pulse coded modulation) coding scheme is proposed.

It can continuously monitor the additional coding gain provided by correlated

side information from other sensors, and hence can be used in joint data aggre-

gation/routing optimization.

The last topic we take up is the data-centric routing. We proposed a data

aggregation model for source coding with explicit side information. In this model,

data transmissions are decomposed into individual flows originating at different

sensors, and a data rate function is defined for each flow. The full optimization

problem is formulated and discovered to be NP hard, which indicates that effi-

cient algorithms for finding the exact solution are unlikely to exist. We turn to

heuristics subsequently. Several routing schemes are examined. Among them,

the BAS (balanced aggregation scheme) and DSIT (designated side information

transmission) hold the highest promise as they yield good performance when data

correlation is high and converges to SPT (shortest path tree) when coding gain

diminishes.

xix



CHAPTER 1

Introduction

1.1 Wireless Sensor Networks

1.1.1 The emergence of wireless sensor networks

In the last several decades, advances in solid-state physics, integrated circuitry,

MEMS (micro electro-mechanical systems), wireless communications, and digi-

tal signal processing technologies have resulted in the development of powerful

hardware platforms designed for distributed sensing applications. Sensors incor-

porating wireless transceivers and signal processing modules have been produced

at decreasing cost due to progress in fabrication technologies. These wirelessly

networked sensors can be used in a variety of applications such as security sur-

veillance, disaster relief, ecosystem monitoring, manufacturing control, inventory

tracking, entertainment, performance arts, and education [EGP01, PK00, SS02a,

EGH00, CEE01, MPS02, BMK02, SMP01]. Combining the sensing capability

of micro-sensors, computing power of processors, and wireless networking, wire-

less sensor networks have the potential to change the way we interact with the

physical world, and are becoming one of the most exciting frontiers of computer

science and engineering.

The future of computing, as envisioned in [Wei91] and [Ten00], is to shift

from traditional human-interactive computers to proactive and pervasive embed-

1



ded systems. The realization of this vision of pervasive computing requires the

computing system to quickly respond to external stimuli and extensively inter-

act with the physical world, in which distributed networks of embedded sensors,

controls, and processors promise to be an essential ingredient.

1.1.2 Why distributed?

The property and distribution of the sources that the sensing systems are to

observe and interact with necessitate that we take a distributed approach in

designing such systems. The sensing object of a sensor network can be random

fire sparks in the forest, the chemical composition of the water in the ocean, the

mine location at a battlefield, or the temperature field of a certain area etc. It can

be an isolated event or a distributed physical phenomenon. When it is an isolated

event, we may not have the precise location of the event except for knowing that

it is confined to a certain region. Therefore, in either case, a relatively large

region often needs to be covered, and sometimes the source may even reside at

places where no human beings and any established infrastructure are present.

On the other hand, the strength of signals that are emitted from the source

generally decays rapidly with distance in the space. For example, the power of

electromagnetic waves decays as the square of the distance in free space as a result

of wavefront propagation. In practice, the situation can be even worse if we take

into account various dispersive and absorptive surfaces that the wavefront may

encounter before it reaches the sensor. To make matters worse, multi-path may

occur as well. Hence, to have reliable observations of the source, it is desirable

to place the sensor as close to the target as possible so that signals are detected

with the highest SNR (signal to noise ratio). Consequently, sensors need to be

deployed distributively in space, and the distribution preferably follows that of

2



the sensing objects.

When wired networks of distributed sensors are possible, it is often the more

advantageous approach. If sensor nodes can be connected to wired renewable

energy sources and high speed communication links, the system design and op-

eration are greatly simplified. However, in many applications, the environment

that is being monitored has no established infrastructure or human presence, and

it is too expensive to install a wired sensor network. Hence, untethered and unat-

tended nodes with limited energy reserve must be relied on to carry out sensing

tasks. Advances in technologies have made available low-power data processing

units and reliable wireless communication links suitable for micro-sensors. This

makes it possible to deploy wireless networks for sensing applications in places

where no installed infrastructure is available at relatively low cost. With wireless

connections, the sensor network also has the advantage of being reconfigurable

and easy to deploy. However, at the same time, stringent constraints are placed

on sensors’ design and operations. Some researchers have observed that the com-

munication capacity available to each node diminishes as the number of nodes

increase in a dense wireless network [GK00]. Furthermore, the strong propagation

loss of radio power makes wireless communication a power-hungry exercise. The

energy that is needed to maintain the connectivity all the time will soon drain

the batteries of typical wireless sensor nodes. These constraints prevent us from

building wireless sensor networks using traditional centralized fusion schemes in

which all the raw data are transmitted to the global fusion center, and the fu-

sion center carries out all the data aggregation and decision making. Substantial

changes to the sensing strategy, network architecture and data processing are

needed. In other words, distributed approaches in sensing, communication, and

processing are inevitable in wireless sensor networks [PK00].

3



1.1.3 Characteristics and challenges

In this section, we give an overview of some characteristics of wireless sensor

networks and the resulting challenges.

• Nodes in a wireless sensor network are deployed distributively in space. If

the nodes are static, the spatial distribution of nodes in the area of interest

may not be precisely controlled due to the massive and quick deployment,

in which accurately placing and calibrating each individual sensor in the

network often represents a high cost. In addition, node failures, which may

occur frequently in the network, also play a important role in shaping the

network configuration.

• The size of a wireless sensor network may vary greatly from one to another.

For instance, the network may consist of less than 10 sensors in a small

sub-array used to determine the incoming wavefront’s angle of arrival, or

tens of sensors in a smart house, or hundreds of sensors in a seismic appli-

cation, or thousands of small nodes envisioned for use in a battle ground.

General algorithms designed to accommodate various sensor networks must

be scalable.

• The capability of sensor nodes in various networks differs greatly. Individual

sensor nodes range from tiny mica nodes [mic] with limited processing and

communicating capability to NIMS nodes [KPS04a] that are equipped with

powerful processors and can move in its patrol area to collect samples.

Different strategies must be employed for such disparate networks.

• Sensor nodes, especially in these massively deployed and low-cost sensor

networks, are often powered by batteries and unattended after initial de-

ployment, so sensors become defunct as soon as their batteries are drained.
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Therefore, to prolong the network life, it is desirable to employ strategies

with high energy efficiency. Even in applications where renewable energy

sources are available, energy conservation is recommended.

• Network components in sensor networks are usually untethered, unattended,

and unreliable. Algorithms designed for such systems should be fault tol-

erant so that the networks are able to continue functioning even if some

nodes fail. This often requires that certain quality of service (QoS) indica-

tors, such as the estimation fidelity in field reconstruction, to be associated

with the result of data fusion, so we will know as soon as the networks are

unable to meet the prescribed service requirements.

• Although communication links, which are usually wireless, exist among sen-

sors, data transmission is often considered a higher cost operation than data

processing in that communications consume more energy. Moreover, while

the power consumption of VLSI chips have been continuously scaled down,

the fundamental limits in wireless communication (propagation loss of radio

power and Shannon’s theory) sets fundamental limits on the transmission

power and data rate. Consequently, local processing that can reduce the

communication rate is strongly encouraged in wireless sensor networks.

• In practice, since sensors are often observing some common physical phe-

nomena, the data streams produced at different sensors, especially the ones

that are close to one another, are generally correlated. Hence, local col-

laborative signal processing should be employed to exploit the redundancy

among different data streams before transmitting them to the fusion center.

• Senor nodes are generally static. However, sensors with limited but well-

controlled mobility have been developed recently. For example, [KKP05]
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tries to reduce sensing uncertainty by allowing cameras to move along a

straight line and adjust the angle of viewing; [RHS04] uses cableways to

relocate sensors to designated locations of their patrol area. In either cases,

the controlled mobility significantly enhences sensors’ capability of moni-

toring the area of interest and adapting to the dynamic environment.

• In many sensing applications, fast responses from sensor nodes are required

either because the fusion decision is time-critical or the monitored phenom-

enon undergoes slow changes in time. Together with the goal of energy

conservation, this demands algorithms in some wireless sensor networks to

have low complexity and be able to respond to the environmental stimuli

quickly.

• In this dissertation, we assume there is a global fusion center, to which all

sensors in the network are required to transmit their data. As a result the

transmission pattern in the network is all to one. This differs from general

ad hoc networks, where any node can be an end user.

The list above presents us the challenge of designing scalable, distributive,

energy-efficient, fault-tolerant, fast-adapting, and low-complexity algorithms for

wireless sensor networks.

1.1.4 Distributed Sensing and Fusion Paradigm

In sensor networks, to reduce the communication rate and preserve energy, data

processing is best carried out distributively, and is often tightly coupled with

communications. This new paradigm of sensing, communication, and data fusion

is depicted in Fig. 1.1.

In Fig. 1.1, n sensors are deployed in the field to observe a distributed physical
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Figure 1.1: A distributed sensing paradigm.

phenomenon, and need to transmit their data to the global center to generate a

fusion result, based on which actions are taken, and the sensor network is adjusted

accordingly. Before converging to the global fusion center, the data streams

originating from different sensors merge into small local fusion cells based on, for

example, geographical proximity and the data correlation structure. Several levels

of local fusion may occur before data are finally transmitted to the global fusion

center. Intensive communication and data aggregation occur within each local

fusion cell. The communication cost of this local data aggregation is relatively low

compared to that of the transmissions to the global fusion center due to the short-

ranged transmissions involved in local cooperation. Further, collaboration within

these fusion cells is often the most productive in terms of reducing communication

rate because in most physical phenomena the correlation among sources decrease

rapidly as the spatial separation increases.
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1.2 Information Theory

While designing energy efficient algorithms for wireless sensor networks, a recur-

ring scene is that the fundamental limits on data aggregation and communication

are often set by the information theory. Here, we we give a quick overview of

some basic results and unsolved problems in information theory. For more de-

tails, readers are referred to [Gal68, CT91]. Additionally, the articles in IEEE

transaction on information theory, vol. 44, no. 6, October 1998 (the special

commemorative issue that celebrates the 50th anniversary of C. E. Shannon’s

landmark paper [Sha48]) provide great reviews on the subject.

1.2.1 Single user information theory

Information theory gives answers to two fundamental questions in communication

theory: what is the limit of ultimate data compression, and what is the limit of

error-free transmission rate across a communication channel.

The classical single channel communication system is depicted in Fig. 1.2.

We want to transmit the sequence of symbols V n = {V1, V2, · · · , Vn} across the

Encoder Decoder
ChannelSource Reconstr.

n
V̂

n
V

n
X

n
Y

)|( xyp

Figure 1.2: Joint source and channel coding in a classical single channel commu-

nication system.

channel, which can be described by the probability distribution p(y|x). To do

this, we map V n into codeword Xn, and transmit Xn over the channel. The

receiver receives Y n, which is the codeword Xn altered by the channel, and from

Y n, the receiver reconstructs the original set of symbols V̂ n = {V̂1, V̂2, · · · , V̂n}.
We define the probability of error P

(n)
e = Pr(V n 6= V̂ n). The joint source channel
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coding theorem for such a communication system is stated as follows.

Theorem 1.2.1 (Source-Channel Coding Theorem) If V n is a finite alpha-

bet stochastic process that satisfies the AEP, then a source channel code exists

such that P
(n)
e → 0 if H(V) < C. Conversely, if H(V) > C, then it is impossible

to send the process V n over the channel with arbitrarily low probability of error.

Here,

H(V) = lim
n→∞

1

n
H(V1, V2, · · · , Vn) (1.1)

is the entropy rate of the stochastic process V n, and

C = max
p(x)

I(X; Y ) (1.2)

is the capacity of the communication channel.

This theorem also implies that we can split a single channel communication sys-

tem into two parts: source coding and channel coding. In other words, we can

design the most efficient representation of the source, while separately devising

the best channel codeword for the specific channel. Designing the two systems

independently will be just as efficient as considering the joint source-channel

coding. Unfortunately, this decomposition does not preserve the efficiency in a

multi-terminal communication system.

The entropy rate is defined for sources with discrete alphabets. However,

most physical signals in the world are analog. The question is how to represent

a continuous variable given that it is impossible to exactly describe an arbitrary

analog signal in a finite length codeword. To render such a question meaningful,

we have to define some distortion constraint, and reframe the problem as follows:

given a source distribution and distortion measure, what is the minimum data

rate required to achieve certain distortion. The answer to this question is given

by the rate-distortion theory.
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Theorem 1.2.2 (Rate-Distortion Function) Given an i.i.d. source X with

distribution p(x) and a distortion function d(x, x̂), the minimum rate required to

represent such a source under the constraint d(x, x̂) ≤ D is

R(D) = min
p(x̂|x):

P
(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D

I(X; X̂) (1.3)

where X̂ is the reconstructed source based on the codeword.

Among all communication systems, the most important continuous alphabet

channel is the Gaussian channel described in Fig. 1.3. The input Xi is corrupted

i
X

i
Y

i
Z

Figure 1.3: The Gaussian channel.

by the Gaussian noise Zi ∼ N (0, N), which gives rise to the output Yi = Xi +Zi.

The capacity of this channel is given by the following theorem.

Theorem 1.2.3 (Gaussian Channel Capacity) The capacity of a Gaussian

channel with power constraint P and noise variance N is given by:

C =
1

2
log

(
1 +

P

N

)
(1.4)

Of particular interest to wireless communication is the capacity of a multiple

antenna Gaussian channel, which has spurred intensive research on the MIMO

system. We refer readers to [Tel99] for more discussions on the subject.

1.2.2 Network information theory

Since the foundations of information theory were laid by the classical paper of C.

E. Shannon [Sha48] in 1948, more than five decades has passed. While tremen-
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dous advances in communication theory and practice have been observed, many

problems remain unsolved. Network information theory is one such area where

complete answers to only a few special cases are known.

),( 11 YX

),( 22 YX

),(
nn
YX

Figure 1.4: A general communication network.

In a general communication network setup depicted in Fig. 1.4, nodes in the

network simultaneously send symbols Xi, i = 1, · · · , n and receive symbols Yi,

i = 1, · · · , n. Given the probability distribution of the source data at senders and

the channel transition matrix that describes the effect of noise and interference in

the network, the question is whether or not the sources can be transmitted from

the senders over the channel to the destination receivers with appropriate dis-

tortion. This general problem involves distributed source coding and distributed

communication, and is extremely difficult. Unlike in a single channel commu-

nication system, separately considering source and channel coding in a network

setup is known to be suboptimal. Moreover, not only does a complete network

information theory remain a distant goal, the distributed source and channel

coding problems when considered separately result in performance bounds rather

than complete definition of achievable rates apart from a small number of special

cases. In the rest of this section, we present some special instances of network
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information theory.

Transmitters

Receiver

(a) Multiple access channel

Receivers

Transmitter

(b) Broadcast channel

ReceiverTransmitter

Relay

(c) Relay channel

ReceiversTransmitters

(d) Interference channel

Figure 1.5: Some special instances of channel coding. Noise exists in all the

transmissions

Some instances of channel coding are depicted in Fig. 1.5. In a multiple access

channel, Fig. 1.5(a), several terminals try to transmit to a common receiver.

This is the best understood instance of multi-terminal channel coding, and the

general capacity region is known. In Fig. 1.5(b), one transmitter attempts to

communicate to multiple receivers. This problem is not yet solved, but the result

is known when the channel is physically degraded. In a relay channel, Fig. 1.5(c),

besides the transmitter and receiver, there are intermediate nodes to help relay

the messages. The capacity region for the general problem is also unknown.

The interference channel is described in Fig. 1.5(d), where each receiver wants

to decode the messages from one of the receivers while treating those from the

other as interference. The answer to this instance is unknown. The problem is

not yet solved even under Gaussian noise. For extensive discussions, readers are

referred to [CT91, GC80, Cov98]
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Figure 1.6: Some special instances of source coding.

Some instances of distributed source coding is depicted in Fig. 1.6. In Fig. 1.6(a),

two encoders independently compress two correlated sources and transmit to a

common receiver. When the sources have discrete alphabets, the rate region of

this instance is given by Slepian and Wolf in [SW73]. However, if the source alpha-

bets are continuous, it becomes the rate distortion problem for correlated sources,

which is unsolved. One special case of this instance is the rate distortion coding

with side information, which is described in Fig. 1.6(b). Information provided by

Y is used as side information to help recover source X. The rate region for this

problem is given in [WZ76]. More discussions on various other special instances of

the rate distortion coding problem can be found in [BY89, ZB99, Ooh97, Oza80]

1.3 A Unified Approach

Consider the general problem of coding and routing correlated data to the fusion

center with minimum power in wireless sensor networks. One example is depicted

in Fig. 1.7. Sensor i = 1, 2, · · · , n produces the data stream Xi, and transmits

it to the fusion center through the network. The data is the result of observing

certain physical phenomena. We assume that it satisfies the ergodic condition

so that the results of statistical probability theory can be applied here. The

objective is to optimize some cost function C while recovering these data streams
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center

Figure 1.7: A sensor network with a single fusion center.

subject to certain distortion constraint d(X1, · · · , Xn; X̂1, · · · , X̂n) ≤ D. For the

particular instance of minimizing the aggregate transmission power, the problem

can be formulated as follows:

min
∑n

i=1 Pi

subject to: d(X1, · · · , Xn; X̂1, · · · , X̂n) ≤ D is

achievable under power budget (P1, · · · , Pn).

This constitutes an optimization problem, with bounds on the set of admissible

power allocations determined by the complete network information theory. Un-

fortunately, an exact solution is unavailable. In addition, information theoretic

encoders and decoders usually have high complexity and incur long delays. As

a result, sub-optimal approaches that consider sampling, channel coding, source

coding, and routing separately, are generally taken in practice.

1.4 Organization of the Thesis

The rest of the dissertation is organized as follows.
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Chapter 2 examines the errors in sensing, quantization and source reconstruc-

tion when the sensor network is relied on to observe and reconstruct physical

phenomena. The sensing error depends on signal attenuation and measurement

noise, which can be lessened by reducing source-sensor separation and increasing

the number of independent observations. The rate of data transmission to the

global fusion center, which requires the most energy and capacity due to its long

range, can be brought down by exploiting correlation among sensors through lo-

cal fusion. However, the rate ultimately constrains the number of quantization

levels, and is bounded by the rate-distortion theory. In this chapter, the dis-

tributed phenomenon is modeled as correlated point sources, and bounds on the

total error using a localized reconstruction algorithm based on cubic splines are

derived. In particular, the interpolation error in cubic spline fitting is shown to

converge at least on the same order as the sensing and quantization noise given

appropriate mesh sizes.

The introduction of mobility in sensor networks has generated a variety of

research topics. Chapter 3 studies the problem of sampling and reconstructing

a two-dimensional sunlight field under a forest canopy using robotic sensors that

can quickly move to designated locations to collect light intensity measurements.

The sampling and reconstruction process is carried out in adaptive steps. During

each step, the most desirable sampling sites are selected from a pool of site can-

didates based on a maximum a posteriori (MAP) test. Source statistical models

and field roughness are used to further account for heterogeneity. The adaptive

algorithm is compared to other schemes, and shown to work effectively. Although

developed as a centralized scheme, with minor modifications, the method is also

suitable for distributed implementation, in which static sensors in a network are

woken up from sleep to perform sensing tasks.
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Chapter 4 discuss source coding in sensor networks. After a quick overview on

distributed source coding, out attention turns to source coding with explicit side

information. We implement a two-stage DPCM coding scheme for wireless sensor

networks. The scheme consists of temporal and spatial stages that compress

data by making predictions based on samples from the past and helping sensors.

It continuously monitors the additional gain provided by samples from other

sensors, which indicates the level of correlation among different data streams.

Therefore, this scheme can be combined with data-centric routing algorithms for

joint data compression/routing optimization. Backward ε-NLMS adaptation is

used to better track changing environments and avoid coefficient transmissions.

Several simulations based on different sets of data are conducted to demonstrate

the effectiveness of this coding scheme.

Chapter 5 studies the problem of combined routing and source coding with

explicit side information in wireless sensor networks. Two difficulties in design-

ing such data-centric routes [KEW02, CBV04, GE03, IGE03] are the lack of

reasonably practical data aggregation models and the high computational com-

plexity resulting from the coupling of routing and in-network data fusion. In this

chapter, the data flows are decomposed into individual flows originating from

different sensors, and the data aggregation model is built upon the observation

that in many physical situations the side information that provides the most

coding gain comes from a small number of nearby sensors. Based on this model,

we formulate an optimization problem to minimize the communication cost of

routing all the data to the fusion center, and show that finding the exact solution

of this problem is NP-hard. Subsequently, a mixed integer program is formulated

for one sub-instance of the general CRSC (combined routing and source coding)

problem.
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Chapter 6 is a continuation of chapter 5, and discusses heuristic algorithms to

solve the CRSC problem formulated in the previous chapter. The shortest path

tree and clustering methods are first presented. Then two suboptimal algorithms

are proposed. One is inspired by the balanced trees that have small total weights

and reasonable distance from each sensor to the fusion center [KRY95]. The other

separately routes the explicit side information to achieve data compression and

cost minimization. The performances of both algorithms are analyzed. Simu-

lations are conducted to compare the average performance of different heuristic

algorithms.

Chapter 7 concludes the thesis and offers some suggestions on future research

directions.
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CHAPTER 2

Estimation Fidelity in Wireless Sensor Networks

2.1 Introduction

Recent advances in technology have made a broad set of applications of sensor

networks possible [PK00] [EGP01]. In these applications, it is often required to

deploy large scale, distributed, wireless networks. One interesting set of prob-

lems is the distortion bounds in these networks under various constraints such

as sensing noise and limited network resources. As one of the basic QoS (quality

of service) metrics, these distortion bounds indicate on how well the network is

able to cover the area of interest. Based on this information and the fusion re-

quirement, it can be determined whether more resources should be added to the

system.

Usually, sensors observe distributed phenomena rather than single isolated

events that are considered point sources. In engineering practice, however, real

distributed continuous processes are never fully observable. A typical approach

in sensing is to sample the processes in time and space, in which the distributed

phenomena are reasonably modeled as sets of correlated point sources. The

reconstruction of the source is then done by interpolation, for example, spline

fitting. In this chapter, we study the distortion bounds of sensor networks based

on this approach.

First of all, the distortion of sensor networks is circumscribed by the sensing
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capabilities of sensors. The accuracy of sensing is affected by the amount of

signal attenuation and noise corruption. While noise is an unavoidable process,

attenuation is strongly related to the distance between the sensor and the source,

which in turn is a function of sensor coverage.

When observing a distributed phenomenon, the rate used to quantize the sig-

nal is usually constrained by the network capacity owing to the large amount of

information embedded in the source. In [GK00], using a point-point transmis-

sion model, it was found that the capacity per node decreases as the number

of nodes in the network increases, which may be attributed to the fact that the

destination is randomly chosen among all the nodes in the network. In [Ser02],

on the other hand, it was argued that the situation in sensor networks is not at

all as pessimistic since the problem is often that of coding a correlated source.

The minimum rate required for correlated sources under a distortion constraint,

i.e. rate-distortion problem, has been studied for decades. In this case what is

bounded is the rate needed to communicate to the global fusion center under a

quantization distortion constraint. Although approaching this bound may entail

intensive local cooperation and fusion among sensors and local fusion centers,

this is still beneficial because local transmission is far less constrained due to the

bounded transmission ranges [PP03]. Also note that in contrast to [PP03], where

the problem is to observe distinct point sources, the perspective here is that there

is one distributed process, which is modeled using correlated point sources.

For a distributed source with a continuous sample path, the source is usually

reconstructed at the fusion center by interpolating from measured points. This

gives rise to interpolation error. Conventionally, interpolation error has been an-

alyzed with the assumption that the data at prescribed points has no error. Here,

we consider the combined distortion of sensing, quantization and interpolation.
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Also we would like to point out that similar problems have been dealt with in

image processing [Jai89], and many results may be applied here except for the

distributed nature of sensor networks. This results in communication cost, and

hence a set of constraints on the rate. Additionally, the sensors may be irregularly

deployed and heterogeneous.

The rest of the chapter is organized as follows. In section 2.2, we consider

sensing, quantizing and estimating point sources. The discussion is then extended

to distributed sources. In section 2.3, the minimum rate needed for correlated

sources is given based on rate-distortion theory under certain assumptions for the

source distribution. In section 2.4, the total error due to sensing, quantization

and interpolation when reconstructing continuous sources using spline fitting is

discussed. The chapter concludes in section 2.5.

2.2 Point Sources

Point sources are useful abstractions since many phenomena can be reasonably

modelled as either a single point source, or constructed via interpolation from

a set of point sources. We begin with a single point source. The data sent

to a fusion center by sensors is the quantized version of attenuated and noise

corrupted signals radiated from the source. The sensing error, which is dependent

on the strength of signal and noise at the sensor, persists even if errors due to

quantization and communication are zero. In this section, we use a simple model

to capture the processing of sensing a point source.
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2.2.1 Sensing model

The signal radiated from the source X, corrupted by noise Zi, and received by

sensor i is modeled as:

Yi = aiX + Zi

with

X ∼ N (0, σ2
X), Zi ∼ N (0, σ2

Z), ai =
1

1 + κr2
i

.

The attenuation factor ai is a function of the distance ri between the source

and the sensor. κ is a constant that models how strongly the distance affects

the signal attenuation. For convenience, we assume that the data sequence Xn

produced by the source are i.i.d. Gaussian random variables. The noise Zi at

sensor i is assumed Gaussian and is independent of X. Also the noise is assumed

i.i.d. at different sensors, which implies that they are the same type of sensor

nodes and affected by similar ambient noise processes.

2.2.2 Field coverage by static sensors

We assume that the sensors are to be deployed in a unit area to monitor a point

source. In addition, we are tempted to presume that the location of the source

is uniformly distributed in such a general context due to the following reasons.

First, we often have no prior knowledge about the probability distribution of the

source location except that it is confined to a certain region. Second, the mon-

itored area in many applications can often be considered homogeneous or com-

prising homogeneous sections, in which the source appears anywhere with equal

probability. Therefore, it is natural to distribute sensors in an equally homoge-

neous fashion. Third, uniformly distributed sources and sensors are amenable to

theoretical analysis.
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Two ways to deploy n static sensors are considered in this chapter. One is

deterministic: divide the unit area into n identical square cells, then place one

sensor at the center of each cell. It should be noted that this often necessitates

approximation since the boundaries of an arbitrary area seldom conform to the

collection of square cells. Thus the approximation is more reasonable for networks

of large size. The other way is random: independently and randomly place

each sensor according to the uniform distribution assuming that the region of

interest is a unit disc. If only the sensor that is closest to the source transmits

its observation to the fusion center, the source-sensor separation r is Rmin, the

distance between the source and the closest sensor. For either way of deploying

sensors, the probability density functions of Rmin are computed, and the mean

values are found to decrease with
√

n.

E(Rmin) ∝ 1√
n

(2.1)

A detailed derivation of the above relation is given in Appendix A. Placing

sensors on a predetermined grid results in a lower E(Rmin) than distributing

sensors randomly. However, if node failures are taken into account, we surmise

that Rmin may deteriorate more drastically in a deterministic scheme after a

certain number of sensor nodes become defunct. This subject is not pursued

further in this dissertation.

2.2.3 Minimum mean square error estimation

The distortion measure is defined over n estimations, d(X, X̂) = 1
n

∑n
i=1(Xi −

X̂i)
2. The raw data Yi observed by the sensor that is closest to the source is sent

back to the fusion center with the quantization distortion constraint Dq. When

optimal coding that attains the rate-distortion bound is used, the quantization

noise Zq is a Gaussian random variable with variance Dq, independent of X and
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Zi. Assume that the signal received at the fusion center is Y . Arbitrarily low

communication error can be achieved as long as the source coding rate R is less

than the link capacity W .

Zq ∼ N (0, Dq)

Y = Yi + Zq = aiX + Zi + Zq

R =
1

2
log

(
σ2

Yi

Dq

)
≤ W (2.2)

The optimal estimator at the fusion center is a linear estimator [Say03], which is

also the best that can be done given that the source X and received signal Y are

both Gaussian.

X̂ =
aiσ

2
XY

a2
i σ

2
X + σ2

Z + Dq

(2.3)

D(ai) = EX,Zi,Zq [(X̂ −X)2] =
σ2

X(σ2
Z + Dq)

a2
i σ

2
X + σ2

Z + Dq

As the data from the sensor that is closest to the source is used, ri = Rmin, the

distortion is computed by taking the average with respect to Rmin.

D(n) = ERmin

[
σ2

X(σ2
Z + Dq)

a2
i σ

2
X + σ2

Z + Dq

]
. (2.4)

with a communication cost of Rg = R, Eq. (2.2), where Rg indicates the global

transmission rate between the sensor and fusion center. This is distinguished from

Rl, the rate among sensors and local fusion centers with bounded transmission

range. Note that it is usually desirable to make Zq and Zi about the same.

Therefore, we can select

R ≈ 1

2
log

(
σ2

Y

σ2
Z

)

2.2.4 Local fusion to reduce sensing error

When the error due to sensing is much larger than the achievable quantization

error Dq, more than one sensor’s observations can be used to estimate X such
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that a lower distortion bound is achieved. Consider Nm sensors that are in the

vicinity of the source. Each sensor has an observation of the source. Instead

of sending all the observations to the global fusion center, we obtain a refined

estimate locally, and transmit this value. The resulting estimate, mean square

error and transmission cost are as follows assuming that the local fusion center

knows the ai’s of the surrounding sensors.

X̂ =
σ2

X

∑Nm

i=1 ai(Yi + Zli)

Dl + σ2
Z + σ2

X

∑Nm

i=1 a2
i

(2.5)

D =
(Dl + σ2

Z)σ2
X

Dl + σ2
Z + σ2

X

∑Nm

i=1 a2
i

+ Dg (2.6)

Rg =
1

2
log

(
σ2

X̂

Dg

)
(2.7)

Rl =
Nm∑
i=1

1

2
log

(
σ2

Yi

Dl

)
(2.8)

Rg is the rate required to transmit to the global fusion center with distortion

constraint Dg, and Rl is the total rate for transmitting to the local fusion center

with distortion constraint Dl. Also, we assumed every Yi is corrupted by the

quantization noise Zli, which is zero mean and has variance Dl. The average

D here is related to the distances between the source and the Nm neighboring

sensors. In principle, we can find the probability density function of all ri’s and

evaluate the mean distortion.

The local transmission cost can be reduced by noticing that the observations

at separate sensors are correlated (Section IV, [PP03]). This is hence a problem of

rate distortion coding with side information [WZ76]. Specifically, for a Gaussian

source [Ooh97], the following local transmission rate is achievable assuming the

first node serves as the local fusion center.

Rl =
Nm∑
i=2

1

2
log

[
σ2

Yi

D
(1− ρ2

i )

]
(2.9)

24



ρi =
a1aiσ

2
X√

(a2
1σ

2
X + σ2

Z)(a2
i σ

2
X + σ2

Z)

Note that the rate can be further reduced, if received information from other

sensors is used as side information as well. As an example, consider σ2
X = 1,

σ2
Z = 0.003162, and a1 = ai = 0.1. This results in ρi = 0.756 and an approximate

rate reduction of 1.231 bits per sample.

2.2.5 Simulations

Considering a single point source appearing in a unit disc, we numerically evaluate

Equation (2.4) to show the dependence of optimal distortion on the size of the

sensor network and quantization rate. In addition, a practical scheme based on

an optimal scalar quantizer [Max60] is simulated, and the resulting distortion is

compared to the optimal distortion. In practice, since it is impossible to make

the quantization noise behave like N (0, Dq), we choose to obtain a local estimate

of the source at the sensor, then send it to the global fusion center. The result

is shown in Figure 2.1. It can be seen that in a relatively sparse sensor network

(n ≤ 50), the sensing error is the major contribution to the total distortion.

Hence the increase in sensing accuracy (by deploying more sensors) leads to a

significant drop in distortion. As the sensor network gets denser, quantization

error due to insufficient rate starts to dominate, and a rate increase affects the

distortion more. Besides, as the quantization rate increases the distortion gap

between Max and optimal quantizers diminishes.

Fig. 2.2 compares the estimation distortion when single and multiple observa-

tions are used to compute X̂. As shown, the distortion can be effectively reduced

by using multiple independent observations. It is also obvious that the observa-

tions from the initial few additional sensors provides the most gain, and the rate

of distortion reduction reduces as the number of observations increases.
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Figure 2.1: Comparison of the distortion of a Max quantizer and the optimal

quantizer: σ2
X = 1, σ2

Z = 0.0032, κ = 500. Labels are interpreted as follows.

“M/O, r”: Max/optimal quantizer with rate r bits per sample; “Infinite rate”:

qantizer with infinite rate.

2.3 Distributed Sources: Transmitting Data Across the

Network

We now look at the distortion due to quantization when transmitting to the

fusion center the sensor observations made for a distributed source. When ob-

serving a single point source, the sensing error often dominates since a relatively

small amount of information needs to be transmitted to the global fusion cen-

ter. However, there is a great amount of information embedded in a distributed

source. Thus a compromise often needs to be made between the reduction of

quantization error and the constrained network resources. On the other hand,

due to the spatial correlation embedded in a distributed source, it is possible to
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significantly reduce the rate at which sensors transmit to the global fusion center,

instead of transmitting at the raw information rate accumulated at sensors. Usu-

ally attaining this reduction entails intensive local interactions among sensors.

This kind of tradeoff is desirable because the energy or capacity constraint on

global transmissions (between sensors and global fusion center) is far more severe

than local transmissions (among sensors and local fusion centers), whose range is

bounded [PP03]. The minimum rate required for distributed sources under cer-

tain error constraints, i.e. the rate-distortion problem, has received a fair amount

of research focus in the image processing literature [Sak71] [Dav72]. A number

of results can be borrowed from there. However, we should point out that the

minimum rates are harder to achieve in sensor networks because of their distrib-

uted nature. That is, the encoder at each sensor compress its data independently

without knowing what happens at other sensors.
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In engineering practice, real continuous distributed sources are never fully

observable. The data streams collected by sensors and processed by digital com-

puters are always discrete, and comprise a finite collection of points. In this

section, we consider the problem of coding N correlated point source observa-

tions, which can be considered as the individual observations of a distributed

source made by N sensors, given certain distortion constraints.

2.3.1 Compressing correlated point sources

Consider N point sources X = {Xi, i = 1, 2, . . . , N} in the space. Each source is

monitored by a sensor, and the measurement at sensor i is given by Yi = aiXi+Zi,

which is the attenuated signal plus noise. Collectively, we have Y = {Yi, i =

1, 2, . . . , N}. At discrete times, the measurements Y 1
i , Y 2

i , Y 3
i . . . at each sensor

are zero-mean i.i.d. random variables. The samples Y n
1 , Y n

2 , . . . , Y n
N measured at

the same time are correlated with covariance matrix QN , whose positive eigen-

values are given by λ1, λ2, . . . , λN . We assume nothing else is known of the

probability distribution of Y. Therefore, we are facing the problem of jointly

coding the i.i.d. blocks of N samples generated from a class of random variables

with the distortion requirement

E[d(Y, Ŷ)] ≤ Dq. (2.10)

For the distortion measure defined as d(Y, Ŷ) = 1
N

∑N
i=1(Yi − Ŷi)

2, it can be

shown that the superior of the minimum rate of this class of random variables

is attained when Y is Gaussian [Sak70] [Tel99]. Thus, to be able to code this

whole class of random variables and satisfy the given constraint, the minimum

rate required is [Dav72] [Sak70]:

Rg =
N∑

i=1

1

2
log

(
λi

min[λi, D∗]

)
; (2.11)
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Dq =
1

N

N∑

i=k

min(λi, D
∗) (2.12)

in which Dq is the distortion bound in Eq. (2.10). The value of D∗ needs to be

appropriately set according to Eq. (2.11) and (2.12). Consider the case when the

distortion is small such that Dq ≤ mini=1,··· ,N λi. Define DN = DqI. where I is

an N by N identity matrix. This is to impose the same quantization distortion

constraint at all sensors.

Rg =
N∑

i=1

1

2
log

λi

Dq

=
1

2
log

| QN |
| DN | (2.13)

where

QN = E
(
YYt

)
, Y =




a1X1 + Z1

a2X2 + Z2

...

aNXN + ZN




.

2.3.2 One dimensional Brownian field

As a special case, we consider a one dimensional Brownian field Xu(k) defined on

u ∈ [0, 1], using the same setting as in [Ser02]. For fixed k, Xu(k) is a Brownian

motion with σ2
X ; for fixed u, Xu(k), k = 1, 2, · · · , are i.i.d. Gaussian random

variables ∼ N (0, σ2
Xu). The N measuring points are uniformly placed on [0, 1],

and the attenuation factor is assumed to be unity.

Y =




1 0 . . . 0

1 1 . . . 0
...

...
...

1 1 . . . 1







w1

w2

...

wN




+




Z1

Z2

...

ZN




= HW + Z.

wi ∼ N (0,
σ2

X

N
), Zi ∼ N (0, σ2

Z), i = 1, 2, · · · , N
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QN =
σ2

X

N
HHt + σ2

ZI

In this case, if we require Dq ≤ σ2
Z , which means that the quantization error

is no more than the noise variance, we have Dq < λi. The determinant of the

covariance matrix can be evaluated to be the following.

|QN | =
(

σ2
X

N

)N (
ArN

1 + BrN
2

)
for N ≥ 1. (2.14)

where

A =
1

r1

(
1 + ν

2
+

1 + 3ν

2
√

1 + 4ν

)
, B =

1 + ν − A

r2

,

r1,2 =
(1 + 2ν)±√1 + 4ν

2
, ν =

N

σ2
X/σ2

Z

.

So the minimum distortion due to quantization is:

Dq =
σ2

X

N

(
ArN

1 + BrN
2

)1/N
2−2Rg/N (2.15)

To achieve Dq ≤ σ2
Z , the rate Rg needs to grow at least linearly with N , the

number of measurements. On the other hand, N should be appropriately chosen

according to the sensing noise level σ2
Z . Rg’s linear growth with N is expected

because at each sensor, at least one bit is required to transmit the noise Zi, given

Dq ≤ Zi. If such Rg is not available, appropriate Dq should be designed to satisfy

the capacity constraint in Eq. (2.11).

2.3.3 A two dimensional isotropic random field

The rate-distortion function is evaluated for a two dimensional isotropic random

field with correlation function e−|r|/dc , where dc is the coherence distance. Nine

sensors are placed on a square grid, and s is defined as depicted in Fig. 2.3.

The minimum rates required for transmitting all the data collected at these nine

sensors to the global fusion center are plotted against the distortion constraint
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in Fig. 2.4. It can be seen that as the distortion requirement loosens, the data

rate drops, which is expected. In addition, when sensors become closer to each

other (with s decreasing), the correlation among sensors increases. As a result,

the rate at which data are transmitted to the global fusion center decreases. This

rate reduction is accomplished by local fusion.

s

Figure 2.3: Nine sensors in a random field.
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Figure 2.4: The rate-distortion functions under different coherence distance:

ai = 1, σ2
X = 1, σ2

Z = 0.01. Solid line: s/dc = 0.4; dashed line: s/dc = 0.7;

dotted line: s/dc = ∞.
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2.4 Distributed Source: Reconstruction Using Cubic Spline

2.4.1 Overview

Assume that the distributed source in space to be observed is continuous or at

least piecewise continuous (for the latter, we consider one continuous piece of the

sample path). We consider using splines to fit the source based on the observa-

tions at discrete points. While it is generally assumed that the measurements at

prescribed points have no error, and the distortion is all due to the interpolation

process, in this section, we examine how sensing and quantization errors at these

sampling points will affect the outcome of interpolation.

By reconstructing the source using splines, we implicitly assume that the

source is deterministic. However, when seeking the limits of source coding rate

in the previous section, we considered the source to be a random process. The

reconciliation of these two viewpoints is achieved as follows. First, minimum

source rates are obtained only by considering jointly coding long blocks of i.i.d.

realizations of sources, while source reconstruction is performed for one particular

realization of the source. Second, evaluating the minimum rate demands certain

knowledge about the distribution of the source field. However spline fitting is

able to take advantage of the correlation among local observations embedded in

the continuity of the source. Third, information embedded in a distributed source

is never completely transmitted to the fusion center. For a continuous sample

path, spline fitting makes reasonable estimation on the missing data providing

that the samples are closely spaced.

The derivation of this section is based mostly on the cubic spline theory

presented in [Ahl67]. Two types of distortion measure are considered here:

d(X, X̂) = |X − X̂| and d(X, X̂) = (X − X̂)2. For simplicity, we first con-
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sider the cubic spline in a one-dimensional setting. The result is then extended

to two-dimensional reconstruction.

2.4.2 Cubic spline fitting

We first consider a one dimensional cubic spline. Given the locations of (N + 1)

sampling points and the set of associated ordinates

∆ : a = x0 < x1 < · · · < xN = b.

Y : y0, y1, · · · , yN .

the spline function on [xj−1, xj], (j = 1, 2, . . . , N) is defined as follows

S∆ =Mj−1
(xj − x)3

6hj

+ Mj
(x− xj)

3

6hj

+

(
yj−1 −

Mj−1h
2
j

6

)
xj − x

hj

+

(
yj −

Mjh
2
j

6

)
x− xj−1

hj

(2.16)

in which hj = xj − xj−1. Mj = S ′′∆(xj) are the moments of the spline, and they

satisfy the following set of equations [Ahl67]:




2 λ0 0 . . . 0

µ1 2 λ1 . . . 0

0 µ2 2 . . . 0
...

...
...

...

0 0 0 . . . 2







M0

M1

M2

...

MN




=




b0

b1

b2

...

bN




(2.17)

2.4.3 Approximation error

We assume that the curve to be fitted belongs to Cn[a, b], n = 0, 1, 2 and 3,

i.e. having nth continuous derivative (by 0, we mean the curve is continuous),

and satisfies Hölder’s condition to the order of α (0 < α ≤ 1). Given converging
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meshes ∆k (limk→∞ ‖ ∆k ‖= 0) and appropriate end conditions, the interpolation

error uniformly converges with respect to x in [a, b] as follows (Theorem 2.3.1, 2,

3 and 4 [Ahl67]):

e1 = |f(x)− S∆(x)| ≤ K1 ‖ ∆k ‖n+α, for some constant K1

However, the spline reconstructed at the fusion center is not S∆(x) but a shifted

spline Se
∆(x) due to the sensing and quantization error at the sampling points.

It remains to show how much the interpolation deteriorates given that the noise

at prescribed points is bounded by: E|δyi| ≤ esq and E(δyi)
2 ≤ Dsq. We consider

the absolute error first.

e = E|f(x)− Se
∆(x)| ≤ |f(x)− S∆(x)|+ E|S∆(x)− Se

∆(x)| = e1 + e2 (2.18)

Note that since both f(x) and S∆(x) are considered deterministic, the mean

operation disappears for e1. As for e2, we have the following:

e2 = E

∣∣∣∣∣
N∑

i=0

∂S∆

∂yi

δyi

∣∣∣∣∣ ≤ esq

N∑
i=0

∣∣∣∣
∂S∆

∂yi

∣∣∣∣ (2.19)

In Appendix B, it is shown that for proper end conditions λ0, µN < 2 and evenly

distributed meshes, which means that hj/hj+1, j = 1, · · · , N − 1 are bounded,

the following relation holds.

β =
N∑

i=0

∣∣∣∣
∂S∆

∂yi

∣∣∣∣ ≤ K2, for some finite number K2

Hence the total absolute error is bounded by

e ≤ e1 + βesq (2.20)

Next we consider the mean square error. Since data is locally fused before it

is transmitted to the global fusion center, the correlation between the noise δyi

at different sensors is not necessarily zero, but it is bounded by the following:

E(δyiδyj) ≤
√

E(δyi)2E(δyj)2 ≤ Dsq
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We first find a bound on the mean square error between the original and noise

corrupted splines with respect to x ∈ [a, b].

E [S∆(x)− Se
∆(x)]2 = E

(∑
i

∂S∆

∂yi

δyi

)2

=
∑

i

(
∂S∆

∂yi

)2

E(δyi)
2 + 2

∑

i6=j

(
∂S∆

∂yi

∂S∆

∂yj

)
Eδyiδyj

≤
(∑

i

∂S∆

∂yi

)2

Dsq

≤ β2Dsq

Now, we evaluate the total mean square error.

D = E [(f(x)− S∆(x)) + (S∆(x)− Se
∆(x))]2

= [f(x)− S∆(x)]2 + 2 [f(x)− S∆(x)] E [S∆(x)− Se
∆(x)]

+E [S∆(x)− Se
∆(x)]2

≤ e2
1 + 2βe1esq + β2Dsq

2.4.4 Simulation and extension

In the following simulation, we use a cubic spline to fit a sinusoid function based

on noise corrupted data. Figure 2.5 shows error e2 plotted against the noise

due to sensing and quantization esq. The relation in this case appears to be

approximately linear. In the simulation, we have kept mesh size relatively small

so that e ≈ e2.

This result is readily extensible to a two-dimensional doubly cubic spline

defined on a rectangular grid, ∆t : a = t0 < t1 < · · · < tN = b, ∆s : c =

s0 < s1 < · · · < sM = d, noticing that a doubly cubic spline can be obtained

by partial splines on t and s (p. 238 [Ahl67]). The resulting error after twice
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Figure 2.5: e2 plotted against sensing and quantizing error esq.

one-dimensional interpolation is thus bounded by:

e ≤ e1s + βs(e1t + βtesq) (2.21)

where, βi, e1i, (i = s, t) are the corresponding parameters on s and t coordinates.

A similar derivation applies to the mean square error.

2.5 Conclusion

In this chapter, we discussed the distortions due to sensing, quantization and in-

terpolation in sensor networks by modelling distributed phenomena as correlated

point sources.

Sensing error is determined by measurement noise and signal attenuation,

which can be reduced by improving sensor coverage and increasing the number

of observations. Achieving a reasonable coverage for a large sensing field often
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incurs a enormous number of sensors. An increasingly popular practice is to

employ mobile sensors. Such sensors can move in their patrol area and take

measurements at specified locations, which enable them to move close to the

subject of interest and take high SNR (signal noise ratio) measurements.

When observing a distributed source, network capacity may become severely

strained due to the high raw information rate. In this case, local cooperation and

fusion based on correlations among nearby observations can be used to bring down

the communication rate, which is bounded by the rate-distortion theory accord-

ing to appropriate distortion requirements. Despite its importance in resource

conservation, achieving a high level of data compression in sensor networks is far

more challenging than in image and video processing owing to the distributed

nature of the problem.

Cubic splines are used as the algorithm to reconstruct distributed and con-

tinuous sources. The total reconstruction error was found to converge at least on

the same order of sensing and quantization error given appropriate mesh sizes.

Thus, the scalability of distributed sensor networks where certain physical

phenomena are observed and reconstructed is closely tied to the fidelity con-

straints demanded by the system. Furthermore, correlation among data streams

produced at different sensors offers the opportunity of local processing, which can

greatly reduce power/bandwidth consuming long-range data transmissions.

37



CHAPTER 3

Adaptively Sampling Distributed Fields with

Mobile Sensors

3.1 Introduction

In this chapter, we consider the problem of sampling distributed phenomena.

The introduction of mobile sensors, for example the NIMS (Networked InfoMe-

chanical System) [KPS04b], has generated an interesting set of new problems in

wireless sensor networks. Advantages of the mobility have been explored in, for

example communication [GT02], localization [SH03], security [CHB03], and sys-

tem reliability [KKP05]. As we discussed in the previous chapter, it is difficult

to cover a relatively large region using static sensors. However, when equipped

with mobility, a few sensors can carry out the task of collecting measurements

within their patrol area, which would otherwise require a large number of static

sensors. Moreover, mobile sensors are especially suitable for observing heteroge-

neous and slowly time-varying phenomena owing to their ability to sample the

field at adjustable and arbitrary spatial density.

A typical NIMS setup in a natural environment is illustrated in Fig. 3.1

[RPK04]. The sensor node can move vertically and horizontally to prescribed

locations within its patrol area to collect samples. Three-dimensional mobility is

possible by devising more sophisticated cableways. In such an ecological system,
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Figure 3.1: A NIMS platform in a natural environment.

several parameters, such as temperature, humidity, and sunlight illumination, are

of interest. Here, we concentrate on measuring sunlight intensity and reconstruct-

ing its two-dimensional field subject to a fidelity constraint. Besides offering an

interesting realization of a multi-dimensional statistical field, the distribution of

sunlight under forest canopies plays a crucial role in plant growth, and has been

extensively researched for many years [CP94]. In addition, it is relatively easy to

reproduce the light distribution in a two-dimensional space, with which we can

evaluate the sampling algorithm’s error performance directly.

In a mobile sampling system, major energy expenditure often results from

sensor movement and sample collection. Hence, the total number of measure-

ments provides a first-order indication of the resource that the system consumes.

On the other hand, when the field varies slowly in time (for example, caused by

the movement of the sun) the total number of samples that can be collected for

estimating a field snapshot is restricted by some critical time constant. There-

fore, in addition to meeting the fidelity constraint, the need to build a low-cost

and fast responding system leads to the goal of minimizing the total number of
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samples the sensor needs to collect for a certain task.

Traditional problems in signal processing often begin with a panorama of the

field, and then proceed to compress the complete set of data without violating

the distortion requirement. For instance, image compression and the approach

adopted in [NMW04] fall in this category. Here, the process is reversed. Unless

the source is exhaustively sampled, which is prohibitively expensive in most cases,

we generally possess only partial knowledge about the true field. Therefore, it is

more appropriate to take a statistical approach and consider the probability of

satisfying the fidelity constraint given the incomplete information at hand. New

levels of confidence on whether the fidelity goal has been met can be gained by

collecting more samples. Herein lies the fundamental compromise between our

confidence of achieving the fidelity goal and our willingness to consume more

resource. Furthermore, the heterogeneous nature of the field presents us the

challenge of wisely allocating our limited resource (sampling sites) such that a

high confidence level can be reached as efficiently as possible.

Besides being used for mobile sensors, our adaptive algorithm can also be

applied to distributed networks where sensor nodes are static. In such a network,

the sensors are initially set at standby mode. As the algorithm executes, appro-

priate sensors are woken up to take measurements at the most desirable locations.

The system resource is preserved by waking up as few sensors as possible to carry

out the sensing task. In contrast to the case in the mobile setting, the algorithm

designed for a static network must be suitable for distributed implementation.

During the development of our adaptive scheme in this chapter, we will point out

at appropriate places what modifications are needed such that the algorithm can

be used in such a distributed fashion.

The ecological and environmental importance of solar energy transfer through
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forest canopies has prompted extensive studies on the subject [MRA89] [VP99].

Many papers are devoted to measuring and modelling the distribution of solar

radiation under various canopies [CP94] [RSS98]. Statistical approaches have

been instrumental in the characterization of spatial variation [Cre93] and inter-

polation of sampled data [MM02]. In a sense, the sequential sampling process

can be viewed as an optimal experimental design [Fed72], in which the input

variables (sampling locations) of a series of tests (measurements) are purpose-

fully adjusted such that the system response (the field to be reconstructed) is

observed efficiently. [Raf86] explores this idea in choosing optimal trajectories of

moving sensors based on the Fisher information matrix. However, in this chap-

ter we have adopted a Bayesian approach. A sequential method for estimating

discontinuities in curves and surfaces is discussed in [HM03]. In sensor network

community, [BRY04] and [RPK04] represent preliminary efforts on using mobile

sensors to adaptively sample distributed phenomena.

The rest of the chapter is organized as follows. Section 3.2 describes the

experimental setup that we use to record the two-dimensional sunlight field. Sec-

tion 3.3 presents the adaptive sampling algorithm in detail. Simulation results

are displayed in section 3.4. Section 3.5 concludes the chapter.

3.2 Experimental Setup

Obtaining a complete and accurate account of a two-dimensional sunlight field

using light sensors is very difficult due to the enormous number of sampling

points involved. In our experiment, we use a camera to capture snapshots of the

instantaneous light field, then convert pixel intensity to incident light intensity.

The experimental setup is depicted in Fig. 3.2(a). A flat screen (approxi-
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Figure 3.2: Experimental setup.

mately 100cm×80cm) is placed on the ground. The screen has roughly the same

reflectance ρ over its surface, and provides good scatter reflection. The incident

light Ei(x, y) impinges on the small patch at (x, y), and only ρEi(x, y) is reflected

to the half space. After suffering some path loss as depicted in Fig. 3.2(b), Ec(x, y)

enters camera lens, and is recorded as the pixel intensity Ip(x, y):

Ip(x, y) = fc(|Ec|2) = fc[gp(ρ
2|Ei(x, y)|2, θ(x, y))] (3.1)

where fc(·) is the camera characteristic, gp(·) accounts for the path loss sustained

by the reflected light, and θ is the solid angle depicted in Fig. 3.2(b). The

characteristic curve of our camera, shown in Fig. 3.2(c), is obtained with the help

of a Kodak gray scale. The experimental configuration is recreated in the lab, and

a picture is taken while the screen is placed under uniform illumination. This

image is divided by the images taken under the forest canopy to compensate

for the path loss and nonuniform reflectance of the screen. Experiments were

conducted at the UCLA Sunset Canyon, where the canopy consists of a mixture

of conifers and broadleaves. Note that this is not a practical way of accurately

measuring sunlight distribution in the wild since 1) the natural environment in
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a forest generally does not provide a homogeneous reflecting surface; 2) The

camera’s spectral response to solar radiation may be different from what we

desire. Nevertheless, we consider these recorded fields good enough for testing

our algorithms.

As far as evaluating the performance of adaptive algorithms is concerned,

there is no need to convert Ip(x, y) to |Ei(x, y)|2. The algorithm can operate as

if Ip(x, y) is some real distributed phenomenon. However, working on |Ei(x, y)|2

makes the source statistical model that is to be developed reusable and helps to

simplify the field implementation of algorithms in the future.

The sunlight field in our experiments was discovered to be fairly volatile even

under mild wind conditions, which makes it less meaningful to estimate the in-

stantaneous field using mobile sensors. Instead, we attempt to reconstruct the

mean field averaged over a short period of time (5 ∼ 15 minutes). In practice,

this requires that mobile sensors take multiple readings at each data site to ob-

tain a sample of the mean field. Fortunately, in many applications the average

light intensity received by a small patch of space is more important than the

instantaneous value. Together with the penumbra, this averaging process tends

to create a fairly smooth field. Fig. 3.3 displays two sunlight fields captured in

our experiments. Our ensuing models and simulations are based on these mean

fields reproduced in the computer.

3.3 Adaptive Sampling Algorithm

Fig. 3.4 is the block diagram of our adaptive sampling algorithm. It runs in

iterations. A pool of sampling candidates is maintained and updated each time a

new sampling point is picked. At the beginning of each iteration, a number of data
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Figure 3.3: Two sunlight fields captured in our experiments.
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Figure 3.4: The block diagram of the adaptive sampling algorithm.

sites are selected from the pool based on a MAP criterion. The sensor then moves

to collect measurements at these locations, and reconstructs the field. Based on

these latest samples, the probability of the newly reconstructed field satisfying

the fidelity constraint is evaluated. The algorithm iterates until the confidence of

meeting the distortion requirement is high enough or sufficient samples have been

taken. The rest of this section describes key functional blocks and the algorithm

implementation in detail.

3.3.1 Sampling candidates

In a two-dimensional space, apart from a few scattered sites where measurements

have been taken, there is a large number of potential sampling locations. The
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complexity of optimizing over all potential sites can be rather high, so we maintain

a small pool of site candidates, from which new sampling points are picked.

Given a set of points S, a Delaunay tessellation DT(S) is obtained by con-

necting any two points p, q ∈ S with a line segment if there exists a circle that

passes through p, q and contains no other sites of S. We call the edges of DT(S)

Delaunay edges. DT(S) is the graph-theoretic dual of V(S), the Voronoi diagram

with respect to S, in that two points of S are connected by a Delaunay edge if and

only if their Voronoi regions are edge-adjacent [SU00]. As an example, Fig. 3.5

shows the DT(S) and V(S) of a set of data sites.

(a) Delaunay tessellation (b) Voronoi diagram

Figure 3.5: Delaunay and Voronoi cells.

Denoting by Sk the set of existing sampling sites at iteration k and nk the size

of Sk, we construct DT(Sk), and use as site candidates the centers of Delaunay

cells’ circumcircles. Our choice of sampling candidates is justified by some of

their nice properties. For detailed derivations and other appealing properties,

readers are referred to, for example, [SU00].

First, with little knowledge about the true field in the gaps between existing

samples, the minimum distances from candidates to existing sampling sites should

be as large as possible to yield maximum information based on the maximin
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design [JMY90]. If we consider the circumcircles of Delaunay cells the largest

circles that can be fitted in such gaps, our scheme follows this principle by placing

potential sites at the centers of these sampling gaps.

The size of the candidate pool strongly affects the complexity of subsequent

pruning processes. The total number of Delaunay cells is no more than (2nk− 5)

at iteration k. In addition, the density of potential sites in different areas follows

that of existing samples. This is desirable assuming that the distribution of

current samples correctly reflects the field heterogeneity.

Parallel algorithms that run in O(nk log nk) time and suit distributed imple-

mentation exist for finding DT(Sk). Moreover, when a new candidate is added to

an existing base, incremental schemes, that update the pool in the neighborhood

of the new site, require even less computation.

For the Delaunay cell corresponding to the mth candidate in DT(Sk), we

define Ok
m its set of vertices, i.e. the sampling points that are closest to the mth

candidate. Denoting by Vk
j the Voronoi cell corresponding to the jth sampling

site during iteration k, then the mth candidate at iteration k is also the common

vertex of Voronoi cells Vk
j , j ∈ Ok

m, which can be easily seen from Fig. 3.6.

One minor complaint about the above choice of potential data sites might

be that the candidate sometimes falls outside the corresponding Delaunay cell.

This adds some complexity in a distributed implementation where every data

site corresponds to a sensor and each Delaunay cell acts also as a small cluster

of local cooperation. An alternative is to use the centroids of Delaunay cells

as potential sites. This violates the maximin design principle, but retains most

of the desirable properties of the Delaunay cells. Lastly, in our experiment,

simple rules as in Eq. (3.2) are employed when the potential site (xc, yc) falls

outside the boundaries of the sensor’s rectangular patrol area x ∈ [xmin, xmax]
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and y ∈ [ymin, ymax].

x′c =





xmin if xc < xmin

xmax if xc > xmax

; y′c =





ymin if yc < ymin

ymax if yc > ymax

(3.2)

3.3.2 Field reconstruction

In this chapter, we ignore the measurement error, and interpolation is used to re-

construct the field. Two methods are presented. One is the thin plate spline that

requires the complete data set and the other is a piece-wise linear interpolation

suitable for distributed implementation.

3.3.2.1 Thin plate spline

The thin plate spline is the extension of the cubic spline to two dimensions. It

is suitable for scattered data [HD72, Boo89]. Supposing the true field is f(x, y),

we approximate it with

s(x, y) = a0 + a1x + a2y +
N∑

i=1

wiφ(ri) (3.3)

where

φ(ri) = r2
i log r2

i , r2
i = (x− xi)

2 + (y − yi)
2

The coefficients a0, a1, a2, and wi, i = 1, · · · , n are determined by interpolating

the spline at n scattered data points (xi, yi), i = 1, · · · , n

s(xi, yi) = f(xi, yi), i = 1, · · · , n

and enforcing the equilibrium equations:

n∑
i=1

wi = 0,
n∑

i=1

xiwi = 0,
n∑

i=1

yiwi = 0
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This set of linear equations can be concisely expressed in the matrix form


 Φ P

P T 0





w

a


 =


F

0


 (3.4)

where

Φij = φ(rij), r2
ij = (xi − xj)

2 + (yi − yj)
2, i, j = 1, · · · , n

P =




1 x1 y1

...
...

...

1 xn yn


 , w =




w1

...

wn


 , a =




a0

a1

a2


 , F =




f(x1, y1)
...

f(xn, yn)




Suppose there are a total of nk samples after N new samples are collected

at iteration k. At first glance, constructing the thin plate spline demands the

inversion of a matrix of size (nk + 3), which requires O[(nk + 3)3] computation.

However, since only N new data sites are added at iteration k, a careful imple-

mentation that makes use of the results from earlier stages runs in O[(nk + 3)2]

time when N ¿ nk.

The bending energy defined as follows has been used by many to characterize

the roughness of a two-dimensional function.

I(s) =

∫∫

R2

[(
∂2s

∂x2

)2

+ 2

(
∂2s

∂x∂y

)2

+

(
∂2s

∂y2

)2
]

dx dy (3.5)

One interesting property of the thin plate spline s(x, y) is that its bending energy,

given as follows, is minimum among all functions that agree with f(x, y) at all

sampling points (xi, yi), i = 1, · · · , n [Pow94].

I(s) =
N∑

i=1

wis(xi, yi) = wΦwT (3.6)

This is a result of s(x, y) being the physical shape that a weightless elastic plate

takes when it is bent by point forces wi at (xi, yi) [LL86]. Consequently, the
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bending energy of reconstructed fields during successive iterations of our adaptive

algorithm is non-decreasing if the thin plate spline is used. Moreover, this non-

decreasing roughness is closely related to the thin plate spline’s convergence to

the true field as is observed by this result from [Pow94].

Theorem 3.3.1 (Uniform Convergence of Thin Plate Spline) Suppose (x, y)

is inside or on an edge of a triangle, whose vertices are any three of the inter-

polation points. Denoting by h the length of the longest side of the triangle, the

error of the thin plate spline is bounded by

|f(x, y)− s(x, y)| ≤ h
√

[I(f)− I(s)](log 3)/(24π) (3.7)

This suggests that we densely sample the region where the roughness is high so

that I(s) is maximized given the total number of samples. Intuitively, this is

equivalent to placing more samples at regions where the field has high spatial

variation.

3.3.2.2 Piece-wise linear interpolation

Although piece-wise linear interpolation is less precise than the thin plate spline,

it is suitable for distributed implementation. In this method, a Delaunay triangu-

lation is first constructed from the Delaunay tessellation by arbitrarily splitting

the non-triangle Delaunay cells into triangles [OBK00]. Each Delaunay trian-

gle then forms an reconstruction element, and a linear function of x and y are

fitted in the triangle based on the samples at triangle vertices. In this local el-

ement, only the information from sensors on the vertices of the corresponding

Delaunay triangle is needed for the interpolation. Specifically, in triangle i, the

interpolating function is given by:

zi(x, y) = aix + biy + ci
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Since Delaunay triangles are used, this piece-wise linear interpolation minimizes

the following roughness measure among all possible triangulations [SU00].

∑
∆∈T

|∆|(α2 + β2)

with |∆| being the area of triangle ∆, and α and β being the slopes of the

corresponding triangle in 3-space.

3.3.3 Adaptive sample selection

3.3.3.1 MAP sample selection

When continuous analog signals are to be recorded in finite-length digital codes,

certain fidelity constraints must be furnished for the problem to be tractable.

Denoting by Dom the two-dimensional domain where sampling takes place, we

consider following distortion requirements:

max
(x,y)∈Dom

|f(x, y)− s(x, y)| ≤ Dmax (3.8)

∫∫

Dom

[f(x, y)− s(x, y)]2 dx dy ≤ Dave · Area(Dom) (3.9)

where f(x, y) is the actual field, and s(x, y) is the reconstructed function. At

kth iteration, we impose the same error requirements on each Voronoi cell (Vk
i ,

i = 1, 2, · · · , nk), and define the following events:

Uk
i : Fidelity constraint is unsatisfied in Vk

i .

Fidelity constraints are satisfied in Dom if they are met in all Voronoi regions.

Note that the inverse of this statement is not true. Hence, requiring fidelity

constraints to be satisfied in all Voronoi regions imposes more stringent conditions

than what Eq. (3.8) and (3.9) imply.
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Denote by sk(x, y) the reconstructed field at iteration k, and ε a small quantity

that is appropriately set according to the fidelity constraint. When a sample

is collected at (xi, yi) during iteration k, besides being used to obtain a new

approximation of the true field, this sample also reveals important information

on how well sk−1(x, y) approximates f(x, y) in the vicinity of (xi, yi). To formalize

the idea, we say a test T k
i is conducted at (xi, yi), and define

T k
i =





G |f(xi, yi)− sk−1(xi, yi)| > ε

L |f(xi, yi)− sk−1(xi, yi)| ≤ ε

Since multiple samples are often collected during one iteration, T k generally con-

sists of several tests at different data sites.

T k = {T k
i1
, · · · , T k

iN
}

in which i1, · · · , iN are the corresponding candidates where the tests are con-

ducted, and N is the number of new samples collected during each iteration.

Accumulating all the tests up to time k, we define:

Zk = {T k, T k−1, · · · , T 1}

At iteration k, due to insufficient knowledge about the true field, we are

generally not completely sure about whether the fidelity constraint is satisfied in

Vk
j . However, we can define P (Uk

j |Zk) i.e. the probability of Uk
j given all the past

tests. If we decide to continue sampling, appropriate new data sites need to be

picked from the candidate pool. Since each selected sampling site will create a

new Voronoi cell at the next iteration, a MAP criterion prompts us to choose the

potential data site with maximum P (Uk+1
i |Zk) among all candidate sites, which

simply indicates that the probability of cell Vk+1
i fails the fidelity requirement is

the most given our partial information up to iteration k. Supposing the new cell
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Vk+1
i corresponds to the candidate m at iteration k, then Vk+1

i lies mostly within

Vk
j , j ∈ Ok

m, (recall that candidate m is the common vertex of Vk
j , j ∈ Ok

m).

Therefore, a weighted sum is used to compute this unknown probability.

P (Uk+1
i |Zk) =

∑

j∈Ok
m

µjP (Uk
j |Zk) (3.10)

The weight µj characterizes the influence of Vk
j on Vk+1

i , and is defined as

∑

j∈Ok
m

µj = 1 and µj ∝ (dj1 + dj2)/rj (3.11)

in which dj1, dj2, and rj are defined as in Fig. 3.6. Note that rj is the same for

all vertices unless the center of the Delaunay cell falls outside Dom.

j

(a) A three node Delaunay cell (b) A four node Delaunay cell

r
j

d
j1

d
j2

j r
j

d
j2

d
j1

m m

candidates

existing samples

Figure 3.6: Delaunay cells are enclosed by dashed lines. Solid lines without arrows

are the boundaries of Voronoi cells. j ∈ Ok
m.

Once new data sits are chosen, samples are collected, and the spline is com-

puted. Before proceeding to the next iteration, it remains to update P (Uk+1
i |Zk+1)

by assimilating the new information revealed from the evaluation of T k+1. The

importance of this procedure invites a careful analysis.
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3.3.3.2 Probability update

The probability is updated as follows based on the Bayesian framework:

P (Uk+1
i |Zk+1) = P (Uk+1

i |T k+1, Zk)

=
P (Uk+1

i , T k+1|Zk)

P (T k+1|Zk)

=
P (T k+1|Zk, Uk+1

i )P (Uk+1
i |Zk)

P (T k+1|Zk)
(3.12)

It is very difficult to compute the exact value of each quantity in Eq. (3.12).

Instead, we design effective schemes to approximate this updating procedure.

If Vk+1
i corresponds to a newly collected sample at iteration k+1, P (Uk+1

i |Zk)

computed from Eq. (3.10) is used. Otherwise, we set P (Uk+1
i |Zk) = P (Uk

j |Zk),

where Vk+1
i contains the same data site as Vk

j .

Literally, P (T k+1|Zk, Uk+1
i ) is the probability of T k+1 taking a certain set of

values (Gs and Ls) given all the samples up to iteration k and the knowledge that

the fidelity constraint is unsatisfied in Vk+1
i . If Vk+1

i is far away from the new

data sites sampled at iteration k +1, the status of Vk+1
i is expected to exert little

influence on the outcome of T k+1. Hence, P (T k+1|Zk, Uk+1
i ) ≈ P (T k+1|Zk), and

P (Uk+1
i |Zk+1) is roughly the same as P (Uk+1

i |Zk). Intuitively, this means that

T k+1 sheds little information on Voronoi cells far away from the testing sites.

Assume Vk+1
i is created by a new sample collected at candidate m during

iteration k + 1, and T k+1
m is the corresponding test conducted on the site. Fixing

the values of the remaining tests in T k+1, we examine the effect of T k+1
m on Vk+1

i .

For simplicity, we keep only T k+1
m in writing T k+1. If the error bound ε is properly

set according to the fidelity constraint, we expect

P (T k+1
m = G|Zk, Uk+1

i ) ≈ 1; P (T k+1
m = L|Zk, Uk+1

i ) ≈ 0.

Therefore, P (Uk+1
i |Zk+1) increases when T k+1

m = G, and decreases when T k+1
m =
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L. The outcome of T k+1
m has similar but less significant effects on Voronoi cells

inherited from Vk
j , j ∈ Ok

m, since they are adjacent to V k+1
i .

In summary, for each test T k+1
m , we update the probability as follows. If Vk+1

i

is the new cell created at candidate site m,

P (Uk+1
i |Zk+1) =





κg

∑
j∈Ok

m
µjP (Uk

j |Zk) if T k+1
m = G;

κl

∑
j∈Ok

m
µjP (Uk

j |Zk) if T k+1
m = L.

(3.13)

Suppose the data site of Vk+1
i is inherited from Vk

j . If j ∈ Ok
m,

P (Uk+1
i |Zk+1) =





κ
µj
g P (Uk

j |Zk) if T k+1
m = G;

κ
µj

l P (Uk
j |Zk) if T k+1

m = L;

(3.14)

Otherwise,

P (Uk+1
i |Zk+1) = P (Uk

j |Zk) (3.15)

where µj are determined by Eq. (3.11), and κg > 1, κl < 1 are parameters

properly set according to ε and the fidelity constraint. Using the same κg and κl

for all tests in T k+1 implicitly assumes that cells are uniform. However, Vk+1
i , i =

1, · · · , nk+1, may differ from one another significantly in size and local variation.

To account for such heterogeneity, we consider the source statistical model and

field roughness.

3.3.3.3 Heterogeneity

Since it is more convenient to gauge the effect of heterogeneity on P (Uk+1
i |Zk)

directly, we have elected to apply a compensating factor hi to Eq. (3.10) and

avoid interfering with the probability update. Define

Ci = hiP (Uk+1
i |Zk) (3.16)
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We pick the candidate that maximizes Ci as the new sampling site.

The source statistical model is constructed to characterize the uncertainty in

the gaps between scattered sampling points. Supposing p and q are two points

that are d away from one another, and the light intensity at p is known, we use

f̂(xq, yq) = f(xp, yp) to estimate the light intensity at q. The mean square error

γ(d) of this simple estimator is used to quantify the spatial correlation:

γ(d) = E[f(xp, yp)− f(xq, yq)]
2,

√
(xp − xq)2 + (yp − yq)2 = d

The light environment under forest canopies consists of low-intensity background

punctuated by sunlight flecks. The areas where light intensity is above certain

threshold are often near the transition region where spatial variation tends to be

high. This is confirmed by Fig. 3.7(a), where γ(d) is estimated based on the data
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Figure 3.7: Source models.

of eight sets of experiments, and we distinguish 1) dark: f(xp, yp) ≤ It; 2) bright:

f(xp, yp) > It. In both cases, γ(d) is fitted using a rational quadratic model:

γi(d) =
aid

2 + bid

1 + cid2
(3.17)

where i = 1 or 2 depending on whether f(xp, yp) is dark or bright. The statistical
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model is incorporated in our algorithm by defining the compensating coefficient:

hs
i =

∑

j∈Ok
m

µjγj(dij, f(xj, yj), dij =
√

(xi − xj)2 + (yi − yj)2 (3.18)

where m is the candidate corresponding to Vk+1
i , µj are the weights in Eq. (3.10),

and f(xj, yj) determines which model in Eq. (3.17) is used.

Another way of quantifying the heterogeneity is inspired by our observation

in section 3.3.2.1. The field roughness estimated by multiplying the second order

derivative of the reconstructed field at site candidate (xi, yi) with the cell area

∆i is used as a compensating factor.

hr
i =

[(
∂2s(xi, yi)

∂x2

)2

+ 2

(
∂2s(xi, yi)

∂x∂y

)2

+

(
∂2s(xi, yi)

∂y2

)2
]

∆i (3.19)

Computing hr
i is easy when the thin plate spline is used. When the second order

derivative is not readily available (say if we use the piecewise linear interpolation

for field reconstruction), techniques in [FJ89] can be used.

When source model and field roughness are both used, it is unclear what their

relative weights should be. In our algorithm, two sets of samples are selected

at each iteration: one is compensated by the source model and the other by

roughness. Maintaining such diversity also helps to decrease the probability of

large bias in case one approach fails miserably.

In addition, we often have some prior knowledge about the smoothness of the

field. In Fig. 3.7(b), the two-dimensional FFT of a sunlight field is plotted. It is

evident that most of its energy is concentrated in a low frequency band. If this

piece of information is available, some cutoff rate can be specified as an upper

bound on the spatial sampling density. This can result in considerable saving of

system resources because otherwise we have to oversample at least once in each

cell to reach a high level of confidence in cell fidelity.
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3.3.4 Algorithm implementation

The algorithm starts with an initial set of sampling sites. Set k = 1, and execute

the following steps.

1. Collect samples, and reconstruct the field. Set P (U1|Z1) for initial data

sites. Determine the sampling candidates.

2. Compute P (Uk+1
i |Zk) for all candidates according to Eq. (3.10).

3. Compute hs
i and Cs

i = hs
iP (Uk+1

i |Zk) according to the source statistical

model.

(1) Pick the candidate that maximizes Cs
i , and Ns = Ns − 1.

(2) Update the candidate pool and Cs
i by considering the newly picked

data site as an existing sampling point. If Ns > 0, go back to (1).

4. Compute hr
i and Cr

i = hr
i P (Uk+1

i |Zk) based on the reconstructed field at k.

(1) Pick the candidate that maximizes Cr
i , and Nr = Nr − 1.

(2) Update the candidate pool and Cr
i by considering the newly picked

data site as an existing sampling point. If Nr > 0, go back to (1).

5. Collect samples at selected locations and reconstruct the field.

6. Evaluate T k+1, and update probabilities using Eq. (3.13), (3.14), and (3.15).

7. If P (Uk+1
i |Zk+1), i = 1, · · · , nk+1, reach required values or the total number

of samples reaches a prescribed bound, exit the algorithm. Otherwise, k =

k + 1, and go back to step 2.
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We use the same P (U1|Z1) for all initial sites. When multiple samples are

collected during one iteration, the candidate pool and Ci is updated each time a

data site is selected to avoid picking two sites too close to one another.

Ns and Nr are the numbers of new samples based on the source model and

field roughness during each iteration. When the field is vastly undersampled, the

roughness estimation generally deviates badly from its real value, so we may want

to rely more on the source model. As we approach the critical sampling density,

the estimation accuracy improves, and field roughness becomes more important.

Hence, Ns and Nr can be varied to reflect such a shift of strategies.

When one sensor is responsible for collecting multiple samples in the field, a

route design step can be inserted before the sampling action takes place. The

problem of finding the optimal route to cover a set of sites, for example, the

traveling salesman problem [LLK85], is a well-researched topic in optimization.

Alternatively, we can incorporate the routing cost into our sample-selecting cost

function such that the chance of selecting distant data sites in the same iteration

is reduced. This naturally brings up the question of whether to employ strategies

of a depth-first or breadth-first nature in picking new data sites. At each iteration,

the sensor faces the decision of repeatedly taking measurements in a small region

until the P (Uk+1
i |Zk+1) in the area is small enough, or traveling a long distance

to collect the most probable samples in the whole field. There is no easy answer

as for which scheme is better. In general, if logistic cost is the main concern, a

depth-first search is preferred. In this chapter, since the number of samples is

considered a major constraint, a breadth-first search is used.

The probability updating process is suitable for distributed implementation

owing to its nature of local operation. Hence, it can be applied to a network where

static sensors are woken up to take measurements. As for the overall scheme, if
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we use reconstruction schemes that require only local knowledge of samples, for

example, the piece-wise linear interpolation, distributed algorithms can be easily

devised.

3.4 Simulations

In this section, we first describe two sampling methods that our adaptive algo-

rithm will be compared with. Then, a set of simulation results is presented.

3.4.1 Two sampling methods

To better evaluate our adaptive algorithm, we compare its performance with

that of two other schemes. The first one is based on the maximin design. In

this method, a pool of sampling candidates is maintained using the same method

in section 3.3.1. At each step, the candidate that has the maximum distance to

existing samples is selected as the new sampling site. This algorithm has the

tendency of spreading the sampling sites uniformly over Dom, and is therefore

called the uniform sampling.

The second scheme, which we call the Q method, is inspired by the stratified

approach in [RPK04], but a few important modifications were made. Assuming

Dom is a near-square rectangle, execute the following steps:

1. As illustrated in Fig. 3.8(a), divide Dom into four identical rectangular

cells, and a sampling site is placed at the center of each cell.

2. Collect samples at new data sites and reconstruct the field.

3. Compare the reconstructed field with the true field in each cell, and compute

the error. If fidelity constraint is satisfied, stop here. Otherwise continue
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to 4.

4. Determine the cell with maximum error and denote it by me. Remove the

sample at the center of me, and divide it into four identical rectangular cells

in the same manner as in Fig. 3.8(a). Place four new sampling sites at the

centers of new cells. Go back to step 2.

(a) (b)

Figure 3.8: Add new sampling sites in Q method. (a) Cell me is indicated by the

solid sampling point at its center. (b) The old sample is removed and four new

ones are added.

The way new sampling points are added to me is illustrated in Fig. 3.8. In

the above algorithm, we have assumed that the true field is available for the eval-

uation of error in each cell, and old samples can be removed to allow for optimal

distribution of data sites. Neither will be possible in practice. However, this

scheme serves to provide an indication of the best performance that the stratified

approach can deliver. During each iteration, since one sample is removed and

four new samples are added, the total number of samples increases by three. In

addition, thin plate spline interpolation is used for field reconstruction in both

schemes.

60



3.4.2 Simulation results

The adaptive sampling algorithm is implemented and tested with various sunlight

fields captured using the experimental setup in section 3.2. With carefully tuned

parameters, the scheme works effectively and its performance is comparable and

sometimes superior to that of Q method. Here we present one set of simulation

results based on a particular sunlight field.

The true field is depicted in Fig. 3.9. About three quarters of the Dom are

covered by a low-intensity light field, which can be adequately described by a few

sampling points. In contrast, the shade of a steady tree branch cuts through the

sunlight patch in the lower left corner, producing drastic spatial variations. The

reconstructed fields using uniform sampling, Q method, and adaptive sampling

algorithm are plotted in Fig. 3.10, 3.11, and 3.12 respectively.

Figure 3.9: The true sunlight field.

We can see that both the Q method and adaptive sampling algorithm reason-

ably capture the shape of sunlight patch and the shade cast by the tree branch,

while the uniform method smears the cut badly due to under-sampling in the

region. The reconstructed field in Fig. 3.11 is slightly bent near the boundary

of the low-intensity region since the Q method always places data sites at the
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Figure 3.10: The reconstructed sunlight field using uniform sampling method

with 102 samples.

Figure 3.11: The reconstructed sunlight field using the Q method with 103 sam-

ples.

centers of cells.

The sampling sites based on these three schemes are shown in Fig. 3.13, 3.14,

and 3.15 respectively. The distribution of sampling sites in Fig. 3.15 shows that

the adaptive algorithm has followed the heterogeneity of the field nicely.

The bending energy and mean square error of the reconstructed thin plate

splines at successive iterations are plotted in Fig. 3.16 and 3.17 respectively. For

uniform and adaptive algorithms, we start with eight samples and set Ns =

Nr = 1. Hence, two new samples are added at each step. In this case, the
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Figure 3.12: The reconstructed sunlight field using adaptive sampling method

with 102 samples.

Figure 3.13: The distribution of 102 sampling sites in the uniform sampling

method.

adaptive sampling method has the highest bending energy and outperforms the

Q method during most iterations. It is reasoned that although the Q method

has the advantage of knowing the true field, the uniform and adaptive algorithms

appear to fill the space more efficiently than the square cells.
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Figure 3.14: The distribution of 103 sampling sites in the Q method.

Figure 3.15: The distribution of 102 sampling sites in the adaptive sampling

method.

3.5 Conclusion

In this chapter, we developed an Bayesian algorithm for adaptively sampling and

reconstructing distributed phenomena. Simulations with field data show that the

method works effectively and has competitive performance.
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Figure 3.16: The field bending energy in successive steps.
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Figure 3.17: The mean square error in successive steps.

Although our scheme is designed for individual mobile sensors, it can be im-

plemented in a distributed fashion if local reconstruction methods are used. For

example, a Delaunay triangulation can be easily constructed out of DT(S). We

can then treat each Delaunay triangle as a local cluster, and fit a two-dimensional

piecewise linear function in each cell.
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As we discussed in section 3.3.4, the routing cost of mobile sensors is not

considered in this chapter, but it can enter the scheme in various ways. Although

a rectangular sampling domain is considered in this chapter, it is not difficult

to extend our algorithm to arbitrary boundaries. If measurement error has to

be taken into account, approximation techniques such as minimum mean square

error estimation can be used instead of interpolation.
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CHAPTER 4

Source Coding in Wireless Sensor Networks

4.1 Introduction

Wireless sensor networks often operate under tight energy budgets, and commu-

nication power accounts for a substantial portion of sensor’s energy consumption.

While the processing power scales with more advanced IC technology, wireless

communication power is fundamentally limited by the propagation loss and in-

formation theory. Hence, the data rate should be aggressively reduced to achieve

conservation [PK00].

Sensor networks differ from traditional communication networks in that data

generated at different sensors, especially proximate ones, have high correlation

since they are observations of closely related physical phenomena. Source cod-

ing techniques can be employed to remove such redundancy among data streams

from different sensors. In the first part of this chapter, we give a quick overview

of distributed source coding, in which sensors conduct data compression indepen-

dently without interacting with one another. Our brief discussion on the subject

by no means belittles its importance. This is a dynamic research area, and effi-

cient distributed codes are being actively pursued. In the rest of the chapter, our

attention turns to source coding with explicit side information.

A lot of research has been focusing on judiciously routing packets through

sensors with highly correlated data such that the overall transmission is mini-
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mized [IGE03, CBV04]. As a simple illustration, consider Fig. 4.1 where three

sensors transmit their observations to the fusion center. Sensor s1 may route

s
1

c

s
2s

3

Figure 4.1: A simple joint compression/routing problem.

its packets through s2 or s3. The relay can read s1’s packets to further com-

press its own data. To determine the better routing strategy, we need to know

how much additional rate reduction, which may vary with time, s1’s data can

produce for s2 and s3. Most data-centric routing algorithms assumes this rate-

reduction information. In the second part of the chapter, we propose a two-stage

DPCM (differential pulse coded modulation) coding scheme that processes first

local side information, which is available without cost, then samples from other

sensors. Additional coding gain provided by distant helping samples can be con-

tinuously monitored such that spatial side information is used only when the

gain outweighs the cost. (This information is generally not available in tradi-

tional coding schemes.) Our method can be combined with data-centric routing

strategies for use in joint compression/routing optimization.

We use closed loop backward adaptation, which does not require coefficient

transmission, and tracks the changing statistics. In contrast, a forward adaptive

scheme computes prediction coefficients from a block of samples in advance. It

offers slightly higher gain for a slowly evolving field, but requires data buffering

and additional bandwidth for coefficient transmission. Along with the adaptive

prediction, adaptive quantization is used to make the most of the coding gain.
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DPCM has been widely used in speech and video coding [JN84]. Two-stage

DPCM schemes in speech coding base their predictions on previous samples and

samples that are about one pitch period away. In video coding, the two-stage

scheme is applied when both adjacent and inter-frame samples are used. However,

in these methods, the distant side information is as readily available as adjacent

samples. Hence, their coder design has more flexibilities.

The chapter is organized as follows. We give an overview of distributed source

coding in section 4.2. Then the two-stage DPCM scheme is presented in sec-

tion 4.3, Some simulation results are presented in section 4.4 to evaluate the

performance of our DPCM scheme. Section 4.5 concludes the chapter.

4.2 Distributed Source Coding

Distributed source coding, as depicted in Fig. 1.6(a), draws on the fundamental

result of Slepian and Wolf [SW73], which states:

Theorem 4.2.1 (Slepian-Wolf) When two correlated sources that have dis-

crete alphabets are drawn i.i.d.∼ p(x, y), the achievable rate region for distributed

source coding is given by:

R1 ≥ H(X|Y ),

R2 ≥ H(Y |X),

R1 + R2 ≥ H(X,Y )

This theorem shows, surprisingly, that there is no loss of efficiency in indepen-

dently encoding two sources. This result has been partially extended to sources

with continuous alphabets by [WZ76], in which one of the sources is assumed

to be completely known at the encoder. Although the complete answer to the
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distributed rate distortion coding is not yet known, [ZB99] observes that high

resolution source coding resembles the Slepian-Wolf. Nevertheless, none of these

papers proposed any constructive codes, and the proofs proceed using a coding

procedure called random bins. Only recently have practical distributed source

coding schemes [PKR02, XLC04, PR03, GZ03, ZSE02] begun to emerge in the

literature. In this section, we give a quick overview of the principles of distributed

source coding.

To illustrate the basic idea, we borrow a simple example from [PKR02]. Sup-

posing X and Y are three bit binary words, and each bit has equal probability

of being 0 or 1. Furthermore, X and Y are correlated such that the Hamming

distance between two words is at most 1. Now assuming that Y is known at

the decoder but not the encoder for X, how can we take advantage of this side

information to transmit X at a rate smaller than 3 bits. This is achieved by

observing that since Y is available at the decoder, there is no need to distinguish

any words that have Hamming distance 3 for X. Hence, we can divide the space

of X into the following sets: {000, 111}, {001, 110}, {010, 101}, {100, 011}, and

only send the set index. Then the decoder can determine which of the two words

in the set is the true word, but computing the Hamming distance to Y . The one

with smaller Hamming distance ought to be X.

The coder design for distributed source coding involves dividing X’s code-

words into cosets. Various ways (e.g. a trellis) can be used to partition the

codeword space. In transmitting X, only the index of the set that the code-

word belongs to is sent. The decoding makes use of the side information Y by

computing the distance from all codewords in the set to Y . The one with the

minimum distance is declared to be the codeword for X. This procedure is illus-

trated in Fig. 4.2. For more complete overviews on the topic, readers are referred

70



to [PKR02, XLC04].

Find the code-

word for X

Compute the

set index that

the codeword

belongs to

Decode

the set

index

Find the

codeword that

is nearest to Y

in the set

X Estimated XChannel

Y

Figure 4.2: Encoder and decoder for source coding with side information. X is

to be coded, and Y to act as side information

4.3 A Two-Stage DPCM Scheme for Sensor Networks

In this section, we propose a 2-stage DPCM scheme. In contrast to distributed

source coding in the previous section, side information is assumed to be available

at both the encoder and decoder in this coding method.

4.3.1 Two-stage suboptimal approach

The two-stage suboptimal approach is described in Fig. 4.3. Sequences xj(n), j =

T S

T

T

)(0 nx

)(1 nx

)(nx
M

)(0 nd

)(1 nd

)(nd
M

)(0 ne

Figure 4.3: The block diagram of a two-stage DPCM encoder

0, 1, · · · ,M are the measurements of sensor j at time n. Assuming that all the

sequences have had their mean removed, a temporal DPCM stage is first run at
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all sensors, then further compression is achieved using other sensors’ temporal

DPCM output as the side information. Define τj, j = 1, · · · ,M as the delay at

dj(n) that yields the highest correlation with d0(n). It can be estimated using

cross-correlation methods. Denote by a∗ the complex conjugate of a, and AH the

complex conjugate and transpose of A. We have the following:

d0(n) = x0(n)−
N∑

i=1

a∗i x̃0(n− i)

= x0(n)−wH
t yt(n)

e0(n) = d0(n)−
M∑

j=1

K∑

k=−K

b∗j,kd̃j(n + τj + k)

= d0(n)−wH
s ys(n)

where

wt =




a1

...

aN


 , yt(n) =




x̃0(n− 1)
...

x̃0(n−N)


 ,

ws =




b1,K

...

b1,−K

...

bM,K

...

bM,−K




, ys(n) =




d̃1(n + τ1 + K)
...

d̃1(n + τ1 −K)
...

d̃M(n + τM + K)
...

d̃M(n + τM −K)




In a closed loop implementation, x̃0(n) and d̃j(n) are samples that are available

at the decoder. Here, we assume they are the same as x0(n) and dj(n) with

sufficient quantization bits. MMSE criteria on separate stages yield:

wopt
t = R−1

tt rt, wopt
s = R−1

ss rs,
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and the minimum mean square error

Js
min = σ2

x − rH
t R−1

tt rt − rH
s R−1

ss rs.

in which

Rtt = Eyty
H
t , Rss = Eysy

H
s , rt = Eytx

∗
0, rs = Eysd

∗
0

Define the overall and spatial coding gains

G = Ex2
0(n)/Ee2

0(n) = σ2
x/J

s
min

Gs = Ed2
0(n)/Ee2

0(n) = (σ2
x − rH

t R−1
tt rt)/J

s
min

In contrast, a one-stage scheme using the same set of side information would

yield:

Jmin = σ2
x − rH

y R−1
yy ry

in which

Rts = Eyty
H
s ,Ryy =


Rtt Rts

RH
ts Rss


 , ry =


 rt

rs + RH
tsw

opt
t




In general, Js
min > Jmin, but a two-stage implementation offers several other ad-

vantages over a one-stage approach. It improves stability. For highly correlated

x0(n) and xj(n), matrix Ryy becomes near-singular. Separately designing tem-

poral and spatial stages can help ensure that the temporal stage is minimum

phase, thus stable. The spatial coding gain Gs sheds light on how much addi-

tional gain is provided by distant samples. At the spatial stage, dj(n) instead of

xj(n) is used, so less decoding effort is required. In addition to compression, the

temporal stage serves as a pre-whitening process, and the resulting Rss has bet-

ter eigenvalue structures. This enhances the adaptive performance of the second

stage [Say03].
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4.3.2 ε-NLMS adaptation

The detailed block diagram of the closed loop DPCM encoder is given in Fig. 4.4.

Switch k1 controls whether the spatial stage is used. The decoder has a similar

structure, and hence is not shown here.

Predictor
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Figure 4.4: The detailed block diagram of the encoder

The weight iteration uses ε-NLMS with power update. The algorithm starts

with wt(−1), pt(−1), ws(−1), and ps(−1), iterate for n = 0, 1, 2, · · ·

x̂0(n) = wH
t (n− 1)yt(n), d0(n) = x0(n)− x̂0(n)

d̂0(n) = wH
s (n− 1)ys(n), u0(n) = d0(n)− d̂0(n)

e0(n) = Q [u0(n)]

d̃0(n) = d̂0(n) + e0(n), x̃0(n) = x̂0(n) + d̃0(n)

ps(n) = βsps(n− 1) + (1− βs)|d̃0(n)|2

ws(n) = ws(n− 1) +
µs

εs + ps(n)
e∗0(n)ys(n)

pt(n) = βtpt(n− 1) + (1− βt)|x̃0(n)|2

wt(n) = wt(n− 1) +
µt

εt + pt(n)
d̃∗0(n)yt(n)
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4.3.3 Helper evaluator

The helper evaluator, controlled by k2 has two functions: delay estimation and

helper selection. Delay estimator determines the τj, j = 1, · · · ,M resulting in

the highest cross-correlation

φ0j(τj) =

∑n+L−1−τj

i=n d0(i)d
∗
j(i + τj)√∑n+L−1

i=n |d0(n)|2 ∑n+L−1
i=n |dj(n)|2

Directly computing φ0j(τj) requires O(L) operations (L is the block size). The

cost is reduced by using coarsely quantized samples [DSR76]. The helper selector

comes into play when a decision needs to be made on using which set of sensors’

data as side information. The autocorrelation method [LO88] is applied to ap-

plicable sets of sensors and the one with the best gain/cost tradeoff is selected

assuming the cost of distant side information is known. Note that the correlation

matrix has Toeplitz-like structures, and efficient algorithms exist for solving such

systems [SK95]. The overall cost of the evaluator can be kept within O(L).

As the prediction error u0(n) varies, an adaptive quantizer is essential to

maximize the coding gain and limit quantization error. Readers are directed

to [JN84] for more details.

4.4 Simulations

In this section, we present three sets of simulations to show the effectiveness of

our 2-stage DPCM scheme. First, an autoregressive source is considered. Then, a

set of acoustic wave streams that is recorded by a sensor array while a tank moves

by is used. Lastly, the simulation is conducted on some weather data obtained

from [ncd].

75



4.4.1 Autoregressive source

In the first simulation, we consider an autoregressive source observed by two

sensors.

s(n) = s(n− 1)− .5s(n− 2) + z(n)

xj(n) = s(n) + uj(n), j = 1, 2

in which z(n) and uj(n) are white Gaussian noise. Using one sensor’s data as

helping information, we plot the coding gains G and Gs against the variance ratio

σ2
z/σ

2
u for different schemes. ‘osf’ indicates one-stage forward DPCM, ‘tsd’ means

two-stage ε-NLMS with different step sizes on temporal and spatial stages, and

‘tss’ denotes two-stage ε-NLMS with the same step sizes. (The spatial coding

gain of one-stage forward method is evaluated by comparing its result to the

output of a single forward temporal stage.) It is observed that the spatial coding

increases with the observation SNR, while temporal gain quickly saturates as

it is circumscribed by the source statistics. In addition, our experience reveals

that appropriately choosing the relative step sizes of spatial and temporal stages

κ = µs/µt can yield up to 2 dB gain improvement over simply setting κ = 1.

This is explained as follows. Since the magnitude of e0(n) is smaller than that

of d0(n), using the same step sizes discourages the update of spatial weights ws.

Choosing κ according to the magnitudes of e0 and d0 results in an adaptation

that resembles the one-stage DPCM. It is cautioned, however, that setting κ too

big undermines the temporal stage and tends to exaggerate the spatial coding

gain.
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Figure 4.5: Coding gain for an autoregressive source

Table 4.1: Coding gains (dB) of different schemes.

sensor Gtsd Gtsd
s Gtss Gtss

s Gosf Gosf
s

s1 22.27 9.08 21.60 8.41 21.13 7.95

s2 21.93 8.64 21.25 7.97 18.70 5.76

s3 21.55 8.35 20.69 7.49 19.13 6.32

4.4.2 Acoustic source

In the second simulation, we consider the acoustic data generated by a moving

tank in a near field sensor array setup depicted in Fig. 4.6 [Yao]. 2000 samples

are collected during the period. Observations from sensor s0 are used as helping

information to compress the data at sensor s1, s2, and s3. Since relative delay

τj varies when the tank passes by the array, ε-NLMS adaptation performs better

than the forward scheme that estimates the prediction coefficients for blocks of

samples. This is displayed in Table 4.1, where we compare the coding gains (in
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Figure 4.6: Near field sensor array configuration

dB) of ε-NLMS adaptation and the forward scheme with block size 200. Notice

‘tsd’ has slightly higher gain than ‘tss’. We also observe that when the tank

is closest to the sensor array, the forward method fares worst as τj varies the

most. On the other hand, the ε-NLMS adaptation yields consistent results once

it converges.

4.4.3 Weather data

So far, we have considered point sources. In the last simulation, we look at some

correlated weather data obtained from NCDC [ncd]. We consider the daily mean

temperature measured at three stations located at Hongkong, Macao, and Datong

in 2003. We compress the set of data at Hongkong using those from Macao and

Datong as side information. The coding gains (in dB) are given in Table 4.2. It

shows that the spatial coding gain by Macao is much higher than that provided

by Datong. This is expected because Hongkong and Macao are two cities near
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Table 4.2: Coding gains (dB) by different cities.

city Gtsd Gtsd
s

Macao 19.27 10.08

Datong 9.81 .09

to one another, while Datong is at northern China, thousands miles away. In

Fig. 4.7, we plot the input x(n) (with mean removed) and outputs of temporal

and spatial stages at the encoder when samples from Macao are used as side

information. Note that the relatively large error at the beginning is caused by

the initial weight convergence.
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Figure 4.7: Input and outputs of the encoder at Hongkong
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4.5 Conclusion

In this chapter, we considered source coding to remove redundancy among data

streams from different sensors in sensor networks. First, we gave a quick overview

on the distributed source coding. This is an active research area, and efficient

codes with low complexity are still under study. In the second part of the chap-

ter, we presented a two-stage DPCM scheme. Its ability to track the additional

coding gain provided by distant side information makes it useful for joint com-

pression/routing optimization in sensor networks. The ε-NLMS adaptation rea-

sonably adjusts to the changes on sample correlation. Simulations demonstrate

that the algorithm provides results close to optima when the step sizes are ap-

propriately set.
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CHAPTER 5

Combined Routing and Source Coding

5.1 Introduction

The need to lower the communication cost in wireless sensor networks has prompt-

ed many researchers to propose data-centric routing schemes that utilize in-

network data fusion to reduce the transmission rate. There are two major dif-

ficulties in designing such routes. First, the lack of reasonably practical data

aggregation models has led researchers to use overly simplified ones [KEW02,

CBV04, GE03, IGE03]. For example, these models generally assume that sensors

perform the same aggregation function regardless of the origin of the fused data.

As a remedy, [GE03] suggests looking into models in which data aggregation is

not only a function of the number of sources but also the identity of the sources.

Second, the resulting optimization problem is often NP-hard due to the coupling

of routing and in-network data fusion [KEW02, CBV04]. Hence, algorithms that

find exact solutions in polynomial time are unlikely to exist. In this chapter, we

attempt to build network models that are computationally useful yet reasonably

approximate reality.

Source coding in sensor networks is generally lossy. Although high resolution

lossy coding resembles Slepian-Wolf coding [ZB99], general network distortion

coding remains an open problem. Also, distributed source coding schemes with

performance near information theoretic bounds often employ long blocks of data,
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which results in high complexity and long delays. In this chapter, we consider

source coding with explicit side information. In other words, only when the

side information is available at both the encoder and decoder, can it be used to

reduce the data rate. In practice, a lossy encoder (such as the DPCM encoder

in [LTP05]) can be employed at each sensor to compress its data using incoming

flows as explicit side information. Alternatively, we can quantize the analog signal

locally. Then joint entropy coding is conducted on merged data flows using, for

example, a Lempel-Ziv encoder.

In many situations, data aggregation is possible because the fusion center

(end user) is interested only in some fused function. For example, in [CYE03],

only the direction of arrival estimation needs to be transmitted from each sensor

sub-array to the fusion center to locate an acoustic source. In these cases, the

way that data aggregation and communication is carried out is highly dependent

on the specific application. This problem under the broad title of distributed

data fusion is by itself an area under active research.

There has been much recent research activity on data-centric routing. In

[SS02b], the interdependence of routing and data compression is addressed from

the viewpoint of information theory. Clustering methods have been used by some

researchers to aggregate data at the cluster head before transmitting them to the

fusion center [BC03, HCB00]. Since the cluster head is responsible for data ag-

gregation and relaying, it consumes the most energy. Hence, dynamically electing

nodes with more residual power to be cluster heads and evenly distributing en-

ergy consumption in the network is a major issue in these schemes. In [IGE03],

a diffusion type routing paradigm that attaches attribute-value pairs to data

packets is proposed to facilitate the in-network data fusion. The correlated data

routing problems studied in [KEW02, CBV04] are closely related to our work.
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In [KEW02], the authors give a thorough comparison of data-centric and address-

centric methods and a overview of recent effort in the field. [CBV04] casts the

data-centric routing problem as an optimization problem and seek solutions to it

when different source coding schemes are applied. A similar optimization problem

is also the subject of [GE03], where a simplified data model is assumed.

The rest of the chapter is organized as follows. In section 5.2, we present

our network flow and data rate models. Based on these models, an optimization

problem CRSC, is formulated, and subsequently shown to be NP-hard in sec-

tion 5.3. In section 5.4, a mixed integer program is formulated for one of CRSC’s

sub-instances. Section 5.5 concludes the chapter. In the next chapter, heuristic

algorithms will be proposed for CRSC.

5.2 Network Models

5.2.1 Network flows

The topology of a sensor network is abstracted as a graph G = (N , E). The

node set N consists of a set Ns of n sensors and a special node t representing

the fusion center. Denote by Na the set of active sensors that produce data.

Na ⊆ Ns. Both active and non-active sensors can relay and process data. The

edge set E includes m communication links. Here, we assume all the links are

bi-directional and symmetric. If they are not, the network can be modelled as

a directed graph, and the derivation in this chapter will apply similarly. We

also assume that the network is connected so that messages from any sensor can

reach t through direct transmission or relaying. A weight ce is associated with

each edge e ∈ E to indicate the cost (e.g. power) of transmitting data at unit rate

across e. These weights are given a priori. The flow fe is defined as the rate at
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which data is transmitted across edge e ∈ E . Data flow generated by node i and

terminating at node j is denoted by f ij. In particular, we define f i = f it. Clearly,

fe =
∑

i,j∈N f ij
e . Supposing i, j ∈ N , denote by dij the minimum distance from

i to j (i.e. the sum of edge weights along the shortest path from i to j). In

particular, di = dit. Our objective can be, for example, to minimize the total

cost C of routing all the data from active sensors to the fusion center.

C =
∑
e∈E

cefe (5.1)

5.2.2 Source coding with explicit side information

Denote by Xi the data stream produced by sensor i. Assume Xi, i ∈ Ns satisfies

the ergodic condition so that the results of statistical probability theory can be

applied. In this chapter, we consider source coding with explicit side informa-

tion as depicted in Fig. 5.1. In other words, only when the side information is

f i
Encoder Decoder

X
i

X
j

Figure 5.1: Encoder and decoder for Xi with explicit side information Xj.

available at both the encoder and decoder can it be used to compress the data.

We decompose the data transmission into individual data flows f i and consider

the minimum rate required such that Xi can be recovered at the fusion center.

Under lossy coding, suppose the side information for coding data stream Xi is

X̂k1 , · · · , X̂kj
, where k1, · · · , kj ∈ Hi. (Hi is the set of sensors whose data are

correlated with Xi, and X̂k denotes the coded version of Xk.) The minimum rate
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required subject to some distortion constraint, d(Xi, X̂i) ≤ D, is [CT91]:

f i = min
d(Xi,X̂i)≤D

I(Xi, X̂i|X̂k1 , · · · , X̂kj
) (5.2)

where I(·) denotes the mutual information. When data streams have discrete

values, entropy coding can be used,

f i = H(Xi|Xk1 , · · · , Xkj
) (5.3)

In either case, the data rate depends on what type of side information is

available, hence is a function of Mi = |Hi| binary variables. (|S| denotes the

number of elements in the finite set S.) For a network of n sensors, Mi can be

as large as (n− 1). Thus, this description alone has exponential complexity. To

simplify the problem, we assume that Mi is relatively small and side information

from at most ks sensors is used. Our study in this chapter will concentrate on

the simple case when ks = 1:

f i =





bi
0 no side information;

bij
1 Xj, j ∈ Hi, is used as side information.

(5.4)

It is noted that data rates bi
0 ≥ bij

1 ≥ 0, and bi
0 = 0 when i producing no data.

When data streams Xi and Xj are correlated, we have i ∈ Hj and j ∈ Hi. In

addition, since H(Xi) − H(Xi|Xj) = H(Xj) − H(Xj|Xi), we assume bi
0 − bij

1 =

bj
0 − bji

1 .

The data rate model in Eq. (5.4) appears rather simple. However, there are

practical reasons to assume such small values for Mi and ks. First, in many phys-

ical situations, high correlation occurs only in a small neighborhood. In others,

reconstruction fidelity constraints may permit thinning the number of active sen-

sors, so again only a small number of sensors has high correlation. Second, due

to the correlation among side information, coding gain often saturates quickly as
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the number of helpers increases. In addition, determining coding gain informa-

tion and processing side information incurs cost, and the gain of using additional

helpers is usually not enough to be worth it. Third, using more helpers increases

the complexity of the model and optimization. On the other hand, our study

on this simpler case can serve as a first step in dealing with more complicated

problems where multiple helpers are allowed.

To obtain the rate function in Eq. (5.4), a training process must take place

before the route design. In our model, it is assumed that sensors in Hi are in the

neighborhood of sensor i. Thus each active sensor only needs to transmit a small

set of data to the sensors in its neighborhood. Due to the small values of Mi and

ks, the cost of this training process can be considered moderate. Alternatively,

such information can be fed back from sensors or the fusion center that perform

data aggregation. If neither are available, then simple indicators such as the

attribute-value pairs used in [IGE03] may be used to indicate the level of data

correlation.

5.2.3 Cost functions

Various cost functions can be formulated for sensor networks. One simplest cost

function based upon the aggregate data rate is:

C =
∑
e∈E

fe (5.5)

This cost function assumes that all the links have equal weights. This is however

often not the case. For example, as the capacity of the wireless link is affected

by distance, fading, node transmission power etc, a normalized cost function can

be formed to take this into account:

C =
∑
e∈E

fe/ue (5.6)
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where ue is the capacity of link e. Another way of placing weights on commu-

nication links is to define ce as energy per bit on link e and try to minimize

the cost function in Eq. (5.1). Here it is assumed that on each link consumed

energy is a linear function of data rate. This is a reasonable approximation to

reality if increased data rate is due to increased radio operation time. However,

if the data rate increase is done by switching modulation schemes, energy con-

sumption on each link cannot then be thought of as a pure linear function of

data rate. Moreover, state of the art radios can possess multiple antennas, and

operate on different sets of sub-channels. Therefore, a better characterization of

energy consumption is a piece-wise linear function of the data rate:

C =
∑
e∈E

(ce,1fe,1 + ce,2fe,2 + · · ·+ ce,nefe,ne) (5.7)

The data rate across edge e is given by fe =
∑ne

i=1 fe,i, and each portion of the

flow fe,i has a capacity ue,i, i = 1, · · · , ne.

More insight can be gained by looking at the energy consumption at individual

sensors rather than links:

Ei = ct
i

∑
j∈N

fij + cr
i

∑
j∈N

fji

where ct
i and cr

i are the energy per bit consumed by sensor i when it is acting as

the transmitter and receiver. In practice, additional energy may be required to

power up the circuit. This represents a non-zero initial cost when sensors switch

from the stand-by mode to a transmission mode. Denote this cost by c0
i , we

define a binary variable:

gi =





1 Transmission mode

0 Standby mode
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The energy consumption at node i is:

Ei = ct
i

∑
j∈N

fij + cr
i

∑
j∈N

fji + c0
i gi (5.8)

The objective can be minimizing the maximum Ei in the network.

Another metric of interest is delay. If the capacity of link e is ue, the queueing

delay at this link can be approximately modeled as:

τe =
αfe

ue − fe

Assuming τe dominates propagation and processing delays, we can propose to

minimize the aggregate delay of the network:

C =
∑
e∈E

τe (5.9)

There has been research work that tries to build models for estimating the

battery time-to-failure for a given load [RVW03]. If the communication power is

the dominant power consumption in the sensor system, the sensor’s battery life

is a function of the transmission rate:

ti = ti(fij, fki), j, k ∈ N (5.10)

To lengthen the overall network lifetime, we should route messages through sen-

sors with more remaining battery power. Hence, it is reasonable to maximize the

minimum ti, i ∈ Ns.

Among these possible cost functions, in this dissertation, we focus on mini-

mizing Eq. (5.1) in our optimization problem.

5.2.4 Discussions

Data stream Xi can be compressed at sensor i or jointly coded with other data

streams en route to the fusion center. Moreover, only when flows are jointly
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coded, do they need to be bundled in transmission. For instance, in Fig. 5.2,

if flows f 2
21 and f 3

31 are not jointly coded, they can split to take different paths

f 2
15 and f 3

14 in ensuing transmissions. As a result, the overall routing structure

is not necessarily a tree, and we point out that in data-centric routing, trees are

not necessarily optimal. (Refer to Fig. 6.1 for one such example.) However, the

splitting of an individual flow f ij is prohibited.

2

21
f

3

14
f3

31
f 43

2

1

5

2

15
f

Figure 5.2: Data flows split in the network.

When applying source coding with explicit side information to sensor net-

works, we must avoid helping loops. In other words, if Xj’s recovery relies on Xi,

then Xj cannot be used as the side information for coding Xi. To formalize this

idea, define a directed network Gh that consists of all the active sensor nodes. In

addition, if Xi is used as side information for coding Xj, a directed edge (i, j) is

formed from sensor i to sensor j. Then we have the following theorem:

Theorem 5.2.1 (Helping Loops) No helping loop will be formed when using

source coding with explicit side information if and only if the directed network Gh

contains no directed cycles.

The proof of this theorem is straightforward, and hence omitted. Special attention

must be directed to this rule of no helping loops when designing data-centric

routes.

We adopt an example from [LTP05] to solidify our data rate model. In

Fig. 4.6, a near-field sensor array records the sound of a tank as it moves by.
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Table 5.1: Data rate with different side information.

Side info none s0 s1 s2 s0, s1 s0, s2 s1, s2

σ2
3 5.33 .443 .973 3.43 .424 .431 .943

f 3(bits) 6.19 4.40 4.96 5.87 4.36 4.38 4.94

This array is part of a wireless sensor network (not shown in the figure), and

their data are to be transmitted to a fusion center. The variance of observations

at s3 is listed in Table 5.1 when they are quantized alone or with side information

using an adaptive DPCM encoder. The data rate is estimated by 0.5 log(σ2
3/D),

where D = 0.001. Notice that the coding gain varies significantly with sensor

locations, and saturates as the number of helpers exceeds one. In practice, the

cost of processing side information may lead to H3 = {s0, s1} and using at most

one helper.

5.3 Combined Routing and Source Coding

5.3.1 Problem formulation

Given the network models in section 5.2, the question becomes how to construct

data transmission routes such that the total communication cost is minimized.

We formulate this as an optimization problem, which is stated as follows.

Combined Routing and Source Coding (CRSC)

GIVEN: A network G = (N , E) with weight ce > 0 defined on each edge e ∈ E ,

a special node t ∈ N acting as the fusion center, a set Hi of helping sensors and

data rate function f i as in Eq. (5.4) defined for each sensor i ∈ Ns = N \ {t}.

FIND: Routes for transmitting side information and sensing data such that the

total cost C =
∑

e∈E cefe of routing data to the fusion center is minimized.
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5.3.2 NP-hardness

We prove the following theorem in this section.

Theorem 5.3.1 (Complexity of CRSR) Solving CRSC is NP-hard.

Proof: We prove this by showing that the following special instance of CRSC

is the minimum Steiner tree problem. Assume |Na| < |Ns| and Hi = Na for

i ∈ Na. Define the rate function f i = 1 without side information information,

and f i = 0 with side information for i ∈ Na.

We first show that the optimal route for this problem must be a tree. Since

the data rate is an integer (0 or 1), the data flow on each edge fe must also be

an integer since the splitting of a individual flow is forbidden. Thus, the optimal

route consists of a set of edges that carry flows fe ≥ 1. Suppose that the optimal

solution is not a tree. In any solution route, there is at least one path from each

i ∈ Na to t. Otherwise Xi cannot be recovered by t. Therefore, we can find

at least one tree that is embedded in the optimal solution and connects all the

active sensors to t. If there is more than one such tree, we pick the one with the

minimum number of edges, and use this tree as the transmission route. Since

Hi = Na and f i = 0 with side information, the flow rate remains 1 whenever

flows merge. Hence, the data rate fe on any edge of the tree is 1. Thus, the total

cost is simply the weight sum of the edges on the tree, which is less than that of

the optimal solution, in which the tree is embedded. This contradiction proves

that the set of optimal routes must constitute a tree.

As fe = 1 on every edge of the routing tree, finding the optimal routing tree is

equivalent to constructing the minimum Steiner tree that connects t and all the

sensors in Na, which is a well-known NP-hard problem. Therefore, our problem

is also NP-hard. Q.E.D.
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5.4 Mixed Integer Programming

We obtain one important sub-instance of the CRSC problem if the route is re-

quired to be a directed tree pointing toward the fusion center. The shortest path

tree is one of the feasible solutions of this problem. In addition, for simplicity,

we assume that bij
k = bi

k (i.e. rate reduction is independent of side information

source) and compression on data stream Xi can only occur at sensor i. We call

this subproblem the combined tree routing and source coding (CTRSC). It is

easy to prove that CTRSC is also NP hard, so there is unlikely any efficient algo-

rithm exactly solving the problem. In this section, we develop the mixed integer

program [Wol98] for CTRSC, to which standard techniques, such as branch and

bound, can be applied.

For CTRSC, it is more convenient to model the network as a directed graph

G = (N ,A), where A is the set of directed edges. If a directed edge (i, j) exists,

direct transmission from i to j is allowed. In addition, we define:

O(i) = {j ∈ N : (i, j) ∈ A}

I(i) = {j ∈ N : (j, i) ∈ A}

Assume that the edge weights and data rate functions are properly defined.

The objective is to minimize the cost of routing all the data to the fusion center.

min
∑
a∈A

faca (5.11)

To ensure that the underlying routing structure is a tree, we use the multi-

commodity flow formulation [MW95].

∑

j∈O(t)

gk
tj −

∑

j∈I(t)

gk
jt = −1, (5.12)

∑

j∈O(k)

gk
kj −

∑

j∈I(k)

gk
jk = 1, k ∈ N \ {t} (5.13)
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∑

j∈O(i)

gk
ij −

∑

j∈I(i)

gk
ji = 0, i ∈ N \ {k, t} (5.14)

∑
a∈A

ya = n (5.15)

ya ≥ gk
a ≥ 0 (5.16)

ya = {0, 1}, a ∈ A (5.17)

where t denotes the fusion center node and ya is the binary variable indicating

whether edge a is used to construct the routing tree. In this formulation, one

unit of flow is generated at each sensor and consumed at the fusion center. The

resulting route is a connected graph with exactly n edges, so it must be a tree.

It is apparent that gk
a can only be 1 or 0, which indicates whether edge a carries

the flow generated by sensor k. With these in mind, the data flow and source

coding with explicit side information is formulated as follows:

∑

j∈O(i)

fij −
∑

j∈I(i)

fji =
ks+1∑
m=0

bi
mλi

m (5.18)

∑

k∈Hi

∑

j∈I(i)

gk
ji =

ks+1∑
m=0

hi
mλi

m (5.19)

ks+1∑
m=0

λi
m = 1 (5.20)

uaya ≥ fa ≥ 0, a ∈ A (5.21)

λi
m ≥ 0, i ∈ N \ {t} (5.22)

where ua is a large constant, and Inequality (5.21) is used to ensure that data

only flows across the edges belonging to the prescribed spanning tree. ks is the

maximum number of sensors that provide side information for compressing any

data stream. The data rate of sensor i is given by f i =
∑ks+1

m=0 bi
mλi

m, and the

number of helpers hi =
∑ks+1

m=0 hi
mλi

m. If bi is a convex function of hi as shown

in Fig. 5.3, in virtue of the cost minimization, exactly one λi
m will be 1 for each
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Table 5.2: The coding model in Fig. 5.3.

m 0 1 2 3 4

hi
m 0 1 2 3 M

bi
m bi

0 bi
1 bi

2 bi
3 bi

3

sensor i. If bi is an arbitrary function of hi, an additional constraint called the

special ordered set needs to be placed on λi
m [Wil99]. It simply stipulates that for

each i at most two λi
m with adjacent m values be non-zero. This complicates the

formulation somewhat, but is one of the standard modeling techniques in integer

programming. For the data rate function in Fig. 5.3, we have ks = 3, and the

values of hi
m and bi

m are given in Table 5.2.

1 2

if

ih

ib
1

ib
2

ib
3

ib
0

3 M

Figure 5.3: A convex rate reduction model. ks = 3. The coding gain saturates

when number of helping sensors exceeds 3.

5.5 Conclusion

Our study continues the recent development of data-centric routing. The data

transmissions are decomposed into individual flows originated at different sensors
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to build a simplified first order rate model. It is assumed that side information

from only a small number of sensors can be used to effectively compress the data.

Based on this model, an optimization problem CRSC is formulated and shown

to be NP-hard. Mixed integer program is developed for a sub-instance of the

CRSC problem. In the next chapter, we will discuss heuristic algorithms for

constructing routes that result in small communication cost.
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CHAPTER 6

Heuristic Algorithms for CRSC

6.1 Introduction

Since finding the exact solution of the CRSC problem in polynomial time is

unlikely, we turn to heuristics in this chapter. We first present the SPT (shortest

path tree) and Clustering methods that have been extensively studied in the

routing literature. Then, two methods, which are called balanced aggregation

scheme (BAS) and designated side information transmission (DSIT) are proposed.

Most previous work has considered using trees as the underlying routing struc-

ture [KEW02, CBV04, GE03] probably because trees are the optimal solution to

the shortest path problem and have been pervasive in network routing. However,

in data-centric routing, trees are not necessarily optimal. In this chapter, two

strategies are proposed. One is called balanced aggregation scheme (BAS), and

the other designated side information transmission (DSIT). Both methods can

result in non-tree routing structures. To motivate the idea and give a preview of

the chapter, consider the example depicted in Fig. 6.1. The edges between adja-

cent sensors (circles) have the weight ce = d, and the edges connecting a sensor to

the fusion center (square) have the weight ce = D. The rate at which each sensor

needs to transmit to the fusion center is R without explicit side information and

r if explicit side information from an adjacent sensor is available. Assume r ¿ R

and d ¿ D. The objective is to minimize the cost C =
∑

e cefe of routing all
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(a) (b) (c)

R R+4r
R

r r r r

R
R R

RR
R+r R+r

R

R R R R

Figure 6.1: Three routing strategies: (a) SPT; (b) BAS; (c) DSIT.

the data to the fusion center, where fe is the rate at which data are transmitted

across edge e. Consider the three strategies described in Fig. 6.1. In (a), the

shortest path tree (SPT) is used. In (b), before being routed to the fusion cen-

ter, sensing data are aggregated at relaying nodes to reduce the communication

cost. In (c), each sensor except for the rightmost one transmits its data to the

sensor at its right. This transmission to the adjacent sensor provides explicit side

information for data compression at the recipient and needs not to be relayed

to the fusion center. Note that at least one sensor has to transmit at rate R to

the fusion center so that all the data can be correctly recovered. The costs of

the three strategies are: (a) C = 5RD; (b) C = RD + 4rD + 4Rd + 2rd; (c)

C = RD + 4rD + 4Rd. The performances of strategies in (b) and (c) are about

the same, and both are superior to that of (a). It is also evident that the scheme

in (c) results in more evenly distributed traffic than that in (b). This is because

in (c), the communication to the fusion center is separated from the explicit side

information transmission, and can be routed through any path.

The rest of the chapter is organized as follows. In section 6.2, the SPT and

clustering method are presented. Then, we discuss BAS and DSIT methods in

section 6.3 and 6.4 respectively. The average performances of these two algo-

rithms are studied and compared to the SPT and clustering method through
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simulations in section 6.5. The chapter is concluded by section 6.6.

6.2 SPT and Clusters

6.2.1 SPT

A shortest path tree is used to route data to the fusion center t, and data com-

pression is performed whenever explicit side information is available due to the

merging of flows in the network. We establish a result regarding SPT’s worst

case performance when the rate model is given by:

f i =





b0 without side information

βb0 with side information

, i ∈ Na (6.1)

where 0 ≤ β ≤ 1.

Theorem 6.2.1 (Performance Bound of SPT) The costs of the SPT and

optimal solution satisfy the following relation (na = |Na|):

COPT/CSPT ≥ β + (1− β)/na (6.2)

This bound is tight in that there are cases in which the equality in Eq. (6.2) holds.

Proof: Denote by EST the set of edges in the Steiner tree (ST) that connects

all active sensors Na to t, and di the distance from i to t on the SPT.

CSPT ≤ b0

∑
i∈Na

di ≤ b0na

∑
e∈EST

ce (6.3)

The first inequality is straightforward, and the second is due to the following

relation [HRW92]:
∑

e∈EST

ce ≥ max
i∈Na

di
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On the other hand, we have the following for a optimal route.

COPT ≥ βb0

∑
i∈Na

di + b0(1− β)
∑

e∈EST

ce (6.4)

where the first term is the minimum cost of routing data to the fusion center,

and the second term represents the minimum cost of routing side information.

Eq.s (6.3) and (6.4) lead to (6.2).

1

t

...
n

3
2

Figure 6.2: An instance achieves the bound in Eq. (6.2): β = 0; Na = {1, · · · , n};
Hi = Na, cit = 1, i ∈ Na; ck,k+1 = ε, 1 ≤ k ≤ (n− 1).

To show that the bound on the performance ratio is tight, consider the in-

stance depicted in Fig. 6.2. The worst case scenario in Eq. (6.2) is attained when

ε → 0. Q.E.D.

It is no surprise that the worst case performance ratio is a strong function of

β, which indicates the level of the coding gain. After all, the performance ratio

represents the penalty that a SPT receives for ignoring the data correlation in

designing transmission routes.

6.2.2 Clusters

Various clustering methods have been proposed [BC03, HCB00]. In this chapter,

we use a clustering method based on geographical proximity. The sensing field is

divided into rectangular cells, and sensors that fall in the same cell are grouped

into a cluster. The sensor with the smallest distance to the fusion center is picked

99



as the cluster head. In each group, sensors transmit to the cluster head to have

their data fused, and the fused data are subsequently sent to the fusion center.

To enforce the rule in Theorem 5.2.1 for the SPT and clustering methods, we

label the set of sensors Na according to some order such that (1) there is a unique

relation i < j defined for any pair i, j ∈ Na; (2) if i < j and j < k, then i < k

for i, j, k ∈ Na. It is postulated that i can be in set Hj only when i < j.

6.3 Balanced Aggregation Scheme

6.3.1 Motivation

In this section, we propose an approximation algorithm that is inspired by the

idea of balancing shortest path trees and trees with small total weights [KRY95].

In this algorithm, all transmissions terminate at the fusion center. Data aggre-

gations are performed when messages are relayed toward t.

To motivate the algorithm, we assume bij
1 = bi

1 in Eq. (5.4), and decompose

the flow f i
e into two parts.

f i
e = qi

e + ri
e

When f i
e = 0, qi

e = ri
e = 0. Otherwise, we define

qi
e = bi

1

ri
e =





bi
0 − bi

1 no side information

0 with side information

Thus, qi
e represents the portion of f i

e that is independent of the side information,

and ri
e is the part that is compressible by the helper’s data. Accordingly, the
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total cost of routing data to t can be decomposed into C = Cq + Cr, where

Cq =
∑
e∈E

∑
i∈Na

ceq
i
e, Cr =

∑
e∈E

∑
i∈Na

cer
i
e

Consider, for a moment, minimizing the costs Cq and Cr separately. Cq is mini-

mized when the route is a set of shortest paths. On the other hand, to obtain a

small Cr, we should try to jointly code Xi and Xj, j ∈ Hi, and merges flows using

routes that have small weights. This resembles a Steiner tree problem, but each

aggregation involves only a subset of active sensors. We apply this to the two ex-

treme cases of minimizing C. When coding gain is small (bi
1 À bi

0−bi
1 for i ∈ Na),

the route is expected to be close to a sub-tree of SPT. Whereas, when there is

substantial coding gain (bi
1 ¿ bi

0− bi
1), the focus is on achieving aggregation with

small routing cost. For the general case of varying coding gains, we speculate

that an approximation to the optimal solution can be obtained by constructing

balanced aggregation routes that have small total weights and reasonable dis-

tance from each sensor to the fusion center, and the appropriate balance is struck

based on the relative values of bi
0 and bi

1, i ∈ Na.

6.3.2 Constructing balanced paths

We first examine how to route a sensor’s data to t using an existing path while

taking into account the data compression. In Fig. 6.3, there is a path connecting

the active sensor k to t. Define Pk = {k, (k, v1), v1, · · · , vp, (vp, t), t} the sequence

of nodes and edges on the path. Denote by dPk
uv (u, v ∈ Pk) the distance from u

to v along path Pk. Set dPk
u = dPk

ut . We want to find a path to route the data of

active sensor i to t such that the resulting cost is minimized. This amounts to

determining an aggregation node j ∈ Pk where the two flows fk and f i joins one

another. There are two possible situations.
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Figure 6.3: Construct a balanced path for i.

(1) Xi and Xk are uncorrelated. The optimal route is the shortest path from i

to t, and the cost is:

Cik = bi
0di

(2) Xi and Xk are correlated. If the two flows merge at node j ∈ Pk, the cost

of routing f i to t is:

Cij = bi
0dij + bik

1 dPk
j

For (2), we choose arg{minj∈Pk
Cij} as the aggregation node and define Cik =

minj∈Pk
Cij.

i

k

t

j

ijd

kP

kjd

kP

jd

Figure 6.4: An aggregation tree constructed from Fig. 6.3.

As we discussed in section 5.2.4, the resulting route may not be a tree. For

example, the path from i to j may have used some nodes in Pk as relays. However,

the routes can be transformed into a tree as follows. Remove all the nodes except

for i, j, k, and t. Directed edges are formed from i to j, from k to j, and from j

to t. Assign the corresponding distances on the paths as weights to these edges.

The resulting tree is shown in Fig. 6.4. Note that each edge carries a constant
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data flow, and this aggregation tree captures the essential picture of how the data

aggregation takes place in the network.

6.3.3 Balanced aggregation scheme

The complete algorithm involves successive steps of adding the routes of active

sensors to the aggregation tree. Each time, the newly added sensor has the

smallest additional cost among all the remaining sensors. We state our algorithm

as follows.

Balanced Aggregation Scheme (BAS)

Given a graph G with edge weights and data rate functions properly set, define

U = Na and C = 0. Carry out the following steps.

(1) Find the shortest path from each active sensor to t. Denote by I the sensor

that has the minimum routing cost, Ci = bi
0di, i ∈ Na.

(2) C = C + CI . Remove I from U , and add I’s path to the solution route. If

U is empty, stop the algorithm.

(3) For each sensor i ∈ U , find Cik resulting from merging f i with fk, k ∈ Na\U .

Compute

Ci = min
k∈Na\U

Cik

(4) Find I = arg{mini∈U Ci}. Return to step (2).

Since exactly one active sensor is removed from U during each iteration, we

can number active sensors according to the order that their routes are added to

the solution route. If we construct the graph Gh in Theorem 5.2.1 for the route

built from BAS, a directed edge (i, j) is possible only when sensor i has been
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marked with a smaller number than j. It is easy to show that such a Gh contains

no directed loops. Thus, no helping loop is formed using BAS.

BAS completes in na iterations. During each round, there is no need to com-

pute Ci, i ∈ U in step (3) all over again. It suffices to update Ci such that the

newly added path in the previous iteration is accounted for. The bottleneck of

BAS is on constructing shortest paths to each active sensor. Using Dijkstra’s

algorithm, it runs in O(nam log n) time. The distributed implementation of BAS

also relies on efficient parallel algorithms for constructing shortest paths between

pairs of sensors, which is a well-researched topic. We refer readers to, for exam-

ple, [Hal97] for more discussions on the subject.

For a set of sensors with uncorrelated data, BAS builds the shortest path from

each active sensor to the fusion center. For the special instance that results in

the minimum Steiner tree problem in section 5.3.2, BAS collapses to the shortest

path heuristic [TM80], which has a worst case performance ratio of CBAS/COPT =

[2− 2/(na +1)]. Although not proven, we suspect that this is also the worst case

performance ratio of BAS for the general CRSC problem.

6.4 Designated Side Information Transmission

6.4.1 Motivation

In this section, we take up the approach in Fig. 6.1 (c). Data flows from ac-

tive sensors to t are routed independently and do not merge with one another.

Side information transmissions are carried out on designated routes, and these

transmissions need not to be relayed to the fusion center. Accordingly, the total

routing cost can be decomposed into the cost of routing explicit side information
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Cs and the cost of transmitting data to the fusion center Ct:

C = Cs + Ct (6.5)

where

Cs =
∑

i,j∈Ns

∑
e∈E

cef
ij
e , Ct =

∑
i∈Ns

∑
e∈E

cef
i
e (6.6)

In addition to achieving good performance when there is high data correlation

in the network, DSIT offers greater flexibilities than strategies that bundle the

flows to the fusion center and carrying side information. For instance, data flow

f i can virtually be routed to t through any path. As a result, traditional address-

centric routing schemes that are designed to evenly distribute the traffic load in

the network and maximize node lifetime [CT00, SWR98] can be readily applied.

6.4.2 Designated side information transmission

We first consider constructing routes for transmissions to the fusion center. These

routes affect only Ct. In addition, as f i, i ∈ Na does not provide any side infor-

mation, its routing is decoupled from the data aggregation process. Hence, the

shortest path should be used to achieve the minimum Ct:

Ct =
∑
i∈Na

dif
i (6.7)

where di is the minimum distance from sensor i to t, and f i is a function of the

side information transmission.

Designing routes for side information transmission is more complicated. First,

it has the minimum Steiner tree as a subproblem. This is illustrated by the

following problem instance. Given network G = (N , E), we have a subset of

the active sensors S ⊂ Na, and there is a sensor u ∈ Na \ S. Assume Hi = u

if i ∈ S, and ∅ if i ∈ Na \ S. In addition, we assume that the rate function
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and edge weights are defined such that the cost of transmitting side information

from u to any sensor in S using appropriately chosen routes is less than the cost

reduction resulting from the coding gain of side information. The optimization

problem becomes constructing a subtree that connects u and the sensors in S,

which is a minimum Steiner tree. Therefore, the overall optimization problem is

NP-hard. Second, we need to ensure that no helping loop is formed while routing

the side information. This amounts to avoiding directed cycles in Gh according

to Theorem 5.2.1.

For a moment, we ignore the Steiner tree part, and use shortest paths to route

all the side information. This leads to constructing a network Ga as follows. Ga

consists of the set of active sensors Na. In addition, for each ordered pair of nodes

i, j ∈ Na, create a directed edge (i, j) from sensor i to j and assign the weight

wij to represent the net coding gain resulting from routing side information from

i to j.

wij =





(bj
0 − bji

1 )dj − dijb
i
0 i ∈ Hj

−dijb
i
0 otherwise

(6.8)

Denote by Aa the set of directed edges with wij > 0, and define Ga = (Na,Aa).

A branching on the directed graph Ga is a set of directed edges B ⊆ Aa satisfying

the conditions that no two edges in B enter the same node, and B has no directed

cycle. It is evident that a branching on Ga represents a feasible set of routes

for side information transmission. No two directed edges in B entering the same

node ensures that a sensor uses side information from at most one helper, and no

directed cycle avoids the helping loop. The problem of minimizing the total cost

is equivalent to maximizing the weight sum of the branching B, which is the so

called maximum weight branching problem.
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Maximum Weight Branching (MWB)

GIVEN: A directed graph Ga = (Na,Aa) with a weight we defined on each di-

rected edge e ∈ Aa.

FIND: A branching B ⊆ Aa that maximizes
∑

e∈B we.

An algorithm that solves this problem in polynomial time has been indepen-

dently proposed by [CL65] and [Edm67]. The combinatorial proof of this algo-

rithm’s optimality was provided by [Kar71], and efficient implementations were

described in [Tar77] and [GT88]. Once the optimal branching B is determined,

we revert to using Steiner trees. Define Si as the set of sensors that receive side

information from i ∈ Na based on the optimal branching B. We use the shortest

path heuristic [TM80] to construct the subtree that connects k and Sk. Our

heuristic algorithm is a combination of the maximum weight branching and the

Steiner tree approximation. We state it as follows:

Designated Side Information Transmission (DSIT Heuristic)

Given a network G = (N ,A) with edge weights and rate functions properly

defined, carry out the following steps.

(1) Find the shortest path from each active sensor to the fusion center. These

are the routes for transmitting data to the fusion center.

(2) Construct a directed graph Ga = (Na,Aa). Na are the set of active sensors.

Construct directed edges from i to j (i, j ∈ Na and i 6= j), and assign

weights wij according to Eq. (6.8). Aa consists of the set of edges whose

weights are greater than zero.

(3) Find the maximum weight branching B on Ga. Based on B, determine the

set of sensors Si that each active sensor i ∈ Na transmits side information
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to.

(4) Run a shortest path heuristic for the Steiner tree problem to find the subtree

for transmitting side information from i ∈ Na to the sensors in Si.

6.4.3 Performance analysis

Finding the maximum weight branching takes O(ma log na) time, where ma =

|Aa|. The shortest path heuristic for a Steiner tree requires O(nam log n) time

for a sparse network. The actual running time of the shortest path heuristic is in

general much less because the number of nodes involved in constructing the short-

est path is |Si|, and thus often a lot smaller than n. Therefore, the computational

cost of DSIT and BAS are on the same order. The distributed implementation

of DSIT requires efficient parallel algorithms for constructing not only shortest

paths but also optimum branchings. For the latter, we refer readers to [Hum83],

which discusses a distributed version of the Edmonds’ method [Edm67].

Regarding the performance of our heuristic algorithm comparing to that of

the optimal solution attainable using a DSIT strategy, we prove the following

theorem.

Theorem 6.4.1 (Performance Bound of DSIT Heuristic) The ratio of the

cost CDSIT resulting from our DSIT heuristic algorithm and the minimum cost

CMIN using the DSIT strategy is bounded by:

CDSIT/CMIN ≤ N (6.9)

where N = max{1, maxi∈Na |Sopt
i |}, the greater of one and the maximum number

of sensors that one sensor needs to transmit side information to in the optimal

solution. The bound is tight in the sense that there is a problem instance that

attains the worst case performance ratio.
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Proof: It is first noted that Sopt
i is in general not the same as the Si in

our heuristic algorithm, and CMIN is the optimal result achievable by the DSIT

approach, which may be greater than the minimum cost of the CRSC problem.

In the optimal DSIT solution, the side information is routed from i to Sopt
i

using the minimum Steiner tree, and data is transmitted from active sensors to

the fusion center through shortest paths. Denote by EST
i the set of edges of the

Steiner tree for circulating side information supplied by sensor i ∈ Na. Define

CST
i =

∑
e∈EST

i
ce, the sum of edge weights of the Steiner tree, and CST

i = 0 if

Sopt
i = ∅. We can write the minimum cost as follows:

CMIN =
∑
i∈Na

f idi +
∑
i∈Na

bi
0C

ST
i (6.10)

Instead of the Steiner tree, consider relying on a shortest path tree to route the

side information from i to the sensors in Sopt
i . Denote by CSPT

i the sum of edge

weights of such shortest path trees. The corresponding cost C ′ will be:

C ′ =
∑
i∈Na

f idi +
∑
i∈Na

bi
0C

SPT
i (6.11)

Since NiC
ST
i ≥ CSPT

i [TM80], where Ni = |Sopt
i |, we have

C ′/CMIN ≤ N = max{1, max
i∈Na

Ni}

On the other hand, CDSIT is at least as good as the optimal result of using the

shortest path tree to route the side information. Therefore, CDSIT ≤ C ′. Together

with above inequality, this gives rise to the bound in Eq. (6.9).

To show the bound is tight, we consider the instance in Fig. 6.5. The network

setup is given in (a). The edge weights between sensors vk and uk (k = 1, 2, 3)

is 1. Other edges have weight δ ¿ 1. All the sensors are active with data rate

R without side information and 0 when side information is available. Denote

109



1
v

3
v

2
v

1
u

2
u

3
u

t

δ

1 11

1
v

3
v

2
v

1
u

2
u

3
u

t

1
v

3
v

2
v

1
u

2
u

3
u

t

(a) (c)(b)

δδ

δδ

Figure 6.5: A problem instance that attains the worst performance ratio: (a)

sensor network setup; (b) routes of side information transmission using DSIT

heuristic; (c) routes of side information transmission in the optimal solution.

U = {u1, u2, u3}, and V = {v1, v2, v3}. We assume Hi is U when i ∈ V , and V
when i ∈ U . In Fig. 6.5, (b) and (c) illustrate how side information is transmitted

in the DSIT heuristic and optimal DSIT solution. Accordingly, CDSIT = 3R+3Rδ

and CMIN = R + 5Rδ. When δ → 0, the ratio CDSIT/CMIN approaches N = 3

asymptotically. In a similar fashion, problem instances with arbitrary values of

N can be devised. Q.E.D.

The worst case scenario in the proof can be avoided by running multiple

maximum weight branching and shortest path heuristic iterations in the DSIT

heuristic. At each iteration, only one sensor is added to Si, i ∈ Na. However,

this greatly increases the computational cost. Moreover, the pathological case

in Fig. 6.5, where high correlation exists between sensors that are far away from

one another, rarely occurs in our assumed data rate model. The value of N is

expected to be small as one’s data helps mostly nearby sensors. Also since side

information is often circulated within one’s neighborhood, using shortest paths to

approximate a Steiner tree introduces a moderate amount of error. What we are

more interested in is the average behavior of the algorithm, which is examined

through simulations in the next section.
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6.5 Simulations

6.5.1 Simulation setup

In our simulations, we place (n+1) nodes including the fusion center and n sensors

in an nd × nd square, where nd = d√n + 1e. (Denote by dze the smallest integer

such that dze ≤ z, and bzc the largest integer such that bzc ≥ z.) Supposing x̃i

and ỹi, i = 1, · · · , n + 1, are random variables that are uniformly distributed in

[0, 1], the coordinates of node i is given by:

xi = [(i mod nd)− 1] + x̃i

yi = b(i− 1)/ndc+ ỹi

We define a transmission radius rc. If two nodes are no more than rc away from

each other, direct communication between the two nodes is allowed. Otherwise, a

relay has to be used. Denote by de the Euclidean length of edge e. When de ≤ rc,

the edge weight ce is proportional to dα
e , where α = 2 is the path loss factor.

When the number of sensors increases, the network covers a larger area while

maintaining the communication range and sensor to sensor spacing. A typical

100 node network constructed in this manner is depicted in Fig. 6.6(a). The node

in the lower left corner is the fusion center.

In our simulation, we assume that all the sensors are active. The helping set

Hi of sensor i is defined as follows. Any pair of sensors that are no more than

rd away from one another has a probability of ph to be in the helping sets of one

another. Fig. 6.6(b) shows the resulting data correlation in the network. For

simplicity, the data rate function in Eq. (6.1) is used.
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Figure 6.6: Simulation setup: rc =
√

5, rd = 1.8, ph = 0.5. Two nodes are

connected if (a) direct transmission is allowed; (b) their data are correlated.

6.5.2 Simulation results

Denote by CSPT, CCLU, CBAS, and CDSIT the routing cost of SPT, Cluster, BAS

and DSIT heuristics. Define CASP to be the cost of routing data when an ad-

dress centric SPT, in which no data compression is performed, is used. The

performance ratios of heuristic algorithms to address centric SPT are computed:

µs =
CSPT

CASP

, µc =
CCLU

CASP

, µb =
CBAS

CASP

, µd =
CDSIT

CASP

We simulate for different network sizes and vary the values of β and ph. The

performance ratios, averaged over 20 randomized network setups, are plotted

under different conditions.

The simulation results under high coding gain, β = 0.1, are plotted in Fig. 6.7,

where ph = 0.5 in (a) and 1 in (b). The wiggling of µ curves is mainly due to

the irregular sensor distribution when
√

n + 1 is not a integer. It has a more

pronounced effect on the clustering method as it results in uneven number of

sensors in different clusters. It is apparent that the all data-centric algorithms

result in significant gains over the address-centric SPT, and the performance ratio
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improves as network size increases. The latter is because the data rate reduction

affects the total cost more as the average distance to the fusion center increases.

The ratios will eventually saturate before reaching β. Both BAS and DSIT are

superior to SPT. However, we notice that the Clustering method has the worst

performance among data-centric schemes. This is not surprising considering that

we group sensors based solely on geographical proximity. Possible improvements

include taking into account data correlation in forming clusters, varying cluster

size, and using data-centric routes for intra-cluster data transmission etc. The

SPT fares fairly well for our network topology and source correlation. Sensors in

neighborhoods have good chances of quickly merging their flows, which leads to

data compression and cost reduction. When ph is raised from 0.5 to 1, significant

performance improvement is observed for the Clustering method only. It appears

that the benefit of data correlation has been exploited fully in other methods.

Thus, increasing the size of Hi produces little additional gain.
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Figure 6.7: Performance ratios plotted against network size when coding gain is

high, β = 0.1: (a) ph = 0.5; (b) ph = 1.0.
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Figure 6.8: Performance ratios plotted against network size when coding gain is

low, β = 0.8: (a) ph = 0.5; (b) ph = 1.0.

The performance ratios are plotted under small coding gain, β = 0.8, in

Fig. 6.8. The DSIT method suffers the most from the decrease of data correlation.

It performs worse than the SPT algorithm. However, BAS still produces the best

result.

To better illustrate the effect of coding gain on different schemes, we simulated

with a network of 100 nodes, and plot µ as a function of β in Fig. 6.9. It is

observed that all performance ratios increase monotonically with β, which is

expected. BAS has the smallest ratio under almost all coding gain conditions.

DSIT has about the same performance as BAS when β is small, but µd surpasses

µs at moderate coding gain and eventually converges to 1 together with µs and

µb. We also observe that µd, µs, µb ≤ 1. This is because these three algorithms

never perform worse than the address-centric SPT under any coding gain. In

contrast, µc becomes greater than 1 when β is close to 1. The gaps between

different algorithms narrow when the increasing of ph leads to more potential
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helpers.
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Figure 6.9: Performance ratios plotted against β: (a) ph = 0.5; (b) ph = 1.0.

6.5.3 Discussion

Our simulations highlights the importance of coding gain information in design-

ing data-centric routes. The clustering method based on geographical proximity

illustrates that serious performance loss may occur when routing is ill-advised.

The SPT fares fairly well when ph = 1. In a SPT, sensors in neighborhoods

have good chances of quickly merging their flows, which leads to data compression

and cost reduction. However, in practice, sensors in a network may carry out

different tasks and collect various types of data, so it is more common that ph

is less than 1. In addition, our simulations are conducted on networks where

sensors are evenly distributed, and cases similar to the worst scenario in Fig. 6.2

rarely occur.

BAS and DSIT methods yield good results under high coding gain and con-
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verge to SPT when coding gain diminishes. The two schemes’ ability to take

advantage of data correlation is evident when ph drops from 1 to 0.5. While de-

creasing the number of potential helpers gives rise to significant performance loss

for SPT and clustering methods, µb and µd only dip slightly. Although our simu-

lations show that the performance of DSIT deteriorates when β becomes greater

than 0.5, the performance loss is relatively benign due to the low coding gain and

the convergence of µd to 1. Although we only present centralized algorithms for

BAS and DSIT, distributed implementations are not difficult to devise given the

extensive research that have been conducted on SPT and MWB.

6.6 Conclusion

Based on the model in the previous chapter, we proposed a balanced aggregation

scheme and an algorithm that separately routes side information for cost mini-

mization. Simulations show that both methods work effectively in high coding

gain situations. In particular, the balanced aggregation scheme achieves good re-

sults under all levels of data correlation. Our study also highlights the importance

of coding gain information in designing data-centric routes. Serious performance

loss may occur when routing is ill-advised.
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CHAPTER 7

Concluding Remarks and Future Directions

In this dissertation, we studied the problem of efficiently utilizing resources in

wireless sensor networks to observe and estimate physical phenomena. Specifi-

cally, we discussed estimation fidelities in successive steps of source estimation,

adaptively sampling a distributed field, conducting data aggregation through lo-

cal processing, and constructing data-centric routes for transmitting data to the

fusion center. Although a sub-optimal approach that consider sampling, coding,

and routing separately is taken due to the theoretical difficulty and computa-

tional complexity of the unified approach, we observe that these three steps are

interwoven with one another during the design process.

We started with the study on various types of distortion associated with sens-

ing, source coding, and field reconstruction in wireless sensor networks in chapter

2. The bounds on sensing and coding error were determined by the limited re-

sources such as network density, node energy, and communication capacity etc.

In turn, these constraints circumscribe the mesh size in approximation and set

the bound of estimation error. Many topics for future research in this general

area suggest themselves. Different sensing models can be proposed, which will

lead to different behaviors for the sensing error. Practical local fusion algorithms

can be designed and compared to the rate bounds. In addition, we considered

only source coding in the chapter, but channel coding can enter the picture either

by setting the limits on quantization rate or joint source-channel coding. Lastly,
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the convergence of distortion in other interpolation schemes (besides the cubic

spline) in the presence of sensing and quantization noise can also be studied.

Then, in chapter 3, an algorithm based upon the Bayesian framework was

proposed to adaptively sample the sunlight field using mobile sensors. During

each step of the algorithm, the most desirable set of sampling sites are picked

from a candidate pool based on the probability of convergence in the Voronoi

cells centered at candidate sits. Various extensions of this scheme can be made.

For example, it can be easily modified to be used in a static wireless sensor

network where sensor nodes are woken up from sleep to take measurements.

In this chapter, a rectangular sampling domain is considered. However, it is

not difficult to extend our algorithm to arbitrary boundaries. If measurement

error has to be taken into account, the adaptive algorithm can be developed

using approximation techniques such as minimum mean square error estimation

instead of interpolation. As we mentioned, although the routing cost of mobile

sensors is not considered in this chapter, it can be incorporated into the scheme

in various ways. More studies are required to better approximate the probability

updating process and account for field heterogeneity. For instance, sophisticated

source statistical models that consider the smoothing effect of wind on the mean

sunlight field are currently under investigation. Additionally, in a multi-scale

sensing approach, we often have a rough overview of the field, which may reveal

valuable information on field heterogeneity, and should be incorporated into our

Bayesian framework.

In a sensor network, data streams at different sensors often have significant

redundancy in them since they are the results of observing correlated physical

phenomena. In chapter 4, we considered how to efficiently conduct data com-

pression such that the communication rate could be kept at a minimum. We first
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gave an overview on distributed source coding, in which sensors independently

encode data streams. The distributed source coding is by itself an active research

area. Efficient and low complexity codes are actively sought after. Then, a 2-

stage DPCM coding scheme that utilized explicit side information to quantize

the data was proposed. This method monitors the coding gain of side infor-

mation continuously, and thus is suitable for use in joint routing/compression

optimization.

The data-centric routing problem is complicated due to the coupling of data

processing and route design. In chapter 5, an optimization problem was formu-

lated for the combined routing and source coding with explicit side information.

This problem is shown, without surprise, to be NP hard, and a mixed integer pro-

gram was considered for one sub-instance of CRSC. We mentioned in section 5.2.2

that the number of sensors with highly correlated data can be brought down in

a process of thinning the number of active sensors based on the reconstruction

requirement. This pre-routing step makes in practice our procedure a two-phase

operation. First determine the set of sensors that will participate in the fusion,

then design the routes for transmitting the data to the fusion center. Currently,

the first step is generally approached from a sampling point of view [WMN04]

trying to meet the distortion constraint, while route design attempts to minimize

the energy consumption. It is of interest to ask whether a combined approach

will yield better results. [GCB04] is an interesting preliminary effort on that

direction.

As a continuation of the previous chapter, chapter 6 studied the heuristic

algorithms for the CRSC. Out of the four schemes, SPT, Clusters, BAS, and

DSIT, that we considered, BAS and DSIT were both shown to achieve good per-

formance under high data correlation and converge to SPT when the coding gain
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diminished. However, these two algorithms relied heavily on our assumed net-

work model. In particular, we assumed that data streams were highly correlated

only when they were from a small group of sensors close to one another, and the

coding gain saturated when the number of helpers exceeded one. Therefore, these

methods may not be as effective in cases where the network topology and data

correlation deviate from these assumptions. Nonetheless, as we discussed in sec-

tion 5.2.2, there are practical reasons to consider this simplified case. Moreover,

if more than one helper has to be considered, we speculate that the problem can

be approached in a multi-step procedure. At each step, the number of helpers

is restricted to at most one, and an algorithm similar to our heuristic scheme is

used. This is an area that needs further research.
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APPENDIX A

Rmin for uniformly distributed source and

sensors

First consider dividing the unit area into n identical square cells, and placing one

sensor at the center of each cell. This is equivalent to fixing the sensor at (0, 0)

and placing the source in the area [0, 1
2
√

n
] × [0, 1

2
√

n
] uniformly. The probability

density function of Rtextmin is as follows:

fRmin
(r) =





2πnr when 0 ≤ r ≤ 1
2
√

n

4nr
[

π
2
− 2 arccos

(
1

2
√

nr

)]
when 1

2
√

n
≤ r ≤ 1√

2n

(A.1)

The density function is 0 for any r not included in the definition, which also

applies to other probability density functions in this section. The average Rmin

can be easily evaluated:

E(Rmin) ≈ 0.3826√
n

(A.2)

Next, we consider a point source that appears in a unit disc (R0 = 1√
π
)

according to the uniform distribution. Denote by Rs the distance from the source

to the center of the disc.

fRs(rs) = 2πrs when 0 ≤ r ≤ R0

Denote by R, the distance between the source and a randomly placed sensor

according to the uniform distribution. Given that the source is rs away from the
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disc center, the probability density function for R, is:

fR(r | rs) =





2πr when 0 ≤ r ≤ R0 − rs

2θr when R0 − rs ≤ r ≤ R0 + rs

(A.3)

where

θ = arccos

(
r2
s + r2 −R2

0

2rsr

)

Therefore,

P (R ≤ r | rs) =




πr2 when 0 ≤ r ≤ R0 − rs

φR2
0 + θr2 −R2

0 sin φ cos φ− r2 sin θ cos θ when R0 − rs ≤ r ≤ R0 + rs

where

φ =





arcsin
(

r sin θ
R0

)
when R0 − rs ≤ r ≤

√
R2

0 + r2
s

π − arcsin
(

r sin θ
R0

)
when

√
R2

0 + r2
s ≤ r ≤ R0 + rs

Now, consider n sensors are randomly placed in the disc in the same fashion.

That the distance between the source and the closest sensor is r is to say that

there is one sensor r away from the source and the other (n − 1) sensors are at

least r away from the source.

fRmin
(r | rs) = nfR(r | rs)[1− P (R ≤ r | rs)]

n−1

Noticing that Rs is itself uniformly distributed, take the expectation on Rs.

fRmin
(r) = ERs [fRmin

(r | rs)]

This formula is numerically evaluated for different n, and the mean value is

computed. It is found that

Rmin ≈ 0.5101√
n
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APPENDIX B

∑N
i=0

∣∣∣∂S∆
∂yi

∣∣∣ is bounded

Rearrange the cubic spline function for xj−1 ≤ x ≤ xj.

S∆(x, y0, y1, . . . , yN) = αjMj−1 + βjMj + γjyj−1 + (1− γj)yj

where

αj =

[
(xj − x)3

6hj

− hj(xj − x)

6

]
, |αj| ≤

h2
j

9
√

3

βj =

[
(x− xj)

3

6hj

− hj(x− xj−1)

6

]
, |βj| ≤

h2
j

9
√

3

0 ≤ γj =
(xj − x)

hj

≤ 1

Differentiate the spline function about yi.

∂S∆

∂yi

= αj
∂Mj−1

∂yi

+ βj
∂Mj

∂yi

+ γjδi,j−1 + (1− γj)δi,j

where

δi,j =





1 when i = j

0 otherwise

Take the absolute values on both sides and sum all the equations over i =

0, 1, . . . , N .
N∑

i=0

∣∣∣∣
∂S∆

∂yi

∣∣∣∣ ≤
h2

j

9
√

3

N∑
i=0

[∣∣∣∣
∂Mj−1

∂yi

∣∣∣∣ +

∣∣∣∣
∂Mj

∂yi

∣∣∣∣
]

+ 1. (B.1)
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Now, differentiate both sides of Equation (2.17) about yi.




∂M0

∂yi

∂M1

∂yi

...

∂MN

∂yi




=




2 λ0 . . . 0

µ1 2 . . . 0
...

...
...

0 0 . . . 2




−1 


∂d0

∂yi

∂d1

∂yi

...

∂dN

∂yi




= B−1




∂d0

∂yi

∂d1

∂yi

...

∂dN

∂yi




(B.2)

Notice
∂dj

∂yi

=
6δi,j+1

hj+1(hj + hj+1)
− 6δi,j

hjhj+1

+
6δi,j−1

hj(hj + hj+1)

Take the absolute values on both sides of Equations (B.2), and sum over i =

0, 1, . . . , N . The following is obtained.

N∑
i=0




|∂M0

∂yi
|

|∂M1

∂yi
|

...

|∂MN

∂yi
|



≤‖ B−1 ‖

N∑
i=0




|∂d0

∂yi
|

|∂d1

∂yi
|

...

|∂dN

∂yi
|



≤ 12

hjhj+1

‖ B−1 ‖

in which ‖ B−1 ‖ is the row-max norm of matrix B−1 (page 20 [Ahl67]). For

proper end conditions (λ0, µN < 2), [Ahl67] showed the following is true.

‖ B−1 ‖≤ max
[
(2− λ0)

−1, (2− µN)−1, 1
]

Therefore,
N∑

i=0

∣∣∣∣
∂S∆

∂yi

∣∣∣∣ ≤ 1 +
8
√

3η

9
,

η = max
[
(2− λ0)

−1, (2− µN)−1, 1
] (

hj

hj+1

)

Thus, for meshes with bounded (
hj

hj+1
), the quantity

∑N
i=0

∣∣∣∂S∆

∂yi

∣∣∣ is bounded.
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