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Abstract of the Dissertation

Adaptive Diversity Combining, Equalization and
Sequence Decoding for Time-Varying Dispersive

Channels

Heung-No Lee

Doctor of Philosophy in Electrical Engineering
University of California, Los Angeles, 1999

Professor Gregory J. Pottie, Chair

Next generation wireless networking systems require a robust, flexible and effi

establishment of a communication link over the underlying time-varying wireless chan

to be able to support different QoS requirements for various kinds of services such as

video and data. In this dissertation, we investigate a robust wireless modem techniqu

should provide a reliable, spectrally efficient communication link over rapidly time-vary

and severely delay-dispersive wireless channels. We first examine the feedforward ch

estimation techniques. Fast time-varying channel is tracked down by two steps. Firs

of snap-shot channel impulse estimates is obtained by utilizing the channel tra

symbols periodically inserted into the stream of unknown data symbols. Then, the

time-varying channel during the unknown data segments is tracked down by the u

interpolation on the set of snap-shot channel estimates. For this problem, we propos

of novel channel estimators.

Having obtained the feedforward channel estimates, a robust detection rec

structure, utilizing the diversity receive antennas and the decision feedback equaliz

investigated for uncoded (or gray-coded) transmissions of a relatively small constell

signals, such as QPSK (or DQPSK). Assuming that a number of independent dive
xxii



e have

um

t the

er of

r the

DC-

sed

ems,

ion,

ltiple

e of

tection

use

ee-or

vivor

thm is

ation

able to

ince

ves the

ple

enefit
signals are available at the receiver by the use of space-diversity antenna systems, w

developed a robust diversity combining DFE (DC-DFE), which is derived under minim

mean square error criterion (MMSE). Advantages of the new receiver include tha

complexity of obtaining the optimum coefficients does not increase as the numb

diversity channel increases. In addition, the proposed DC-DFE was derived unde

assumption of fast-time varying channel, unlike conventional derivations. Thus, the

DFE provide a significant performance improvement over the previously propo

diversity combining DFE receivers and also to the RLS channel tracking DC-DFE syst

especially in fast-time varying channel conditions.

If the symbols from a large constellation are used to convey the digital informat

the spectral efficiency of the underlying wireless channels can be improved in mu

times. For a large constellation signalling such as 64-QAM, we propose the us

sequence-based detection schemes, derived under maximum likelihood sequence de

(MLSD) criterion. The complexity problem implementing the MLSD is resolved by the

of reduced complexity search algorithms. By comparing a set of several existing tr

trellis-search algorithms, we propose the use of T-algorithm along with the per-sur

processing. The proposed sequence-based detection receiver using the T-algori

extended further to be used in decoding of symbol-interleaved trellis-coded modul

signals. Main research result in this is that the receiver searches a tree and thus is

perform a joint decoding, deinterleaving and equalization. A joint decoding is optimal s

it does not make any early decision on the received symbol sequence and thus achie

full MLSD performance without doing any iteration. We show with an example of sim

trellis-code that the proposed joint, tree-search decoder achieves the full diversity b

available to the code without increasing the decoding complexity.
xxiii
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Chapter 1

Introduction

1.1 Recent Advances in Communications Technologies

During the last three decades, we have witnessed an exciting and expl

advancement of digital communication technologies, including high speed modems

cellular telephone systems, satellite networking, high speed local area com

networking and the world wide Internet. We briefly address some of the m

achievements that are relevant to the topics of this dissertation. For convenience we

our discussion on two distinct but highly related areas of development, one in wireline

the other wireless technologies.

1.1.1 The advent of the Internet

The most salient accomplishment of wireline communications/telecommunicat

technology we have seen during the last two decades is the area of inter-network

computers where the information and user applications are shared and knowledge ba

distributed in different parts of the world. The networking technology of today, wh
1
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started from a single file transfer from one computer to the other in the mid 60’s,

reached up to the level that it is now very common to see that our office computer

connected to high speed local area networks (LAN) with up to a few Gbps conne

speed. In addition, we have seen the fast emergence of the world wide internet over th

several years. The wide area network (WAN) known as the Internet interconnects

heterogeneous LANs scattered around the globe. This global networking of compute

only allows sharing of computing resources and data bases amongst the membe

particular local area group but also provides us with the remote access to service

information that may exist and be available anywhere in the wide area network, at any

Now, the future of the Internet is believed to be the universal computi

information disseminating and retrieval system, far exceeding the mere role of file tran

and sharing applications amongst clusters of connected computers. In the next dec

less, we will be able to ask the Internet, via a user-device [1] that interfaces us to

Internet, more active service requests such as “Make a flight reservation to New Yor

tomorrow for me” or “Make a video conference connections with all the members of

group,” who may be on travel abroad, at home or at the office [2]. For this to happen

current Internet which consists mostly of wireline infrastructure of technologies suc

public switched telecommunications network (PSTN), last mile xDSL accesses, high s

fiber-optic backbone networks and wired LANs, should be extended to allow tetherles

seamless connections to the some existing and some futuristic wireless networks, inc

the mobile cellular networks, the satellite networks, and various sizes of local area wir

networks such as wireless office and home networks [5][6][7].

1.1.2 The wireless networks

Transmission of digital information over wireless communication links such

terrestrial land mobile radio channels, indoor LAN channels and satellite channels ha
2
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received much research and development attention, with many accomplishments duri

last twenty years. For example, TDMA or CDMA basedcellular telephone technologies

which were perhaps realized only in a small scale military application about two dec

ago, now has became a mass market with a large variety of services available. In ce

networks, the base station located at the center of a cell relays all the telephone

directed from/to the wireless terminals residing in the cell for the duration of the call.

a connection oriented networking system, originally developed for the voice transmis

but now becoming available for data transmission as well. The current cellular p

system has now tens of millions of subscribers in America [5] and has become almo

essential part of our daily lives in many industrialized countries. Wireless connections

provide a convenient means for indoor networking, removing the need of hard-w

among office computers and printers. This is in some ways a miniature version o

cellular network. It interconnects computers in the vicinity of the base station, rather

phones, and thus runs in the packet switching mode, as this is more suitable for com

oriented bursty data traffic.

1.1.3 The hybrid networks and emergence of the universal computing

systems

In the next decade, perhaps we will see the emergence of next gener

internetworking technology, the so called the next generation Internet, which may

hybrid of heterogeneous tiers of networks, from pico cells to micro cells, micro cell

macro cells, telephone network to the Internet, low earth orbit (LEO) network

geostationary earth orbit (GEO) network, all of which are to be interconnected. The Int

today provides a convenient means to disseminate and retrieve information ove

wireline network. The next generation wireless communications technology will allow

to have wireless access to the Internet in a much faster and ubiquitous manner. The
3
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to realize a global system that operates without regards to many limitations of tod

system. It will provide seamless wireless connections regardless of any particula

interface technology, a broadband access with multimedia applications, remote acc

the computing resources and knowledge data base available in the network, without r

to whether one is at home, at the office, in the street, in a fast moving vehicle, or in t

abroad.

1.1.4 Need for spectrally efficient, robust wireless modem technologies

In order to bring such a universal communication and computing network

reality, we need a wireless networking solution that ubiquitously and seamle

interconnects us to the existing wireline/wireless infrastructure and finally to the other

of the communication entity. Since the goal is that the networking service is to

established anywhere, at any time and for any kinds of services, the wireless netwo

solution must perform well with a wide variety of networking scenarios, syst

requirements and channel conditions. This has inspired new design concepts

fundamental technological breakthroughs in almost every aspect of communic

research, including the investigation of wireless channel capacity, joint source and ch

coding/decoding, robust modulation and demodulation, the use of diversity transmi

receive antennas, design of power control algorithms, design of new medium access c

(MAC) algorithms and development of new networking protocols.

In this dissertation, we focus on the design of a wireless modem which enab

robust, reliable and spectrally efficient communication link to the higher MAC and netw

layers. It is very difficult to realize such a wireless modem technology because o

uncertain nature of the wireless channel, which may include high mobility, variatio

signal to noise radio (SNR) and multipath signal propagation. In addition, the spectru

a very scarce resource and thus the design should be optimized for bandwidth effici
4
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1.2 Overview of Dissertation

The scope of this dissertation is the wireless transceiver design and optimizati

the physical layer, which primarily deals with the combined problems of rob

transmission and detection of digital information over the wireless channels. Specifi

we investigated a novel optimal performance solution for wireless channel estim

problems, optimal receive antenna diversity combining techniques, minimum mean s

error decision feedback equalization (MMSE-DFE), a sequential detection techniqu

large constellation signaling using maximum likelihood sequence detection (MLSD),

the optimal/suboptimal joint sequential detection of channel-interleaved trellis-co

transmitted over multipath fading inter-symbol interference (ISI) channels.

The objective of our research was to develop transceiver technologies to faci

the implementation of a reliable and spectrally highly efficient communication link ov

fast time-varying, severe delay-dispersive channel. The proposed transceiver shoul

the capability to incorporate channel coding, adaptive bit rate transmission, ada

equalization, adaptive channel estimation, and explicit diversity combining through s

diversity antenna systems.

The channel studied was adopted from the perspective of outdoor mobile ce

environments. There are three main distortion mechanisms: delay-spreading (frequ

selective distortion) due to multipath propagation, channel variation (time-selectiv

Doppler spread) due to motion of the mobile, and the large scale variation of SNR d

shadowing. The distortion model employed follows the typical examples provided fo

54 [9] or GSM [34] systems where the use of an equalizer is mandatory.

For convenience of explanation, we categorize the channel environment into

different regions as shown in Table 1-1 :. According to a particular channel distor

region, the optimum technique may vary. For instance, differential phase shift ke
5
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(DPSK) detection may be sufficient to provide a robust receiver performance for sl

time-varying flat-fading channels, with low system complexity. However, the DPSK sys

would eventually fail, producing an irreducible bit error rate (BER) floor due to intersym

interference once the ratio of the root mean square (rms) delay dispersion to the sy

period exceeds a certain threshold, say about 1/10 the symbol period [49]. On the

hand, the channel may start to exhibit fast fading when either one of the transm

receiving terminals begin to move at a high speed. This fast fading channel requires a h

optimized fast channel tracking technique. In other circumstances, the transceiver mig

situated in a very low signal to noise ratio (SNR) environment, perhaps due to a

scattering object along the signal path from the transmitter to receiver that obstructs s

propagation. Then, the transceiver system may need a larger number of diversity an

or lower rate channel coding to account for the SNR loss of the link.

Table 1-1 : provides a tabular summary of all the basic channel-mitiga

techniques that can be utilized for each of these different channel situations. In all reg

we assume frequency-selective channels and thus adaptive equalization. Figur

provides an overview of the system functions of the adaptive transceiver developed

dissertation. For example, at the transmitter a fixed sequence of training symbol

periodically inserted into the unknown data streams for the purpose of channel estim

at the receiver. For the channel situation A. in Table 1-1 :, a trellis-code can be used

adaptive rate transmission, frequency-division duplex (FDD) and time-division du

(TDD) systems can be assumed. The functions of the receiver include channel estim

diversity combining, symbol or sequential detection and sequential detection.

The adaptive transceivers are assumed to operate in the general framework o

division multiple access (TDMA) systems. For this, we take as examples well-kn

wireless cellular radio standards such as IS-54, IS-136 and GSM to obtain some o

system parameters. These systems use TDMA as an efficient method of providing
6
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users in an assigned channel bandwidth, and employ training sequences, inserted in

TDMA frame, for the purpose of tracking the time-varying channel during the burst.

also use wireless channel parameters, such as delay spread and Doppler spread,

indicative of the channel environment where the system is expected to operate.

1.3 Roadmap of Dissertation

Figure 1-2 provides the road map of the dissertation. We describe the wire

channel model in Chapter 2. This channel model was developed for the sy

specifications of IS-54 such as the signal bandwidth (30 kHz) and the carrier frequen

900 MHz. It uses the representative multipath delay profile GSM recommends. Here, i

used to simulate the channel situations described in Table 1-1 :.

Chapter 3 discusses some of the basic issues of digital communications sy

Figure 1-1 Overview of the transceiver techniques over the multipath fading I
channels

·Periodic Training

·Trellis-code

·Variable rate

(FDD or TDD)

·Diversity Antennas

·Channel estimation

·Diversity reception antennas

·Symbol-by-symbol detection
(DFE)

·Uncoded sequential
detection

·Sequential decoding

· Fast Time-Varying
·  Shadowing
·  Multipath Fading
·  Frequency-selective
7
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simulation and discusses some equalizer design problems with examples of tele

channels. In particular, minimum mean square error decision feedback equalizer (D

linear equalizer (LE) and Tomlinson-Harashima precoder are compared as the mitig

techniques for the dispersive telephone channels. In addition, the least mean squares

and recursive least squares (RMS) adaptive algorithms are considered for the purp

training the DFE filter coefficients, and the simulation results are discussed.

Chapter 4 discusses the feedforward channel estimation and tracking problem

Time-selective distortion

Slow fading Fast fading

Large
scale
shadow
-fading

Low
avg.
SNR

A.

• Explicit diversity combin-

ing

• Low-rate trellis-code

• Sequential Joint-Decoding

B.

• Explicit diversity combin-

ing

• Frequent update of the

receiver parameters

• Low-rate trellis-code

• Sequential Joint-Decoding

High
avg.
SNR

C.

• Uncoded Larger constella-

tions

• Symbol-by-symbol detec-

tion transceiver

• Decision directed channel

tracking

D.

• Larger constellations

• Frequent update of the

receiver parameters

• Sequential detection

(MLSE)

Table 1-1 :  Basic mitigation techniques for the frequency-selective channel with
varying degrees of time-selective distortion and shadowing.
8
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channel estimation is feedforward, in that explicitly known training symbols

periodically inserted into the streams of unknown data for the purpose of the rece

estimation of the channel. Thesnap-shotestimates of the channel are interpolated to tra

the channel variation of the time-segment inbetween the two adjacent channel tra

segments. Novel channel estimators that utilize thea priori information of the transmit

shaping filter’s impulse response at the receiver are proposed. Least squares, ma

likelihood and maximuma posterioriestimators are derived. Closed form, theoretical me

square errors for each estimator were derived and compared with the simulation res

Chapter 5 discusses the diversity combining decision feedback equalizer (DFE

uncoded symbol transmission (gray coded or deferentially encoded). We have propo

optimal receiver architecture based on the minimum mean square error criterion an

based on the performance obtained in the presence of channel estimation error. Tha

have shown the equivalence of the two systems, the straightforward architecture an

matched filtered diversity combining version, by deriving the latter from the former.

have identified the eigenvalue spread problem of the former and proposed the use

latter architecture which provides much more stable performance than the former i

presence of severe ISI and of channel estimation errors. Previous derivations of the M

DFE were all done with the assumption of a time-invariant channel. Our new solution t

into account the channel variation even during the duration of the decision delay o

diversity combining receiver. The improved performance of the new solution particu

stands out in the case of fast time-varying channels.

Chapter 6 deals with calculation of the theoretical matched filter bounds (MFB)

the channel capacity (spectral efficiency). From MFB analyses, we will be able to se

exact relationship between the order of diversity in terms of detection probability, and

number of diversity channel or the delay-dispersion characteristics of the wireless cha
9



Figure 1-2   Roadmap of the dissertation

Introduction:
Chapter 1

Matched Filter Bounds &

Chapter 6Feedforward Channel Estimation
and Tracking

Chapter 4

Diversity Combining
Decision Feedback Equalization

Chapter 5

Diversity Combining
Maximum Likelihood Sequence Detection

Chapter 7

Conclusion
Chapter 9

Time-Varying Frequency-Selective
Wireless Channels and
The Channel Models

Chapter 2

Background and Equalizers

Chapter 3

Decoding of Trellis-Code,
Channel-interleaved over the
Time-Varying Frequency-Selective Channels

Chapter 8

Channel Capacity
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We will observe that the order of diversity is increased as the number of diversity ante

are added, and also as the delay-dispersion of the wireless channel increase. In addi

the order of the diversity increases the detection performance converges to the res

AWGN channel. These theoretical MFB bounds are compared with the relevant simul

results in each Chapter of the dissertation.

In Chapter 7 we move into the area of sequence based detection using the max

likelihood sequence detection (MLSD) criterion. We also deal with larger sig

constellations, such as 64 QAM, to be used in the case of variable rate QAM transmi

where the number of bits can be varied from 1 bit to 6 bits according to the var

conditions of the channel. Large size constellations and the use of a DFE is a poten

problematic combination, because of the error propagation problem of a DFE.

complexity problem of using the MLSD receiver is resolved by using a suboptimal t

search T-algorithm, instead of using the Viterbi algorithm. A comparison is made

other sequential search algorithms. The T-algorithm is shown to give the best perform

with the lowest increase in the average complexity. Moreover, we have proposed the

per-survivor processing to estimate the channel mismatch at each path, to ach

substantial additional SNR advantage while reducing almost in half the number of sur

paths. The reason is that the per-survivor processing of the channel estimate promote

elimination of bad paths from the survivor list.

Chapter 8 discusses the decoding of trellis-codes transmitted over the mult

fading ISI channel. Since the channel has correlated fading, the code must be interl

before being transmitted to obtain the diversity benefit of the code. The use o

interleaver makes it impossible to perform a joint decoding, based on the tradit

approach of constructing and searching a joint-trellis. However, since the T-algorithm

tree-search version of the sequential search algorithm, we were able to devise a w

perform a joint tree-search on the combined state machines of encoder trellis, th
11
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interleaver and the minimum phase ISI channel. The minimum phase ISI channel

result of preprocessing of the wireless channel, where the preprocessing consi

matched filtering (using the interpolated channel estimation results of Chapter 4) an

mean square whitening filter (described in Chapter 7). The simulation results shows th

receiver achieves the available time-diversity benefit of the trellis-code with only a mo

increase in the decoding complexity compared to the uncoded system.

In Chapter 9, we provide the conclusion of the dissertation and presents topic

future inquiry.
12
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Chapter 2

Wireless Channels and Simulation Models

The focus of this Chapter is to introduce the major signal distortion mechanisms

impairments of the wireless channel to be addressed in the body of the dissertation, e

the physics behind them, and develop the simulation model for the frequency-sele

diversity channel to be used in the performance evaluation of the transceivers. The ch

impairments will be discussed include the signal fading due to multipath sig

propagation, intersymbol interference (ISI) due to multipath delay spread, freque

selective and non-selective channels, and the time-varying channels due to Do

broadening.

2.1 Characterization of Multipath Channels

When a signal is transmitted in a wireless environment, the propagation path o

signal to the receiver is affected by the geometry of the environment. When an extre

short pulse is transmitted in a wireless environment, for instance, the received signal

appear as a dispersed train of pulses instead of a single pulse, as shown in Figure 2
13
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geometry of the environment at that moment determines the channel impulse respon

dispersion of the pulse train. Each individual pulse at the receiver is the uniq

determined end-product of the particular propagation environment at the momen

transmitted signal pulse went through. The transmitted pulse may hit into buildings, t

streets and other scatterers in the environment. The more scatterers in the environme

more pulses might appear at the receiver and each might arrive at a different time.

the geometry of the propagation medium changes--as the transmitter, the receiver o

might be in motion, for example a mobile receiver in a moving vehicle or a transmitte

an airplane--the shape of the multipath varies over time. This chapter attemp

characterize such random channel behavior using some mathematical expres

especially to model the dispersion and the time-variant nature of the channel.

In the equivalent lowpass description the wireless channel can be expresse

train of impulses, i.e.,

, (2.1)

where is the attenuation factor of the -th path, is the propagation delay

is the carrier frequency [65]. The sample impulse responses, shown in Figure 2-2, F

2-3 and Figure 2-4, indicate the multipath propagation paths with the phase informati

(2.1) ignored.

2.1.1 Multipath fading: the small-scale variation of the signal strength

Consider a case in which the multipath delay dispersion is much smaller tha

duration of the signal pulse. Specifically, suppose that there are multipaths

propagation delay , and a transmit pulse of unit amplitude whose sig

duration is much greater than the maximum delay dispersion , then

c τ t;( ) αi t( )e
j2π f cτi t( )–

δ τ τi t( )–( )
i

∑=

αi t( ) i τi t( )

f c

K

τi t( ) 0 i K 1–≤ ≤

T0 τK 1– t( )»
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received signal can be written for the interval  as,

Now, note that the attenuation factor and the dispersion delay associated with an indiv

path does not change too fast, i.e. and compared to the duration o

pulse. However, the phase factor might vary significantly for a different pa

since it changes by rad as changes by , which is typically very small for a r

frequency. The set of dispersion-delays and the attenuation factors is determined ran

by the propagation medium surrounding the receiver for each instant. If the receiver

not move and there is no change in the environment, the summed number does not c

However, as the receiver makes a movement or the environment changes--for exam

presence of a large moving scattering object in the vicinity--the number will take a diffe

value as there will be a change in the set of dispersion delays and attenuation factors

the received signal can be modeled as a random process. In fact, with the assumptio

large number of multipath components, i.e. a large , the central limit theorem ca

applied and thus the received signal can be modeled as a complex-valued Gaussian r

variable--hence the absolute value is Rayleigh distributed. As there will be changes

surrounding environment and movement of the receiver (or the transmitter) over time

received signal can be modeled as the complex-valued Gaussian random pr

parameterized with the time variable. The time-correlation behavior of this random pro

over time will be studied in 2.1.4.

0 t T τK 1– t( )+≤ ≤

r t( ) αi t( )e
j2π f cτi t( )–

i 0=

K 1–

∑=

αie
jθi–

i 0=

K 1–

∑=

a complex-valued Gaussianrandom number=

αi t( ) αi≈ τi t( ) τi≈

θi 2π f cτi=

i 2π τi
1
f c
-----

K
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2.1.2 Shadow fading: the large-scale variation of the signal strength

Multipath propagation of the signal produces small-scale signal fading whe

number of unresolved randomly phased pulses are added. The Rayleigh fading m

provide a good approximation to the amplitude variation of the signal in a small-scale

region, such as the signal strength variation for a car moving along a short patch of a

street. Shadow fading refers to the variation of a “local mean” over a large-scale spac

to terrain and large-scale obstacles such as buildings, while the local statistics m

Rayleigh.

The path loss, the ratio of received power over transmitted power, at a local re

is widely modeled as a random variable having a log-normal distribution, i.e.

, (2.2)

where

• is the distance between the transmitter and the receiver

• is the reference distance, corresponding to a point located in the far field o

antenna, typically taken to be 1 km for large cells.

• is the value of the exponent, depending on the frequency, antenna heights

propagation environment. For example, for free space and higher for l

number of obstructions are present.

• the free space loss, where is the wavelength of the propaga

signal

• denotes a zero-mean Gaussian random variable (in decibels) with standard

tion  (typically, 6-10 dB).  is site- and distance-dependent.

Lp d( ) dB( ) Ls d( ) dB( ) 10n
d
d0
----- 

  χσ+log+=

d

d0

n

n 2=

Ls d( ) 4πd
λ

---------- 
  2

= λ

χσ

σ χσ
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2.1.3 Multipath delay spread

The autocorrelation function of will be useful for the characterization of t

channel dispersion and provide a measure of the delay spread. First, we assume t

channel is wide-sense stationary and characterized as a complex-valued zero

Gaussian random process in the variable. Then, we define the autocorrelation funct

. (2.3)

Assuming uncorrelated scattering at two different delays such that the phase shif

attenuation of the channel associated with path delay and are uncorrelated,

becomes

. (2.4)

If we let the observation time difference be zero , then the resulting autocorrela

function is simply the average power output of the channel as a function of the d

variable . We call it thepower-delayfunction of the channel, which is defined as

. (2.5)

In the discrete-time channel case, it can be written as

, (2.6)

where we have defined for . We will call this function as th

multipath power-delay profile (MPDP) of the channel.

Now, one can model the power-delay profile as a type of probability distribution

normalizing by . Then, we use the standard deviation of , , as

c τ t;( )

c τ t;( )

t

φc τ1 τ2, ∆t;( ) E c
* τ1 t;( )c τ2 t ∆t+( );( ){ }:=

τ1 τ2

E c
* τ1 t;( )c τ2 t ∆t+( );( ){ } φc τ1 ∆t;( )δ τ1 τ– 2( )=

∆t 0=

τ

φc τ( ) φc τ ∆t 0=;( )=

φc τ( ) E αi t( ) 2[ ]δ τ τi t( )–( )
i

∑=

φc i, δ τ τi t( )–( )
i

∑=

φc i, E αi t( ) 2[ ]= i 0≥

φc τ( ) φc τ( ) τd
0

∞
∫ τ τrms
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measure of delay dispersion of the channel with a particular MPDP. That is, is de

as

. (2.7)

In modeling a wireless channel, one may use a MPDP measured from the field test o

assume a certain MPDP such as exponential power delay profile .

2.1.4 Time-variation of a fading component

Due to the movement of the environment, the receiver or the transmitter,

wireless channel should be modeled as time-varying. We use Jake’s model which is

known and widely used model for the generation of the time-varying ensemble path o

fading channel [15]. The time-correlated fading can be explained as follows. First, let

the displacement vector from the transmitter to the receiver at time and assum

receiver is traveling at a velocity with and the angle , which is between

, as illustrated in Figure 2-1. Then, the displacement vector from transmitter to rec

is at . The distance for a short time, , can be approximated by a lin

function of time [16],

. (2.8)

Then, the phase of the wave has changed by , where is the speed

light. Thus, from  the attenuation of the path at time  is

τrms

τrms

τ2φc τ( ) τd
0

∞
∫

φc τ( ) τd
0

∞
∫

-------------------------------
τφc τ( ) τd

0

∞
∫

φc τ( ) τd
0

∞
∫
----------------------------

 
 
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 
  2

–

 
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 

1
2
---
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φc i, τi
2

i 0≥
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i 0≥
∑
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i 0≥
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We call the term the Doppler shift or Doppler frequency. We then define

maximum Doppler frequency,

, (2.10)

and this will give a measure of how fast the channel is changing.

Next, in order to find out the time-correlation of the Rayleigh fading path

consider, again assuming uncorrelated scattering of the  paths,

. (2.11)

By modeling the angle of incident  to be uniform random variable on , we h

Figure 2-1   Angle of incident of the incoming signal to the direction of mobile.
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where denotes the zeroth order Bessel function. Thus, the autocorrelation funct

a real-valued function since the cross correlation of real and imaginary parts is ze

section 2.3, a method of generating Rayleigh fading paths with the time-correlation (

will be discussed.

2.2 Wireless Propagation Channels

The propagation channel is the surrounding physical environment which influe

the propagation of the radio signal from the transmitter to the receiver antenna. For d

of outdoor communications systems, the propagation channel is commonly categoriz

its typical impulse response, or a typical response to a wideband transmitted pulse

certain type of geographical region. From a particular geographic region to anothe

statistical behavior of the channel is assumed significantly different. In particular,

outdoor cellular communication channels are usually categorized into three distinct

such as rural, urban and hilly terrains. To insure satisfactory operability of a radio over

different characteristic regions, a system is tested under a set of channel impulse res

carefully selected from field experiment and thus representing the particular region.

2.2.1 Typical multipath delay profiles

The following figures describe the physical propagation environmental setting

the three different regions. Figure 2-2 illustrates the channel environment of a typical

area, and Figure 2-3 is for an urban area and Figure 2-4 for hilly terrain. Specifically, t

figures illustrate the physical propagation medium of typical down-link radio channels

the choice of carrier frequencies and frequency bands relevant to the current ce

E r
*

t0( )r t0 δt+( ){ } Const
1

2π
------ e

j– 2π ϕ( ) f dmδtcos
ϕd

0

2π
∫⋅=

Const J0 2π f dmδt( )⋅=

J0( )
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systems such as IS-54, IS-95, GSM and IS-136. Each figure also includes the ty

wideband pulse responses, as well as the narrow-band pulse responses. As the ban

of the pulse narrows, multipaths of the received signal becomes less distinguish

leading to the small-scale fading condition explained in Section 2.1.1.

2.2.2 Basic mechanism of signal propagation

Much of the observed propagation behavior can be explained in terms of reflec

diffraction and scattering. Reflection occurs when the wave impinges on a smooth su

with a very large dimension compared to the wavelength. Reflection is illustrated by p

2 and 3 in Figure 2-3. Diffraction occurs when the radio wave impinges upon a sharp

of a dense object with a large dimension compared to the wavelength. The first pa

Figure 2-3 shows the result of diffraction. The building obstructs the direct line-of-s

path between the transmitter and the mobile receiver but the secondary wave formed

00 τ1 τ1

Transmitted pulse Multipath Propagation Magnitude response

Figure 2-2 Outdoor wireless communication channels in cellular structure for the typ
rural area.
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sharp edge of the building still reaches the receiver. This is why it is often called shado

Scattering occurs when the radio wave impinges on a surface or an object with a dime

on the order of wavelength. The resulting waves are spread out in all directions. Ty

scattering objects are lampposts, street signs and foliage. Typical reflection and diffra

objects are buildings and mountains.

The second row in each Figure is the graphical representation of the chan

wideband- or narrow-band pulse responses. The first shows the transmitted pulse,

may be in the form of either an ideal impulse (having an extremely large bandwidth)

finite bandwidth pulse. The second1 is the wideband impulse response of the channel

the transmitted pulse shot at time zero. The third is the magnitude impulse response

wideband channel when the finite bandwidth pulse was transmitted.

1.Note that magnitude only is shown, neglecting the phase information for now.

Figure 2-3 Outdoor wireless communication channels in cellular structure for the typ
urban area.

00 τ2

Transmitted pulse Multipath Propagation

τ2

Magnitude

1.

2.

3.
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2.2.3 Building a suitable channel model for a geographic region

The channel’s impulse response represents the multipath propagation behav

the wireless channel. An extremely wideband pulse, approximately an impulse, ca

employed in a channel sounding experiment. That is, an impulse is transmitted

reference time at the base station and its responses are recorded at the receiver. Us

number of distinct delay-spread impulses would reach the receiver. Each path is the

of a different propagation mechanism with varying distance of travel, varying attenua

factors and phases. The associated attenuation factor, phase and time of arrival

multipath components is determined by the surrounding medium. This is called mult

propagation of the radio waves. The response is time-varying since the receiver is as

Figure 2-4 Outdoor wireless communication channels in cellular structure for the H
Terrain area.

00 τ3

Transmitted pulse Multipath Propagation

τ3

Magnitude
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to be mobile. Therefore, as there are numerous possible setting of the surrounding

and as the receiver will experience many of them while receiving the signal, the chan

usually modeled as a random process, as was given in (2.1).

The multipath profiles provided in Figure 2-5 are the measured impulse respo

for the rural, hilly terrain and urban areas. This set of channel responses is recomm

by the GSM systems standard [34] for generation of the simulation channel

performance evaluation of a complete system via computer simulation.

Rural channels are often characterized by starting with a strong direct line-of-s

path and quick, exponential decay of responses. It assumes no distant large scatters

large buildings and mountains. In this class of channels, the multipath is mainly du

scattering objects such as trees and streets which are within the proximity of the m

receiver, and thus the span of arrival times is short. The typical rural area example s

in Figure 2-5 indicates that there are no more arriving pulses after the first 1 sec. Th

impulse in Figure 2-2 is a direct line of sight path, and thus modeled as a determin

attenuation. The rest of the paths are recommended to be modeled as Rayleigh

amplitude [34], assuming they are the superposition of a large number of independent

having uniform phase distribution, as explained in 2.1.1.

In the urban case, shown in Figure 2-3, it is typically assumed that the mobile w

be surrounded by many reflective and diffracting objects such as buildings which

sizable distance away from the receiver which lead to distinguishable multipath arriva

the receiver, in addition to the small-scale scatterers in its proximity. As a result, the d

spread becomes larger than that of the rural area. Figure 2-5 (c) indicates that most

multipath rays are arrived within the first 5  sec.

On the other hand, the hilly terrain case indicates that there is a distinct se

group of late arriving rays to the receiver, set largely apart from the first group, due t

presence of distant mountains and hills. Thus, the delay spread becomes the larges

µ

µ
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Figure 2-5   Typical propagation models defined in GSM 05.05 version 4.13.0.
25



SM

.0978

ctively.

-95

idth

t of

idth

more

d as

. For

n. In a

ainous

form

re the

, this

the

ecker

cent

r the

dwidth

tems
In Figure 2-5 (b), it is shown that the second group arrives after the first 15 sec. G

recommends that all of the paths be modeled as independent and Rayleigh fading.

The rms delay spread of the channels shown in Figure 2-5 are 0.0977 sec, 5

sec and 1.0260 sec, for the rural area, the hilly terrain and the urban area respe

2.2.4 Frequency-selective channels due to multipath spread

The transmission bandwidth is 1.25 MHz for the CDMA systems such as IS

whereas in TDMA cellular systems such as IS-54 it is 30 KHz (or the effective bandw

of 24 KHz). The transmission bandwidth of the CDMA systems is about 42 times tha

the TDMA systems. As will be illustrated in this Section, the larger transmission bandw

provides greater multipath resolution power. That is, the receiver is able to resolve

multipath components. Thus, the channel for CDMA systems is typically designe

multitap filter, and for each tap a RAKE finger may be assigned for signal detection

IS-54 or IS-136 systems, however, the number of channel taps depends on the regio

rural area, the channel can be modeled as a single tap fading channel. In the mount

terrain the channel should be a multitap channel due to the delay spread.

A channel whose magnitude response in the frequency-domain is not uni

across the frequency band of interest is called a frequency-selective channel, whe

frequency band of interest is the transmission bandwidth of the signal. More precisely

implies that in the frequency-domain the folded spectrum of the channel is not flat. In

symbol-rate sampled, discrete-time domain, the impulse response is not a single Kron

delta function but multiple delta functions, that cause interference among adja

transmitted symbols. This is calledintersymbol interference(ISI). Any channel that results

in non-flat folded spectrum and thus results in ISI is a frequency-selective channel fo

chosen baud rate. Note that the reciprocal of the baud rate should be the effective ban

of the transmit shaping pulse. Explained in another way, all radio communication sys

µ

µ

µ µ
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have a finite delay resolution related to the reciprocal of their transmission bandwidth.

propagation paths separated by less than the system’s delay resolution will appear

receiver as one path. Thus, whether a channel is frequency-selective or non-se

depends not only on the multipath delay itself but also on the transmission bandwid

the frequency-domain, the frequency-selective channel is a channel where the coh

bandwidth of the channel is significantly smaller than the transmission bandwidth.

All the channels in Figure 2-5 are frequency-selective channels with respect t

wideband channel sounding pulse. We may note from the figure that the channel has a

resolution of at least 0.1 sec and thus the bandwidth of the transmit and receive filter

should have been more than 10 MHz. The pulse shaping filter of a practical system w

be much narrower than 10 MHz, and thus depending on the actual choice of the sh

pulse, the channel can be categorized accordingly, frequency-selective or non-sel

This will be illustrated next.

Take the urban area multipath profile given in Figure 2-5 (c) first. Suppose the p

has a transmission bandwidth of 1.25 MHz as would be appropriate for IS-95 syst

Figure 2-6 shows the scenario. Figure 2-6 (a) shows the shape of the overall pulse wh

the cascade of the transmit and receive filters, the raised cosine filter (i.e., assumin

transmitter and the receiver used the same square-root raised filter). Figure 2-6 (c)

time-domain response of the cascade of the pulse (a) and the random channel (b), wh

random channel is realized with the FIR channel whose tap energy and tap spacin

determined from Figure 2-6 (b) and the phases of the taps are independently selecte

the random variable uniform over . Figure 2-6 (d) is the frequency response o

cascade of the random channel (b) and the pulse (a), sampled at a rate MHz, wh

twice the chip-rate. The response exhibits the frequency-selective magnitude res

across the frequency-band of interest.

Now, suppose a 30 KHz transmit pulse is used (e.g., IS-54, IS-136) instead of

µ

0 2π, )[
2

1.25
----------
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Figure 2-6   Response of the typical urban channel to the 1.25 MHz pulse.
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MHz pulse on the typical urban channel. Figure 2-7 (a) shows the cascade of the tra

shaping pulse and the matched filter at the receiver. Note that the overall pulse is

wider in time-domain. Thus, the resolution power in the time-domain is much less tha

previous case in Figure 2-6 (a). As a result, the frequency response of the channel a

cascade pulse is almost flat as shown in Figure 2-7 (d). The resulting ISI is insignifica

shown in Figure 2-7 (c). The typical urban channel is thus a flat fading channel for the

of 30 KHz transmit pulse, but a frequency-selective channel for the systems using a

MHz pulse.

It is now shown in Figure 2-8 that the channel for the hilly terrain area should

modeled as the frequency-selective channel, even when the 30 KHz narrow-band p

used. This is due to the second group of pulses around 15 to 20 sec. The frequ

response given in Figure 2-6 (d) shows how one frequency response could be differen

the other. In this case, the channel will cause severe intersymbol interference. This

terrain or a mountainous terrain model is the basis for the tapped delay line channel m

[62] for system simulation and we adopt the model. This frequency-selective channe

be modeled as finite impulse response (FIR) filters in section 2.3.

2.2.5 Time-varying channel due to Doppler spreading

This section addresses the time-varying nature of the wireless channel,

supplements our earlier treatment of Doppler fading in section 2.1.4. Basically, the ch

is time-varying because of the change in the environmental configuration surroundin

transceiver or the movement of the mobile. The motion between the transmitter an

receiver results in a changed propagation path. In indoor applications, for instance, th

of change may be insignificant due to the relatively slow movement (assuming the c

frequency is the same). In outdoor applications, on the other hand, it may bec

significant since mobiles are capable of moving at highway speed.

µ
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Figure 2-7   Narrowband pulse response of the typical urban area channel.
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Invoking the wide sense stationary uncorrelated scattering argument, the evo

of the random process corresponding to each tap is uncorrelated to each other. That

time-variation of the tap coefficients are mutually uncorrelated while each of them o

the same time-correlation behavior. Thus, describing the time-varying property of a s

component will be sufficient since all the components obey the same law. Now, usin

correlation analyses result of 2.1.4, we now define the normalized time-autocorrel

function (2.12) as

, (2.13)

whereJo(.) is the zeroth order Bessel function of the first kind andfdm is the maximum

Doppler fading rate. The Fourier transform of (2.13) provides the Doppler power spect

which is

. (2.14)

This is a model resulting from the dense-scatter model [15] which is reasonable fo

outdoor channel model. For the indoor model, a flat spectral density model may be u

Then, using Jakes’ Rayleigh fading model [15], each Rayleigh fading channe

coefficient  can be modeled as the sum of nine sinusoids,

, (2.15)

where

• ND is a normalization coefficient that makes the second moment of equ

1.0,

• dj is the complex-valued amplitude for the (j+ 1)-th Doppler frequency whose in-

φD δt( ) 1
Const
---------------E r

*
t0( )r t0 δt+( ){ }=

Jo 2π f dmδt( )=

S fd( )
1 f d f dm⁄( )2

–( )
1 2⁄–

f d f dm≤,

0 f d f dm≥,



=

bl i, k( )

ρ t ST;( ) ND dj 2πδ j f dmt ST+( )cos
j 0=
8∑=

ρ t STli;( )
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phase and quadrature components are

, (2.16)

and

. (2.17)

•  is a relative frequency scaling factor for the (j+ 1)-th Doppler shift which is

. (2.18)

• is a randomly chosen real-number to begin the generation of the ensemble

random starting point. The distribution we have chosen is uniform over [-100

10000]. This can be used to simulate many ensemble of paths of wide-sense stat

uncorrelated scattering taps.

Figure 2-9 illustrates the Doppler fading tap generated using (2.

, (a) is the amplitude variation and (b) is the variation of the phase. Fig

2-10 (a) compares the autocorrelation functions. One is a sample autocorrelation fun

calculated from the generated ensemble (the dashed line curve), i.e.,

(2.19)

Re dj{ }
2

π
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Figure 2-9 Visualization of the time-varying complex-valued tap at the fading rate of
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and the other is the exact autocorrelation function of Eq. (2.13).

2.3 The Diversity FIR Channel Model

We now describe the frequency-selective channel model that will be u

throughout the dissertation. As an effective counter-measure to the fading, the rec

diversity technique is frequently suggested for the future generation of transc

technology. Thus, we develop the diversity channel model for the simulation of our sys

2.3.1 FIR representation of the channel, transmit and receive filters

In practice, the transmission bandwidth always exceeds the baud rate. This

allow a smooth transition from a passband to stopband of the transmit and receive sh

filters since sharp transitions are hard to realize and expensive. In wireless ch

applications, the channel is unknown and the receive filter cannot perform the ma

filtering until the channel is estimated. As a result, the discrete-time sampled cha

should be modeled as a fractionally sampled filter. For example, IS-54 and IS-136 sy

use 35% excess bandwidth of the baud rate, i.e. the baud rate is 24 ksps but th

bandwidth of the shaping filter is 30 KHz. For such systems, a fractional sampling mu

employed in order not to lose any information until a matched filtering for the unkno

channel is performed. We use the half symbol-rate sampling system and the cha

transmit and receive filters are modeled as finite impulse response filters (FIR). As w

described in more detail, the wireless channel will be modeled as three-tap fading

impulse response (FIR) filter with tap-spacing of half the symbol period.

Figure 2-11 (a) illustrates the baseband representation of the system in contin

time domain. The symbol sequence is modulated with the transmit shaping filter

transmitted to the wireless channel. The received signals are processed with the ideal
36
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Figure 2-11 The transceiver operation in baseband representation, frequency-dom
representation, and the equivalent fractionally sampled system.
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wall anti-aliasing filter , , before getting sample

with a fractional rate, e.g. two samples per symbol period. This can be represented

frequency domain as illustrated in Figure 2-11 (b). The bandlimited -samp

received signal can be represented in the -sampled discrete time system, illus

in Figure 2-11 (c). In fact, the frequency-response of the -sampled discrete-time

is just a scaled version of the continuous response, repeating at every multiple of

frequency. It is obvious that the transmit shaping filter can be represented as a

spaced discrete-time sampled FIR filter because it is a bandlimited filter. The wide

filter can also be represented as the -spaced discrete-time sampled FIR filter, be

of the use of anti-aliasing filter . That is, the combined response,

bandlimited and thus can be represented in -spaced sampled system. No

following,

,

where  is the brick-wall filter with bandwidth  whose Fourier transform

. (2.20)

Thus, we can use as a discrete-time FIR filter with ta

spacing of .

Now, we need to obtain the multipath profile suitable for the fractionally-spa

system. The multipath delay profile for the -spaced sampled system is just the fil

/ sampled version of the wideband result (2.6) such that the autocorrelation function o

low-pass filtered channel response
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.

From (2.4),

. (2.22)

It is observable from (2.22) that the multipath profile for the fractionally-spaced system

be obtained from sampling the results of convolution of the wideband MPDP to

autocorrelation function of the low-pass filter. Assuming the ideal brick wall, low-pass fi

with bandwidth such as (2.20), the sampled multipath components can be ass

mutually uncorrelated. We now denote the low-pass filtered and -sampled versi

the MPDP as

, (2.23)

for . We note that each denotes the average power of

multipath component of the -path.

In this paper, we use the following two classes of the low-pass filtered/sam

version of MPDPs. One is adopted from [62] where three -spaced taps were us

the simulation of mountainous MPDP. Each tap’s power is distributed
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(2.24) is the MPDP used for the analyses results given in Chapter 4 and Chapter 5. Fo

given in Chapter 6, 7 and 8, we use the exponential distribution to obtain the average p

of the three fading taps, i.e., for

. (2.25)

The evolution of the channel filter tap can now be generated by multiplying the square

value of the MPDP to the Rayleigh fading coefficient (2.15).

2.3.2 Diversity receive antennas

We assume diversity antennae at the receiver. The use of multiple receive ant

provides rather large diversity benefit against signal fading and thus are a very des

receiver scheme. For this, we assume independent receive signals are available

receiver. There are many diversity techniques using a number of antenna to pr

independent fading signals. Among them are spatial-diversity and polarization an

techniques. In the former the receiving antennas are separated on the order of

wavelengths apart from each other to obtain independent fading. The latter approac

use different polarization antennae. We assume that independent receive signa

available at our disposals by one of these techniques.

2.3.3 Diversity antenna channel model

Figure 2-12 illustrates the equivalent complex-basebandL-diversity channel model.

For the transmit shaping filter , we use a square root raised cosine (SRRC) filter

a roll-off . The time-domain response of the square-root raised cosine filte

0 5– 15– ∞–[ ] dB

φc TB 2⁄, 0( ) φc TB 2⁄, 1( ) φc TB 2⁄, 2( )[ ] 0.7419 0.2436 0.0234=

i 0 1 2, ,=
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iτ0–( )exp

iτ0–( )exp
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-------------------------------=
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40



n1(k)

nL(k)

x1(k)

xL(k)

Channel
Filters

AWGN

Transmit
Filter

f

zero stuffed
symbols
I(k)

Figure 2-12   L independent diversity antenna channel model

f dm

f c 900 MHz=

b1 k( )

b2 k( )

Delay
Spread Time
41



sed

x 1]

the

:=

alf-
given by

, (2.26)

where is the rolloff factor, . The half-symbol spaced sampled filter is u

for the simulation, see Figure 2-13 for an example.

Now, the symbols in Figure 2-12 are summarized here as

• The /2-spaced sampled transmit filter is represented by a unit energy [31

column vector  which corresponds to a 15 symbol truncation.

• the received signal at each diversity branch, which is bandlimited with

excess bandwidth of (1+β)(1/ ). /2-spaced sampling is considered, i.e.,

f t( ) 4α
π TB

--------------
1 β+( )πt TB⁄( ) TB 1 β–( )πt TB⁄( ) 4βt( )⁄sin+cos

1 4βt( ) TB⁄( )2–
-------------------------------------------------------------------------------------------------------------------------------⋅=

β 0.0 β 1.0≤ ≤

−6 −4 −2 0 2 4 6
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Figure 2-13 The square-root raised cosine filter: continuous wave form and the h
symbol spaced filter coefficients. (Shown truncated at 10 symbol-periods).
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, where k denotes the /2-spaced epoch index.

• represents the symbol sequence at the half-symbol sampling rate. That is

a zero stuffed sequence such that at evenk represents the symbol transmitted

the baud rate and at every oddk is zero-valued. Later in Chapter 7, we develop

more efficient convention using the polyphase representation of the filters. For no

to Chapter 5, we will use this zero-stuffed convention.

• The noisenl(t) is also assumed to be /2-spaced sampled and the sampled no

sequencenl(k) is assumed to be a complex-valued additive white Gaussian with z

mean and varianceσn
2. The noise sequences for different branches are assumed

mutually uncorrelated and also independent with the wireless channel.

• bl(k) = [ ... ]T, represents the time-varying impulse response

the -th channel, whereNR is the number of the time-varying channel taps (NR = 3 in

this dissertation).

• Each /2-spaced overall channel impulse response is defined

, where  denotes the convolution operation.

2.3.4 Generation of independent diversity channels

In this section, we illustrate the generation of the diversity wireless channel

step-by-step manner.

1. Choose the MPDP, either from (2.24) or (2.25). Each diversity branch should ha

the same MPDP profile because MPDP is dependent only upon a large geograp

region such that it is not dependent upon a diversity antenna. For example, get

average power delay profile for the three taps, with

.

2. The diversity channels are assumed to be mutually independent. In addition,

channel taps are also assumed to be mutually uncorrelated by the wide-se

xl t kTB 2⁄=( ) TB

I k( ){ }

I k( )

I k( )

TB

bl 0, k( ) bl NR 1–, k( )

l

TB hl k( )

hl k( ) f bl k( )⊗:= ⊗

φc TB 2⁄ i( ), i 0 1 2, ,=,{ }

φc TB 2⁄ i( ),i∑ 1.0=

L
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stationary uncorrelated scattering argument. Thus, in effect we need to gene

uncorrelated scattering taps. For this select starting phas

independently from a uniform distribution for

example uniform of . This method of generating the WSSUS tap

is adopted from [61].

3. Choose the maximum Doppler frequency using (2.10) . For exampl

with a carrier frequency of 900 MHz and assuming a mobile moves at a maximu

highway speed of 120 km/hr,

, (2.27)

or for 12 km/hr, . Usually, we use a normalized fading rate, such tha

the normalized maximum Doppler fading ratefdm is 0.00417 for 100 Hz since

the symbol rate is 24 ksps. In this dissertation we imply fast fading byfdm= 100 Hz

(fdm  = 0.00417) and the slow fading byfdm = 10 Hz (fdm  = 0.000417).

4.   Using 1, 2, and 3, each channel tap coefficient can be obtained by

, (2.28)

where is the sum of nine

sinusoids defined in (2.15).

Figure 2-14 illustrates the time-variation of the twelve-tap truncated, combi

response of  over 80 symbol periods at the fading rate of 100 Hz.

2.4 Concluding Remarks

In this section, we have reviewed some of basic assumptions and simulation m

on the wireless radio channel, especially, for digital cellular radio channels. In partic

L NR⋅ L NR⋅

STli l 1 … L, ,= i 0 1 2, ,=, ,{ }

10000 10000,–[ ]

f dm
v
c
-- f c=

f dm
120 km/hr
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--------------------------------------900 106Hz× 100 Hz= =

f dm 10 Hz=

TB

TB TB

bl i, k( )

bl i, k( ) φc TB 2⁄ i( ), ρ t k
T
2
---= STli; 

 =
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the delay dispersion and the time-varying nature of the channel are studied in reaso

detail. In addition, the simulation model for independent diversity antennas has

developed. In-depth characterization of the mobile radio communications channe

available in many resources, including Sklar [35], chapter 13 of Proakis [65] and chap

and 2 of Steele [17]. For example, the article by Sklar provides a good summary of fa

land mobile radio channels and the basic mitigation techniques for fading. Steele with

rigorous mathematical treatment of the subject, provides more complete characteriza

digital cellular radio (DCR) channels, ranging from physical description of the propaga

channel to the mathematically rigorous channel models of Bello, and covers diverse t

such as Rayleigh and Ricean fading channels, wideband or narrow band cha

propagation loss in micro-cellular areas and indoor propagation media. The reade

referred to the above references for in-depth coverage of the subject.
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Chapter 3

Background and Equalizers

In this Chapter, we want to qualitatively reviews some of the well-kno

equalization structures for single carrier transmission systems, such as the linear equ

decision feedback equalizer (DFE), Tomlinson-Harashima precoder [44] and maxi

likelihood sequence detection (MLSD) equalizer. Among them, the DFE and MLSD

be developed rigorously in the upcoming Chapters as the proposed mitigation me

against the rapidly time-varying multipath fading ISI channels. Other ISI mitigat

methods not discussed in this dissertation may include the use of spread-spe

modulation with orthogonal codes and RAKE receiver [65], and the use of multitone ca

modulation [39][40]. While we discuss equalization methods, we also describe

baseband communication systems and the simulation methodology. The voice

telephone modem [36] is taken as an example to show the baseband representatio

for equalization and computer simulation results for some equalizers. We show tha

telephone channel is bandlimited and becomes highly delay-dispersive when the sy

rate is increased up to the point comparable to the bandwidth of the telephone chann
47
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the symbol rate is increased, the transmission frequency band starts to contain the n

the band edges1, and thus severe intersymbol interference (ISI) occurs. Thus a sophistic

equalizer is needed which handles the nulls gracefully. For this type of channe

equalizer which linearly inverts the channel would perform very poor. They are

channels with a severe ISI, such that channels contain in-band nulls, for which a signi

difference in detection performance occurs between a good and a bad equalize

example, the use of a non-linear equalization method, such as decision feedback eq

(DFE) significantly outperforms the linear equalizers. Furthermore, the use of ML

receiver via Viterbi Algorithm [88] makes another significant improvement over the us

the DFE. On the other hand, when there is no null(s) in the transmission band

performance differences will be insignificant, and basically many equalization met

perform well.

With the telephone channel example, we will illustrate in terms of an ideal ou

SNR calculation that the difference between the linear equalizer (LE) and the DFE wi

as the symbol rate increases. The DFE, however, may suffer from a significant SNR

due to the inherent problem of error-propagation since the decided symbols are fed

and used to cancel the post-cursor ISI. The use of a T-H precoder brings back most

SNR loss due to decision feedback by moving the feedback filter of the DFE into

transmitter. Finally, we then discuss the training of the DFE filter using LMS and R

adaptation algorithms, and investigate their convergence properties.

3.1 Simulation of Digital Communication Systems

The performance of continuous-time passband communications system ca

simulated in the baseband by using the procedure described in this section. We ta

1. In fact, anywhere in the transmission bandwidth if there is a null, severe ISI occurs. For the cas
of telephone modems, the nulls are included at the band-edges as the symbol rate is increased.
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voice-band telephone modem [36] as an example to illustrate the simulation methodo

The voice-band modems are tested against a set of pre-specified passband channel

responses. Figure 3-1 illustrates the three different channel impulse responses c0,

c4. The values in the ordinate represents the voltage (or the current) samples of im

response of the real telephone channels. The sampling rate was 8229 Hz.

3.1.1 Baseband Representation of the Bandpass Systems

Figure 3-2 describes the complex baseband equivalent system model for a c

modulation system. The real communication channel over which the signal is transm

are usually a shared medium, and thus the use of the channel almost always has

limited in bandwidth to an interval of frequencies centered about the carrier. For

voiceband telephone channel, the channel is already limited in the transmittable regi

a band limit-filtering donea priori to the telephone line. For the wireless channel, a fix

amount of frequency spectrum is assigned for the establishment of a communication

and the transmit shaping filter is used to limit the spectrum use of the link. Thus

distribution of carrier frequencies among different users, the channel can be shar

Σ ff chq-QAM

h conv f ch,( )=

AWGN

RXTX

Figure 3-2 Baseband system description forq-QAM transmission over the dispersive
channel and the receiver structure of fractionally-spaced decision feedback equaliz

Up-sampler

Information
Bit Sequence

Detection
Receiver

Channel
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Figure 3-1 The passband channel impulse response of c0, c2 and c4. The sampling
is 8229 Hz. Total number of samples for each channel is 256 samples.
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multiple users. For telephone modems, the carrier frequency can be varied to find th

frequency band to transmit the information. This passband operation of communicatio

be equivalently represented in the baseband. The carrier modulation is performed o

baseband signal at the transmitter to generate the bandpass signal and the c

demodulation is performed at the receiver to recover the baseband signal. These u

and downward modulation steps can be omitted without loss of generality. For th

happen, however, we need to have the information symbols, the transmit/receive filter

the passband channel represented in the baseband.

For the quadature modulation using the cosine and sine carriers, the bas

information symbols can be represented as complex-valued symbols, such that th

parts of the information symbols are transmitted on the cosine-carrier and the imag

part on the sine-carrier.

The transmit and receiver filter have the same impulse response of square

raised cosine filter (SRRC). This combination of transmit and receive filters is desir

since it is a matched filter when we have a flat channel response. In addition, the casc

SRRC in series results in a Nyquist overall pulse, the raised cosine pulse, and thus

occurs. The time-domain expression of the SRRC was given in (2.26). By the use of e

bandwidth and assumption of frequency-selective channel response, we need to con

fractional sampling of the received signal (see Chapter 2 for more details on why).

In order to simulate the telephone-modem at different baud rates or at diffe

carrier frequencies, we first need to obtain the baseband equivalent channel for e

passband channels for different combinations of the baud rate and the carrier frequ

The passband channel should be interpolated first, resampled at the desired sa

frequency, and then down modulated by the amount of the carrier frequency. Figur

illustrates the steps taken to generate the baseband equivalent channel for the cha

with the baud rate of 2400 sps and the carrier frequency 1829 Hz, where
51
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• (a) represents the interpolation and resampling at a higher rate (4 times the bau

• (b) shows the location of carrier frequency ( Hz), which is at the cente

the transmission band that is equal to the baud rate. Thus, as baud rate increa

transmission band start to include the null at the band-edge.

• (c) shows the baseband channel at the sampling rate, four times the baud rate

• (d) finally represents the complex-baseband channel at the sampling rate, i.e.

the baud rate.

The baseband simulation of the system shown in Figure 3-2 can now be desc

The information bits are mapped to -ary QAM symbols. Assuming fractional samp

by two, the symbol sequence is upsampled by two (zero-stuffed at every other symbo

passed to a /2-spaced square-root raised cosine filter of 15% rolloff before transm

through the /2-spaced sampled channel. The received signal is corrupted by the ad

white Gaussian noise (AWGN) of variance . It is finally matched filtered (matched

filter). We normalize the /2-spaced combined response of transmit and channel fi

to be denoted as a column vector , i.e.,

.

Then, the input SNR can be simplified as follows

, (3.1)

where is the average energy of the input symbols and is the variance o

complex-valued noise. Thus, the /2-spaced noise can be generated by

, (3.2)

where and are mutually independent Gaussian random variables having

f c 1829=

q

TB

TB

σn
2

TB

h

hi
2
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Eavg hi

2
i∑⋅

σn
2
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σn
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-----------= =
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Figure 3-4, Figure 3-5 and Figure 3-6 are graphical illustrations of channel fi

rate conversion results for different combinations1 of baud rates and carrier frequencies, f

each channel c0, c2 and c4. The results are represented in amplitude responses in ti

frequency-domain. We should note that as the baud rate increases, the null in the

spectrum (see next Section for definition) gets deeper. For example, the channel for

3200 baud rate and 1829 carrier frequency Figure 3-4, has an in-band null which is

.

3.2 LE, DFE and TH-precoder

We now compare performances of the minimum mean square error (MMSE) li

equalizer (LE), the MMSE-DFE and the Tomlinson-Harashima (TH) Precoder. LE

DFE are compared in terms of the ideal output SNR. DFE and T-H precoder are com

with the symbol error rate evaluated from C++ system simulation.

1. See Table 3-1: for the combinations.

10
3–

Σ Σ

wb

w fff ch Slicerq-QAM

AWGN

RXTX FFF

FBF

Figure 3-7 Baseband system description forq-QAM transmission over the dispersive
channel and the structure of fractionally-spaced decision feedback equalizer
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Figure 3-4 Time and frequency domain responses of the channel c0 at diffe
combination of the baud rates and the carrier frequencies.
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Figure 3-5 Time and frequency domain responses of the channel c2 at diffe
combination of the baud rates and the carrier frequencies.
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Figure 3-6 Time and frequency domain responses of the channel c4 at diffe
combination of the baud rates and the carrier frequencies.
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3.2.1 Ideal output SNR comparison of LE and DFE

Figure 3-7 shows the receiver structure of a fractionally-spaced DFE. It h

feedforward transversal filter part and a symbol-spaced feedback filter part. With the u

feedforward filter alone, the receiver is called a linear equalizer. We may define the

signal to be the difference between the equalized pre-decision sample and the input s

(or decided symbol). The optimum criterion is to minimize the mean square of the e

signal. From this, the well known MMSE-LE and MMSE-DFE are derived [65].

The minimum mean square error of ideal MMSE-DFE is expressed as

, (3.3)

and that of the ideal MMSE-linear equalizer (MMSE-LE) is

, (3.4)

where we denote  to be the folded spectrum, i.e.,

, (3.5)

where denotes the frequency response of the combined channel, the transmit a

channel filters. Then, the output SNR  is given by

. (3.6)

In our simulation, the integrals are numerically evaluated as follows:

• Obtain the -spaced autocorrelation function by correlating the /2-spaced

Jmin
DFE TB

2π
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No

X ejωTB( ) No+
-----------------------------------

 
 
 

ln ωd

π TB⁄–
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∫
 
 
 
 
 

exp=

Jmin
LE TB

2π
------

No

X ejωTB( ) No+
----------------------------------- ωd

π TB⁄–

π TB⁄

∫=

X ejωTB( )

X ejωTB( ) 1
TB
------ H ω 2π n
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------+ 
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γ ∞
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. (3.7)

• Take a point-DFT of the obtained sequence and take the absolute va

of the result to get the folded spectrum. Denote the result as . Note that in

sequence the value corresponding to the origin is located

the center of the sequence, instead of at the first place of the sequence, thus we n

take the absolute value to get the folded spectrum . If we had cyclically shi

the sequence to locate at the first place of the sequence, then a

valued would have been obtained.

• Then, the integral can be evaluated by

. (3.8)

The folded spectrum of a channel provides the most critical information about

to design an equalizer and how well the equalizer would perform. For example, wh

relatively flat folded spectrum is obtained for a given channel, an inversion filter as a z

forcing equalizer may provide us with simple but satisfactory results. On the other h

when there is (are) deep null(s) in the folded spectrum, an inversion filter implies

amplification of received noise at the frequency components where the null(s) are loc

Thus, a more sophisticated equalizer is required to achieve symbol detection without

enhancement.

The folded spectrum of the telephone channels not only depend on the ch

characteristics, but also on the choice of the baud rate and the carrier frequency sin

channel is bandlimited. As the baud rate is increased, the transmission bandwidth st

include the band edges of the channel. Then, the folded spectrum starts to contain

x k( ) hi
*

hi 2k+⋅
i

∑=

N fft x k( ){ }

X n( )

x k( ){ } x k 0=( ) 1.0=

X n( )

x k( ){ } x k 0=( )

X n( )

1
N fft
---------

σn
2

σn
2 X n( )+

-------------------------ln
n 1=

N fft

∑
 
 
 

exp
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nulls at the band edges. For the time-varying wireless channel, we don’t know wheth

not the folded-spectrum will contain any null at any given time instance. The null (s) in

folded-spectrum will appear and disappear as the channel is evolving over time.

frequency of appearance, the degree and the number of nulls completely depend on t

delay spread (2.7) of the wireless channel and the transmission bandwidth.

We now compare the performance of MMSE-DFE and MMSE-LE in terms of

output SNR evaluated from (3.3) and (3.4). The results are tabulated in Table 3-1:

input SNR is 28.0 dB.

Table 3-1:    Output SNR for ideal MMSE-DFE and MMSE-LE

channel Baud Rate DFE LE

c0 2400 1600 26.24 23.90

1800 26.10 23.62

3000 1800 24.84 20.05

2000 24.89 18.18

3200 1829 24.01 16.28

1920 23.92 16.29

c2 2400 1600 27.63 27.05

1800 27.54 26.77

3000 1800 26.47 23.02

2000 26.08 21.37

3200 1829 25.68 18.70

1920 25.60 18.78

c4 2400 1600 27.75 27.40

1800 27.84 27.63

3000 1800 27.17 25.57

2000 27.08 25.36

f c
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Figure 3-4 ~ Figure 3-6 shows the folded spectrum of each combination. Note

as the baud rate is increased, the folded spectrum contains a deeper null and the outp

degrades. Also note that the SNR difference for DFE and LE is larger when the null

deeper. From evaluation of output SNRs, a maximum constellation size for

combination which satisfies a certain symbol error rate (for example, SER = ) ca

calculated, and then a maximum achievable transmission rate can be calculat

multiplying the baud rate with the number of bits/symbol.

3.2.2 Output SNR for finite length DFE

For the illustration of a finite length DFE, we pick the channel c0 with = 18

Hz and the baud rate of 3200 sps. The output SNR from Table 3-1: is 24.01 dB. The

equation to obtain the /2-spaced feedfoward and -spaced feedback filter coeffi

from the channel impulse response are described in [43]. Once the filter coefficien

obtained, the output SNR for finite DFE can be readily computed using the expre

given in [43]. We found out that the use of = (40, 40) achieves the output SN

23.0 dB, where denotes the feedfoward filter length and the feedback filter len

Figure 3-8 describes the operation of the receiver step by step:

• (a) shows the amplitude response of the overall channel, the transmit shaping

the channel c0 and the receive filter

• (b) shows the /2-spaced overall response including the feedfoward filter

• (c) indicates the symbol-spaced overall response including the feedfoward filter,

3200 1829 26.80 24.27

1920 26.80 24.40

Table 3-1:    Output SNR for ideal MMSE-DFE and MMSE-LE

channel Baud Rate DFE LEf c

10
4–

f c

TB TB

N f Nb,( )

N f Nb

TB
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ch, and TX. Note that the mean square error can be expressed as

, (3.9)

and thus the output SNR can be calculated from

(3.10)

• (d) represents the symbol-spaced overall response including the feedfoward filte

the feedback filter, assuming perfect previous decision

• (e) shows the magnitude of the feedforward filter coefficients

• (f) shows the magnitude of feedback filter coefficients.

In the following section, we evaluate the symbol error performance of QAM sign

using the finite length DFE with = (40, 40) and compare the results with th

obtained from using the T-H precoder.

3.2.3 TH-Precoder

The DFE was derived under the assumption that the feedback decisions are co

In practice, this assumption is not valid, and for severe ISI channels the DFE suffers

error propagation. Tomlinson-Harashima-precoder get rid of the feedback part of the

at the receiver, replacing it with the modulo-inverse filter at the transmitter. Figure

describes the baseband equivalent system description of TH-precoder and equalize

inverse filter at the transmitter uses exactly the same filter coefficients as the dec

feedback filter of the DFE. In fact, postcursor removal is performed even be

transmission using the input symbols, instead of at the receiver using symbol decis

Thus, the error propagation problem of DFE is resolved. The precursor removal is

performed by the feedforward filter which stays exactly the same as that of DFE.

Jmin
Finite

1.0 Overall Response at the optimum delay–=

γFinite

1.0 Jmin
Finite

–

Jmin
Finite

----------------------------=

N f Nb,( )
62



0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
The impulse response of TX*ch*(RX)

Delay in half−symbol period

A
bs

ol
ut

e 
va

lu
es

80 90 100 110 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4
T/2−spaced TX*ch*RX*fff response 

Delay in half−symbol period

A
bs

ol
ut

e 
va

lu
es

60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4
T−spaced response of TX*ch*RX*feedforward filter

Delay in half−symbol period

A
bs

ol
ut

e 
va

lu
es

60 80 100 120 140
0

0.2

0.4

0.6

0.8

1
Overall response, including feedback filter

Delay in half−symbol period

A
bs

ol
ut

e 
va

lu
es

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

4
T/2−spaced feedforward filter

Delay in half−symbol period

Ab
so

lut
e v

alu
es

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4
T−spaced feedback filter

Delay in symbol period

Ab
so

lut
e v

alu
es

Figure 3-8 Step-by-step illustration of DFE transceiver operation
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(e) (f)
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TH-precoder requires the modulo- operation at the transmitter and the rec

[44]. The following illustrate the modulo operation and the TH-precoder depicted in Fig

3-9:

• the range of the modulo-  is ( , ],

• if the input is greater than , is subtracted an integral number of times until

result is in the range,

• if the input is less than , is added an integral number of times until the resu

in the range.

• The modulo- operation is applied to each of the real and imaginary part individu

i.e.,

.

• Choose = for -QAM, to insure that both real and imaginary parts

input symbols are within the range.

• The modulo operation removes the correlation and the possibility of instability in

duced by the inverse filter.

• For the input SNR defined in (3.1), the average power should be rescaled by

. (3.11)

• With a careful choice of the threshold value , the modulo addition output

be assumed to be uniformly distributed over the range--so re-scaling of (3.1

valid.

3.2.4 Simulation comparison of DFE and TH-Precoder

The DFE, correct decision feedback DFE and TH-precoder are simulated u

τ

τ τ 2⁄– τ 2⁄

τ 2⁄ τ

τ 2⁄– τ

τ

modulo complex number( ) modulo partreal( ) j modulo partimag( )⋅+=

τ 2 q⋅ q

Eavg
1
τ2
----- x2 y2+( ) xd yd

τ– 2⁄

τ 2⁄

∫
τ 2⁄–

τ 2⁄

∫ τ2

6
-----= =

τ MnT

Eavg
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Monte-Carlo simulation. In Figure 3-11 symbol error rate of the receivers are compare

= 16, 32 and 64. The results indicate that the TH-precoder indeed achieves the s

error rate very close to that of correct decision feedback DFE. For 16 and 64-QAM

SNR difference of the two are within 1.0 dB. For non-square 32-QAM constellation,

 calculation of (3.11) is less accurate, and thus a higher SNR penalty is observe

3.3 LMS and RLS training of DFE filter

In this Section we describe LMS and RLS training of DFE coefficients using train

symbols. The baseband channel used is the channel c0 with the 2400 sps Baud ra

1829 Hz carrier. The DFE filter lengths are = (40, 40). More in-depth coverag

the LMS and RLS algorithms discussed in this Section can be found in [42][33].

Σ wfff ch Slicer

q-QAM

h

AWGN

RXTX FFF

Mod

TT T

. . .
wb 1, wb Nb,

denotes the modulo addition

MnT

Figure 3-9 The baseband equivalent system description for the Tomlinson-Harash
precoder and equalizer.

q

Eavg

N f Nb,( )
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Figure 3-10 16- and 32-QAM symbol error rate simulation results on the telephone
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3.3.1 LMS training of DFE filters

We now provide the LMS training of DFE filter coefficients:

• BEGIN

• Pick the stepsize , a small positive real value.

• Initialize  at

• For  until the end of the training sequence, Compute

. (3.12)

• END
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Figure 3-11   64-QAM symbol error rate simulation results on the telephone channe
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where we have defined

• ,

• ,

• denotes the /2-spaced sampled received signal, the output of the SRRC re

filter

• , where

•  is the stepsize.

It is helpful to examine the eigenvalues of the system matrix, a correla

matrix . It provides critical information about the recursive algorithm,

the selection criterion of the step size to ensure convergence, the speed of convergen

the stability.

The convergence behavior of the algorithm can be given in statistical terms. We

consider the mean value of the weight vector,

(3.13)

where denotes the identity matrix. By orthogonal transformation, can

diagonalized, i.e.

, , (3.14)

where  is a  orthogonal matrix. Denoting , (3.13) can be rewritte

(3.15)

Note that (3.15) is a set of decoupled first-order difference equations. Considering t

wk wf 0, ... wf N f 1–, wb 0, ... wb Nf 1–,[ ]t
=

vk r2k Dm+ r2k Dm 1–+ ... r k Dm N– f 1+ + I k 1– ... I k Nf–[ ]t
=

r n TB

ξk I k I k
ˆ–= I k

ˆ vk
Hŵk=

∆

N N×

Rv E vvH( )=

E ŵk 1+( ) E ŵk ∆ vk I k vk
Hŵk–( )⋅ ⋅+( )=

E ŵk ∆vkvk
Hŵk– ∆vkI k+( )=

ΞN N× ∆Rv–( )ŵk ∆E vkI k( )+=

ΞN N× Rv

Rv QDvQH
= Dv diag λ1 … λN, ,( )=

Q N N× w̃k QHŵk=
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dB

thm
th equation, the convergence of the -th subspace weight vector can be shown

proportional to

. (3.16)

Exponential convergence is ensured for all the subspace weight vectors for = 1, 2,.

provided that

, or . (3.17)

This implies that the convergence speed of LMS algorithm is determined by the subs

weight vector associated with the smallest eigenvalue . If we pick a step

, it is given by from (3.16)

. (3.18)

Figure 3-12 and Figure 3-13 shows the sorted distribution of eigenvalues of

from smallest to largest, for two choices of filter lengths = (40, 40) and (30, 1

They indicate that the ratio of the largest to the lowest eigenvalue is . Thus

expect that the LMS algorithm would converge extremely slowly. For example, even

=  iterations, the expected value is still significant

.

This implies that it would take more than training symbols to converge to the opti

DFE filter coefficients with the use of the LMS algorithm.

For the simulation of training of DFE coefficients using the LMS algorithm, we u

the stepsize of 0.01 for = (40, 40). The stepsize chosen is a little smaller

and thus satisfies the convergence requirement of (3.17

Section 3.2.2, the output SNR for this setting was obtained to be 23.84

( ). Figure 3-14 shows the convergence speed of LMS training algori

i
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i N
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Figure 3-12 The eigenvalues of the system matrix for (Nf, Nb) = (40, 40). Top figure shows
the eigenvalues in linear scale and the bottom figure shows them in the log-scale.
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Figure 3-13 The eigenvalues of the system matrix for (Nf, Nb) = (30, 10). Top figure shows
the eigenvalues in linear scale and the bottom figure shows them in the log-scale.
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using 5000 known 4-QAM symbols. It indicates that the average square error is still 0.

after 5000 iterations, where the last 100 squared errors are averaged. It can be con

from the simulation results that LMS algorithm is not suitable to be used in training of D

filter coefficients for channels which contain deep in-band null(s).

3.3.2 RLS training of DFE filters

The recursive least squares (RLS) algorithm may be considered to obtain

convergence. The convergence speed of RLS does not depend on the eigenvalue sp

the system. We have tried the standard RLS algorithm provided in Proakis [65] (or re

Chapter 4 of this dissertation) to train the equalizer, where we picked the forgetting f

of 0.99 and initial diagonal matrix of gain 0.1. Figure 3-15 shows that the average sq

error has been lowered as much as to 0.01 (20 dB output SNR) only after training w

few hundred 4-QAM symbols.

The standard RLS algorithm is not a regularized algorithm, and thus may i

numerical instabilities in presence of ill-conditioned system matrix. As indicated in Fig

3-13 the eigenvalue spread of the system matrix is enormous. From the simulatio

notice that the feedforward filter trained by the standard RLS algorithm sometimes be

unstable--the energy of the feedforward filter diverges. To prevent this, we have also t

a regularized RLS algorithm. The simplest form of regularized RLS [42] has been sele

i.e.,

, (3.19)

where

• ,

• ,

β

wk 1+ R̂k 1+
1–

ck 1+=

R̂k 1+ βR̂k 1 β–( )Ro vk
* vk

T
+ +=

ck 1+ βck 1 β–( )ck
o

I kvk
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+ +=
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Figure 3-14   The LMS training of the fractionally-spaced DFE filter coefficients.
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• , and

• ,  is a small positive value.

Note that smallest eigenvalue of the correlation matrix is lower bounded to be gr

than or equal to . Figure 3-16 is the simulation result of the regularized RLS simula

results with =0.99 and =0.01. The MSE results are similar to the standard RLS, bu

result is obtained without the possibility of an unstable feedforward filter.

3.4 Concluding Remarks

We have compared different equalizers for a set of telephone channels. For cha

with no deep null in folded spectrum, we expect no significant performance degrad

from the ideal AWGN results and no significant difference among different forms

equalizations. For instance, if the 2400 sps baud rate would have been chosen, the de

performance of MMSE-LE performance would also be acceptable. On the other han

the baud rate is increased, the folded spectrum starts to contain nulls at the band edg

thus more sophisticated equalizer is needed to maintain a satisfactory dete

performance.

We have picked a baseband channel which has about a null in the folded spe

to test different equalizers. In Table-I we observe the output SNR difference of 7.7

between LE and DFE. We also compared the symbol error rates of DFE, correct dec

feedback DFE, and TH-precoder in section 3.2.4. We note that the performance of th

precoder is very close to the correct decision feedback DFE. We also note that SNR p

of the correct decision feedback DFE is about 4.0 dB, which is very close to the differ

of input SNR and output SNR calculated in section 3.2.1. In addition, DFE and correct

back DFE curves shows about 2.0 dB difference.

Equalizer training is also very difficult for the channel with deep in-band nulls. For

channel chosen to be simulated, the system matrix has a large eigenvalue spread a

the use of LMS training is almost impractical due to slow convergence. RLS algorithm

be used instead at the cost of increased computational complexity. In general,

ck
o Rowk=

Ro κΞN N×= κ

R

κ

β κ

10
3–
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standard adaptation techniques have been successfully applied to the telephone m

systems; some of this is of use in mobile radio applications as well, adopted to trac

time-varying channel. However, as the simulations in Chapter 5 will show, these stan

adaptive algorithms have shown limited capability to track the fast time-varying channe

are considering in the dissertation. Thus, further development of an adaptive trans

scheme was required, as will be discussed in the following Chapters.
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Chapter 4

Feedforward Channel Estimation and

Tracking

In Chapter 2, we showed how fast the channel impulse response (CIR) may

over time due to the possibility of the mobile terminal in a fast moving vehicle. From (2.

we note that the fading rate of the channel is directly proportional to the speed of the m

and also to the carrier frequency. This implies that the fading rate of 100 Hz for 900 M

carrier frequency will become doubled to 200 Hz for the signal transmission with 1.8 G

carrier frequency. Thus, in out-door mobile communications, we need faster cha

estimation techniques to accommodate the high mobility of the terminal. In this chapte

discuss the general framework of the channel estimation scheme we propose i

dissertation as well as some of the novel channel estimators developed. The ch

impulse response estimation techniques developed in this chapter form the essential

the detection receivers discussed in the upcoming chapters such as diversity com

decision feedback equalizer (Chapter 5), as well as the sequential detection (Chapter

joint decoding receivers (Chapter 8) using the maximum likelihood sequence criterio
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4.1 Why Not Symbol-By-Symbol Recursive

Adaptation?

The standard symbol-by-symbol adaptive algorithms such as least mean sq

(LMS) or recursive least squares (RLS) algorithms that were introduced in Chapter

the classical, standard techniques in the area of equalizer training as well as ch

identification. These algorithms can be applied to adaptive update of equalizer coeffi

or to directly estimate the channel response.

4.1.1 Recursive adaptation of DFE filters using LMS and RLS

We have already investigated this subject when we use LMS and RLS to train

DFE filter coefficients in Chapter 3. Recalling the results we had in chapter 3: LMS

RLS were applied to find out the decision feedback equalizer taps in the training mode

that known symbol sequences were transmitted over the channel. The LMS algorithm

thousands of symbols, vs. a couple hundreds symbols for RLS before it converges

channel was a non-time varying channel. Why did it take so many symbols to converg

was because the channel contains deep in-band nulls (two deep in-band nulls along th

edges for the worst case) in the folded spectrum. There was a large eigenvalue sprea

system matrix that actually determines the tracking speed of LMS algorithm and cau

severe instability problem in RLS algorithm. In the case of severe multipath delay sp

the mobile channel would also contain a deep null (or possible many nulls) in the fo

spectrum. In addition, a training sequence length of thousands or even hundreds can

tolerable for the spectrum scarce wireless environment. Therefore, the use of the LM

the RLS adaptation of DFE filter coefficients is not recommended for the fast time-var

channel we are considering here.
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4.1.2 Recursive channel estimation using LMS and RLS

Training of the DFE equalizer taps using the LMS or RLS algorithms is an indir

way of channel estimation. In fact, an improved tracking performance could be obtain

these algorithms are applied directly to track the channel parameters. That is, the LM

RLS algorithms can be applied to estimate the channel impulse response, instead

equalizer taps. Once the channel estimates are available, the equalizer coefficients

obtained from the channel estimates. Previous research in this direction inc

Eleftheriou, et. al. [55]or Shuklar [67] where they compared the performance of RLS

LMS algorithms in tracking the time-varying channel and computed the DFE coeffic

from the channel estimate. We apply the fast tracking RLS algorithm to the DC-D

receiver developed in Chapter 5, where the estimation of the Rayleigh fading chann

performed by the RLS algorithm and the diversity combining DFE coefficients

computed from the channel estimates. Figure 4-1 illustrates a simple model system f

purpose of introducing the algorithms, where we have made following definitions

assumptions:

• For now let’s assume a symbol-spaced sampled system for simplicity and let b

symbol period epoch index.

•  denotes the input symbols

•  denotes the unknown time-varying channel vector with size

• denotes the equalizer tap vector, that can be computed from the channe

mate vector .

•  denotes the received signal

• The symbol ‘ ’ implies it is an estimate.

• The error signal is defined .

k

I k( )

h k( ) Nh

w k( )

h k( )

x k( )

ˆ

ξ k( ) x k( ) x̂ k( )–=
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• The input vector is defined with for

Now, we describe the two algorithms, applied to track the time-varying chan

vector. First, we start with the LMS update of the channel vector.

LMS update of the channel vector:

• BEGIN

• Pick the stepsize , a small positive real value1.

1. See Section 3.3 for selection criterion.

Figure 4-1   The recursive algorithms applied for tracking of time-varying channels

Time-Varying
Channelh k( ) Σ

n k( )

Input
Symbols
I k( )

x k( )
Equalizer

w k( )

Detected
Symbols

Î k( )

Update the channel
estimate and the equalizer
taps

Training

Decision
Directed
Mode

Mode
Channel Estimate

ĥ k( )

x̂ k( )

ξ k( )

+

_

I k( ) I k( ) … I k Nh– 1+( )( )T= I k( ) 0=

k 0.<

∆ ℜ+∈
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• Initialize  at

• For  until the end of the training sequence, Compute

. (4.1)

• END

Now, we describe the RLS update of the channel vector.

RLS update of the channel vector:

• BEGIN

• Pick a small positive number .

• Pick the exponential weighting factor .

• Initialize  at

• Initialize , where  is ( ) identity matrix.

• For  until the end of training sequence, compute

, (4.2)

, and (4.3)

. (4.4)

• END

As discussed in Section 3.3, the convergence speed of the LMS algorithm an

stability condition of the RLS algorithm can be studied when we examine the sys

ĥ k( ) 0 … 0( )T= k 0.=

k 0 1 2 …, , ,=

ĥ k 1+( ) ĥ k( ) ∆ ξ k( ) I k( )⋅ ⋅+=

δ ℜ+∈

ω 0 1, )(∈

h k( ) 0 … 0( )T= k 0.=

P k( ) δ eNh
⋅= eNh

Nh Nh×

k 0 1 2 …, , ,=

K P k( ) I *
k( )⋅

ω I T k( ) P⋅ k( ) I *
k( )⋅+

---------------------------------------------------------=

P k 1+( ) 1
ω
---- P k( ) K I T k( ) P⋅ k( )⋅–( )=

ĥ k 1+( ) ĥ k( ) K ξ k( )⋅+=
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matrix. Following Lemma will help in this regard.

Lemma 1: For a well designed training sequence, the system matrix of the channel ada

algorithm is a weighted identity matrix.

Proof: The system matrix for the channel identification problem of Figure 4-1

. The property of a good training sequence is the pseudo-noise w

white power spectral density such that the matrix becomes a weighted identity m

i.e.

, (4.5)

where  is the identity matrix. QED.

Thus, there is no eigenvalue spread of the system matrix. Compare it with the system m

for the equalizer tap adaptive example of section 3.3.1. The part of the matrix contain

channel correlation matrix which becomes a large eigenvalue spread system when

significant null occurs in the folded spectrum of the channel. Eq. (4.5) suggests tha

convergence speed of the LMS algorithm will now be much faster once the converg

requirement of Eq. (3.17) is met such that the stepsize is smaller than 2.0. In addition

implies that for the RLS case, the operation of RLS algorithm will also become much m

stable. From this observation, we can conclude.

Theorem 1: Recursive adaptation applied directly to the channel estimation prob

always converges faster than the same algorithm applied to the equalizer adaptation.Proof:

follows from Lemma 1.

In addition, this led to the following remark.

Remark: The LMS and RLS algorithms have the same channel tracking capability w

they are applied to track the time-varying channel directly with a white input sequen

In fact, there are a few observations in this regards reported in the literature tha

E I k( )I H k( ){ }

E I k( )I H k( ){ } E I * k( )I k( ){ } ΞNh
⋅=

ΞN
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two algorithms would not make any significant performance difference in terms of trac

speed when applied to a fast time-varying channel. If one fails at a certain point of trac

speed, the other follows. We have performed some simulations to verify the claims. F

4-2 is the channel tracking results of the two algorithms when the fading rate of the cha

was 200 Hz. The channel was initially known from the start and both algorithms ar

training mode. The results show that both algorithms are capable of tracking the fast f

channel in the training mode. There were four fading taps.

However, as we have also found out from our own simulation results (to

discussed in Chapter 5) the symbol-by-symbol recursive algorithm could still not mee
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RLS channel tracking results: (real part)

0 20 40 60 80
−2

−1

0

1

2

3

4
RLS channel tracking results: (imag part)

0 20 40 60 80
−2

−1

0

1

2

3

4
LMS channel tracking results: (real part)

0 20 40 60 80
−2

−1

0

1

2

3

4
LMS channel tracking results: (imag part)

Figure 4-2   The RLS and LMS tracking of fast time-varying channel
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tracking speed requirement of the digital cellular system even at the fading rate of 10

The reasons can be found from the following statements:

• Error propagation in the decision directed mode: The algorithm needs to be in a

sion directed mode in order to increase the throughput of the link in the realistic

nario of operation. There will be a possibility of decision error propagati

especially after a deep fade

• Lag in the channel estimate due to decision delay: The channel is updated when

decision symbol becomes available. The received signal must pass through the

versal equalizer filters to reach the decision device. Thus, there is always a signi

decision delay, and this delay must be a significantly large whenever the ISI o

channel is severe since the length of the filter has to be long enough to suppre

ISI.

In order to avoid the specified problems of the recursive adaptation, feedforw

channel estimation techniques [53][54][57][58][59][8][71] have been proposed in wh

known training symbols inserted into the stream of data are used for the channel estim

and the decided symbols are not used in channel estimation. Following Section will di

the proposed feedforward channel estimation techniques.

4.2 The Structure of Feedforward Channel Estimation

We use the termfeedforwardto imply that we do not make use of the detecte

symbols to estimate the channel or update the channel estimates. The channel estim

solely based on the knowledge forwarded from the transmitter, the known training sym

periodically sent to sound the channel. The continuous transmitted data frame

structured as illustrated in Figure 4-3.

The feedforward channel estimation method to be described in this chapter inv

two steps: The first step is to estimate the fractionally-spaced channel impulse respo
85
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observing the training segment of the received signal. The second is to obtain a finer

scale channel estimate for the channel responses in-between any two training segme

interpolating a set of obtained channel estimates.

The first step starts with an important assumption. That is, during the receptio

training segments, the channel parameters are assumed to be fixed (time-invariant). W

Gray blocks: known training symbols,
White blocks: unknown data symbols.

Channel estimates from the periodic training.

Interpolation on a Q (= 4) set of channel estimates

Nt

Bsymbols (a frame)

µ

Computes the interpolated estimates of the channel
at everyµ symbol epoch.

Figure 4-3   Channel estimation and interpolation tracking on a TDMA frame.

Interpolation for
the channel variation
in this block using the four
channel estimates

Fading tap
evolution

0

Reference Time-Frame

b̂2
b̂0

b̂1
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86



ore

umed

vides

tail in

ent in

nnel

efined

., the

ng

r is

t and 2

a

c

r a

8. For

les.

r any
this assumption we run into the problem of an infinite number of solutions by having m

unknowns than the number of observation equations. This is called a “snap-shot” channel

estimation. Specifically, the fractionally-spaced impulse response of the channel ass

to be fixed during the observation period. Solving the set of observation equations pro

the estimate of the channel impulse response, which will be discussed in more de

Section 4.3.

The second step involves tracking the channel variation during the data segm

the middle block as shown in Figure 4-3, by interpolating a set of the snap-shot cha

impulse response (CIR) estimates. Specifically, two parameters are required to be d

for interpolation. One parameter is the frequency of periodic channel estimation, i.e

length of a frameB, where a frame consists of a training block of lengthNt and a data block

of lengthNd, i.e.,B = Nt + Nd. According to the sampling theorem,B should at most satisfy

. For instance, iffdmT = 0.0042, the shortest expected period of a fadi

tap is about 240 symbols. Thus,B should be less than 120 symbols. The other paramete

Q, the number of channel estimates used in each interpolation. In this paper, onlyQ = 4 will

be considered. Thus, an interpolation over 4 consecutive channel estimates, 2 pas

future, is performed to obtain an interpolate ofb at an epoch during the middle dat

segment. The maximum interpolation delay forQ = 4 is 3B symbol periods. We use a sin

function (sinx/x) interpolator for the simulation results for DFE receivers in chapter 5 o

square-root raised cosine interpolator for simulation results for chapter 7 and chapter

an example of interpolation using the sinc function; first define

, (4.6)

where such that it is the sampling period of the estimated CIR samp

Then, the interpolated channel vector can be represented in the following equation fo

B 1 2 f dmT( )⁄≤

c
t

Test
--------- 

 sin
πt Test⁄( )sin

πt Test⁄
-------------------------------=

Test TB B⋅=
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of the channel estimate vector for of the reference time-fra

indicated in Figure 4-3,

. (4.7)

At the expense of the interpolation delay, channel tracking technique

interpolation resolves a few problems inherent in the recursive symbol-by-sym

adaptation techniques. First, it uses only the channel estimate from the known tra

symbols. Thus there is no decision error propagation problem. Second, there will b

more decision delay problem which was the limiting factor of recursive channel trac

techniques that must rely on the detected symbols to update the channel states.

The decision delay in the case of diversity combining decision feedback equa

in chapter 5 is the addition of all the anticausal delays in the receiver, i.e., the overall le

of the anticausal matched filter and anticausal feedforward filter, which will add up to q

significant number. This advantage of having a channel estimate even during the de

delay, however, has not been fully utilized in the framework of DFE symbol detec

schemes in previous research; for example see [10, 20]. In Chapter 5, a new

computation algorithm that fully exploits this advantage will be developed.

4.3 Parametric Channel Estimation

The use of a bandwidth efficient square-root raised cosine (SRRC) transmit fil

increases the effective span of the overall channel impulse response (CIR) perceived

receiver. For theflat fading channel, a receive filter matched to the SRRC filter can be u

to recover an isolated source pulse with zero crossing at everyT seconds. In the presenc

of frequency-selective channel , however, matched filtering with the SRRC filter a

could not provide a Nyquist pulse: The composite pulse, , is no longer a Nyq

t 0
TB

2
------ TB

3TB

2
---------- …, , , ,=

b t( ) bi c
t iTest–

Test
------------------- 

 sin
i 1–=
2∑=

f

b

f b f⊗ ⊗
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pulse. Thus we need an estimate of the overall channel response for optimum sy

detection.

For the description of the channel estimation procedure in this chapter we focu

a single channel branch Figure 4-4 among the number of diversity channel bran

described in Figure 2-12 since each diversity channel branch has the identical stru

Briefly reviewing the notation we have for Figure 4-4:

The /2-spaced sampled transmit filter is a unit energy [31 x 1] column vec

which corresponds to a 15 symbol truncation.

• the received signal at each diversity branch, which is bandlimited with

excess bandwidth of (1+β)(1/ ). /2-spaced sampling is considered, i.e.,

:= , (4.8)

where k denotes the /2-spaced epoch index.

• represents the symbol sequence at the half-symbol sampling rate. That is

f b k( ) x k( )

g k( ) T/2-spaced FIR filter

n k( )

I k( )

SRRC

Figure 4-4   Snap-shot channel parameter estimation

Σ

TB f

x t( )

TB TB

x k( ) x t kTB 2⁄=( )

TB

I k( ){ }
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a zero stuffed sequence such that at evenk represents the symbol transmitted

the baud rate and at every oddk is zero-valued.

• The /2-spaced sampled noise sequence is assumed to be complex-v

additive white Gaussian with zero mean and variance .

• b(k) = [ ... ]T, represents the Rayleigh fading time-varying impul

response of the -th channel, whereNR is the number of the time-varying channe

taps (NR = 3 in this dissertation).

• Each /2-spaced overall channel impulse response is defined

, where  denotes the convolution operation.

4.3.1 Construction of channel estimation equation

The following two assumptions were made for the construction of the chan

estimation equation, so that a tractable solution could be obtained.

• Assumption 1:The channel vector is truncated to be  symbol periods:

To reduce the length of the training sequence required, a truncated channel is u

the channel estimation equation. That is, the estimation accuracy is traded off

shorter training since longer CIR requires longer training sequences. We represe

truncated overall CIR with a [2  x 1] vector , where  < 15.

• Assumption 2: The channel is assumed to be a fixed vector, non-time varying du

the training observation period.

We make the snap-shot assumption that during the observation interval,mT,the chan-

nel is effectively fixed. Consequently, we drop the epoch index of the channel ve

denoting as . Similarly, the cascade channel duringk = 0,

1,...,

For the half symbol-spaced system the received signal over an observation pe

I k( )

I k( )

TB n k( ){ }

σn
2

b0 k( ) b NR 1–( ) k( )

l

TB h k( )

hl k( ) f bl k( )⊗:= ⊗

Nc

Nc h Nc

b k( ) b h k( ) f b k( )⊗=

2m 1–
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described by,

, (4.9)

where is the zero stuffed input symbol sequence, i.e., it includes known training

symbols for evenk and 0.0 for oddk. That is,k is the half symbol-spaced epoch index, th

zero stuffed input sequence  represents the input symbols at the baud rate.

Note that there are 2Nc unknown parameters in (4.9). Previous channel estimat

methods (e.g. see [9,10,20] for double sampling and [30, 33] forT-spaced sampling)

estimate these parameters without exploiting the fact that the overall CIR is a convol

of the transmit shaping filter and the time-varying channel filter. In fact, the impu

response of the shaping filter isa priori known to the receiver and thus the true unknow

parameters are only the time-varying channel filter taps.

Key equation:
Using thea priori knowledge of the transmit filter, the number of unknown parameters

be reduced. The truncated CIR , the convolution of a truncated transmit filter and

channel filter, can be represented by , where is a [2Nc x NR] matrix whose

elementsF (i, j) can be determined for the SRRC filter (an example of constructing

matrix is given at the end of the section). Then, (4.9) can be rewritten as

. (4.10)

Note that the number of unknown parameters in (4.10) is nowNR. This brings about a

number of benefits. First, with fewer unknown parameters, a shorter observation wind

needed. Second, with a shorter observation period the snap-shot channel estim

performs robustly in fast fading. Since a snap-shot channel estimation problem relies

fixed channel during the observation period, a long observation may bec

counterproductive [10, 20]. Finally, the estimates will be more accurate when there

x k( ) hi I k i–( ) n k( )+
i 0=

2Nc 1–∑≅

I k( ){ }

I k( ){ }

h

h F b= F

x k( ) F i j,( )bjj 0=

NR 1–∑ I k i–( ) n k( )+
i 0=

2Nc 1–∑≅
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fewer parameters to be estimated. Having obtained the estimates of the channel, the

channel can be computed from the convolution of the estimateb and the SRRC filter.

The training observation vector is a (

vector. We can divide the observation vector into two ( ) vectors, collecting only e

elements of into even-observation vector and the rest to the odd-one. Each decom

observation vector poses a symbol-spaced channel estimation problem of

, (4.11)

where

• when we refer to the vector of even elements a

 when we refer to the vector of odd elements,

• X is a [m x Nc] Toeplitz matrix whose elements are determined from the train

sequence of lengthNt such that

, (4.12)

• There is a relationship between the length of training sequence, the observ

period in symbol-epoch and  the number of channel coefficients, which is

. (4.13)

• F is a [Nc x NR] SRRC matrix, ana priori SRRC matrix that can be determined for th

even and odd parts.

• The [ ] noise vectorn is a multivariate Gaussian with a zero mean vector an

covariance matrix of

, (4.14)

x x 0( )x 1( ) …x 2m 1–( )( )T= 2m 1×

m 1×

x

x XFb n+=

x x 0( )x 2( ) …x 2m 2–( )( )T=

x x 1( )x 3( ) …x 2m 1–( )( )T=

X

I 0( ) I 2–( ) … I 2 Nc 1–( )–( )
I 2( ) I 0( ) … I 2 Nc 2–( )–( )
… … … …

I 2 m 1–( )( ) I 2 m 2–( )( ) … I 2 m Nc–( )( )

=

Nt m

Nc

m Nt Nc– 1+=

m 1×

Rn σn
2em=
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where  denotes the  identity matrix.

4.3.1.1 Constructing the SRRC matrix

An example with = 6 andNR = 3 is sufficient to describe the procedure o

obtaining the square root raised cosine filter matrix. denotes the 31 tap square root

cosine filter, i.e. := [f0 f1... f30]
T, wheref15 is the main tap of the SRRC vector. Then, a [1

x 1] truncated overall CIR can be described by a matrix and a vector multiplicatio

, where is a [2 x ] Toeplitz matrix which can be described by the fi

row and the first column. The first row is [f10 f9 f8]
T and the first column is [f10 f11 f21]

T

Thus,  is

. (4.15)

Finally, a matrixF in (4.11) for evenx is obtained from taking all the even-indexe

rows of . Similarly, taking all odd rows isF for oddx.

4.4 Novel Channel Estimators

Based on the new observation equation (4.11), we apply three classical para

estimation techniques. They are least squares, maximum likelihood and maxim

posteriori estimation. From the two observation equations representing odd and

symbols, two estimators ofb can be obtained. We will choose the one that yields a sma

theoretical mean square estimation error for a given training sequence. In the derivati

the estimator, the training matrixX and thea priori matrix F are assumed to be fixed bot

in the contents and in the dimension such that they are not subject of optimization in

section. In addition we only considered cases with . Moreover, the inverse mat

em m m×( )

F

Nc

f

f

h

h F b= F Nc NR

…

F

F

f 10 f 9 f 8

f 11 f 10 f 9

… … …
f 21 f 20 f 19

:=

Nc NR×

F

m NR≥
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to be derived are assumed to be well defined with an optimal or sub-optimal choice o

training sequence matrixX. The optimal training sequences will be discussed in sect

4.6.

4.4.1 The Least Squares Estimator

If there is noa priori statistical knowledge about the noise and the channel, the L

of b can be considered and computed by

, (4.16)

where the superscript ‘H’ implies the conjugate transpose operation of a matrix andarg

denotes the argument. This results in the lowest complexity estimator among the thre

[NR x m] matrix can be precomputed and stored, and then

estimate can be obtained by simply multiplying it with the observation vector.

4.4.2 The Maximum Likelihood Estimator

The MLE ofb can be obtained as follows,

, (4.17)

whereRn is the covariance matrix of the noise. Setting the gradient of the quadratic

equal to zero, we obtain

. (4.18)

Thus, the MLE requires the second order statistics of the noise, such as the noise cova

matrixRn. Thus, MLE would perform better than LSE provided that the noise is correla

and that the autocorrelation function of the noise is acquired. In our estimation mod

(4.11), however, we have assumed white noise, i.e.,Rn= em, and thus the LSE is

identical to the MLE. Note that interpreting the as a weighting matrix, the MLE ob

b̂LSE x XFb–
b

arg min
2

:= FHXHXF( ) 1–
XF( )Hx=

FHXHXF( ) 1–
XF( )H

b̂ML p x b( )( )
b

arg max:= x XFb–( )HRn
1– x XFb–( )–[ ]

b
arg max=

b̂ML FHXHRn
1– XF( )

1–
XHFHRn

1–( ) x⋅=

σn
2

Rn
1–
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can be interpreted as an optimally weighted LSE ofb. Thus, the MLE also minimizes

weighted square residual errors, , but not the estimation errors, .

4.4.3 The Maximum A Posteriori Estimator

An estimator which directly minimizes the mean square estimation errors ob

requiresa priori distribution ofb. The MAP estimator is in this category. In particular, th

MAP estimator can be obtained from

. (4.19)

In our case, the noise vector is a multivariate Gaussian, and thus the posterior d

is also a Gaussian distribution where the mode and the mean coincide. Thus

some algebraic manipulations of the posterior density we can obtain the MAP estima

, (4.20)

where . This MAP estimator ofb amounts to the minimum mean squar

estimator ofb.

Note that MAP not only requiresRn but alsoRb. Thus, in practice it can be

employed only after enough information about the noise variance and multipath has

obtained. While collecting the information we can employ the LSE. In this dissertation

assume they are estimated. In particular, diagonal elements of the channel corre

matrix Rb are the average powers of multipath components such as defined in (2.24

(2.25). They are assumed to be estimated; off-diagonal elements are all zero v

assuming wide-sense stationary uncorrelated scattering of the multipath componen

consider more practical cases when these assumptions fail in Section 4.7.

x XFb̂– b̂ b–

b̂MAP p b x( )( )
b

arg max:=
p b x,( )
p x( )

------------------ 
 

b
arg max=

p b x( )

b̂MAP E b x{ } Rb FHXH( ) XFRbFHXH Rn+( ) 1–
x= =

Rb E bbH{ }:=
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4.5 The Mean Squares Channel Estimation Errors

It is useful to compare the estimators in terms of their theoretical mean sq

channel estimation error (MSCEE) performance. We first derive the mean sq

estimation error matrix for each criterion. Then, a MSCEE is obtained from thetraceof the

mean square estimation error matrix. These theoretical results will be compared

simulation MSCEEs in section 4.7.

The MLE (or LSE with similar steps) can easily be verified to be an unbia

estimator by taking theexpectationof the following equation which is obtained by

substituting (4.11) into (4.18), i.e.,

, (4.21)

and by usingE{ n} = , where defines a [mx 1] vector of element of zeros. Thus, fo

the MLE and the LSE the error covariance matrix of the estimator is equal to the m

square channel estimation error matrix. The mean square estimation error matrix

MLE is

. (4.22)

This error covariance matrix of (4.22) meets the Cramer-Rao lower bound (unbiased c

Thus,  is the best linear unbiased estimator for the estimation problem of (4.11)

In our problem, however,Rn = σn
2em is assumed, thus LSE and MLE produc

identical results, i.e.,

, (4.23)

and .

Theorem 3: The maximum likelihood estimator achieves the Cramer-Rao lower bound

b̂ML b FHXHRn
1– XF( )

1–
FHXHRn

1–( )n+=

0m 0m

ΘML E b̂ML E b̂ML( )–( ) b̂ML' E b̂ML( )–( )( )H{ }:= FHXHRn
1– XF( )

1–
=

b̂ML

ΘML σn
2 FHXHXF( ) 1– ΘLSE= =

b̂ML b̂LSE=
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Proof: Stating the Cramer-Rao lower bound for unbiased estimators as,

, (4.24)

whereM is the Fisher information matrix defined as

. (4.25)

We will prove the equality, i.e., .

Note,

, (4.26)

then,

(4.27)

since we already know from (4.22). Thus the equali

in (4.24) holds.

MAP estimator achieves the minimum mean square error. Since the MAP estimato

biased estimator, we directly obtain the mean square error matrix using

where , i.e.,

(4.28)

.

Then, we find

. (4.29)

Theorem: The MAP estimator achieves the minimum mean square estimation ofb.

Proof: Define B+ to be the best linear estimation operator, and then the lin

Cov b̂( ) M 1–≥

M E
b∂

∂
p x b( )( )ln 

 
b∂

∂
p x b( )( )ln 

  H
:=

Cov b̂ML( ) M
1–

=

b∂
∂

p x b( )( )ln
1
2
--- 2 XF( )HRn

1– x 2 XF( )HRn
1– XF( )( )b+–( )–=

M XF( )HRn
1– XF( )[ ]Cov b̂ML( ) XF( )HRn

1– XF( )[ ] XF( )HRn
1– XF( )[ ],= =

Cov b̂ML( ) XF( )HRn
1– XF( )[ ]

1–
=

b̂MAP B+x=

Β+ Rb FHXH( ) XFRbFHXH Rn+( ) 1–
:=

ΘMAP E b̂MAP b–( ) b̂MAP b–( )H{ }:=

B+
E xxH{ }B+H

E bxH{ }B+H
– B+

E xbH{ }– E bbH{ }+=

ΘMAP E bbH{ } B+
E xbH{ }– Rb B+XFRb–( )= =
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estimator that achieves the MMSE ofb is defined to be . Then, will satisfy the

following equality,

. (4.30)

The orthogonality relation, , leads to , an

finally

, (4.31)

where ,

and . We note thatB+ is identical to the MAP

operator in (4.20).

As defined in (4.11) there are twoa priori matrices,F for the even and odd

observation vectors, and thus two estimators ofb can be obtained for each estimatio

criterion. In this paper, for an estimation criterion we select theF that produces a smaller

MSCEE for a given training sequence. Then, the estimatorb with the selectedF will

represent the estimator for the criterion.

4.6  The Optimal Training Sequences

Crozier [4] tabulates binary training sequences (BTS, binary sequences of 1 an

for different channel lengthsNc and observation lengthsm. The design criterion of the

sequence is to minimize thetraceof the error covariance matrix of a LSE of and thu

they are optimal in the least squares error sense. They are found either from exha

computer search or using the “m-sequences.” The same design concept can be app

the LSE ofb, and new training sequences which minimize thetraceof the error covariance

matrix of the LSE ofb can be obtained by the procedure.

The LSE criterion applied to a [m x 1] observation vector produces

b̂ B+x= b̂

b̂ E b̂ b–( )H b̂ b–( ){ }( )
b

arg min=

E b̂ b–( )xH{ } 0= B+
E xxH{ } E br H{ }=

B+
E br H{ }E xxH{ } 1–

=

E xxH{ } E XFb n+( ) XFb n+( )H{ } XFRbFHXH Rn+( )= =

E br H{ } E b XFb n+( )H{ } RbFHXH= =

h

x Xh n+=
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the LSE of , i.e.,

, (4.32)

where and is a [ x 1] vector. Then, the covariance matrix of t

estimator is

. (4.33)

Therefore, the optimum sequences (stored in matrixX) are the sequences that satisfy,

. (4.34)

GivenNcandm, the optimum binary training sequence (OBTS) satisfies (4.34) and ma

the matrix  as close as possible to diagonal.

From (4.23), the covariance matrix of  is

. (4.35)

Now, the optimal training sequence is the sequence that makes to be as cl

possible to diagonal. This optimization problem can be approached by representin

convolution operationXF in a matrix and vector multiplication form as , wher

x=[I0 I1 I2... INt-1] is a [ x 1] vector, is now a [ ] matrix, andc is the [ x 1]

OBTS vector. Then, the new optimal sequencex that minimizes thetrace{ ΘLSE} can be

obtained as

, (A.1)

where is the generalized inverse of [34]. The vectorx should be scaled so that th

energy of the scaled vectorx is .

However, for two reasons Crozier’s BTS will be used for our system simulatio

First, an improvement of the new sequence is typically less than a 1 dB SNR sa

compared to the BTS, while the exact SNR saving depends on the value of andm. For

h

ĥ X†x=

X† XHX( ) 1–
XH= h Nc

Θ E ĥ E ĥ( )–( ) ĥ E ĥ( )–( )H{ }:= σn
2 XHX( ) 1–

=

X tr Θ( ){ }
X

arg min=

XHX

b̂LSE

ΘLSE E b̂LSE E b̂LSE( )–( ) b̂LSE E b̂LSE( )–( )H{ }:= σn
2 FHXHXF( )

1–
=

FHXHXF

F1X c=

Nt Nc Nt× Nc

x F1
†c=

F1
† F1

Nt

Nc
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a short training sequence, the difference narrows. This indicates that the BTS achie

near optimum performance also for the estimation ofb. Second, the elements of the ne

sequence are real valued and not usually members of a digital modulation constella

The following table summarizes the training symbols used in this dissertation

4.7 Simulation Results and Discussion

In Figure 4-5, the performance of two channel estimators, LSE and MAP, in te

of the mean square channel estimation errors (MSCEE) are assessed both in theory

simulation. The training sequence of lengthNt, and the truncation lengthNc are 11and6

respectively. We first note the effect of truncation at high SNR. Recall the cha

estimation of (4.10) where we truncate the length of the overall channel to beNc symbol

intervals. The slow fading curves stay very close to theory out up to 30 dB, wherea

slow fading curves for (Nt, Nc) = (7, 4) deviate significantly from theory at high SNR du

to the truncation errors.This suggests that truncation atNc = 6 is sufficient for the purpose

of channel estimation. Next, we note that the fast fading curves show deviations from

slow fading curves at 30 dB. These degradations are due to the snap-shot assumpti

during the observation periodsm (= Nt - Nc +1) the channel is fixed. Finally, we note tha

the marked advantage of MAP estimation over LSE at low SNRs.

In Figure 4-6, we evaluate the MAP estimator performance in two pract

Table 4-1: The optimal binary training sequences

The Sequence

(15, 6) 1 1 1 1 -1 1 1 1 -1 1 -1 -1 -1 -1 1

(11, 6) 1 1 -1 -1 -1 1 -1 1 1 1 1

(7, 4) 1 1 1 -1 1 1 1

Nt Nc,( )
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Figure 4-5 Theoretical and simulation mean square channel estimation errors

(MSCEEs) for (Nt, Nc) = (7,4) and (11, 6).
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1. MLE

4. MAP with perfectRb

2. MAP with updatingRb at fdm = 100Hz
3. MAP with updatingRb at fdm = 10Hz

2 3

4

1

2
3

4

5

1. MLE
2. MAP, uncorrelated paths &Rb = Rt
3. MAP, correlated paths (1.0, 0.8, 0.6) &

Rb is still diagonal.
4. MAP, correlated paths (1.0, 0.8, 0.6) &

Rb = Rt
5. MAP, correlated paths (1.0, 1.0, 1.0) &

Rb = Rt

Simulation results of

Figure 4-6 (a). Simulation of MAP estimators using the estimated powers of the multipa
components. (b). Analytical results of correlated multipath channel, the numbers in
parentheses indicate the mutual correlation coefficients of the three paths.
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situations; (1) when the multipath power profile is not available; (2) when the multip

undergoes a correlated scattering but we assume the paths are uncorrelated. For

estimate the power profile from the estimates ofb. That is, for the first frame in a 16 frame

long trial we use the MLE; for the rest 15 frames we switch to the MAP. The diago

matrix of Rb at each frame is obtained by simply averaging the powers of each estim

taps from previous frames. We plot the simulation result in Figure 4-6 (a). The result

averaged over 500-1000 independent trials. We observe that the MAP with noisy esti

still performs better than the MLE.

In order to evaluate the sensitivity of MAP against the correlation of the path, we revisi

(4.28). In particular, two separate channel correlation matrices can be employed in the calcu

of the mean square error matrix such that one is the diagonal matrixRb to denote the uncorrelated

scattering channel correlation matrix for the MAP operator and the other to denote

expression in Eq. (4.28). is non-diagonal matrix and each off-diagonal ter

indicates the correlation value of the two corresponding fading taps. That is, for the M

estimator operator we use

, (4.36)

where and for the calculation of the mean squa

error we use

.

Figure 4-6 (a) Curve #1 is the results for the MLE. Curve #2 is the results of usual M

estimator. That is, both correlation matrices are uncorrelated ones,

. Curve #4 is the case where is not diagonal reflecting

correlation of the paths and also . Comparing #2 and #4 we see that the

exploits the path correlation and achieves a better MSCEE. The extreme case of

B
+ Rt

E bbH{ } Rt

b̂MAP B+x=

Β+ Rb FHXH( ) XFRbFHXH Rn+( ) 1–
:=

ΘMAP E b̂MAP b–( ) b̂MAP b–( )H{ }:=

B+
E xxH{ }B+H

E bxH{ }B+H
– B+

E xbH{ }– Rt+=

Rb Rt diag matrix–= = Rt

Rb Rt=
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described in curve #5, when all three paths are perfectly correlated in which case the

estimator practically becomes a MLE having only one unknown to be estimated. Curv

shows how much we will lose by assuming uncorrelated scattering of the taps, i

diagonal . We note that curve #3 is still better than #2 which implies the MAP with

assumption of uncorrelated paths still benefits from the correlated paths.

In this experiment, we observe: (1) the MAP takes advantage of the path correla

(2) when assuming uncorrelated scattering the receiver still achieves SNR advantag

the MLE but not as much as knowing the correlations. Thus, our conclusion is as foll

Provided that the path correlation among the fading taps in a real operation scenarios

transceiver would not be as large as our examples (i.e., the mutual correlation coeffi

of (1.0, 0.8, 0.6) and (1.0, 1.0, 1.0)), we can conclude that the path correlation is not

concern at least from the channel estimation point of view.

4.8 Concluding Remarks

In this chapter, we provided the feedforward channel estimation techniques

have pointed out some of problems with the recursive adaptation schemes such as LM

RLS. Whether the recursive algorithm is applied to equalizer taps directly or to track

channel tap, the tracking speed could not deal with a fast Rayleigh fading channel

channel estimation technique proposed in this section uses the training symbols to es

the snap-shot channel impulse response and interpolate a set of them to capture fine

scale channel variation. This scheme avoids the problem of error propagation of rec

algorithms running in a decision directed mode. We have proposed also a novel ch

estimators which utilize thea priori channel information of transmit shaping filter in th

estimation equation. The number of unknown coefficients were significantly reduced w

the performance became much more robust against fast fading channel. This perfor

Rb
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advantage of the new channel estimation technique will dramatically improve the dete

performance of the receivers in the upcoming chapters. Future work in the cha

estimation may include the tracking of the maximum Doppler frequency so as for us

able to reduce/increase the training overhead. Others include the design of com

estimation problem in the channel parameter estimation problem. We have used on

term (even or odd) of the observation vector in estimating the channel vector. If we

able to somehow combine the two estimates into a final estimate, we would expect a f

improvement in the estimation performance.
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Chapter 5

Diversity Combining DFE

We consider the use of decision feedback equalizer (DFE) as the proposed

linear symbol detection receiver for uncoded, single level constellation sym

transmission. As shown in chapter 3, the use of DFE provides a significant advanta

detection performance over that of linear transversal equalizers for severe ISI channe

very small increase in complexity--the increase in complexity is due to the calculatio

the feedback filter coefficients. Thus, the DFE has been successfully applied in practic

equalization of telephone channels as well as the time-varying wireless channels. I

chapter, we want to investigate the design issues of DFE when we have available mu

independently received signals from the diversity receiving antennas and the feedfo

channel estimates. Specifically, based on the assumption that the given channel es

are perfect, we derive a jointly optimum receiver in which the DFE and the mult

received signals from the diversity antennas are optimally combined. In addition, u

previous assumptions that the channel is a fixed or quasi-static vector for the duratio

burst, in our derivation of the DC-DFE the assumption is generalized to include the t
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varying channel. As a result, a novel diversity combining DFE equation is obtained to

with the fast time-varying channel.

5.1 Robust Signal Detection over Fast Multipath

Fading, ISI Channels

Wireless digital communications systems such as IS-54, GSM, and PCS suffer

many channel impairments such as discussed in Chapter 2, including low detection

due to signal fading, intersymbol interference (ISI) due to multipath spread, and the

varying channel due to Doppler spread. For each of these channel impairments, a co

measure must be considered and should be optimally combined in a successful trans

design.

Let’s discuss individual counter-measure techniques to deal with the st

problems. To deal with a very low instantaneous channel SNR due to signal fading, u

multiple independent receiving antennas are desired as they provide higher order of

diversity. To deal with the ISI problems, caused by multipath propagation of the sign

well as a stringent shaping requirement of transmit filter, the use of an equalizer is h

recommended for the land mobile systems. For a low complexity, simple transc

system, no equalizers are used and in this case the channel can be blindly assume

flat-fading. In such systems the transceiver may employ the differential encoded sy

transmission and differential detection at the receiver. Such a system would not prov

robust performance due to intersymbol interference when the transceiver is to opera

high delay-spread region such as Urban areas as well as hilly terrains where a d

scatters are present. The ISI-induced irreducible bit error floors become significantly

and persistent once the rms delay spread of the multipath power delay profile (MPD

the region exceeds about 1/10 the symbol period [1, 3, 8, 32]. This holds true regaTB
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of the fading rate.

In addition, the transceiver design must also take care of the channel mobility s

the frequency-selectivefading channels is also capable of being rapidly time-varyi

channel due to the highway speed mobile movement. For example, in IS-54, with a c

frequency of 900 MHz and assuming a mobile moving at a maximum highway speed o

km/hr, the maximum normalized Doppler fading ratefdm (the product of the maximum

Doppler fading rate and the symbol period) reaches up to 0.0042 [8]. This implies tha

minimum time between the two fading nulls is 5 ms (1/2fdm) which is even shorter than the

proposed burst length of 6.7 ms.

To deal with such rapidly time-varying, fading and dispersive channels, we

considering the use of decision feedback equalizers, diversity receiving antennas a

feedforward channel estimation developed in chapter 4.

For tracking of fast time-varying dispersive channels, a block adaptive deci

feedback equalizer (DFE) based on feedforward channel estimation [4, 10, 20] has

shown to be more effective than the conventional symbol-by-symbol adaptation met

such as least mean squares (LMS) or even recursive least squares (RLS) [5, 26] as dis

in Chapter 4. Other block adaptive schemes, based on the feedforward channel esti

but using the maximum likelihood sequence estimator (detector), can be found in [6, 9

and the chapter 7 and 8 of this dissertation.

In this chapter, we follow the block transmission scheme and the feedforw

channel estimation and tracking methods in chapter 4. That is, the receiver is assum

operate on continuous transmitted frames, where each frame consists of trainin

unknown data segments. A “snap-shot” channel estimate is obtained from tra

segment. Channel tracking during the data segments is performed by interpolating a

the snap-shot channel estimates. With the interpolated channel estimates, the receiv

coefficients are computed.

TB
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The contributions of this chapter is that our results significantly extends

previous published results [10, 20] in the areas of block adaptive strategy using the ch

estimate-based DFE. First, we compare two possible diversity combining D

implementations and propose the structure that is more robust and less computati

complex for the block adaptive strategy. Second, we propose a new DFE coeffi

computation algorithm to deal with very fast time-varying channels. Third, we illustrate

improved performance of the derived diversity combining DFE receiver and

feedforward channel estimation through Monte-Carlo computer simulations. Finally

suggest a low computational complexity but very feasible suboptimal solution.

5.2 Baseband Equivalent Channel Model

In section 2.3, we have developed the diversity channel model and gener

methods for simulation. Here, we briefly review the channel model and notations.

channel model is again illustrated in Figure 5-1.

Now, the symbols in Figure 5-1 are summarized here as

• is a unit energy [31 x 1] column vector. It represents the transmit shaping fi

obtained from truncating the square root raised cosine filter (with roll-off factor )

the duration of seven symbol periods each side and sampling at the rate 2/ .

• represents the received signal at each diversity branch, which is bandlim

with the excess bandwidth of (1+β)(1/ ). /2-spaced sampling is considered, i.e

:= , where k denotes the /2-spaced epoch index.

• represents the symbol sequence at the half-symbol sampling rate. That is

a zero stuffed sequence such that at evenk represents the symbol transmitted

the baud rate and at every oddk is zero-valued.

• The noisenl(t) is also assumed to be /2-spaced sampled and the sampled no

f

β

TB

xl t( )

TB TB

xl k( ) xl t kTB 2⁄=( ) TB

I k( ){ }

I k( )

I k( )

TB
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each
sequencenl(k) is assumed to be complex-valued additive white Gaussian with z

mean and varianceσn
2. The noise sequences for different branches are assumed

mutually uncorrelated and also independent with the wireless channel.

• bl(k) = [ ... ]T, represents the time-varying impulse response

the -th channel, whereNR is the number of the time-varying channel taps (NR = 3 in

this dissertation).

• Each /2-spaced overall channel impulse response is defined

, where  denotes the convolution operation.

In this chapter, we adopt the feedforward channel estimation and tracking sch

developed in Chapter 4. That is, we use the interpolated channel estimate vectors for

and thus  in computing the receiver coefficients.

Figure 5-1 The baseband model for multiple diversity antenna channels where
channel introduce the multipath delay dispersion.
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5.3 Diversity-Combining DFE

In this section we illustrate how to obtain diversity combining DFE coefficie

using the interpolated channel estimates. For the channel-estimate based receiv

coefficients of diversity combining DFE are computed from the channel estimates, w

involves some form of matrix inversion. Thus, a stable method of computing the DC-D

coefficients or the receiver architecture resulting in more stable solution would be desi

In Section 5.3.1, we apply the minimum mean square error (MMSE) criterion to

receiver structure depicted in Figure 5-3, and obtain the basicstraightforwardsolution. The

straightforward DC-DFE turns out to be disadvantageous, due to high tendenc

developing severe eigenvalue spread in the correlation matrix of the Wiener-Hopf equ

The eigenvalue spread will be large for a severe ISI channel. In addition, the straightfor

Figure 5-2   The receiver architecture of straightforward diversity-combining DFE
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DC-DFE increases the degree of eigenvalue spreads as the diversity order incr

Advancing a few critical steps from the straightforward Wiener-Hopf equation, howe

we derive the proposed, matched filtered form of the DC-DFE which solves the proble

eigenvalue spreads. Thus we explicitly prove that the two structures are exactly the

This provide us good insights into how the two are related. The first DFE realization

be termed thestraightforwardrealization, and the other as amatched filtered realization.

On the other hand, the decision feedback equalizer solutions were traditio

derived under the assumption of non time-varying impulse response during the dec

delay of the receiver. These conventional solutions had been applied without

modification of the solution according to the time-varying channel. As the results, eve

a genie-aided mode where the channel variation is perfectly known to the receiver the

receiver using the static coefficient computation method develops high irredu

detection error floors such that no matter how large the input SNR may be the symbol

rate does not decrease. To correct this problem, when deriving the MMSE DC-

derivation we explicitly take into account of the channel variation during the decision de

Thus, the derived solution will fully utilize all the channel variation during the decis

delay. Specifically, the channel variations during the decision delay are available

interpolation method described in Chapter 4. These were obtained at the expen

interpolation delay, thus all should be utilized in finding the optimum receiver coefficie

Main goal in the following sections is to obtain the matched filtered divers

combining DFE that takes into account the channel variation over the decision delay.

purpose of the straightforward solution is to illustrate the eigenvalue spread problem

the relationship with the matched filtered DC-DFE.

5.3.1 The Wiener-Hopf normal equation

The receiver side of Figure 5-2 depicts the straightforward diversity combin
112
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DFE (DC-DFE). We apply the minimum mean square error (MMSE) criterion to t

structure and obtain the straightforward solution. Briefly reminding the notation and

assumption, the indexk denotes the /2-spaced epoch and thus evenk corresponds to

symbol rate sampling. denotes the complex valued AWGN atl-th branch with zero

mean and variance of . We assume that the noises at each diversity branch

mutually independent, and also independent to the channel and the transmitted sym

and that a transmitted symbol is an independent, identically distributed (i.i.d.) complex-

valued random variable with zero mean and unit variance.

For the convenience of deriving the matched filtered diversity combining DFE,

choose the received signal to be the input signal into the adaptive p

{ }. We might have also chosen as the input signal to the adaptive p

{ }, which is the approach we have taken in section 5.3.2.

EachT/2-spaced feedforward filter is represented by and the-spaced

feedback filter by a [Nb x 1] vector . We denote := .

Each /2-spaced interpolated overall channel is assumed perfectly estimated

represented by a [  x 1] vector . We assume  is even, and .

We now want to find the optimal vector that minimizes the mean square e

at each decision instant (k = 0, 2, 4,...), i.e.,

, (5.1)

where is the required decision delay in units ofT/2. We also assume that is even, an

= . The predecision value  is now described by,

, (5.2)

where (assuming the past decisions we

TB

nl k( )

σn
2

xl k( )

wl k( ) wb k( ), xl' k( )

wl k( ) wb k( ),

wl k( ) TB

wb k( ) w k( ) w1
T k( )…wL

T k( )wb
T k( )[ ]T

TB

Ñg hl k( ) Ñg Ng Ñg 2⁄=

wb k( )

wo k( ) E Ĩ k( ) I k ∆̃–( )–
2

hl q( ) q k k 1 … k ∆̃ l 1 … L, ,=,–,,–,=,
 
 
 

w k( )
arg min=

∆̃ ∆̃

∆ ∆̃ 2⁄ Ĩ k( )

Ĩ k( ) xl
T k( )

l 1=
L∑ wl k( ) I b

Twb k( )+=

I b k( ) I k 2– ∆̃–( )… I (k 2Nb– ∆̃ )–[ ]T=
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correct), and where . By defining

, can be written compactly as

Note that the length of is and thus the length of the feedforward is a

. At this point, we are simply assuming a very large feedforward filter length for

derivation of the matched filtered solution. The desired relationship between

feedforward filters of a finite length and the decision delay can be established later for

solution.

Now each input vector  to the feedforward filter  can be written as

, (5.3)

where we have defined

,

:= , and := .

In what follows, assuming a decision atk = 0, we omit the notation of epoch (the

parenthesis) from the matrices for brevity and retrieve it after the solution is derived

also omit the notation for the mathematicalconditioning operation in (5.1) but it is

understood that the mathematicalexpectationis meant to apply only to the noise and th

symbol sequences. Then the mean square measure of (5.1) can be compactly wri

. Invocation of the orthogonality principle gives

xl k( ) := xl k( ) xl k 1–( ) … xl k ∆̃–( )[ ]T

s k( ) := x1
T k( ) … xL

T k( ) I b
T k( )[ ]T Ĩ k( ) Ĩ k( ) sT k( )w k( )=

xl k( ) ∆̃ 1+ wl k( )

∆̃ 1+

xl k( ) wl k( )

xl k( ) H l k( )I k( ) nl k( )+=

H l k( )

hl 0, k( ) hl 2, k( ) … h
l Ñg 2–, k( ) 0 0 …

0 hl 1, k 1–( ) hl 3, k 1–( ) … h
l Ñg 1–, k 1–( ) 0 …

0 hl 0, k 2–( ) hl 2, k 2–( ) … h
l Ñg 2–, k 2–( ) 0 …

… … … … … … …

. … 0 hl 1, k ∆̃ 1––( ) hl 3, k ∆̃ 1––( ) … h
l Ñg 1–, k ∆̃ 1––( )

… … 0 hl 0, k ∆̃–( ) hl 2, k ∆̃–( ) … h
l Ñg 2–, k ∆̃–( )

:=

I k( ) I k( )I k 2–( )…I k 2 ∆ Ng 1–+( )–( )[ ]T nl k( ) nl k( )nl k 1–( )…nl k ∆̃–( )[ ]T

E sTw I ∆̃–( )–
2

{ }
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of
, which results in the Wiener-Hopf normal equation

. (5.4)

Now we denote x:= [x1
T. . . xL

T]T, := E{ xxH}, := E{ xIb
H},

, and := . Then, (5.4) can be rewritten as,

, (5.5)

and in a detailed form as,

, (5.6)

where we have used = and = . Recall our assumpt

that the noise at each diversity branch are mutually independent, and also independe

the i.i.d. input symbols. Next, each [ ] cross correlation vector can be show

be the th column of , i.e.,

, l = 1,..., L. (5.7)

The individual sub-matrices of (5.6) can be identified,i, j = 1,..., L,as

, (5.8)

where is the Kronecker delta function and , a [ ] autocorrelati

matrix of the noise, is equal to . The other [ ] submatrices

(5.6) are fori = 1,..., L,

, (5.9)

E s sHw* I * ∆̃–( )–( ){ } 0=

E ssH{ }w* E sI * ∆̃–( ){ }=

Rxx RxI

w f wT
1 … wT

L( )T
:= c E xI * ∆–( ){ }

Rxx RxI

RxI
H E I bI b

H( )

w f

wb

*
E xxH( ) E xI b

H( )

E I bxH( ) ΞNb Nb×

w f

wb

*
c

0Nb

= =

E x1x1
H( ) E x1x2

H( ) … E x1I b
H( )

E x2x1
H( ) E x2x2

H( ) … E x2I b
H( )

… … … …
E I bx1

H( ) E I bx2
H( ) … ΞNb Nb×

w1

w2

…
wb

*
c1

c2

…
0Nb

=

E I bI * ∆̃–( ){ } 0Nb
E I bI b

H( ) ΞNb Nb×

∆̃ 1+( ) 1×

∆ 1+( ) H l

cl E H l I n l+( )I * ∆–( ){ } H l : ∆,( ),= =

E xix j
H{ } E H i I n i+( ) H j I n j+( )H{ } H iH j

H σn
2δ i j–( )Φ+= =

δ •( ) Φ ∆̃ 1+( ) ∆̃ 1+( )×

Ξ ∆̃ 1+( ) ∆̃ 1+( )× ∆̃ 1+( ) Nb×

E xi I b
H{ } E H i I n i+( )I b

H{ } H iE II b
H{ } H i : ∆ 1: ∆ Nb+ +,( ),= = =
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The derivation of the matched filtered solution will be continued from the res

obtained so far. In this dissertation, the optimal solutionw obtained from (5.6) will be

categorized as a “straightforward solution.”

5.3.2 A straightforward solution

For the straightforward solution with finite filter lengths, we may want to use

the received signal after the receive-SRRC filter as depicted in Figure-1, to be the

signal to the adaptive parts, and . The benefit of this approach is tha

required adaptive filter length of the /2-spaced feedforward filter can

shorter than that of . From the standard procedure of Section 5.3.1, (5.3) - (5

matrix equation isomorphic to the straightforward solution of (5.6) can be obtained.

differences are that replaces , and that only the [ ] sub-vec

, instead of the [ ] vector, represents the input vector in (5.

This leads to the following modifications to (5.3) - (5.9):

• with length  represents the convolution of the channel and the raised

cosine function.

•  represents the [ ] sub-matrix .

• The cross-correlation vectors , each individual sub-matrix of , and that o

are appropriately truncated to have the correct dimension of [ ],

[ ], and [ ] respectively.

• Theij  th element of the noise autocorrelation matrix in (5.8) is now

, where  is the raised cosine function with a roll-off

= 0.35.

The decision delay of this solution takes the form, (equality with

sufficient number of feedback filter taps), where is the main tap location of the cha

. Furthermore, ignoring the channel variation over the straightforward solutio

E I bx j
H{ } E x j I b

H{ }H=

xl' k( )

wl' k( ) wb k( )

N f '
˜ TB wl' k( )

wl k( )

xl' k( ) xl k( ) Ñ f ' 1×

x'
l ∆̃ Ñ f– 2:∆̃ 1++, ∆̃ 1+( ) 1×

hl k( ) Ñg bl k( )

H l Ñ f ' Ng ∆+( )× H
l ∆̃ Ñ f– 2:∆̃ 1++ :,( ),

cl E xix j
H{ }

E xi I b
H{ } Ñ f 1×

Ñ f ' Ñ f '× Ñ f ' Nb×

Φ i j,( ) f rc i j–( )TB 2⁄( )= f rc t( )

β

∆̃ Ñ f ' 1– ∆g+≤

∆g

h k( ) N f '
˜
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{ , } reduces to the one of [20].

In fact, the L /2-spaced coefficients of the feedforward filters can

obtained from solving

, (5.10)

and theNb T-spaced feedback filter coefficients from

. (5.11)

We now illustrate two major drawbacks of the straightforward methods. First,

computational complexity increases exponentially with diversity order. The complexi

order provided we use a Cholesky factorization to solve (5.10). Second, a m

serious problem, is that the matrix becomes extremely unstable as

increase the number of diversity order ; a huge condition number (the ratio o

largest and the smallest eigenvalues) occurs.

A large eigenvalue spread occurs when the cross-correlation submatrices of

of (5.6) have large values. Recalling that since theexpectationdoes not apply to the

channels from (5.1), the cross-correlation between any two diversity channel a

given time is not zero valued in general. These non-zero off-diagonal matrices in

the main cause of the large eigenvalue spreads of the matrix . For a simple illustra

consider a two-by-two correlation matrix, i.e.,

, for which a diagonalization reduces to

, (5.12)

where from the Schwartz inequality and where is denoted

wl' k( ) wb k( )

N f ' TB

Rxx RxI RxI
H–[ ]w f

* c=

wb
* RxI

H w f
*–=

LN' f( )3

Rxx RxI RxI
H–

L 1>

Rxx

hl k( )

Rxx

Rxx

A
E X1X1( ) E X1X2( )

E X2X1( ) E X2X2( )
:= a c

c b
=

a ξ– 0

0 b ξ+

c2 a b⋅≤ ξ
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. It is evident from this example that there will be onl

one significant eigenvalue when the cross-correlationc tends to its maximum. By the sam

analogy, the condition number of may become very large whenever the c

correlation submatrices have large values. In our simulation, at high SNR (more tha

dB), the order of the condition number of matrixRxx for a relatively small (= 4) often

reaches up to 105 for L = 2 or 108 for L=4. Therefore, without a regularization techniqu

to relieve the eigenvalue spreads, the DFE coefficients obtained at high SNR often be

unreliable due to magnification of the channel estimation errors.

5.3.3 A matched filtered diversity combining DFE solution

We now discuss the matched filtered diversity combining DFE, depicted in Fig

2. Since channels are estimated, at each diversity branch the received signals c

ξ 1
2
--- a b–( )2 4c2+ a b––( ):=

Rxx

N f '

Figure 5-3   The receiver structure of the matched filtered diversity combining DFE.
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Î k( )Ĩ k( )
118



n be

bined

this

he

annel

ngth

rsity

es.

nnel

hich

ever,

tion

trix

he

14),
matched filtered by . The matched filtered signals are then combined and ca

sampled at the symbol rate without loss of information. The -spaced sampled com

signal is then fed to the -spaced feedforward filter . The correlation matrix of

structure does not suffer from large eigenvalue spreads.

From the results in [52] it can be observed that, although not explicitly stated, tL

channel diversity combining DFE problem can be treated as an equivalent single ch

DFE problem when using the matched filtered solution. This implies that for a finite le

DFE solution the dimension of the correlation matrix becomes independent of dive

orderL. Thus, there will be no cross-correlation submatrices to spread the eigenvalu

The derivations in [52], however, are performed using a quasi-static cha

assumption and focus on obtaining mean square errors of an infinite order DFE from w

the Chernoff upper bounds on bit error probability can be related. What we need, how

is a solution (with finite filter lengths) that takes into account the rapid channel varia

over a decision delay. This can be accomplished relatively easily with a ma

representation of the signals and filters as we have developed in V.1.

In this section, we continue the derivation of the NT-DFE solution from t

straightforward solution (5.6).

TheL simultaneous matrix equations of (5.6) can now be rewritten as

, for l = 1, (5.13)

, for l = 2, (5.14)

similarly for up to l = L, and the last matrix equation for the feedback part is

. (5.15)

Arranging the matrix equations in terms of and substituting them into (5.15)(5.

each of the  matrix becomes

M l k( )

TB

TB V k( )

H1H1
H σn

2ΞN f N f×+( )w1
* H1H2

Hw2
* … H1E II b

H{ }wb
*

+ + + c1=

H2H1
Hw1

* H2H2
H σn

2ΞN f N f×+( )w2
* … H2E II b

H{ }wb
*

+ + + c2=

E I bI H{ }H1
Hw1

*
E I bI H{ }H2

Hw2
* … wb

*
+ + + 0Nb

=

L wb
*

L
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. (5.16)

Now, by defining and , and

rearranging with respect to , (5.16) produces

, for eachl, (5.17)

where the [ ] matrix  is equal to the sub-matrix of ,

, (5.18)

and the elements of the [ ] vectorV are defined as

. (5.19)

We note from (5.17) that each feedforward filter can be decomposed into a ma

filter at each diversity branch and a -spaced feedforward filter which is common t

the diversity branches.

Next, pre-multiplying and substituting of (5.17) into the correspondingl-

th equation of (5.16), and then summing over all theL equations produces

. (5.20)

Now define a [ ] matrix , and note ,

and similarly for . Also note that of (5.20) is just the

-th column of Ψ, i.e., . Finally, substituting (5.17) into

(5.15), we have the feedback coefficients,

. (5.21)

H l H r
Hwr

*
r 1=
L∑ σn

2wl
* H l– E II b

H{ }E I bI H{ } H r
Hwr

*
r 1=
L∑+ cl=

Ṁ l H l H lE II b
H{ }E I bI H{ }–:= Ṽ * H r

Hwr
*

r 1=
L∑:=

wl
*

wl
* 1

σn
2

------ Ṁ l– Ṽ * cl+⋅( ) M l Ṽ
*= =

∆̃ 1+( ) ∆ 1+( )× M l H l

M l H l : 0:∆,( ),=

∆ 1+( ) 1×

Vi

1 Ṽi–( ) σn
2⁄ i, ∆=

Ṽi–( ) σn
2⁄ i, 0 ..., ∆ 1–,=





:=

wl

TB

M l
H wl

*

M l
HM ll 1=

L∑ M r
HM rr 1=

L∑⋅ σn
2 M l

HM ll 1=

L∑+ V * M l
Hcll 1=

L∑=

∆ 1+( ) ∆ 1+( )× Ψl M l
HM l:= Ψl M l

HM l Ψl
H= =

Ψ Ψll 1=

L∑:= ΨH= M l
Hcll 1=

L∑
∆ 1+( ) M l

Hcll 1=

L∑ Ψ : ∆,( )=

wb
* E I bI H{ }H l

HM ll 1=

L∑ 
  V *– H l ∆ 1:∆ Ng+ + :,( ),( )HM ll 1=

L∑ 
  V *= =
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From inspection of (5.17) and (5.20) all the necessary information on the mat

filtered diversity combining structure can be obtained. Specifically, the matched

coefficients of (5.24) can be determined from , the combined signal of the dive

matched filter outputs is the input signal to the -spaced feedforward filter , and

decision delay should be for a -spaced feedforward filter len

with .

In particular, considering for a feedforward filter with length

(5.20) can be reduced to

, (5.22)

where . And the [ x 1] feedback filter can

be obtained from

, (5.23)

where the [ ] matrix .

For the matched filtered diversity combining DFE, the decision delay is

summation of the matched filter and feedforward filter lengths. It is defined in units of

2-spaced epochs as , or in units ofT-spaced epochs as

, whereNf is the length of -spaced feedforward filter .

The [ x 1] matched filter can be identified as, assuming is the curr

epoch,

. (5.24)

Note the decreasing epoch index of the vector elements. Thus each matched filter

epochk needs  previous snap-shot channel estimates.

To describe the DFE filters, it is convenient to first define a-spaced sampled

summed channel autocorrelation function (SCAF), i.e.,

Ml
H

TB V

∆̃ Ñg 2 N f 1–( )+= TB

N f

V∆ N f– 1: ∆+ N f

RV∆ N f– 1: ∆+
* Ψ ∆ N f– 1: ∆+ ∆,( )=

R ΨΨH σn
2Ψ+( ) ∆ N f– 1: ∆+ ∆ N f– 1: ∆+,( ):= N b

wb
* BV *

∆ N f– 1: ∆+–=

Nb N f× B H l ∆ 1:∆ Ng+ + :,( ),( )HM ll 1=

L∑ 
 

0:Nb 1– ∆ N f– 1:∆+,( )
:=

TB

∆̃ Ñg 2 N f 1–( )+=

∆ Ng N f 1–+= TB V k( )

Ñg k 0=

M l h
l Ñg 1–,
* 1–( ) h

l Ñg 2–,
* 2–( ) … hl 0,

* Ñg–( )[ ]T=

Ñg

TB
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, (5.25)

where each diversity channel autocorrelation function, forl = 1, ...,L and forr = 0, -1, ..., -

Nf +1, is defined as

,

for and = 0 for . Note that the phases of th

main terms are equalized. Thus the main term is the result ofL constructive

additions while non-main terms  are not.

 Now, theij th element of a [Nf x Nf] correlation matrix  can be described as

, (5.26)

for .

A [Nf x 1] cross-correlation vector  can be identified as, for ,

. (5.27)

Finally, a [Nb x Nf] matrix  is, for , and ,

. (5.28)

Then, theT-spaced feedforward filterV can be obtained from solving , and th

feedback filter from . We refer this as a matched filtered non-Toep

DFE (NT-DFE). Note that this solution utilizes all the channel state information during

last period. When time invariance of the channel over the decision dela

assumed, the channel matrix of (5.3) becomes block Toeplitz, and all the e

terms inside the parenthesis of (5.26) - (5.28) can be ignored. We refer this as a ma

filtered Toeplitz DFE (T-DFE).

In fact, we have shown that the matched filteringL-diversity combining DFE

ψa r( ) ψ l a, r( )
l 1=

L∑:=

ψ l a, r( ) h*
l q a–, q Ñg– a– 2r+( ) h⋅ l q a+, q Ñg– a– 2r+( )

q a=

Ñg 1– a–∑=

a Ng 1+ … 0 … Ng 1–, , , ,–= ψ l a, r( ) a Ng≥

ψ l 0, •( ) ψ0 •( )

ψa •( ){ }a 0≠

R

R i j,( ) ψq i–( ) ψq i j–+
* j–( )⋅ σn

2ψ j i– j–( )+
q Ng– 1+=

N f 1– i–∑=

i j, 0 1 … N f 1.–, , ,=

P i 0 1 … N f 1–, , ,=

Pi ψN f 1 i–– i–( )=

B i 0 1 … Nb 1–, , ,= j 0 1 … N f 1–, , ,=

B i j,( ) ψN f i j–+
* j–( )=

RV * P=

wb wb
* B V *–=

∆̃ T 2⁄( )

H l k( )
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problem can be treated as an equivalent single channel-spaced DFE problem, as

depicted in Figure-2. Let denote the symbol spaced epoch. The equivalentT-spaced

channel is a [(2 ) x 1] vector whose elements are the of (5.2

i.e., is the first element of ; and the equivalentT-spaced noise is

with as its autocorrelation function. Then, theT-spaced sampled is

, where := . Now, for

a [ ] input vector = , the predecision value

analogous to (5.2) can be defined as = . Then, following

standard procedure analogous to (5.3)-(5.9) the matched filtered solution of (5.26) - (

can be reproduced.

5.3.4 The equivalent single channel

The matched filtered diversity combining DFE has lower complexity than

straightforward approach and does not suffer from the large eigenvalue spread t

observed in the straightforward solution. Note that the dimension of the correlation m

, [Nf x Nf], stays the same for any diversity order. Thus, there are no cross-correl

TB

n

Ng 1– ψ n( ) ψa n( ){ }a Ng<

ψ Ng– 1+ n( ) ψ n( ) ν n( )

σn
2 ψ⋅ i n( ) z n( )

z n( ) ψ n( )TI n( ) ν n( )+= I n( ) I n( ) I n 1–( ) … I n 2Ng– 1+( )
T

N f 1× z n( ) z n( )… z n Nf– 1+( )[ ]T Ĩ n( )

Ĩ n( ) zT n( )V n( ) I b
T n( )wb n( )+

Figure 5-4   The equivalent symbol-spaced, single channel DFE setting.

Î n( )Ĩ n( )
ν(n)

The equivalent symbol-spaced SCAF channel model

z(n)I n( )
ψ n( ) V k( )

wb k( )

R
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submatrices to spread the eigenvalues. Thus, the eigenvalue spread of the correlation

is now fully determined by the SCAF vector . Also note that SCAF valu

in (5.25) correspond to ISI terms relative to the phase equalized main

, and that their energies relative to the main term decrease for increasingL. Thus, the

correlation matrix tends to be more stable for increasingL. This indicate that the explicit

diversity reduces the intersymbol interference problem. In fact, if , the equiva

single channel becomes AWGN. For our block adaptive strategy, the use of matched fi

diversity combining also helps stabilize the DFE computation algorithm; it is obvious s

the ISI is reduced as is increased. Thus, the DFE coefficients obtained from the ch

estimates become less susceptible to channel estimation noise enhancement.

Comparing the matched filtered NT-DFE and T-DFE, the NT-DFE is optim

because it uses all the channel state information during the decision delay whic

provided by the channel interpolation. The T-DFE uses only partial information and is

suboptimal but has lower complexity than the NT-DFE. The NT-DFE provides

ψ n( )

ψa n( ){ }a 0≠

ψ0 n( )

L ∞→

L

Magnitude plots Summed CAF

I k 2– I k 1– I k I k 1+ I k 2+

I k 2– I k 1– I k I k 1+ I k 2+

I k 2– I k 1– I k I k 1+ I k 2+

As L ∞→ , the SCAF channel becomes ISI-free, a AWGN channel.

Figure 5-5   Addition of the symbol-rate sampled matched filter outputs.
124



acked

he use

mbol

ade

ped

ireless

with a

of

until

n code

the

st

apart

ap

res

LS

ck the
performance advantage over the T-DFE only when the channel is in fast fading and tr

with a reasonable accuracy. The NT-DFE used in an ideal channel reference mode (t

of perfect channel) can serve as a benchmark to identify the source of irreducible sy

detection errors in fast fading. In the next Section, the above comparisons will be m

through computer simulations.

5.4 Simulation Results and Discussion

We now discuss the simulation results. For computer simulation of the develo

systems for wireless channels, we developed the custom-made C++ routines. The w

channel virtually has an infinite set of possible impulse responses for each channel

given multipath power delay profile. Therefore, the performance evaluation

communications systems for wireless channels may take a large amount of CPU time

properly averaged simulation results are obtained. For this reason, a system simulatio

that can be compiled is highly recommended.

5.4.1 BER performance in slow fading

In Figure 5-6, the BER performances of two receivers are compared with

theoretical matched filter bounds1 (MFB) developed in Chapter 6. The MFB is the lowe

attainable bound since it is obtained assuming the transmitted pulses are far enough

so that no ISI occurs.Flat fading indicates the matched filter bound for the single t

Rayleigh fading channel, and was given as a reference.

In Figure 5-6, “LSE and interpolation NT-DFE” refers to the use of least squa

channel estimation, channel tracking by interpolation, and non-Toeplitz DFE. “R

channel tracking T-DFE” refers to the use of a recursive least squares algorithm to tra

1. Symbol error rate probabilities developed in Chapter 6 can be translated into the bit error rate
results with a minor modification.
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Figure 5-6 Average QPSK BERs in slow fading: RLS channel tracking T-DFE a
LSE NT-DFE compared with theoretical matched filter bounds.
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time-varying channel (i.e., without channel interpolation), and the Toeplitz DFE for sym

detection. The T-DFE is used since the channel states during the decision delay a

available with the recursive adaptation. With regard to the use of RLS algorithm,

channel-estimate approach, instead of a conventional direct adaptation on the

coefficients without channel estimation, is selected since the channel-estimate base

(without diversity) has been shown to be more effective than the direct DFE adapt

[54][67]. Specifically, we use the exponential windowing RLS algorithm from [67]. To

a fair comparison the same known training blocks are inserted in the data stream.

during the training segment the RLS algorithm and DFE filters are refreshed at the

rate. Furthermore, the exponential weighting factorω of the RLS algorithm is optimized at

various SNRs, fade rates, and channel lengths. For this, the following equation is ad

from [67],

. (5.29)

The filter orders used in the simulation are ( ,Nf, Nb) = (20, 5, 5). The channel is

in slow fading atfdm = 10 Hz (fdmT = 0.00042).We note that the slopes of BER curves fo

both methods (e.g. about 10-2 per 10 dB SNR forL = 1) are close to those of their MFBs

and steeper than those (e.g. 10-1 per 10 dB forL = 1) of the theoretical flat fading channe

This indicates that both receivers take advantage of the implicit diversity gain, whic

inherent in the frequency selective channel. The RLS T-DFE and LSE NT-DFE s

comparable performance in slow fading.

5.4.2 BER performance in fast fading

In Figure 5-7, BER performance of RLS T-DFE with DQPSK signaling is evalua

for fdm = {10, 50, 100}. Since T-DFE ignores the channel variation over the feedforw

SNR
Nc 1+( )

2 f dmπT( )2
--------------------------- 1 ω–( )3

1 ω+( )2
--------------------=

Ñg
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Figure 5-7 Average DQPSK BER simulation: Toeplitz DFE with RLS channel trackin
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filter length, longer filters might become counter productive in fast fading (this behavi

also observed in [58] without diversity). Thus, atfdm= 100 Hz we use shorter filters of (

Nf, Nb) = (12, 4, 4) which have been determined to be optimal from our simulations.

We observe that atfdm= 100 Hz the irreducible BERs are too high (0.1 forL = 1 and

0.01 forL =2) to be of any practical use. Therefore, we confirm that RLS actually fail

track the three-tap fast Rayleigh fading channel.

In Figure 5-8, the BER performance of LSE and MAP NT-DFE receivers w

DQPSK signaling is evaluated atfdm = 100 Hz. “MAP NT-DFE” refers to the use of

maximuma posteriori channel estimation, channel tracking by interpolation, and n

Toeplitz symbol detection. We note that both receivers show a superior and robust

performance against the fast fading. LSE and MAP NT-DFE curves are not even flat o

to 30 dB. Moreover, we note the significance of NT-DFE, which is illustrated by “the id

CIR NT-DFE curves” (the use of perfect channel at all epochs) since the NT-DFE ex

no sign of irreducible error floors. T-DFE would display irreducible error floors even w

the ideal CIR supplied. An example of this can be found in [58] where a DFE receiver, u

T-DFE without diversity, shows relatively high irreducible BER floors even in the id

channel reference mode (the use of perfect channel estimates at all epochs).

We observe that LSE and MAP NT-DFE curves show less than 1 dB differe

below a BER of 10-3. This suggests that the use of LSE is a reasonable design choic

least for an uncoded system. In addition, we note that the throughput rate at this B

.

5.4.3 The sources of BER floor

In Figure 5-9, the causes of the BER floor at the fastest fading rate can

distinguished. In particular, the non-Toeplitz-DFE and the Toeplitz-DFE are compared

three modes of obtaining channel impulse responses are also compared. The three

Ñg

B Nt–

B
--------------- 80 11–

80
------------------ 0.8625= =
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Figure 5-8 Average DQPSK BER performance: LSE and MAP NT-DFE with chann
tracking by interpolation. Ideal CIR NT-DFE implies NT-DFE with no channel
estimation errors at all time.
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are the MAP channel estimation and interpolation tracking, interpolation on pe

channel estimates, and the ideal channel reference. Comparison of these curves

identify the main cause of the symbol detection errors at the high SNRs. The optimal

orders for the T-DFE are again ( , Nf, Nb) = (12, 4, 4). The filter orders used for the NT

DFE are (20, 5, 5).

Not much difference is observed for low SNR. Thus, we pay attention to BER

30 dB. First, note that the T-DFE curves entail higher BER floors. Even the ideal CI

DFE produces a higher BER floor than the MAP NT-DFE does. This illustrates

detrimental consequence of ignoring the channel variation during the decision delay

DFE coefficient computation. Second, by comparing the NT-DFE curves it is demonst

that the irreducible BER floors are mainly due to the interpolation errors. As it se

natural that the interpolator performs poorly in the middle of the data segment, thus

decision errors occur predominantly during the middle of the data frame. This prob

persists even atB = 40 for which the BER at 30 dB is about 3x10-5 (not shown in the

figures). Thus, there is still room for improvement.

5.4.4 The suboptimal T-DFE and the DFE update periods.

In Figure 5-10, the impact on BER from increasing the DFE update periodsµ is

investigated atfdm=100 Hz, whereµ is the number of symbol periods between any two DF

coefficients updates. Again, the BER performances of the Toeplitz and non-Toeplitz

are compared. We use the optimal filter orders, (, Nf, Nb) = (12, 4, 4), for the Toeplitz

case. For the non-Toeplitz case (20, 5, 5) are used forµ = 1, while shorter filter orders (16,

4, 4) are used for other values ofµ. The MAP estimator is used for both. First, note that t

performance difference of the two deepens for a higher diversity order and for a h

SNR, whereas it becomes almost negligible forL = 1 and for low SNR. Second, the non

Toeplitz method maintains its superiority to the Toeplitz only for , as the BER g

Ñg

Ñg
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quickly disappears for . Thus, if a largeµ has to be chosen for a lower computation

complexity, then the use of T-DFE is suitable.

5.4.5 Computational complexities

In Table 5-1: we summarize the number of complex multiplications and divisi

required for the RLS T-DFE, LSE T-DFE, and LSE NT-DFE. The first and second r

indicate the required number of operations for the channel tracking techniques. Fo

channel tracking by interpolation, we assume that theT/2-sampled sinc function is stored

Then, the interpolated channel can be obtained from complex multiplications

the convolution ofb andf requires another . The matched filter coefficient vector

can be obtained without any computation since it is a pure mapping from the interpo

overall channel. The third row indicates the summation of the number of opera

required to form the summed channel autocorrelation function, the correlation matrix

cross-correlation vector, and the feedback filter matrix. The forth row is the requ

computations to solve for the feedforward filter with length provided the Chole

factorization [24] is used. The last row are example calculations forL = 1, 2, = 1, with a

typical set of filter lengths and channel estimation paramete

. For the T-DFE receivers, required

numbers of operations for a larger DFE update period of are also calculated

presented inside the parenthesis.

5.5 Concluding Remarks

We have presented robust channel estimation methods which require little tra

overhead over the fast Rayleigh fading dispersive channel. It has been shown th

simulations that channel tracking by interpolation along with our proposed cha

µ 1>

b NRQ

NRÑg M l

N f

µ

Ñg N f Nb B Nt Nc,, , , ,( ) 12 6 4 4 80 11 6, , , , , ,( )=

µ 5=
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estimation method is significantly better than the RLS channel tracking method

previously published feedforward channel estimation methods in terms of both

throughput and the BER performance.

For the block adaptive diversity combining DFE scheme we have proposed

matched filtered approach because of its stable performance in the presence of c

estimation errors. The matched filtered DFE simplifies theL-diversity combining decision

feedback equalizer into an equivalent single-channel DFE problem. This provid

reduced computational burden in tracking the optimum coefficients of the receiver

leads to a well-conditioned correlation matrix.

We have derived a matched filtered diversity combining NT-DFE which takes

account the channel variation over the decision delay. This NT-DFE can obtain the

benefit of the channel interpolation and thus provides a benchmark for performance. W

optimal, the NT-DFE incurs relatively high computational complexity, and thus fo

suboptimal but low complexity solution we propose the use of the T-DFE which

provides better performance than the RLS algorithm.
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The last row of table show example calculations f

, and

. The shaded region implies that the numbers of multiplication c

be divided by , where is the DFE filter update periods in units of symbol period.

Table 5-1:     The number of complex multiplications and divisions required

RLS channel
tracking T-DFE

LSE T-DFE LSE NT-DFE

Channel
estimation + 6

Channel
tracking by the
interpolation

N/A

Forming the
SCAF, the corr.

matrix, the
cross-corr.

vector, and the
feedback
matrix

+ +

+

-

Feedforward
filters

Feedback filter

 and
 = 1 (  = 5)

279 (147)
465 (271)

263 (53)
436 (88)

464
714

9LÑg
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2 Ñg+( )

N f Ng N f 1–+( )

L
2
--- Ñg
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3 9N f
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Chapter 6

Matched Filter Bounds and Spectral

Efficiency

This Chapter provides theoretical bounds on the detection probability of

transceiver schemes discussed in the dissertation. They are matched filter bounds

provide the best attainable detection performances in terms of bit error probabili

symbol error probability as a function of SNR. The detection probability curves obta

from the matched filter analyses for any given modulation scheme indicate the bench

performance, which may or may not be obtainable in reality with the use of any partic

detection scheme. These matched filter bounds, therefore, will provide meani

information, when compared with the bit error rate (BER) or symbol error rate (S

curves obtained from extensive computer simulations.

The spectral efficiency of a channel indicates the capacity (bits/sec/Hz) of the g

channel. In this Chapter, the spectral efficiency of the multipath fading ISI channels w

computed using the matched filter output SNR. This will provide insights into how

design a power-and rate-adaptation protocol. The protocols which operating betwee
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transmitter and the receiver, determine at a particular instant of time how many inform

bits/sec/Hz and how much power should be used to transmit a symbol across the ch

while insuring a particular detection probability.

The matched filter bounds and spectral efficiency calculation techniques prov

in this Chapter are specific to -ary QAM signals and the three-tap Rayleigh fa

diversity channel models developed in Chapter 2. However, they should be gene

applicable to any frequency-selective (or non-selective) fading channels and for any

modulation.

6.1 Matched Filter Bound

Based on the matched filter theory [73], the detection SNR of any linearly filte

received signal is maximized when the matched filter is applied to the received s

perturbed by additive noises. The matched filter bound analyses are based on the

assumptions that the symbol detection SNR is maximized to achieve the input SNR

that the ideal detector uses a perfect channel estimation and is free from intersy

interference by the assumption of a single-shot transmission. Therefore, it will provid

benchmark detection performance, which may or may not be achievable. Neverthele

matched filter bounds provide invaluable information when compared with the simula

results of the proposed transceivers developed in Chapters 4, 5 and 7.

The derivation provided in this section closely follows the eigenva

decomposition methods provided by Fuyun Ling [74] and Proakis [33]. New results are

the matched filter bounds are obtained for -QAM signalling, is 4, 16, and 64, and

the three-tap half symbol spaced diversity channels.

Before starting with the derivations, let us review some of the import

assumptions we make in the derivation:

q

q q
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• Assumption 1: Matched filter bound is based on a single-shot symbol transmiss

and detection such that it ignores any intersymbol interference.

• Assumption 2: The matched filter theory holds with the colored noise; however

this Chapter we assume that the noise is white, following the same channel cond

given in Chapter 2.

• Assumption 3: The channel is assumed to betime-invariant over the duration of the

overall pulse, which include the channel, the transmit shaping and the receive filt

• Assumption 4: The half-spaced fading components are mutually uncorrelated.

uncorrelated scattering assumption of the wide-band multipath components expl

in Chapter 2 is the basis for this assumption.

Based on the assumptions, we first obtain the matched filter bounds for a s

channel case from which results for multiple diversity receive channels can be evalu

Recalling the channel model developed in Section 2.3, the received signal for a single

transmission of a pulse modulated by the information symbol  can be written as

, (6.1)

where

• denotes the signal part of received signal due to the single-s

transmission of the symbol  at 1,

•  denotes the transmitted -ary QAM symbol

1. A non-causal representation of transmission and reception of the signal is used for brevity.

I 0

xs t( ) bp f t pTB–( )I 0 n t( )+
p 0=

NR 1–

∑ h t( )I 0 n t( )+= =

h t( ) ∞– t ∞< <

I 0 t 0=

I 0 q
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• denotes the -th component of the -spaced delay dispersion of the cha

which is non-time-varying followingAssumption 3; we use . In addition,

from the assumption that the channel is a low-pass filtered version of the wide-

channel, whose low-pass bandwidth is as assumed in Chapter 3, each co

nents is mutually uncorrelated. Thus, the uncorrelated scattering assumption

holds. Thus, we haveAssumption 4,

, (6.2)

where we denote for the -spaced sampled, average multip

power delay profile of the low-pass MPDP.

• is a square root raised cosine filter as defined in (2.26), and denote

Fourier transform of ,

(6.3)

• denotes the zero-mean, complex-valued additive white noise with double

power spectral density of .

Now consider the Fourier transform of , which is denoted as

, (6.4)

and the complex-conjugate  can be written as

. (6.5)

bp p TB 2⁄

NR 3=

2 TB⁄

bp

E bp
* bq{ } φc TB 2⁄, p( )δ p q–( )=

αp
2δ p q–( )=

αp
2 φc TB 2⁄, p( )= TB 2⁄

f t( ) F w( )

f t( )

F w( ) f t( ) jwt–( )exp td
∞–

∞
∫=

n t( )

No

h t( )

H w( ) F h t( ){ } F w( ) bp jwp
TB

2
------– 

 exp
p 0=

NR 1–

∑= =

H * w( )

H * w( ) F* w( ) bp
* jwp

TB

2
------ 

 exp
p 0=

NR 1–

∑=
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Based on the matched filter theory [73], is the optimal filter that maximizes

detection SNR. Now applying the matched filter response to the received s

, we have the matched filtered signal which can be written in the Fourier trans

domain as

. (6.6)

The inverse Fouier transform of (6.6) provides the time-domain response of the ma

filtered signal. Now notice that the autocorrelation function channel, which is the inv

Fouier transform , is Hermitian symmetric around

Thus, by sampling the matched filtered output response at , we achieve the op

matched filter output.

6.1.1 Sampled, matched filter output

Now let denote the received signal, sampled at , and then the suffic

statistics for the detection of  is to consider the following simple equation

, (6.7)

where

• denotes the value of the Hermitian symmetric autocorrelation channel sampl

time ; it is a random variable and implies the instantaneous energy of the

cade filter, the channel and transmit-shaping filters, and can be written as

(6.8)

From the uncorrelated scattering assumption (Assumption 4) above, (6.8) can be

H * w( )

H * w( )

x t( )

H* w( )X w( ) H * w( )H w( )I 0 H* w( )No+=

1
2π
------ H* w( )X w( ) jwt( )exp wd

∞–

∞
∫ t 0=

t 0=

zs t 0=

I 0

zs AsI 0 vs+=

As

t 0=

As
1

2π
------ H* w( )X w( ) jwt( )exp wd

∞–

∞
∫

t 0=

1
2π
------ H* w( )H w( ) wd

∞–

∞
∫= =

1
2π
------ F* w( )F w( ) bp

* jwp
TB

2
------ 

  bq jwq
TB

2
------– 

 exp
q 0=

NR 1–

∑exp
p 0=

NR 1–

∑ wd
∞–

∞
∫=
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written as

(6.9)

where  is the raised cosine filter response,

•  denotes the transmitted -ary QAM symbol,  and

(6.10)

•  denotes the matched filtered noise output sampled at  which is

; (6.11)

thus  is zero-mean with .

(6.7) provides the sufficient information we need to compute the detection performan

the single-shot matched filter receiver. Note that is the instantaneous energy o

cascade filter and is a random variable since the channel at a particular time

random vector.

6.1.2 Square-QAM symbol error probability

In this section, for a particular value and the symbol error probability w

be evaluated for square -ary QAM signaling, i.e. where is even. Then, refer

to Figure 6-1 the following relationships are useful:

• The average energy of the square-QAM signaling set can be computed as,

(6.10) and the definition given in Figure 6-1

As bp
* bq

q 0=

NR 1–

∑ 1
2π
------ F w( ) 2

jw q p–( )
TB

2
------– 

 exp wd
∞–

∞
∫

p 0=

NR 1–

∑=
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* bq f rc t q p–( )
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2
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 
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NR 1–

∑
p 0=

NR 1–
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f rc t( )

I 0 q E I0( ) 0.0=
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. (6.12)

• The minimum Euclidean distance of the square-QAM constellation is

. (6.13)

• The instantaneous signal to noise ratio is

 = , (6.14)

where is the instantaneous SNR, the number of bits per symbol

is the instantaneous SNR/bit.

Then, the -ary square-QAM symbol error probability at a particular channel g

, can be computed as

dmin

As

2
-------

Figure 6-1 64-QAM illustration. denotes the instantaneous combined channel gaAs

Es E I0
2( )

As

2
------- 

  2 2 q 1–( )
3

--------------------
As

2
------- 

  2 q 1–
3

------------As
2

= = =

dmin 2 As⋅=

signal power
noise power
------------------------------ γ k γb⋅=

Es

As No⋅
-----------------=

q 1–( )
3

----------------
As

No
------=

γ k q( )2log= γb

q

As a=
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NR
, (6.15)

which can be tightly upper-bounded by the first term as indicated in Figure 6-2. No

Figure 6-2 the approximation is asymptotically efficient and very tight even at low S

region. Thus, we have

. (6.16)

Now, solving for  in (6.12), i.e.,  we have

, (6.17)

but using (6.14), (6.17) is

, (6.18)

Then, the tight upper bound of symbol error probability (6.16) can be written as

, (6.19)

or simply

. (6.20)

6.1.3 Average symbol error probability for square-QAM

Now, the symbol error probability, averaged over the ensemble of the channel

or equivalently that of , can be computed from

, (6.21)

Pq As a=( ) 2 1 1

q
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where denotes the averaged symbol error probability of -ary QAM system

average input SNR which is

, (6.22)

at a given noise spectral density . Thus, we need to know the distribution function o

random variable .

From (6.9), we may note that the random variable can be written as follows:

. (6.23)

Denote the matrix in the middle as . Now, from (2.15) and (6.2) we know that a fad

channel tap can be written as , the multiplication of an attenuation and the

variance, complex-valued Gaussian random variable . And, thus, we can write

channel vector  as

, (6.24)

where , the 3 x 3 identity matrix such that are mutual

uncorrelated from the uncorrelated assumption (6.2).

(6.23) can now be rewritten using (6.24),

, (6.25)

where in the second line we have defined . Note that for a fixed MPDP,

Pq γb( ) q

γb E γb{ } q 1–( )
3kNo

----------------E As{ }= =
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As
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*

b1
*
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b αρ
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 
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E ρρH( ) ΞNR NR×= ρi i 0 1 2, ,=,

As bHFrcb ρHαHFrcαρ= =

ρHGρ=

G αHFrcα= G
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fixed. Also note that is Hermitian symmetric, and since is the energy of the cas

filter (6.8) it is non-negative definite. For any non-negative definite Hermitian symme

matrix , there exist an orthonormal matrix  such that , or

(6.26)

where is a diagonals matrix with the diagonal elements, , = 0, 1, 2, being

eigenvalues of the matrix .

Now rewriting (6.25) using (6.26) we have

, (6.27)

where we have defined . Note that , are again mutua

independent, complex-valued Gaussian random number with zero-mean and unit-var

and thus , , are -distributed random variables with t

characteristic function . Thus, the characteristic function of  is the produ

. (6.28)

6.1.3.1 Distinct eigenvalues (no eigenvalues in multiplicity)

When all the eigenvalues are distinct, (6.28) can be expressed as

, (6.29)

where we have defined the weight of an individual random variable to be

(6.30)

G As

G Q QGQH Λ=

G QHΛQ=

Λ λp 0≥ p

G
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˙ 2
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147



of

endix

ched
Finally, we can write the probability density function for which is the weighted sum

 (= 3) -distributed random variables. That is,

. (6.31)

Now substituting (6.31) and (6.20) into (6.21) we have

(6.32)

Now define

, (6.33)

then by change of variable (6.32) can be rewritten

, (6.34)

where we have defined for , . Note that the weight terms

stays the same. The expression in the curly-brace of is evaluated in (6.83) in the App

of this Chapter. Then, (6.34) becomes

, (6.35)

where the relationship between the average SNR/bits and the eigenvalues are

. (6.36)

Now, the following steps describe the procedure of how to compute the mat
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filter symbol error probability bounds when the input parameters are the average SNR

, the constellation size  and the mutipath power delay profile.

• Evaluate the eigenvalues using given MPDP and the trans

shaping filter, which is described in (6.23) to (6.27).

• Now determine the value of  for the given value of  and  by

(6.37)

• Calculate  by evaluating

. (6.38)

• Finally, substitute (6.38) into (6.35) to calculate the average symbol error probab

6.1.3.2 Eigenvalues occurring in multiplicity

We now consider the case ofD-times repeated eigenvalues, i.e.

. (6.39)

This is the case when we have equal gain, independent diversity sources. Then, (6.27

the expression

, (6.40)

where again are Chi-square distribution with unit mean. The distribution func

for this case is . Then, the average symbol err

probability is

γb q
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(6.41)

Then, by defining , we have

, (6.42)

where we again defined . From (6.86), we have

, (6.43)

where we defined .

Now, following steps describe the procedure of how to compute the matched

symbol error probability bounds when the input parameters are the average SNR/bi

the constellation size  and D diversity paths of equal gain .

• Now determine the value of  for the given value of  and  by

(6.44)

•  and thus .

• Finally, substitute  into (6.43) to calculate the average symbol error probability

The considered situation is when each diversity channel is a single Rayleigh fa

tap channels. Then, the matched filter combiner simply becomes the maximal

combining of the received signal. Figure 6-3 Figure 6-4 Figure 6-5 are the matched

Pq γb( ) Pq a( )Pr As a=( ) ad
0
∞∫=

2 1 1

q
-------– 

  erfc
a

2No
---------- 

  1

D 1–( )!λ1
D

---------------------------aD 1– e
a λ1⁄–

ad
0
∞∫=

4 1 1

q
-------– 

  1
2
---erfc

a
2No
---------- 

  1

D 1–( )!λ1
D

---------------------------aD 1– e
a λ1⁄–

a.d
0
∞∫=

Y
As

2No
----------=

Pq γb( ) 4 1 1

q
-------– 

  1
2
---erfc y( ) 1

D 1–( )! λ̇1
D

---------------------------yD 1– e
y λ̇1⁄–

yd
0
∞∫=

λ1
˙ λ1

2No
----------=

Pq γb( ) 4 1 1

q
-------– 

  1 Ω–
2

------------- 
  D D 1– k+

k 
  1 Ω+

2
-------------- 

  k

k 0=

D 1–

∑=

Ω
λ1
˙

1 λ1
˙+

---------------=

γb

q λ1

1
2No
---------- γb q

1
2No
----------

3γb q2log

2 q 1–( )Dλ1
-------------------------------=

λ1
˙ λ1

2No
----------= Ω

λ1
˙

1 λ1
˙+

---------------=

Ω

150



g
Figure 6-3 Matched filter bound SER for 4-QAM transmission over -flat fadin
diversity channels.
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g
Figure 6-4 Matched filter bound SER for 16-QAM transmission over -flat fadin
diversity channels.
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g
Figure 6-5 Matched filter bound SER for 64-QAM transmission over -flat fadin
diversity channels.
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bounds of SER for -QAM transmission over the -diversity antenna channels, fo

equal to 4, 16 and 64. As the order of diversity increases the matched filter bounds

diversity channels approach the SER performance of the AWGN channel.

6.1.3.3 Combination of distinct and multiple poles

We now consider diversity antenna cases, where the instantaneous, dive

combined channel gain  can be shown to be

, (6.45)

where , are mutually independent, complex-valued Gauss

random number with zero-mean and unit-variance, and thus are

distributed random variables. Note that the MPDP stays the same for different ante

and thus the same set of (distinct) eigenvalues should be repeating times. Thu

characteristic function becomes

. (6.46)

Now, for the example of and , by the method of partial fraction expans

(6.46) can be decomposed into

, (6.47)

where  values are the expansion coefficients. Then, the probability density function

. (6.48)

Then, the average symbol error probability is
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where we have defined

• ,

• ,

• .

Now, the following steps describe how to compute the average probability given

MPDP, the number of diversity channel , the average SNR/bits and the constell

size :

• Define the average SNR/bits (note, this is not the average SNR/bits/channel),

(6.50)

• Evaluate the eigenvalues for given , MPDP and the trans

shaping filter, taking the same approach as (6.23) to (6.27).

• Now determine the value of  for the given value of ,  and  by

(6.51)
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• Calculate  by evaluating

. (6.52)

• Finally, substitute (6.52) into (6.49) to calculate the average symbol error probab

Figure 6-6 Figure 6-7 Figure 6-8 shows the matched filter bounds for -Q

transmission, = 4, 16, and 64, over the multipath fading frequency-selective cha

which have MPDP-1 = and MPDP-2 = (0.6652 0.2447 0.090

and for the number of diversity channels . Note that in this Chapter we use

SNR/bits to draw the matched filter bound curves. When they are compared with

simulation results in Chapter 5 and 7, they are translated to the curves for SNR

Channel, which can be readily done by ignoring  in (6.51).

λ̇i i 0 1 … NR, , ,=,{ }

λp
˙ λp

2No
----------=

q

q

0.7413 0.2343 0.0234( )

L 1 2,=

L
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Figure 6-6   Matched filter bounds symbol error probability for 4-QAM,L 1 2,=
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Figure 6-7   Matched filter bounds symbol error probability for 16-QAM,L 1 2,=
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Figure 6-8   Matched filter bounds symbol error probability for 64-QAM,L 1 2,=
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6.2 Spectral Efficiency of the Fading ISI Channels

The continuous growth in the number of subscribers and traffic volume in mo

telecommunications creates the demand for more radio spectrum. Due to the li

spectrum available, however, spectral efficiency is one of the primary concerns in

design of future wireless communications systems. Spectral efficiency of a wire

communication system can be achieved at various system levels. We focus on the s

efficiency that can be achieved at the link layer level, and thus we define “spe

efficiency” as the average data rate per unit bandwidth that can be transmitted at a sp

average SNR and BER over the time-varying frequency-selective channel.

In recent publications [77 - 81], variable rate transmission systems with multi-le

QAM, which is adaptive to the fading envelope of the receiver, were investigated as a m

to increase the spectral efficiency of a flat fading channel. Specifically, the transm

varies the number of modulation levels according to the fade level being experienced

receiver, such that when the receiver is not in a fade the transmitter uses a large

constellation, and as the receiver enters a fade the transmitter decreases the size of th

constellation. These scheme assume a duplex system so that the fade level informat

be send back to the transmitter. With the feedback information, the transmitter determ

the size of the QAM constellation which provides a specified BER and transmit pow

In this section, we investigate the theoretical spectral efficiency bounds for

adaptiveq-QAM modulation scheme in the frequency-selective fading channel. In the o

literature this type of capacity calculation has been investigated only for flat fad

channels [80], but not for the frequency-selective channel. We take a similar approach

for capacity calculation for the frequency-selective fading channels. In addition, we u

the single-shot matched filter SNR that has been developed in Section 6.1, to calcula

instantaneous BER. Figure-9 is the spectral efficiency limit obtained for the freque
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selective channel as a function of average SNR at the fixed BER specified.

6.2.1 Maximum Spectral Efficiency Calculation

We now consider the maximum spectral efficiency of the frequency-selec

channels, using variable rate and variable power -QAM transmission. For this we as

the same fourAssumptions we made in Section 6.1 and modify (6.1) to include th

parameter of power-variable. The single-shot received signal is now defined as

, (6.53)

where

• denotes the instantaneous transmitter power, assumed fixed for the duration

pulse

• denotes the transmitted information signal from the -QAM constellation,

 is defined to be unit-variance regardless of the size of constellation

•  is the number of multi-path components

• is the average magnitude of (i+1)-th path, i.e., is the average power of (i+1)-t

path, and we assume that

•  denotes  complex-valued Gaussian random process

•  denotes the transmit pulse shaping real-valued filter, i.e., it is a Nyquist filte

• denotes the complex-valued Gaussian noise, independent of signal and ch

q

xs t( ) Ps I o αiρi t( ) f t
TB

2
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i 0=
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We now assume that the received signal is passed through the matched filte

sampled matched filter output, analogous to (6.7), can be written as

, (6.54)

where the variables in the right side of the equation is defined as

• , the instantaneous transmission and receive power1, and the average power is

the contraint of the optimization

• , the transmitted information signal from the -QAM constellation,

and , regardless of the size of constellation

•  a complex-valued Gaussian random variable with zero mean and variance of

(6.55)

• , the fading gain random variable having , which was evaluated

Section 6.1 for various cases. In this Section, we assume and ,

thus we discuss the case with distinct eigenvaues. Note that this choice is suitable

for a single antenna channel there will be no eigenvalues with the same values, d

correlation introduced by the use of SRRC filter. Thus, from (6.31) the probab

density function is

, (6.56)

1. absorbing the propagation loss in the channel model and the variance of the
noise

xs t( )

zs

zs PsAsI o vs+=

Ps Ps

I o q E I0( ) 0.0=

Var Io( ) 1.0=

vs

Var vs( ) NoAs=

As E As( ) 1.0=

L 1= NR 3=

Pr As a=( )
πi

λi
---- a

λi
----– 

 exp
i 0=

NR∑=
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where .

Total received energy for the one-shot signal pulse may be defined as

Then, the instantaneous received SNR  is defined as

, (6.57)

where

•  denotes the effective transmission duration of a QAM symbol

•  denotes the effective transmission duration of a bit

•  denotes the bit rate

• denotes the spectral efficiency, representing the number of bits for a c

nel use [bits/sec/Hz]

We find it useful to define the instantaneous channel-SNR, i.e.

, (6.58)

thus which we defined as the average received SNR. Then, by the ch

of variable1 using (6.56) we obtain the probability distribution of  as

, (6.59)

where .

1. Substitute  into the expression, .
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The variable rate and power transmission scheme can now be stated as follow

receiver, estimate the channel, calculate the instantaneous channel SNR and feedbac

transmitter. The transmitter then adjust the power and constellation size of -QAM f

= 2, 4, 16 and 64. Here, it is an ideal assumption that the feeback informatio

instantaneously available to the transmitter and perfect. Thus, the obtained curves in

the maximum attainable spectral efficiency of the frequency-selective channel.

For a fixed channel, the instantaneous spectral efficiency can be calculated fr

. (6.60)

Then the spectral efficiency of the multipath ISI channel is obtained by taking

expectation

, (6.61)

subject to the power constraint

. (6.62)

The capacity achieving, optimal power control policy is the “water-filling” solution [79

. (6.63)

Thus, substituting (6.63) into (6.61) the maximum attainable spectral efficiency ca

calculated

q q

C
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-------- γch( ) 1 γ+( )2log 2 1
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Ps x( )
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1
x
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0 x xo<,
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, (6.64)

where  id determined by

. (6.65)

We obtain  and thus  from a numerical solution.

We note that the derived expression (6.64) is the maximum spectral efficie

regardless of coding or modulation scheme, and holds for many other classes of f

channel: for each class, we just need to switch the density function .

We now continue with the derivation of maximum attainable spectral efficie

using uncoded -QAM constellation. For this, we may use the upper bound BER form

used in [80], good to within 1 dB for . Then, the BER for an instantaneous chan

SNR  is expressed as

, (6.66)

and thus the modulation size  at a particular channel SNR  is expressed as

. (6.67)

The maximum spectral efficiency is then obtained by maximizing

, (6.68)
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subject to the power contraint

. (6.69)

The power control policy that maximize (6.68) is again the “water-filling” solution, i.e

, (6.70)

where is the cutoff received SNR fading depth, and . Th

substituting (6.70) into (6.68) and define  we obtain the spectral efficiency

, (6.71)

where  should be obtained from numerically evaluating

. (6.72)

Figure 6-9, Figure 6-10, and Figure 6-11 show the maximum spectral efficie

calculation based on (6.71) and (6.72) for a flat fading channel and frequency-sele

channels with MPDP-1 and MPDP-2, at a particular BER. Figure 6-12 compares

spectral efficiencies of the three channels at BER = . We observed from Figure

Figure 6-7 and Figure 6-8, that MPDP-2 achieves the highest diversity benefit. In

section, we have shown that the channel with MPDP-2 also achieves the highest ca

among the three. However, one thing that should be noticed is that in spite of the hugh

difference shown in Figure 6-6, Figure 6-7 and Figure 6-8, the differences in term

channel capacity are not much as shown in Figure 6-12.
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Figure 6-9   Spectral Efficiency for frequency-flat fading channel.
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6.3 Concluding Remarks

In this Chapter, we have derived the lower bounds on symbol error probability u

the matched filter SNR for square-QAM signals, transmitted over the diversity freque

selective channels. These theoretical bounds may not be attainable in reality due

impractical assumptions made in deriving the bounds. Nonetheless, they provide inva

information in designing the complex communication systems and analytical too

provide comparison to the simulation results of the transceiver schemes deve

throughout Chapter 4, 5 and 7. Specifically, we shall be able to observe the

relationship between the asymptotic slopes of SER curves and different MPDPs, an

much an addition of an antenna would affect the SER performance. For future work

would like to extend these matched filter bound results to the coded transmission c1.

Simulation results in Chapter 8 for trellis coded modulation and sequential detection a

compared with any theoretical bounds.

We then derived the capacity of the frequency-selective fading channels.

information provides a meaningful guideline in designing and evaluating the spect

efficient variable rate and power adaptation protocols.

1. Useful literature in this regard includes Chini [40], Cavers [83] and Fechtel [84].
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Appendix A

Integration of erfc-function over Chi-

square distribution

This Appendix briefly reviews basic properties of the Chi-square distribu

random variables, and evaluates an integral expression which is useful in derivin

matched filter bounds of symbol error probability. We want to evaluate the following fo

of integration

, (6.73)

where is a Chi-square-distributed random variable. We start with evaluating

for number of cases. Then, we evaluate the integral for each case. In particular, we p

a closed form solution for the integral expression, (1) when all the poles of the characte

function of are distinct; (2) when all the poles of the characteristic function are the s

Generally, a Chi-square random variable can be constructed from the squ

magnitude of Gaussian random variables. The number of real-valued, component Ga

random variables determines the degrees of freedom of the Chi-square distribution

example, let

, (6.74)

EY
1
2
---erfc Y( ) 

  1
2
---erfc y( )Pr Y y=( ) yd

0

∞
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Y Pr Y y=( )

Y

Y1 λ1 X1
2
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where is a complex-valued Gaussian r.v. with and . Th

is a Chi-square random variable with 2 degrees of freedom (note that there are

Gaussian random variables, real- and imaginary part of .

 has

•

•  (Characteristic function of )

• The probability density of  is then

, . (6.75)

Substituting (6.75) into the integral equation (6.73), we have

(6.76)

For a more general case, we may consider a Chi-square random variable wh

defined as

, (6.77)

where , , are complex-valuedindependent identically distributed

Gaussianrandom variables with and . Then, is a Ch

square random variable with 2 -degrees of freedom with
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• ,

and the characteristic function of ,

. (6.78)

When all the roots are distinct, by the method of partial fraction, (6.78) can

expressed as

, (6.79)

where we have defined

. (6.80)

Note that

. (6.81)

Then, the probability density function of  can be written as

(6.82)

Substituting (6.82) into the integral equation in (6.73), we have
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(6.83)

Next, consider when the polynomial has multiple roots of the same values. Th

the characteristic rational polynomial (6.79) is

. (6.84)

The probability density function for (6.84) is known as

. (6.85)

Substituting (6.85) into the integral equation in (6.73), we have

(6.86)

where .
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Chapter 7

Sequential Detection

In this chapter, we develop an adaptive, low complexity, tree-search seque

search receiver for the detection of uncodedq-ary QAM symbols (q up to 64) transmitted

over the time-varying, diversity reception, multipath fading ISI channels. The sequ

search method is based on the maximum likelihood sequence detection1 (MLSD) criterion.

Unlike previous research on the sequence-based detection, a symbol-spaced chann

assumed givena priori; instead the receiver utilizes the channel estimation techni

developed in Chapter 4 to derive the pre-processing receive filters such that after filt

by pre-processor, the symbol-spaced equivalent channel and the symbol-spaced su

statistics become available for the post-processor performing the sequential detectio

new receiver will be extended to the sequential decoding of the channel-interleaved t

coded symbols in Chapter 8.

1. MLSE, is the other equally commonly used term in the open literature which is an acronym for
maximum likelihood sequence estimation. We prefer the terminologydetection because the tech-
nique is employed in detecting the transmitted symbols.
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7.1 Introduction

We now briefly discuss our motivation for considering the sequence-based se

techniques and bring up some critical issues we have to deal with in realizing the ben

maximum likelihood sequence detection (MLSD).

7.1.1 Motivation for sequence based detection

For the detection of a signal having a certain memory structure, a sequence-

detection scheme is the optimum [33]. The ISI channel creates the memory structure

received signal. A sequence-based detection will enhance the equalization perform

greatly and always provide a detection performance better than, or at least equal to,

the correct decision feedback MMSE-DFE. Namely, the minimum Euclidean detec

distance of MLSD is always larger than or equal to that of the ideal DFE: The differe

between the two becomes larger as ISI becomes worse. This is because the DFE f

only a single path amongst all the possible hypothetical paths in the decision tree an

has to make an early decision, whereas the MLSD follows every possible paths and

not make any early decision until the end of the sequence is reached.

In addition, in practice the DFE has the inherent problem of error-propagation

to decision feedback. This error-propagation problem of the DFE may be tolerable

small signal constellation such as QPSK or for channels with insignificant ISI. Howe

the problem becomes catastrophic as the size of signal set grows or as the channel s

contain severe in-band nulls in the folded-spectrum. In general, this error-propag

problem can be resolved by replacing the feedback filter of the DFE with the mod

addition feedback filter at the transmitter with exactly the same coefficients calculate

the feedback filter of DFE. This can indeed be a good solution if the channel is not exp

to vary much during the reception of the signal burst. We have seen a good example
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T-H precoder in Chapter 3: The T-H precoder operating on the severe ISI telephone ch

shows a significant SNR advantage over the use of the DFE. Unfortunately, the use

T-H precoder for ISI mitigation in the rapid time-varying channel environment is no

practical solution. For the fast time-varying channel, the receiver might have to send

to the transmitter the updated feedback filter coefficients or the channel-state inform

as frequently as almost every symbol-epoch, representing an intolerable overhead.

On the other hand, there is a scenario where the transceiver may have to ope

a low average SNR region for example due to shadow-fading. In order to increase th

of coverage to such a region, we might have to consider the use of channel-coding, e

use of a spectrally efficient trellis-code. In this scenario, the optimum receiver m

facilitate joint detection and decoding. In this regard, the DFE is not a canonical rec

structure again due to the error propagation problem; although in an ideal situation w

no decision feedback error and thus no error propagation are assumed, the use of

believed to be canonical also for the coded transmission [107].

Therefore, in this chapter we start with the feasibility of MLSD for uncod

transmission of spectrally efficient digital signals having a large signaling constellatioq-

QAM signaling up toq = 64). In chapter 8, we extend the receiver to sequence detectio

trellis-coded modulation that is capable of supporting joint decoding and equalizatio

an alternative to the simple case of cascading the DFE with a sequence decoder.

7.1.2 Reduced complexity sequence based detection techniques

In implementing MLSD, the issue of computational complexity and feasibility m

be addressed properly. For example considerq-QAM signaling up toq = 64 and channel

memory length of up to = 6 symbol periods. The Viterbi algorithm (VA) is known to

an efficient method to carry out MLSD operations while achieving the full performa

Ng
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advantage of MLSD: The VA is a complete search method. With MLSD the achie

symbol error rate is very close to the fundamental matched filter bounds. For examp

MLSD over any two tap channel1 there is no performance loss at all, fully achieving th

detection performance of the fundamental matched filter bound. However,

implementation complexity of the complete search VA grows exponentially with the len

of channel memory and the size of the signaling set. There are states (e.g. fo

QAM) andq branches out of each state in the trellis.

The complexity problem becomes even worse for the time-varying channel. On

the salient features of the VA, when applied to the time-invariant ISI, is that VA can

implemented only with comparisons of metrics, without any multiplications. T

multiplication was required only once to obtain the ISI channel output values at each o

branches. Later in decoding, they are simply compared with the received sequ

When we have time-varying ISI, however, we need to recompute all ISI channel ou

values to advance to the next section of the trellis. Even without considering the addit

complexity required to perform comparisons, we note that implementing the com

search VA is impractical for a large constellation and for time-varying channels.

A great deal of research has been undertaken to reduce the computa

complexity while still achieving a detection performance close to that of the comp

search VA. Research in this arena might be addressed as follows, divided largely i

different categories; one approach is to reduce the number of states and the other is

a sequential search algorithm. The former is to construct a trellis which has a red

number of states, utilizing the distances among a set of element-symbols defined

signal constellation. The underlying principle is that the difference of the decision-me

used in comparing sequences is directly dependent up on the Euclidean-distance

1. Symbol-spaced tapped delay line channel

qNg 646

q qNg×
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element-symbols associated with the paths in comparison. The larger the Eucl

distance is in the element-symbols of any pair of state-transition paths on the original

trellis, the larger the difference is in decision-metrics associated with the two paths. T

amongst those paths in the original state-trellis whose Euclidean metric difference

large enough, early detection-decisions can be made amongst the set of symbol-ele

and they can be considered significantly reliable. Those states that belong to the

involved paths can be collapsed to form a new single state. A subset-trellis is obtained

using the Ungerboeck-like set partitioning rules [98] to collapse a larger number of s

into a smaller number of states. It then searches the subset-trellis with the Viterbi algor

This technique is called the reduced state Viterbi algorithm (RSVA) [101]. The o

obvious method of constructing the subset-trellis to truncate the length of channel res

by canceling the contribution of the channel response truncated by the use of previ

decided symbols.

The RSVA techniques then utilize the well established VA on the subset trellis.

observation we can immediately point out is that RSVA trades-off the optimality of ML

with the reduction of number of states because some paths of the full trellis are perman

removed from consideration, and the loss is permanent for a choice of subset-trellis

We found out that we can achieve better, near-optimal performance-compl

trade-offs by using sequential search algorithms such as M-algorithm, the Fano-algo

and the T-algorithm [94-96,103,104]. The search algorithms operate on the original t

and are much more flexible in dealing with the time-varying channels.

The Fano algorithm [92] attempts to expand only the most probable path thro

the trellis. The Fano metric provides a “fair” measure of goodness at different depth

exploration, unlike the cumulative metric used in VA: it compensates for the depth o

exploration. The value of the Fano metric of a correct path will increase on the ave

while those of incorrect paths decrease on the average. We have derived the Fano me
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the matched filtered ISI channel in Appendix B. However, we found out that there are

drawbacks hindering the use of Fano-algorithm for symbol detection in the time-var

channel. The calculation of the metric becomes too complex due to the time-va

channel and more research insights must be gained to proceed further.

On the other hand, the use of the T-algorithm provides the best performa

complexity trade-offs compared to the use of M-algorithm, Fano-algorithm and RSVA.

intuition regarding our claim will be addressed after we introduce the basic equation

the T-algorithm in 7.3.3.

7.1.3 The pre-processing filters

By the pre-processing unit of the MLSD receiver, we imply all the receiv

Figure 7-1   The wireless channel models

Time-Varying
Channel

Adaptive matched filters or
whitening matched filters

Tapped Delay Line Channel
with Symbol-Spaced
Time-Varying Taps

B.A.

C.
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functions required to bring down the continuous waveform1 received signal to the symbol-

spacedsufficient statisticsequence and the equivalent symbol-spaced channel.

sequential search methods are then applied to the equivalent symbol-spaced channe

and the symbol-spaced decision statistics. This pre-processing filtering is largely ign

in the literature of maximum likelihood sequence detection using the so-calleddiscrete-

time white noise modelwhich models the transmitter, channel, matched filter and the no

whitening filter as a tapped delay line model with symbol-spaced taps. For example

[123][124][125]. Moreover, each of the symbol-spaced taps is modeled as Rayleigh fa

It will be clear after section 7.2 that such an approach is counter-productive. We emph

that the pre-processing is very important for wireless channels because

• the channel is time-varying and unknown and

• the efficiency of the reduced complexity post-processing search algorithms dep

heavily on the choice of preprocessing.

The channel is time-varying and unknown, and thus the time-varying channel mu

estimated prior to the matched filtering i.e. before the function block-B. in Figure 7-1

be calculated. In addition, with the assumption of excess bandwidth, the channel mu

fractionally-spaced taps and thus the matched filter also must be fractionally-spaced

is, we are claiming that the symbol-spaced channel-model, described in the block

Figure 7-1, is invalid for the purpose of fading multipath channel description where

assumption is that the function block-B is already performed and contained in the ch

model.

There are a number of different ways to shape the overall ISI by pre-proces

1. Or, the fractionally-spaced sampled received signal. Since the received signal is bandlimited, th
fractionally sampled signal is equivalent to the continuos waveform signals once the fractional
sampling rate is fast enough, such that the inverse of sampling rate is more than the bandwidth o
the signal.
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Among them are the whitened matched filter (WMF), the mean square whitened ma

filter (MS-WMF) and matched filtering only. The WMF [60] has a nice feature: the out

of the WMF forms a non-correlated sufficient statistic sequence for the detection o

input sequence, and thus the branch metric calculation and comparison become rel

simple. However, the use of a WMF in a time-varying channel poses some problems. W

the matched filtered ISI contains a null in the Nyquist band, the whitened matched

may not be well defined [59]. Even when it exists, since the whitening operation is s

channel inversion operation, it may cause some noise enhancement problems

presence of channel estimation errors. Moreover, in adapting to fast fading the comp

of obtaining the whitened matched filter coefficients becomes non-trivially high. This

be the reason why the whitened matched filter is used mostly in the context of t

invariant channels only.

In the beginning we preferred to try out the last approach of using only matc

filters at each diversity branch, followed by combining to give the symbol-spaced suffic

statistics to the post-processors using the Ungerboeck type of metric calculation

matched filter coefficients are obtained from the channel estimates with a simple Herm

operation, without the matrix inversion required for the whitening operation and

without the instability problem involved with inverting the channel. However, we found

that the sequential search algorithms has to consider the full-trellis operating on

matched filtered outputs, and any sub-optimal reduced search effort will result in a

loss in the detection performance. This result is for the channel with a significant ISI

non-null channels, in any methods work well.

As the proposed approach we use the feedforward filter of a decision feed

equalizer as the pre-processing structure to the MLSD. The feedforward filter takes th

of mean squares WMF (MS-WMF), and shapes the overall channel to be minimum p

In addition, unlike the WMF, a MS-WMF always exists.
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7.2 Optimum Diversity Combining MLSD

In this section, we derive the optimal pre-processing blocks for the diver

reception signals. The derivation will provide an opportunity to gain insights on

structure of DC-MLSD receiver, compared with that of the MMSE DC-DFE, and

optimal and sub-optimal pre-filtering solutions.

7.2.1 The baseband channel model

Figure 7-2 illustrates the baseband equivalent channel model for theL-diversity

channel receiver. The basic properties of the channel model stays the same a

developed in Chapter 2. The difference is that we now use the polyphase representa

the channel operation, which is suitable for describing the fractional-sampling of

received signals in terms of the symbol-spaced symbol transmission. We briefly des

the channel model, notations and assumptions. We assume the shaping filter em

excess bandwidth, and then the baseband received signal at -th diversity branch sho

fractionally sampled. We denote the cascade of the transmit pulse shaping filter, the

band equivalent time-varying channel and any anti-aliasing filter at the receiver (ass

to be an ideal brick wall filter) by the fractionally-spaced sampled filter ,

. We denote the sampling interval as = , where is the sym

period and . We assume the effective span of the overall channel extends ove

symbol periods, i.e., the delay dispersion is zero outside of an interval [0, ].

sampled noise is assumed to be complex-valued additive white Gaussian with zero

and variance . For the -th symbol interval we have discrete-time received sam

of  which can be described by

,

l

hl
k( )

l 1 2 … L, , ,= Ts TB Ns⁄ TB

Ns 2≥ Nh

NhTB

σn
2

k Ns

xl t( )

xl
k i, xl t( )

t k i Ns⁄+( )T=
:= I jh

l k i Ns⁄+( )T jT ; kT–( ) ul k i Ns⁄+( )T( )+
j 1=
N∑=
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Figure 7-2   The baseband representation of the diversity channels
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for  and . For convenience of notation, we now define

, (7.1)

, (7.2)

and

. (7.3)

Thus, a [( ) x 1] vector represents the non-zero portion of the ove

channel impulse response, sampled at the rate of , i.e.,

. (7.4)

Then, for the time interval of interest, , the discrete-time syst

equation is given by

0 i Ns 1–≤ ≤ l 1 … L, ,=

xk
l

xk Ns 1–,
l

xk Ns 2–,
l

…
xk 0,

l

:=

hm
l k( )

hl m Ns 1–( ) Ns⁄+( )T ; kT( )

hl m Ns 2–( ) Ns⁄+( )T ; kT( )

…
hl mT ; kT( )

:=

uk
l

ul k Ns 1–( ) Ns⁄+( )T( )

ul k Ns 2–( ) Ns⁄+( )T( )

…
ul kT( )

:=

Nh 1+( )Ns hl k( )

Ns TB⁄

hl k( ) h0
l k( )t h1

l k( )t … hNh

l k( )t[ ]t
:=

0 t N Nh+( )TB≤ ≤
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, (7.5)

or more compactly by

, (7.6)

where

• is the vector storing the fractionally-sampled received signals dur

,

•  is the channel matrix,

• , is the ( ) vector of zeros, and is

the transmitted data symbols. The is used in place of the training segment

simplicity.

•  denotes the noise vector.

In this chapter, we again assume the continuous transmission of frames expl

in Chapter 4, where a frame consists of training and unknown data segments

feedforward channel estimation procedure given in Chapter 4 is assumed to provid

estimates of the time-varying channel vectors in (7.5). Briefly, the feedforward cha

estimation is comprised of two modes--the snap-shot channel-vector estimation usin

xN Nh+
l

xN Nh 1–+
l

…
x0

l

h0
l N Nh+( ) h1

l N Nh+( ) … hNh

l N Nh+( ) 0

h0
l N Nh 1–+( ) … hNh

l N Nh 1–+( )

…
0 h0

l 0( ) h1
l 0( ) … hNh

l 0( )

0Nh

I N 1–

…
I 0

0Nh

=

uN Nh+
l

uN Nh 1–+
l

…
u0

l

+

x l H l I ′ ul'+=

x l

0 t N Nh+( )TB≤ ≤

H l

I ′ 0Nh

t I t 0Nh

t( )= 0Nh
Nh 1× I I N 1– … I 0( )t

=

0Nh

ul
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, i.e.,
training symbols and then the interpolation of a set of channel estimate vectors to s

the estimates of the channel in-between the training segments. The least squares c

estimator (LSE) in Chapter 4 is used in this chapter.

7.2.2 Derivation of the optimum diversity combining MLSD

Figure 7-3 shows the optimum diversity combiner. Each of the independ

fractionally sampled received signals are fed to the matched filter at each branch, a

matched filtered signals are combined, sampled at the symbol rate to form the suffi

statistics sequence . In this section, we provide the standard MLSD derivation

show that the symbol rate sampled, matched-filtered diversity-combining signal

indeed the sufficient statistic for MLSD processing of the -diversity received signal

addition, in 7.2.3 and 7.2.4, the Ungerboeck and Forney MLSD receivers are derive

compared, and then they are shown to be equivalent in achieving MLSD. When appl

reduced search detection using T-algorithm, however, Forney form turns out to be

efficient, requiring significantly fewer survivors on average. Thus, the derivation

Forney’s receiver is emphasized. In 7.2.5 and 7.2.6, finite length whitening filter (WF)

mean-squares whitening filter (MS-WF) are discussed respectively.

Now, we start the standard MLSD derivation. Given the independent diver

discrete-time received sequences, we want to find the maximum likelihood sequence

(7.7)

where

L

zk{ }

zk

L

L

Î

Î Pr
Ĩ I∈

arg max x1…xL| Ĩ{ }=

xl x̃ l–
2

l 1=
L∑

 
 
 

Ĩ I∈
arg min=

C M1 Ĩ( ) M2 Ĩ( )+ +{ }
Ĩ I∈

arg min=
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Figure 7-3 The optimum MLSD pre-processing filters, which is again the matc

filtering, diversity combining, and symbol-rate sampling.
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• the hypothetical channel output sequence based on the hypothetical input seq

 is

(7.8)

• a constant term since it is simply the energy of the received signal

(7.9)

• the cross term is

(7.10)

• finally the quadratic term regarding the hypothetical sequence  is

. (7.11)

Next, substituting (7.8) into (7.10) and (7.11), we have

, (7.12)

and

, (7.13)

where we have defined

, (7.14)

and

. (7.15)

Now, recalling that and thus ignoring the influences of zero-padd

vectors in the final equation, we can write the diversity combining matched filter resu

in terms of . From (7.14), we note that the multiplication represents

x̃ l

Ĩ ′

x̃ l H l Ĩ ′=

C x lHx l
l 1=
L∑=

M1 Ĩ( ) 2– Re x̃ lHx l
l 1=
L∑{ }=

x̃ l

M2 Ĩ( ) x̃ lH x̃ l
l 1=
L∑=

M1 Ĩ( ) 2Re Ĩ H H lHx l
l 1=
L∑{ }– 2Re Ĩ Hz{ }–= =

M2 Ĩ( ) Ĩ H H lHH l
l 1=
L∑( ) Ĩ Ĩ HΨ Ĩ= =

z H lHx l
l 1=
L∑=

Ψ H lHH l
l 1=
L∑( )=

I ′ 0Nh

t I t 0Nh

t( )=

z

I H lHxl
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fractionally-spaced matched filtering operation and symbol-rate sampling at each div

branch, and the summation implies diversity combining. Therefore, is the symbol-sp

sufficient statistics for the maximum likelihood sequence estimation. Then, the in

output relationship can be rewritten as

, (7.16)

where the noise vector

(7.17)

is the [ ] noise vector with zero mean vector and the correlation matrix

. Based on (7.16), the overall system can be described as the symbol-spaced

delay line model of Figure 7-3 (b).

7.2.3 The Ungerboeck’s receiver

Having obtained the symbol-spaced sequence of (7.16), Ungerboeck’s m

computation method can be applied to implement the VA or T-algorithm, as depicte

Figure 7-3 (c). Ungerboeck’s path metric uses only (7.12) and (7.13), i.e, not the con

term. Ungerboeck’s MLSD receiver has major advantages over Forney’s form. First, it

not require the noise whitening filter of Forney’s receiver. In fact, the noise whiten

operation is embedded in Ungerboeck’s metric computation routine. Considering impe

channel estimation, any channel inversion effort (to achieve noise whitening) is subje

noise enhancement and instability as well, and is not desirable. Second, the comple

obtaining the noise whitening filter is relatively large. We either have to solve for the

of the polynomial in a static channel or solve a sufficiently large matrix equation in

time-varying channel case.

The use of Ungerboeck’s receiver, however, is not suitable for a reduced compl

z

z ΨI v+=

v H lHnl
l 1=
L∑=

N 1× E vvH{ }

σn
2 Ψ

zk{ }
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sequential search such as the T-algorithm or M-algorithm. The following analysis h

clarify the reason behind it. Now, consider the branch metric computation using Forne

Ungerboeck form: Forney’s metric is calculated from

,

where

. (7.18)

The Ungerboeck metric is

, (7.19)

where  and thus can be rewritten

. (7.20)

As indicated in the second term of right side in (7.20), the Ungerboeck metr

influenced by the future symbols. The VA performs a complete search and thus achiev

full MLSD performance. The VA purges only if there are merged paths to the same st

For the merged paths, the first and the second terms of (7.20) are the same, such t

purging is only based on the cumulative metric difference accumulated before the m

This is why the Ungerboeck form works in the context of the complete-search VA.

For the case of suboptimal sequential search such as M- or T-algorithms, surv

are dropped based on the metric difference. However, as indicated in the pre

paragraph, the Ungerboeck metric is fair only when they are compared among the

converging to the same state. In fact, the suboptimal search algorithm doesn’t work

severe ISI channel even with zero input noise. The metric difference build-up by the

term in (7.20) is very vulnerable to interference from the second term if the ISI is sev

which implies the magnitudes of off-diagonal terms of summed channel autocorrel

λk
F ek

F 2
=

ek
F yk f mĨ k m–m 0=

Nh∑– f m Ĩ∆ k m– ηk+
m 0=

Nh∑= =

λk
U 2Re Ĩk

*
ek

U{ }=

ek
U zk ψmĨ k m–m 0=

Nh∑–=

ek
U ψm Ĩ∆ k m–m 0=

Nh∑ ψm
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I k m+ νk+
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function have large values. Our test simulation results on a severe ISI, s

channel, which is a worst ISI channel at the length of 3 [33] with t

use of 4-QAM modulation indicates that we need to keep all the paths to get perform

close to that of MLSD. With any suboptimal search, the receiver detection perform

stays flat even with zero input noise. Thus, we turn to the use of Forney’s MLSD rec

7.2.4 Forney’s MLSD receiver

For static channels, by the use of spectral factorization the summed cha

autocorrelation function can be factored into two Hermitian symmetric polynomials, 

, (7.21)

where the  is the causal, minimum phase response

. (7.22)

Then, the whitening filter is .

For the time-varying channels, we may want to use Cholesky factorization, w

is analogous to spectral factorization. By the use of Cholesky factorization, the pos

definite matrix (7.16) can be factored into the upper triangular matrix and

Hermitian transpose,

(7.23)

and

. (7.24)

Thus, the matched filtered symbol spaced sequence  of (7.16) can be rewritten as

. (7.25)

ψm m 0≠,{ }

1 2⁄ 1 2( )⁄ 1 2⁄, ,( )

Ψ D( ) ΨiD
i

i Nh–=

Nh∑ F
*
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F D( )

F D( ) f iD
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i 0=
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1 F
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Now, by applying the whitening filter  to  we have:

, (7.26)

where the noise term, , is now whitened having the diagonal correlation ma

(7.27)

,

where is the identity matrix. Now, note that the matrixF is an upper triangular

matrix and thus it is causal according to our definition equation (7.16). In fact, the non-

elements of each row of matrixF converges to the coefficients of , i.e., fo

. (7.28)

The following table summarizes the similarities between the spectral factoriza

theorem for the static channels and the Cholesky factorization for the time-var

channels.

Table 7-1: Factorization theorems for static and time-varying channels

Static Channel Time-Varying Channel

Channel

Factoriza-
tion

,
where  is an  identity
matrix.

MS- WF
,

Feedforward filter of

 or

Feedforward filter of the NT-DFE

Min. P.R. Upper triangular (band matrix)

F H– z

y F H– z FI θ+= =
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E θθH{ } E F H– vvHF 1–{ } F H–
E vvH{ }F 1–
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2F H– FHFF
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2ΞN= = =

ΞN N N×
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N ∞→
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h t( ) H

ψk h t( )h*
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ψ D( ) No+ So f * D 1–( ) f D( )=

Ψ HHH σn
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The matrix is the optimal whitening operator for the entire receive signal . Sinc

is impossible to obtain as the length of the sequence become large, a suboptimal

filter length solution should be considered and it will be discussed in 7.2.5.

We continue our derivation of the Forney receiver from the basic MLSD equa

(7.7). The three terms in (7.7) can be rewritten as follows

• The constant term: (USE:  and )

(7.29)

That is, .

• Next, note the first metric term depends on the hypothetical sequence and can be

ten as:

, (7.30)

,

where  and .

• Thirdly, the last metric term also depends on the hypothetical sequence and c

rewritten as:

F H– z

F H–

H lHH
l
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l
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l

∑ H l I u l+( )
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H l I u l+( )= =

I H H lHH
l

∑ 
  I I H H lHu

l
∑ ul

l
∑ H

H l I u l
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∑ H
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I HFHFI I H H lHu
l

∑ ul
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∑ H

H l I u l
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∑ H
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  ul

l
∑ H

H lF 1–
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  FI u
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∑ H

H lF 1–
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  F H– H lHu

l
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 + + +=

FI θ+( )H
= FI θ+( ) yHy=

C xHx yHy= =

M1 Ĩ( ) 2Re Ĩ H H lHx l
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L∑{ }– 2Re x̃ lHx l

l 1=
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 
 
 
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. (7.31)

Substituting the three terms (7.29) ~ (7.30) into (7.7), we have

. (7.32)

The following table summarizes the three terms of the basic MLSD equation (7.7) in

receiver. Note that the only difference between the Ungerboeck and Forney receivers

the Ungerboeck receiver does not use the constant term of (7.7) in its metric compu

routine.

Table 7-2: Comparison of the metric computation for Ungerboeck and Forney

7.2.5 The finite length whitening filter

The whitening operator is the optimal solution for the purpose of MLSD

the time-varying channel. However, for large block size it is impractical to obtain

due to high complexity. In this section, we describe the procedure to obtain a finite le

whitening filter.

Constant Required

Basic
Equation

Fractional
Sampling

Unger-
boeck

Not used

Plus, Matched
Filter Bank and
Symbol Rate

Sampler

Forney
Plus, Symbol-

Spaced Whitening
Filter

M2 Ĩ( ) Ĩ H H lHH l
l 1=
L∑( ) Ĩ Ĩ HΨ Ĩ Ĩ HFH( ) FĨ( ) ỹH ỹ= = = =

Î y ỹ–
2{ }

Ĩ I∈
arg min yk yk

˜–
2

k 1=

N

∑
 
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 

Ĩ I∈
arg min= =

M1 Ĩ( ) M2 Ĩ( )

xlH

l 1=
L∑ xl

2R– e x̃lH

l 1=
L∑ xl( ) x̃lH

l 1=
L∑ xl

2Re Ĩ Hz{ }– Ĩ HΨ Ĩ

yHy 2Re ỹHy{ }– ỹH ỹ

F H–
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The symbol-rate sampled, matched filtered signal can be collected for the le

of the whitening filter , and can be written as

, (7.33)

which can be rewritten compactly using the matrix convention1

. (7.34)

Decomposing the first term into three terms, (7.34) is

(7.35)

,

where we have defined

• ,

• note this matrix is Hermitian symmetric and th

autocorrelation matrix of the combined channel, and

• .

Then, the whitening filter is obtained from

1. For example, (1:4) implies a vector with elements (1, 2, 3, 4); (4:1) implies (4,3,2,1). In addition,
the first field in the parenthesis indicates the row index, the second the column index.
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N f
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…
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 
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k Nf 1–+( ) 0
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…
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 
 
 
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 
 

=

I k Nh N f 1–+ +

I k Nh N f 2–+ +

…
I k Nh– 

 
 
 
 
 
 

×

vk Nf 1–+

vk Nf 2–+

…
vk 

 
 
 
 
 
 

+

z k Nf 1–( ): k+( ) Ψ k Nf 1– : k+ , k Nh– N f– 1+ : k Nh+( )I k Nh N f 1–+ + : k Nh–( ) +=

vk Nf 1–+ : k

z k Nf 1–( ): k+( ) ΨAI k Nh N f 1–+ + : k Nf 1–+( )=
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(7.36)

or

, (7.37)

where we decomposed the  Hermitian symmetric autocorrelation matrix

, (7.38)

in to multiplication of the lower triangular matrix and the upper triangular mat

.

Now ignoring the epoch terms for brevity. We have

(7.39)

.

Now investigating the properties of each term on the right side of (7.39):

• The first term in (7.39) produces the exact input symbol at the -th epoch:

, (7.40)

where is defined to be the vector of zeros except the value of 1.

the location indicated by the subscript.

• The second term indicates the pre-cursor residual ISI terms:

, (7.41)

with sufficient length of this term becomes close to zero. However, when

relatively short this pre-cursor residual term becomes significant, especially for cha

with a deep in-band null (or nulls).

• The third term corresponds to the strict-causal response:

wt
k( )Ψ0 k( ) eN f 1–

t
=

wt
k( ) eN f 1–

t F0
1–

k( )F0
H–

k( )=

N f N f×

Ψ0 k( ) F0
H

k( )F0 k( )=

F0
H

k( )

F0 k( )

wtz k Nf 1–( ): k+( ) wtΨ0I k Nf 1– : k+( )=

wtΨAI k Nh N f 1–+ + : k Nf 1–+( ) wtΨ+ CI k 1– : k Nh–( ) wtvk Nf 1–+ : k+ +

k

wtΨ0I k Nf 1– : k+( ) eN f 1–
t I k Nf 1– : k+( ) I k= =

eN f 1–
t

0 0 … 1, , ,( )=

wtΨAI k Nh N f 1–+ + : k Nf+( ) wtΨA : , j( )I k Nh N f 1 j––+ +j 0=
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That is, together with the first term, the third term forms the causal, minimum ph

response.

• The last is the noise term, which is supposed to be whitened. Defin

, the correlation function can be obtained as

(7.43)

,

such that if we have a large the cross-correlation terms goes to zero. Figure

describes the example of whitening matched filtering on a severe ISI channel. Figur

(a) is the symbol-spaced autocorrelation function for the channel (ACF). The fol

spectrum, Figure 7-4 (b) shows that the channel has about dB in-band null a

normalized frequency of 0.1. Convolution of the ACF with the whitening filter shown

Figure 7-4 (b) results in the response give in Figure 7-4 (c). Figure 7-4 shows the roo

the Z-transform polynomial of the ACF.

7.2.6 The mean-square whitening filter

Now, we consider (7.36) again. When the ISI is severe, and the eigenvalue s

of matrix is large, such that the channel has a large in-band null in its folded spect

the whitening operation would be unstable and enhance the noise and the ch

estimation error. Thus, in practice we may have to consider the use of a stable m

instead of . In fact, this is analogous to use of the minimum me

wtΨCI k 1– : k Nh–( ) wtΨC : , j( )I k 1 j––j 0=

Nh 1–∑=

θk wT
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H w*

 
 
 

= =

σn
2wtΨ0w* σn

2wN f 1– k( )= , d 0=

0.0 , d Nf<

small but non-zeros terms ,d Nf≥





=

N f

30–

Ψ0

Ψ1 Ψ0 σn
2Ξ+= Ψ0
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Figure 7-4   The whitening filter (ZF-DFE) example withNf = 17 and zero input noise.
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square error criterion (e.g. MMSE-DFE). For example, for the static channel, the follow

spectral factorization can be used to obtain the feedforward filter :

. (7.44)

Note this factorization always exists, whereas (7.21) may not.

Using the Cholesky factorization, we have

, (7.45)

where again  is the lower triangular matrix and  is the upper triangular matrix

The smallest eigenvalue of is now restricted to be greater than or equal to the

variance . The MS-WF  is thus obtained as follows:

. (7.46)

Note that (7.46) is the same equation that is used to obtain the feedforward filter of the

Toeplitz DFE (NT-DFE) in Chapter 5. (5.20) translates into the notation of this chapt

, (7.47)

which provides the solution for obtaining the feedforward filter of NT-DFE. By writin

and cancelling from both side of (7.47), and (7.47) becom

(7.46).

Applying the MS-WF  to  we have:

(7.48)

.

Now, note the following:

• From (7.46), we have or , and thu

1 F1
*

D
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2
+
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t

=

Ψ0Ψ0 σn
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wm
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. Therefore, the first term in (7.48) can be written as

(7.49)

.

• The second term is the precursor residual ISI terms for

, (7.50)

with sufficient length of  this term becomes near-zero.

• The third term corresponds to the causal response at the -th epoch:

, (7.51)

which is the post-cursor ISI terms for the .

From (7.49) ~ (7.51), we divide the terms fo

by and denote the

result

, (7.52)

for . Note that represents the caus

response and the rest the anticausal residual ISI. Also note that the is 1.0, an

 we have

. (7.53)

will be used in the T-algorithm receiver in section 7.3. Note that the MS-W

asymptotically converges to the WF.

Figure 7-5 illustrates the results of applying the MS-WF to the same channel g
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Figure 7-5 The mean-squares whitening filter example withNf = 17 and 10 dB input SNR.
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in Figure 7-4. Compare Figure 7-5 (c) with Figure 7-4 (c). Figure 7-5 (c) shows the n

zero pre-cursor responses as well as the difference in the causal responses.

7.3 The Proposed MLSD Postprocessor

In this section, it is assumed that the MS-WF is used to perform Forney’s ML

receiver, depicted in Figure 7-6 (a). Since we are using MS-WF, the resulting channel

minimum phase response, i.e, are not zero-valued as shown in Figure 7-5.

we simply ignore the contribution from the non-causal terms . Then, we will

Forney’s metric (7.32) to perform the T-algorithm. Then, Figure 7-6 (b) describes the ca

symbol-spaced tap filter , which represents the overall channel between

for the purpose of the T-algorithm search. As this model disregards the antica

terms resulting from the use of finite length MS-WF as well as any estimation error in

causal response as well, the discrepancies would certainly degrade the det

performance of the complete receiver. By the use of per-survivor processing, discus

section 7.4, however, some of the performance penalty can be recovered. The T-alg

is discussed in 7.3.1 and the LMS algorithm per-survivor processing is discussed in 

7.3.1 The equivalent input/output equation

Referring to Figure-5, the input/output relationship including the MS-WF can

written

, (7.54)

where is now assumed to be whitened noise and the are as defined in (7

Then, Forney’s metric for a hypothetical sequence  can be computed from

, for (7.55)

f i k( ){ }i 0<

f i k( ){ }i 0<

f k( ) I k{ }

yk{ }

f k( )

yk f i k( )I k i– ηk+
i 0=

Nh∑=

ηk f i k( ){ }

Ĩ 1: k

Jk Ĩ 1: k( ) Jk 1– Ĩ 1: k 1–( ) Bk+= k 0 … N 1–, ,=
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where is the branch metric at the -th symbol epoch

. (7.56)

Then, the MLSD sequence is determined from

. (7.57)

7.3.2 The proposed T-algorithm

The tree-search version of the T-algorithm is proposed in this paper. The param

of importance of the T-algorithm are , the maximum number of paths that can be

at an epoch, and , the threshold value. The following steps describe the T-algorithm

• At the zeroth epoch, start from the unique known path that is composed of the tra

symbols of and set , where the superscript denotes the p

index which is from 0 to .

• BEGIN:

• (Step-1)Path extension: At -th epoch, extend each survived path, , an

calculate the cumulative metric

, (7.58)

for , where the branch metric , from -th path to -th path

by the -th hypothetical input , is defined as

, (7.59)

• (Step-2) Update ofJmin: Update the minimum metric and its path index , i.e

for ,

Bk k

Bk yk f i k( ) Ĩ k i–i 0=

Ng∑– yk ỹk–= =

Î JN Ĩ( )
Ĩ I∈

arg min=

Pmax

ζ

Nh 1– Jk Ĩ 1: Nh 1–
0

( ) 0=

Pmax 1–

k 1 i Pmax 1–<≤

Jk Ĩ 1: Ng 1– k+
j

( ) Jk Ĩ 1: Ng 2– k+
i

( ) Bk
i q,

+=

j 0 1 … Pmax M 1–⋅, , ,= Bk
i q,

i j

k Ĩk Alphabetof q-QAM∈

Bk
i q,

yk f i k( ) Ĩ k i–
i

Ĩ k f 0 k( )⋅ ˜
–

i 1=

Ng∑–=

j Jmin k,( )

j 0 1 … Pmax M 1–⋅, , ,=
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where  is initialized for each .

• (Step-3)Threshold testing and truncation: Count the number of paths whose path metr

difference with is less than and whose hypothetical input symbol

different with , where is the depth of the tree. If the number is greater t

the , lower the threshold and count again until less than pa

remains. Reject all paths that fail.

• (Step-4) Return to Step-3 until the end of the sequence.

• END.

The T-algorithm can be applied to the trellis also. The trellis-search version req

an additional step. First we need to investigate all the survivors if any two survivors

merged. This can be carried out by checking if the last symbols of the survivors

the same hypothetical symbols. Among those merged, only the minimum metric

survives. Thus, the trellis operation requires additional storage elements and addition

of comparison operations.

7.3.3 Why T-algorithm is efficient?

Assuming there is no channel estimation error and based on the metric calcu

(7.59), the Forney’s metric is calculated from

,

where

, (7.61)

if Jk Ĩ 1: Ng 1– k+
j

( ) Jmin k,< Jmin k, Jk Ĩ 1: Ng 1– k+
j

( )=→

Jmin k, 0.0= k

Jmin k, ζ Ĩ k ND–
j

Ĩ k ND–
j Jmin k,( )

ND

Pmax ζ ζ ζb–= Pmax

Ng

λk
F ek

F 2
=

ek
F yk f mĨ k m–m 0=

Nh∑– f m Ĩ∆ k m– ηk+
m 0=

Nh∑= =
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with the hypothetical symbol errors associated with a particular survi

path. The simple observation one should make out of (7.61) is that a large Eucli

distance in the hypothetical symbols results in a large metric difference

course, this is a very loose observation. However, the RSSE is based on this unde

principle such that when states are having a large path-distance they are collapsed

single state and the VA is applied. One other situation to consider is when the frequen

the error sequence coincides with the null frequency of the channel. The l

relationship surely not hold in such a case as the term, , tends to zero

this reason, an optimum design of RSSE for time-varying channel requires one to va

coset labelling and thus the decoding structure to guarantee a detection-distance, w

smaller than the detection-distance of the complete trellis.

Instead of using the distance criterion, we may want to directly use the m

criterion to perform the reduced search. M-algorithm and T-algorithm are in this cate

Both use the metric difference as the discard criterion. Briefly illustrating the key asp

of the two algorithms, we note that

• M-algorithm: Use metric difference, but the number of survivors are fixed at e

exploration. The metric difference varies at each exploration.

• T-algorithm: Fix the metric difference to keep, but the number of survivors varies

Thus, the detection performance of the T-algorithm with is the same as the

algorithm with  = M.

7.4 Per-Survivor Tracking of the Channel Mismatch

In section 7.3, we apply the T-algorithm to the output sequence of the mean-sq

whitening filter (MS-WF). The big assumptions are that the channel estimates are p

and the MS-WF filter closely approximates the WF. Therefore, the output sequence

Ĩ∆ k I k Ĩ k–=

Ĩ∆ k 2 ek
F

2

Ĩ∆ k{ }

f m Ĩ∆ k m–m 0=

Nh∑

Pmax

Pmax
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set of sufficient statistics, and the resulting overall channel response--including a

diversity channels, the matched filters at the diversity branches and the symbol-s

whitening filter--is a symbol-spaced minimum phase response and estimated perfec

practice, the channel estimate is not perfect, and thus together with the use of finite l

MS-WF, a significant channel mismatch may occur between the overall channel th

calculated solely based on the channel estimate and the actual cascades of the un

channels, matched filters, and the MS-WF. Based on the illustration Figure 7-7, we

Figure 7-7   Illustration of channel mismatch

Diversity
Channels MS-WF

Matched
Filters

T-algorithmChannel
Estimate

f̂ k( )

Diversity
Channel MS-WF

Matched
FiltersEstimates

Diversity
Channel MS-WF

Matched
Filters

ḟ k( )

f̂ k( )
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. (7.62)

One of the advantages in dealing with the sequential detection is that one can make

the hypothetical sequences to improve the channel estimates. The assumption is tha

is always one correct sequence in the pool of sequences you are currently considerin

that sequence will provide additional information of the channel. For the purpose o

algorithm processing, this additional processing helps to reduce the increase in the a

number of survivors to keep. That is, the detection performance improves while redu

the complexity. The underlying principle is that in the wrong path, the channel mism

estimate quickly degrades and this promotes early elimination of the path; while in

correct path, the channel estimate is always improving and thus increases the det

Euclidean distance of the algorithm. In this section, we present the per-survivor estim

of the channel-mismatch.

7.4.1 The channel mismatch and optimal tracking

Figure 7-8 illustrates the channel mismatch. The channel used is the one for F

7-4 and Figure 7-5. Note the asymmetric channel response in Figure 7-8 (a), which

cascade of the channel and the matched filter obtained from the channel-estimate, the

dots compared with the filled dots which represent the perfect autocorrelation fun

using perfect channel estimates. Figure 7-8 (c) shows the results after the MS-WF, one

the channel estimate the other from perfect channel knowledge. Figure 7-8 (d) indicat

difference of the two.

Figure 7-9 illustrates the optimum use of per-survivor processing, for

feedforward channel estimation scheme. We have the continuous set of channel est

available, and thus the matched filters and the MS-WFs for the duration of the block

ε k( ) f̂ k( ) ḟ k( )–=
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Figure 7-9 Optimal use of PSP is to feedback the channel mismatch information of

overall channel estimate and recompute the matched filters, the MS-WF and fina

recompute the output sequence {yk} at each survivor.
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For each survivor, we need to do the

following:

• Compare  with .

• Modify the matched filters and MS-WF

accordingly to reduce the difference

• Recompute .
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use of per-survivor processing, however, will provide updated channel information in

form of . This information first needs to be compared with the stored . T

matched filters and the MS-WF need to be updated accordingly. Thus, we need a fun

that maps the obtained channel mismatch information to update the mat

filter and MS-WF. This operation must be performed for every survivor path. This is alm

impossible for our setting of the problem. If we were assuming the symbol-spa

whitened channel model as commonly used in the open literature, we may be ab

perform the optimal processing. However, it is not plausible with the use of realistic

processing filters. For this reason, we turn to the use of suboptimal solution that the ch

mismatch information is used only once to feedforwardly cancels the channel mism

rather than the optimal feedback.

7.4.2 Modeling and suboptimal tracking of the channel mismatch

We now model the channel mismatch. The basic equation (7.54) can be rewritt

(7.63)

where we have defined:

• is the estimated response of the overall channel, the cascade of the channe

mates, the matched filters and combiner and the symbol-spaced MS-WF. Note th

MF and MS-WF are obtained from the channel estimate.

• is the unknown, true response which is the cascade of the channel

matched filter and the MS-WF.

• The error term  is defined as for

. (7.64)

f k( )

)

f̂ k( )

f k( ) f̂ k( )–
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yk f̂ i k( )I k i– ηk εi k( )I k i–i N f– Nh– 1+=
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f̂ i k( )

f i
˙ k( ){ }

εi k( ) i Nh– N f– 1+ … 0 … Nh, , , ,=
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The combined error term can be defined as

. (7.65)

As seen in (7.65), the second error term is the convolution of the transmitted signal an

error vector . Now, we ignore the contribution of the future symbols and only mode

contribution from the previous symbols since it can be cancelled with the use

hypothetical symbols in the survivors; while that of future symbols cannot.

Now, define

 and . (7.66)

Then, the LMS algorithm, described in Chapter 4, updates the error vector at each pat

the following equation:

, (7.67)

where  is the stepsize of the LMS algorithm.

Finally, the causal part of the response is updated using the new estimate

i.e.,

, (7.68)

for . This LMS per-survivor processing estimates the channel misma

vector in the minimum phase response and lowers the SNR penalty due to the imperfe

and MS-WF. As mentioned, this method is not optimum. To be optimum, the informa

should be fed back to recalculate the matched filter and the WF, and re-obtain the min

phase response. Then as the iteration proceeds the receiver would achieve the perfo

of the genie-aided receiver operating with perfect channel knowledge. However

complexity of such a receiver is prohibitively high as iteration is required. At each itera

the matrix inversion must be performed to re-estimate the WF, which is the most inte

ξ k( ) yk f̂ i k( )I k i–i 0=

Ng∑– nk εi k( )I k i–i N f– Nh– 1+=

Ng∑+= =

ε
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k( ) ε0:Nh

j
k( ) Ĩ k : k Nh–

j
⋅= ξ j
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i 0=
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ε0:Nh
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computation. The proposed receiver avoids this problem by an one-step, feedfo

adjustment (7.68) to the unknown response . Significant performa

difference has been observed in terms of detection SNR as well as in reducing the nu

of survivors.

7.5 Simulation Results and Discussion

In this section we study the performance of the proposed receiver via comp

simulations. First, we examine two sample static channels that are obtained from

ensemble of wireless channels in consideration. These channels have a severe null

folded-spectrum as we desire to test the equalization performance of the proposed re

The first channel, denoted as channel-1, has a null in its folded-spectrum, see F

7-10; the other has a null, see Figure 7-11. We first examine the proposed rec

performance on these channels; in the mean time, we may tune the parameters

proposed receivers, such as the feedforward filter length, feedback filter length of

WMF, the threshold value, the maximum path allowed, and the stepsize of LMS cha

estimation error tracking. Later, we apply the receiver to the time-varying ISI channe

We now briefly review the simulation parameters and assumptions. A fraction

sampled system, i.e., in (7.1), is assumed. The SRRC filter uses 35% rolloff fa

and is represented with the column vector

 = (0.0404 -0.0953 -0.0600 0.4297 0.7749 0.4297 -0.0600 -0.0953 0.0404)t, (7.69)

which is four symbol truncation of the SRRC filter. For both fading and static channe

Monte Carlo method with 2,000-50,000 independent trials was used. To evaluat

adaptation on continuously transmitted frames, each trial consisted of 5-16 frames, w

a frame is a block ofB = 80 symbols including theNt = 11 training symbols. The sum o

nine-sinusoids described in Chapter 2 was used to generate theL independent diversity

f i
˙ k( ){ }i 0≥

10
1–

10
2–

Ns 2=

f
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channels coefficients, which is continuously varied at a given fading rate. The half sym

spaced complex-valued additive noise samples were independently generated. The c

interpolation is performed using two future and two past channel estimates. The tra

symbols are also the same as defined in Chapter 4, i.e.,

, (7.70)

for -QAM = 4, 16, and 64. Finally, assuming a symbol rate of 24 ksps, fast fad

corresponds tofdm = 100 Hz (fdmT = 0.0042) and slow fading tofdm = 10 Hz (fdmT =

0.00042).

7.5.1 Static channel simulation

The static channel examples are

(-0.2695+0.3785i 0.9619+0.0303i 0.0730-0.2938i)t (7.71)

and

(0.3236-0.7876i 0.3222+0.8566i -0.0155+0.1278i)t (7.72)

in /2-spaced sampled response. Then, the overall channels can be obtained

convolution of the SRRC filter, i.e., , which spans five symbol periods. T

folded spectrum of the channel and are given in Figure 7-10 (a) and Figure 7-1

respectively.

Figure 7-10 (b) and Figure 7-11 (b) show the 4-QAM symbol error simulat

results using the T-algorithm receiver over channel-1 and channel-2 respectively, com

with the fundamental matched filter bound (solid line). The feedforward and feedback

lengths of NT-DFE or the MS-WF of the T-algorithm receiver are f

each of the six different receivers. First, let’s compare results of the T-algorithm and the

I T q 1–( ) i q 1–( )+( ) 1 1 1– 1– 1– 1 1– 1 1 1 1( )
t

=

q q

b1 =

b2 =

TB

hi bi f⊗=

h1 h2

N f Nb,( ) 6 6,( )=
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DFE with the channel perfectly known as a benchmark. Since the channel is static, th

DFE is the same as the conventional DFE. We observe there is about 1.5 ~ 2.0 dB

penalty (at ), even for the correct decision feedback DFE (CDF-DFE), for b

channels. The T-algorithm uses and achieves the performanc

the VA for both channels. As the folded spectrum of channel-2 exhibits a deeper null

the channel-2, the SNR penalty of the DFE is larger for the channel-2.

• Next, compare the rest of the curves where the channel is estimated using the

squares estimator (LSE). Observe that the use of the T-algorithm receiver

improves detection SNR by 2.0dB over the use of a DFE

about 0.5 to 1.0 dB over the use of the correct decision feedback-DFE for both c

nels. The T-algorithm receiver employing the per-survivor LMS channel misma

tracking is denoted as T-alg-LMS receiver. The receiver’s simulation parameter

for the maximum allowed paths, the thresho

value, and the stepsize of the LMS algorithm. LMS stepsize is chosen according

i.e., or . T-alg-LMS receiver achieves an additional 1.0

1.5 dB SNR advantage over the use of T-algorithm without the use of LMS track

That is, about 3.0 dB SNR advantage compared to the DFE.

The static channel simulation results can be summarized as follows:

• The T-alg. closely achieves VA’s performance when used with a sufficiently la

number of paths and a large threshold value. With the ideal channel estimates

able, the T-alg (1000,4.0) achieves the performance of the VA as indicated in Figu

10 and Figure 7-11.

• This performance is obtained with the average number of paths of only a few te

paths for simulations with the input SNR greater than 9 dB.

10
4–

Pmax ζ,( ) 1000 4.0,( )=

Pmax ζ,( ) 100 3.0,( )=

Pmax ζ ρ,,( ) 100 3.0 0.005, ,( )=

q

∆ 1

σI
2

q( )
--------------< ∆ 1

N f σI
2

q( )⋅
--------------------------<
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• The symbol error rate (SER) of the T-algorithm is lower than that of the correct d

sion feedback DFE (CDF-DFE).

• The LMS tracking of the channel estimation error helps reduce the number of p

and provide further SNR advantage, recovering some of the SNR penalty du

imperfect channel estimation.

7.5.2 The Rayleigh fading ISI channel

The rms delay spread of the Rayleigh fading channel that are used in the simu

is 0.3257 . The diagonal term of the channel autocorrelation matrix is the MPDP.

matrix is

. (7.73)

The following table summarizes the receiver parameters used in simulations.

Figure 7-12 is the symbol error rate (SER) simulation results of 4-QAM signalli

compared with the matched bound calculated for the 4-QAM modulation format ove

Rayleigh fading ISI channel. The T-alg-LMS receiver shows very robust symbol error

performance for the fading channel. At the fastest fading rate (100 Hz, the vehicle spe

120 km/hr), the SNR degradation from the slow fading (1 Hz, quasi-static channel) is

about 3.0 dB, whereas in the case of NT-DFE it was about 6.0 dB at  SER.

Table 7-3: Simulation parameters and results

q-
QAM

Threshold
Maximum

Paths
SNR

region
LMS

stepsize
Average

Paths
SER

4 2.5 - 4.0 100 15-25 0.05 1.0~30.0 1e-2 ~ 1e-4

16 4.0 200 20-30 0.01 10.0 1e-2 ~ 1e-4

64 4.5-5.5 200 25-35 0.001 30-40. 1e-2 ~ 1e-4

TB

E b lblH{ } diag 0.6652 0.2447 0.0900,,( )=

10
4–
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Figure 7-13 and Figure 7-14 are the SER simulation results for 16-QAM and

QAM signalling over the Rayleigh fading ISI channels, compared with the matched fi

bound. While maintaining the superiority to the NT-DFE receiver, we now observe tha

SER for the fast fading reaches irreducible error floors. Figure 7-15 is the SER simul

results for 64-QAM signalling when 2-independent diversity channel is available. F

these figures, we observe that the proposed receiver does bring a significant SNR adv

over the NT-DFE.

Looking at the fading channel simulation results, we conclude that the propose

algorithm using the LMS-per-survivor channel mismatch tracking indeed is superior to

use of the NT-DFE receiver developed in chapter 5. In addition, the computati

complexity problem of MLSD can be controlled by the use of a reduced search algor

However, we immediately note that the receiver could not overcome the limitation imp

by the channel estimation error. This was one reason we explored the possibili

feedback of the channel mismatch information obtained from the LMS per-surv

processing stage. As mentioned earlier this is extremely unrealistic due to our rea

multi-stages of pre-processing receive filtering to produce the sufficient statistics.

Another point worthy to note is that the advantage of MLSD over the DFE does

stand out as much as those of static channels given in Figure 7-10 and Figure 7-11. I

the performance of MLSD stands out only when the channel develops a severe ISI ch

or in other word contains a deep null (or nulls) in the folded spectrum. For a channel

no nulls in the folded spectrum, there is little performance difference among MMSE

MMSE DFE or MLSD. The simulated multipath ISI fading channels with the multipa

power delay profile (MPDP) given in (7.73) would occasionally develop such deep in-b

nulls just like the static channel examples of Figure 7-10 and Figure 7-11 and this is w

a large performance difference can occur. For other occasions when there are no nu

performance of the NT-DFE should be comparable with that of T-algorithm receiver. S
219



ssible

T-DFE
the simulation results for fading ISI channels are the averaged results over all the po

channels, it is understandable that the advantage in detection SNR over the use of N

is not as large as the static channel case.
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Figure 7-10   Simulation results for channel-1
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Figure 7-11   Simulation results for channel-2
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Figure 7-12   4-QAM simulation results for the fading ISI channel
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Figure 7-13   16-QAM simulation results for the fading ISI channel
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Figure 7-14   64-QAM simulation results for the fading ISI channel
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Figure 7-15   64-QAM simulation results for the fading ISI channel (L = 2).
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7.6 Concluding Remarks

In this section, we have proposed the reduced complexity MLSD rece

architecture, where the feedforward channel estimation and interpolation, front-end

derivation, and the application of the T-algorithm are integrated. First, we have investig

a number of different receiver schemes using different front-end filters (e.g., the ma

filter, the WF, or MS-WF). Among them we determined the cascade of matched fil

combiner and the MS-WF, which is suitable for the T-algorithm. Ungerboeck rece

operates only with the matched filtering and diversity combining, but it turned out tha

sequential search methods using Ungerboeck metric, such as T-algorithm or M-algo

required exploration of every possible path, especially for a channel with a deep in-

null. Thus, we proposed use of the finite length MS-WF to approximate the WF, wher

T-algorithm receiver was shown to exhibit desirable error-rate versus aver

computational-complexity behavior. In addition, we also proposed the use of per-sur

channel mismatch tracking using the LMS algorithm in conjunction with the T-algorith

The per-survivor channel mismatch tracking helps further reduce the average-comp

while achieving higher SNR advantage. The developed receiver was shown t

operational for a large -QAM signalling,  up to 64.

In Chapter 8, the pre-processing filters and the T-algorithm receiver will

extended to decode the trellis-coded signal transmitted over the time-varying ISI cha

Since the coded sequence has a larger minimum distance than uncoded sequences

optimum MLSD performance can be obtained without significantly increasing the ave

number of survivors that the T-algorithm receiver must consider.

q q
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Appendix B    The Fano metric

In this section, we derive the Fano metric for thesymbol-spaced matched filter ISI

model. For the derivation of the Fano metric we follow the random tail method of Mas

[93]. We assume a forward search which explores the trellis from the beginning fo

description of the Fano metric. That is, we consider the Fano metric for the input sequ

of length , , whereN is the total length of the transmitted input sequence

should be recognized that a backward search, a search started from the end of the

has exactly the same property as the forward search. Since the matrix is To

Hermitian symmetric, the state machine exhibits the same distance property for

directions. Thus, bidirectional sequential decoding [104] can be applied to alleviate

variability of detection effort.

The Fano metric is in fact obtained from a maximuma posteriori probability

density regarding an input sequence of length given the sequence of matched filter

samples. Following the random tail method [93], the MAP measure of a hypothe

sequence  given the observation  is

. (7.74)

After taking the logarithm and defining the log MAP measure as the Fano metric, we

. (7.75)

The third term in (7.75) can be readily computed since we assume an input sequ

i.e.,

, (7.76)

and thus , whereM is the size of modulation constellation set.

n 1 n N≤ ≤

Ψ

n

I 1 … I n z1 … zN

Pr y1:n| z1:N( )
Pr z1:n| y1:n( )Pr y1:n( )

Pr z1:n( )
------------------------------------------------------=

φ I 1 … I n( ) Pr z1:n| y1:n( ) Pr z1:n( ) Pr y1:n( )log+log–log=

iid

Pr y1:n( ) Pr yi 1+ | yi( )Pr y1( )
i v=

n 1–

∏ Pr I i( )
i 1=

n

∏ M
n–

= = =

Pr y1:n( )log n M2log–=
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The second term in (7.75) is a pure observation. If we are comparing the M

measure for the same length of sequence, it can be consolidated to the universal co

term. However, the Fano metric is supposed to give a fair distinction among diffe

lengths of hypothetical input sequences. Thus, we should include the second te

comparison of different length sequences.

The first term of the Fano metric is the likelihood function. We define the first te

as

:= = Const

, (7.77)

,

where we have used = . We can show that the first component ca

computed from the fractionally sampled received samples, i.e.,

. (7.78)

It should be recognized that the rest of terms in (7.77) are the same as Ungerboeck’s M

cross-correlation measure. In fact, the metric for the M-algorithm is the likelihood func

 without the term . Specifically, we define

.

Then, we can show that  can be computed recursively from

, for , with  = 0; (7.79)

where the cumulative metric  is

Ln Pr z1:n| y1:n( )log
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, (7.80)

and the branch metric, , from the (n-1)-th node ton-th node is

.

Jn I i
*
I jψ i j– 2Re Ii

*
zii 1=

n∑
 
 
 

–
j 1=
n∑i 1=

n∑=

λn 1 n,–

λn 1 n,– 2Re In
* zn{ }– I n

* I nψ0+ 2Re In
* I n i– ψ ii 1=

L∑{ }+=
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Chapter 8

Decoding of Trellis Coded Modulated

Signals

In this chapter, a new receiver is proposed for decoding trellis coded modula

signals transmitted over fast fading ISI channels. The feedforward channel estimatio

the adaptive matched and whitening filters developed in previous chapters are us

combine diversity signals and obtain the estimate of the causal, symbol-spaced

channel. Then, the proposed receiver performs the T-algorithm search over the com

tree, which includes the code, the deinterleaver and the causal FIR channel. In Cha

the T-algorithm is used as an equalizer and is shown to achieve near-optimal perform

(in the MLSD sense) for uncoded systems at a reduced complexity. We show that t

algorithm can be applied to a joint decoding/equalization problem, and the coding be

can be achieved without increasing the complexity. We use the 8-PSK, 8-state trellis

[98] with modest block interleaving to show that the proposed receiver achieves

available time-diversity benefit of the code for the fast Rayleigh fading ISI channel.

proposed receiver is also compared to the other suboptimal receivers, using the T-alg
231
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for equalization and the Viterbi decoder for the deinterleaved soft-equalized sym

Simulation results indicate that the proposed joint receiver is superior in terms of both

and complexity.

8.1 Introduction

Trellis coded modulation is an efficient coding technique, which achieves co

benefit at no cost in bandwidth. This makes the use of TCM very attractive for any wire

communications applications where the spectrum and the battery power are lim

resources.

TCM was originally designed and optimized for additive white Gaussian no

(AWGN) channels [98]. The design goal is to increase the free Euclidean distance

the coded sequence. One method of decoding is the Viterbi algorithm (VA) which sea

the code trellis for the maximum likelihood sequence having the minimum Euclid

metric. For a static channel with intersymbol interference (ISI) in addition to AWG

optimum decoding can be achieved by first forming a joint trellis which combines the c

and ISI trellises and then employing the Viterbi algorithm to search the joint trellis for

minimum Euclidean metric path. Suboptimal but reduced complexity search techn

such as the reduced state sequence estimation (RSSE), the M-algorithm or the T-algo

can also be considered when the number of states of the joint trellis is large.

For Rayleigh or Rician flat-fading channels, the TCM design criterion is to ob

as much signal diversity as possible. Thus, first it is desirable to have the encoded sy

interleaved so as to provide independent fading on adjacent symbols. Then, the pr

code design criterion is to increase the length of the shortest error event path; the seco

one is to increase the product of branch distances along that path, to achieve as la

possible time-diversity. The Viterbi decoder or other reduced search techniques can b

d free
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to search the deinterleaved sequence.

For fading ISI channels, such as the frequency-selective Rayleigh fading cha

we are considering in this paper, the optimum decoder must again search the com

trellis of the encoder and the ISI. However, the use of the interleaver/deinterleaver fo

the formation of a joint trellis due to the prohibitive complexity. Provided an interleave

not used, the joint trellis can be formed but little signal diversity can be achieved from

use of TCM. It was reported that TCM designed for the flat fading channel may bring w

bit error rate (BER) performance than an uncoded modulation, where the receiver us

VA to search the joint trellis without interleaving [49].

In this paper, we propose a new receiver scheme to decode TCM signals whic

interleaved and transmitted over fast Rayleigh fading frequency-selective channels

receiver employs the feedforward channel estimation techniques in Chapter 4 and the

end filters developed in Chapter 7 which optimally combine diversity antenna signals

provide a symbol spaced, causal overall channel estimate to the sequence estimato

the T-algorithm. The T-algorithm receiver then searches the combined tree of the

encoder, the deinterleaver and the ISI formed by the overall channel estimate. In Cha

it was shown that for uncoded signal transmission over the fading ISI channels th

algorithm receiver brings a substantial SNR benefit over a decision feedback equaliz

moderate increase in complexity. We show here that by the use of T-algorithm the

decoding can be performed even for interleaved sequences and the efficiency

algorithm search is further enhanced while achieving the coding benefit.

This chapter is organized as follows. Section 8.2 describes the system

consideration. Section 8.3 explains the receivers. Section 8.4 presents the simu

results. Section 8.5 provides the conclusion of the chapter.
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8.2 The system description

Figure 8-1(a) describes the baseband equivalent system used for the simulat

is a part of the complete system, from A to B in Figure 8-2. The complete system wi

used to explain the operation of the decoding processes in which the detailed system

replaced with the simplified tapped delay line (TDL) model (b). More explanation will

followed later in this section.

In Figure 8-1, the modulated symbol sequence is transmitted using the tran

shaping filter (TX) with 35% excess bandwidth. Then, the transmitted signal is rece

through the frequency-selective channels, assumed to be mutually independent by t

of space-diversity antennas. Since the shaping filter employs excess bandwidth,

symbol period sampling of the received signal is assumed. Accordingly, the TX, dive

channels and matched filters (MFl) are realized with half symbol-spaced finite impuls

response (FIR) filters. MFl at each diversity branch is matched to the cascade of TX and

-th channel Chl. Then, the matched filtered signals are combined and symbol-

sampled.

The mean-square whitening filter (MS-WF) is an anticausal, symbol-spaced

filter, which whitens the noise colored by the matched filtering at each diversity branch

provides the “quasi” minimum phase overall channel response between the

symbols and the output symbols .

In Chapter 5, the same diversity combining structure of Figure 8-1 is derived u

the criterion of minimum mean squares error-DFE. In Chapter 7, the same structure i

shown to be the optimum (in MLSE sense) pre-processor to be used with the T-algo

post-processor for uncoded use. In fact, by the use of a finite length MS-WF, inste

using an infinite length WF, the overall channel is generally not minimum phase nor i

resulting noise perfectly whitened. The non-causal part of the response tends to vani

I k{ }

L

L

l

I k{ } yk{ }
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TX Ch1 MF1 MS-WF

Fractional sampling

f k( )

I k
yk

ChL MFL

AWGN-1

AWGN-L

Figure 8-1 (a) Baseband system description of the system from A to B in Figure
8-2. (b) The symbol-spaced TDL is the model representing the system from A to B
for the operation of T-algorithm receiver.
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not exactly zero-valued, even with perfect knowledge of the channel. As was show

Chapter 7, however, the MS-WF provides a practical and stable solution suitable for u

the presence of channel estimation error and for channels with a null (nulls) in the fo

spectrum (i.e. severe ISI).

For the purpose of T-algorithm search, therefore, the non-causal part of the ov

response is ignored, and the noise is assumed to be whitened. Then, the input/

relationship between and is given by as depicted in Figure 8-1 (b)

, (2)

where  is the length of  and  is assumed to be white Gaussian noise.

To update the MF, MS-WF and thus , we use the channel estimation

tracking methods described in Chapter 4. That is, we assume a contiguous transmis

frames, where a frame constitutes a training segment and an unknown data segmen

of four channel estimates obtained during the training segments is interpolated to tra

channel variation for the second data block. From the interpolated channel estimate

MFl and the MS-WF are obtained. Readers are directed to Chapter 7 for further deta

the pre-processing receiver and the procedure to obtain the MF, MS-WF and from

channel estimates.

Figure 8-2 provides the description of the complete system where the det

system given inside the box of Figure 8-1 (a). is replaced with the overall channel est

and the equivalent noise . The equally-likely uncoded bits are mapped to

encoded symbol sequence and the modulated sequences are interleaved by the

interleaver before being transmitted. The training sequence of length is inserted

each row of the interleaved sequence as described in Figure 8-3, and transmitted r

row. These training symbols are used for the feedforward channel estimation as well

the start and end of a decoding process (i.e., a sequence starts with a known state a

f k( )

I k{ } yk{ }

yk f i k( )I k i– ηk+
i 0=

Nh∑=

Nh f k( ) ηk

f k( )

f̂ k( )

f k( ) ηk

NI NJ×( )

Nt
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I 0I 1I 2…( ) I 0I NI
I 2NI

…( )

y0
˙ y1

˙ y2
˙ …( )

y0y1y2…( )

I 0
˜ I NI

˜ I 2NI

˜ …( )I 0
˜ I 1

˜ I 2
˜ …( )

Figure 8-2 The block diagram of the overall system: the details of the system from
A to B are described in Figure 8-1 (a).

Estimated
f k( )
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Σ

NI NJ×( )
Interleaver
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B
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8.3 The receivers

In this section, we describe the proposed receiver and the other suboptimal rec

that are in comparison. All of the receivers use the Euclidean distance metric, obt

under the criterion of maximum likelihood sequence estimation (MLSE). Thus, we

begin with the derivation of the metric.

8.3.1 The Euclidean distance metric from MLSE

The maximum likelihood bit-sequence can be determined from

, (8.1)

where is the sequence of independent, equally likely bits and is the set of all pos

bit sequences. The code trellis provides a one-to-one mapping from a sequence of bi

a sequence of trellis coded modulation symbols . Therefore, (8.1) can be rewritt

. (1)

Then, from the relationship given by (2) we have

(2)

where we used = and . The second equal

follows from the assumption that  is white.

8.3.2 Joint decoder without the use of interleaver

Now consider a situation where no interleaver is used, i.e. . Then, the

trellis with states and the encoder trellis with states can be readily combined to

b̂ Pr y b{ }
b B∈

arg max=

b B

b

I b( )

b̂ Pr
İ I b( ): b B∈{ }∈

arg max y İ{ }=

b̂ y ẏ–
2{ }

İ I b( ): b B∈{ }∈
arg min yk ẏk–

k 0=

N 1–

∑
 
 
 

İ
arg min= =

ẏ ẏN 1– … ẏ0( )t
ẏk f i k( ) İ k i–i 0=

Ng∑=

ηk

NI 1=

qNg S
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a super-trellis, and the complete search of (2) can be performed by the use of VA w

searches over the joint-trellis with states. When the number of trellis s

become too large for the VA to be of any practical use, reduced search techniques c

considered. In [117], the M-algorithm, the T-algorithm and RSSE are applied to de

trellis coded signals transmitted over a static ISI channel, and it is reported that th

algorithm which operates on the joint trellis achieves the performance of RSSE at muc

average computational cost.

When applied to fading channels, however, the joint trellis decoder may not pro

any coding benefit [124] since the interleaver is not used. In the design of trellis-c

signals for fading channels the primary objective is not to obtain a large free Euclid

distance but to achieve as large a diversity order as possible. Then the potential div

gain of the code can be achieved fully for an ideal system operating on an indepe

fading channel, and partially for systems which use a finite length interleaver to imple

independent signal fading. The asymptotic BER performance of the ideal system w

behave proportional to where the power exponent is the order of diver

provided by the code for flat Rayleigh fading channels.

The joint decoder without an interleaver uses the same T-algorithm with

described in section 8.3.4. This joint decoder employs the least mean squares (LMS

survivor channel tracking scheme developed in Chapter 7 to enhance the channel es

and thus improve the decision. The intermittent training symbol sequence enforce

sequence to start from and end in a known state within a frame, and thus the decod

performed on a per frame basis. We refer to this receiver as ‘no interleaver join

algorithm’ (NI Joint T-alg).

8.3.3 Separate equalization and decoding with the use of an interleaver

In this system the interleaver-deinterleaver is employed to achieve the dive

O S qNg×( )

SNR
D–

D

NI 1=
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benefit provided by TCM. The sequence of symbols are interleaved and

interleaved sequences are transmitted over the multipath fading chann

shown in Figure 8-2. Then the equalization and the decoding steps are separated

receiver. The T-algorithm equalization in Chapter 7 is first performed on the rece

signals, which are corrupted by the overall channel . The T-algorithm searches o

interleaved sequence without exploiting the sequence constraint imposed by the

trellis. The sequence estimator also works on a per frame basis using the training sy

at both ends. The T-algorithm equalization provides hard decisions on

transmitted symbols in the expanded signal set. These hard decisions are then u

cancel the ISI and generate the sequence of soft equalized outputs wh

(8.2)

for and . The LMS per-survivor channel trackin

is again used to reduce the number of survivors and improve on the hard decisions.

The deinterleaved soft output sequence is fed to the Viterbi deco

which searches the code trellis with states to decide the minimum metric path. We

this receiver as the ‘T-alg. & VA’ receiver.

8.3.4 The proposed joint tree searching T-algorithm receiver

We now describe the proposed T-algorithm receiver which performs jointly

decoding, deinterleaving and equalization. Since it is a joint search of the maxim

likelihood path, there is no information loss due to early decisions (definitely there is s

information loss due to the use of the suboptimal T-algorithm search, instead of com

search) nor is “turbo” like iteration required between the ISI trellis and the code trellis.

the case that for a separate equalization and decoding scheme, a turbo-iteration wo

I 0I 1I 2…( )

I 0I NI
I 2NI

…( )

f k( )

Î 0Î NI
Î 2NI

…( )

I 0
˜ I NI

˜ I 2NI

˜ …( )

Ĩ kNI i+

yk f p k( ) İ k pNI–
i

p 1=

Nh∑–

f 0 k( )
------------------------------------------------------------ Î kNI i+ noise+= =

k 0 1 … NJ 1–, , ,= i 0 1 … NI 1–, , ,=

I 0
˜ I 1

˜ I 2
˜ …( )

S
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beneficial since the two state machines are separated by the deinterleaver. The result

iterations would converge to that of the joint-search.

As elaborated more in the sequel, the T-algorithm follows the code tree, w

cancelling the contribution of post-cursor ISI by the use of the tentative decision sym

stored in the survivor-sequence, or by the use of the decided symbols when the depth

T-algorithm is shorter than . The decided symbols are quite reliable since they ar

results of sequential search, not a symbol by symbol decision as in the case of DFE

is, the ISI cancelling is carried out in each of the survivors.

We now describe the proposed receiver algorithm. The following rece

parameters can be selected by the receiver designer:

•  denotes the maximum number of survivors allowed.

•  denotes the threshold value and denotes the reduction value.

•  determines the depth of the tree, i.e., .

Then for the description of the algorithm we use the following notation.

•  denotes the survivor index, i.e., .

•  denotes the contender index, i.e., .

• denotes the -th survivor, , a vector whic

stores a history of hypothetical encoded symbols.

•  denotes the history of encoder-states of the -th survivor.

• denotes the metric of the branch which is the -th transition from the s

of -th survivor, and is computed by

, (3)

where represents the modulation symbol defined in the encoder-trellis for the trans

NI Nh

Pmax

ζ ζb

Ng ND Ng Nrow⋅=

i i 0 1 2 … Pmax 1–, , , ,=

j j 0 1 2 … MPmax 1–, , , ,=

İ i
k i i 0 1 2 … Pmax 1–, , , ,= ND 1×( )

Ṡi
k i

Bmet i q,( ) q

i

Bmet i q,( ) yk f p k( ) İ k pNI–
i

İ k f 0 k( )⋅ ˜
–

p 1=

Nh∑–=

İ k
241



ch

est

the

ounter

mark

s the

,

ng
•  the cumulative metric of the -th survivor.

•  denotes the cumulative metric of the -th contender, i.e.,

, (4)

where  is the number of branches out of a state.

•  denotes the decided symbol sequence.

•  denotes the decided encoder-state sequence.

•  denotes the length of survivor list that is updated at each epoch.

 Then, the joint-tree searching T-algorithm can be described as:

• (Step-1) Start from the state-0 of the encoder, and thus set ,

and the length of the survivor .

Then for each  the following steps are taken:

• (Step-2) For = 0, , , extend the -th survivor into contenders. At ea

extension step, is computed by (4), the minimum metric and the b

survivor index are updated by a binary comparison ( ), and

survivor-path index , i.e. , are recorded.

• (Step-3) Mark and count the contenders which pass the threshold test

(5)

and possess the same path-history symbol as the one in the best metric path. If the c

reaches before reaches , stop and lower the threshold by , and then

and count again. From the marked paths, generate a survivor list which record

contender’s index .  is the size of the survivor list.

• (Step-4) For obtain the index of the survivors using and

i.e. , and form the new survivors and by concatenati

the new symbol and the new encoder-state which are obtained from the trellis to

Jcum i( ) i

Jcont j( ) j

Jcont j iN b q+=( ) Jcum i( ) Bmet i q,( )+=

Nb

DI

DE

P

Jcum 0( ) 0.0= ṠND

0 0=

P 1=

k 0 1 … NI NJ 1–⋅, , ,=

i … P 1– i Nb

Jcont j( ) Jmin

imin Jmin Jcont 0( )=

i Pid j( ) i=

Jcont j( ) Jmin ζ<–

p Pmax j PNb ζb

Sid p( ) j= P

p 0 1 … P 1–, , ,= Sid Pid

r Pid Sid p( )( )= İ p
k 1+ Ṡp

k 1+

İ r
k
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• (Step-5) For , release the symbol and the encoder-state of the best metric

to  and .

8.4 Simulation Results and Discussion

In this section we study the performance of the proposed receiver via comp

simulations. Let’s briefly explain the simulation environment and parameters.

• We use the -spaced sampled system for the fractionally sampled system.

• The transmit filter uses a nine tap square root raised cosine filter with 35% roll

which is a 4-symbol period truncation.

• Each diversity channel is a three tap filter, and each independent Rayleigh fadin

is realized with the sum of nine-sinusoids method as explained in Chapter 2.

• The average powers of the three fading taps are , for wh

the rms delay spread is about 0.3257 the symbol period.

• During reception of the signal the channel taps are continuously varied accordi

the given fading rate . As a worst case scenario of 120 km/hr vehicle speed

fading rate reaches 100 Hz. This requires the frequency of training to be at least

120 symbols for the purpose of channel interpolation.

• In this chapter we use the eleven training symbols for every 69 symbols, so th

frame consists of 80 symbols. The training sequence used is

defined in Chapter 4 which is

. (6)

• The MF and the MS-WF use 12 taps and 6 taps respectively.

• A Monte Carlo method with 2,000-50,000 independent trials was used to obtai

Ṡr
k

k ND≥

DI DE

TB 2⁄

0.6652 0.2447 0.0900,,( )

f dm

Nt Nc,( ) 11 6,( )=

I T 1 1 1– 1– 1– 1 1– 1 1 1 1( )t
=
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averaged performance over the randomly varied channel. To evaluate the adaptat

continuously transmitted frames, each trial consisted of 5-16 frames.

• We use the 8-PSK, 8 state code given in Figure 8-4. The length of the shortest

event path in the trellis is 2 and the square product Euclidean distance is equal t

Thus, it provides a potential diversity gain of order 2. The code has 3.6 dB asymp

coding gain over AWGN.

We simulate different receiver schemes for the purpose of comparison with

proposed receiver. All the following receivers use the same number of taps for the fron

filters. In particular, the matched filter at each diversity branch uses 12 half symbol-sp

taps. The symbol-spaced MS-WF uses 6 symbol-spaced taps.

• The ‘NT-DFE’ represents the non-Toeplitz DFE in Chapter 5 which is used to dec

Gray-mapped 4-QAM signals. The feedback filter uses six taps.

• The ‘NI-Joint T-alg.’ stands for the joint T-algorithm receiver described in 8.3.2. T

T-algorithm parameters are = , where is th

stepsize of the least mean squares (LMS) algorithm.

• The ‘T-alg. & VA’ implies the receiver scheme described in section 8.3.3 in which

T-algorithm of Chapter 7 is employed to obtain the equalized, soft-output sequ

, then deinterleaved and fed to the VA decoder which searches the 8-state t

That is, the equalization and the decoding are separated by the use of deinterlea

shown in Figure 8-2. The T-algorithm parameters are

.

• The ‘Joint T-alg.’ represents the proposed receiver where the equalization and d

ing are jointly performed by the joint T-algorithm. The joint T-algorithm searches

combined tree formed by the encoder trellis, the interleaver/deinterleaver and ISI

T-algorithm parameters are  = .

• The ‘Ideal Joint T-alg.’ is the Joint T-alg. operating with perfect knowledge of the f

Pmax ζ ND ∆, , ,( ) 1000 2.5 50 0.005, , ,( ) ∆

y'k{ }

Pmax ζ ND ∆, , ,( )

100 2.5 50 0.005, , ,( )

Pmax ζ ND, ,( ) 100 2.5 50, ,( )
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ing channel. Doppler fading at 200 Hz is used to simulate an ideal interleaving. Th

algorithm parameters are  = .

Figure 8-5 shows the average BER performance of different receivers at the

fading rate = 100 Hz. First we note that the NI-Joint T-alg. receiver achieves no co

benefit at all, showing only a slight performance advantage over the NT-DFE at high S

On the other hand, the receivers with the use of interleaver/deinterleaver show d

performance difference. The ‘T-alg. & VA’ and ‘Joint T-alg.’ receivers shows substan

SNR benefit, which is about5 - 6 dB for and 3 - 4 dB for at the average BER

over the NT-DFE. Comparing the ‘Joint T-alg.’ receiver with the ‘Ideal’ receiver t

SNR loss due to channel estimation error can be estimated, which is about 5 dB SNR

for and 4 dB for .

Comparing the ‘T-alg. & VA’ and the proposed ‘Joint T-alg’, it seems that there

not much noticeable difference in terms of BER. The ‘Joint T-alg’ receiver provides

SNR benefit less than 1.0 dB compared to the T-alg. & VA receiver. The BER advanta

the Joint T-algorithm, however, is obtained by keeping a far smaller number of survivo

average. Figure 8-6 indicates the average number of survivors required for the T-algo

employed in different receivers. The ‘T-alg. & VA’ receiver requires more than 60 surviv

for equalization alone to obtain the BER performance presented in Figure 8-5. Addit

complexity is required for the VA decoding. In addition, the overflow percentage of

receiver reaches 100%, suggesting the need to lower the threshold value at the expe

bit error rate increase. On the other hand, the Joint T-alg receiver shows very low av

number of survivors, requiring about 10 average survivors in the SNR region where

is acceptable. The overflow percentage is less than 0.1%.

Pmax ζ ND, ,( ) 1000 2.5 50, ,( )

f dm

L 1= L 2=

10
4–

L 1= L 2=
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Figure 8-3 (NI x B) transmitted symbols. Each row is B symbols,Nt training symbols
andNJ unknown symbols.
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Figure 8-4 The signal set and trellis for 8-PSK, eight-state code. This code has tim
diversity order of two.
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Gray coding is the signalling format for NT-DFE and 8-states 8-PSK trellis modulatio
for the other receivers, T-alg. & VA, joint-T-alg and Ideal Joint-T-alg. The Ideal receive
is the same as the joint-T-alg., but the channel is perfectly known to the receiver, wh
is fading at 200 Hz to implement the ideal interleaving.

5 10 15 20 25

10
−4

10
−3

10
−2

10
−1

10
0

SNRpb per channel

A
v
e

ra
g

e
 B

E
R

Uncoded 4−QAM vs. 8−state 8−PSK TCM with a [10 x 80] interleaver at fdm = 100Hz

NT−DFE           
NI−Joint T−alg   
T−alg. & VA      
Joint T−alg.     
Ideal Joint T−alg

L 2=

SNR/bit per channel

L 1=
247



Figure 8-6 Average number of survivors vs. SNR for each receivers. (a) is forL = 1 and (b)
is for L = 2.
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8.5 Concluding Remarks

We proposed a new receiver scheme which may be used to decode the coded s

sequences transmitted over fast fading frequency-selective diversity channels. It cons

the pre-processing receiver discussed in Chapter 7 and the post-processing se

decoder using the T-algorithm.

The pre-processing receiver optimally combines the diversity channel outputs

provides the symbol-spaced sufficient statistic to the post-processing receiver. Usin

pre-processing receiver, the overall channel response can be approximated as a

minimum-phase ISI with the additive-noise term whitened (approximately). This

desirable for the T-algorithm processor. The efficiency of T-algorithms depend on

channel response. It makes early decisions to purge based on the metric difference

channel has the larger energy taps early in the response, then the metric difference

larger between the correct and incorrect paths, and a more reliable early decision c

made.

Provided with the sufficient statistic sequence and the estimate of the minim

phase overall response at our disposal, in this Chapter we designed a new receiv

jointly and computationally-efficiently decodes the trellis-codes which had been chan

interleaved and transmitted over the fast time-varying multipath fading ISI channels.

use of the interleaver is necessary to realize the potential diversity benefit of the trellis

designed for a fading channel. The problem of joint decoding and equalization is n

trivial problem since the use of interleaver hinders a formation of a super trellis and m

the decoding process difficult. The separate decoding/equalization receiver is subop

due to early decision made at the equalization step.

The proposed T-algorithm is a tree-searching receiver, thus the formation of a j

trellis is not required and the ISI cancellation and deinterleaving can be performed on
249
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survivor basis. The decoder follows the code tree and at each survivor cancel

contribution of the minimum phase ISI using the hypothetical symbols stored in

survivor. This differentiates the proposed receiver from the separate equalization

decoding receiver, where the ISI cancellation is performed using the hard decision sym

in the extended signal set and the decisions are made without the knowledge o

sequence constraint of the code.

Our simulation results show that the proposed joint tree-search T-algorithm br

out the available coding benefit at a very moderate complexity in terms of the ave

number of survivors that the algorithm had to keep.
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Chapter 9

Conclusion

The vision of universal communication networking and computing syste

provided in the introduction of this dissertation requires many technical breakthrough

this dissertation, we have focused on the design of reliable, efficient wire

communication techniques at the link-layer. In particular, we have proposed a TD

based systems where using the intermittent training symbols, the receiver estimat

channel and obtains the optimum filter coefficients to process the received signals. W

special attention to ensuring robust receiver performance in fast time-varying fa

channel conditions and for signal modulation with a large constellation to improve spe

efficiency. The development of the transceiver was extended to support the trellis-c

modulation, which would be useful in extending the coverage area of the transceiver

transceiver techniques introduced in the dissertation may be a stepping stone towar

realization of the envisioned wireless networking systems. We now conclude

dissertation with summary of research contribution and a list of possible future rese

topics.
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9.1 Research Contributions

This dissertation presents advances in the design of wireless transceiver in a nu

of areas. A summary of these contributions is given below.

1. We have proposed a novel channel estimation scheme, where thea priori information

of the transmit shaping filter was used to reduce the number of unknown paramet

the channel parameter estimation problem. This brings about a number of ben

First, with fewer unknown parameters, a shorter observation window is nee

Second, with a shorter observation period the snap-shot channel estimation per

robustly in fast fading. Since a snap-shot channel estimation problem relies on a

channel during the observation period, a long observation may bec

counterproductive [10, 20]. Finally, the estimates will be more accurate when ther

fewer parameters to be estimated. Having obtained the estimates of the chann

overall channel can be computed from the convolution of the estimate and the fi

2. Based on the new channel estimation equation, we have obtained the channel esti

under least squares estimation (LSE), maximum likelihood estimation (MLE),

maximuma posterioriestimation (MAP) criteria. Theoretical as well as simulatio

mean squares channel estimation errors are evaluated for each of the ch

estimators.

3. We have proposed the use of a matched filtered diversity combining decision feed

equalization (DFE) instead of the “straightforward” diversity combining DFE [72] f

symbol detection in a relatively small constellation such as QPSK and DQPSK

have explicitly shown the theoretical equivalence of the two structures by deriving

matched filter form from the straightforward form under the assumption of per

channel estimates. We have also identified the eigenvalue spread problem o

straightforward form, which significantly degrades the performance of the ove

receiver in the presence of channel estimation error. A large scale channel estim

noise enhancement occurs. The matched filtered form solves the eigenvalue pro

and requires less computation than the straightforward form does.
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4. To cope with the fast time-varying ISI channel, we have proposed a new D

computation algorithm for the matched filtered diversity combining DFE, termed

non-Toeplitz DFE (NT-DFE). This is obtained by incorporating the channel varia

during the decision delay into the minimum mean square error criterion. For ti

invariant channels, the longer the DFE filters the better the ISI suppression capa

However, in fast time-varying channel, long DFE filters might become coun

productive due to the channel variation during the DFE length [58].

5. Simulation was performed to evaluate the DFE receivers, which employ the prop

channel estimation and the diversity combining DFE methods. The proposed rec

has been shown superior to the receiver that employs a recursive least square c

tracking receiver and diversity combining DFE. The feasibility of a suboptim

matched filtered DFE, suitable for a handset application since it requires signific

less computations, was also evaluated.

6. We have derived the matched filter bound symbol error rate expressions for -ary Q

signalling. With this theoretical expression, we were able to observe how an add

of an antenna and the change of the channel’s MPDP may affect the overall dete

performance of the transceiver and the expected order of diversity. In addition

continued the results of matched filter SNR to derive the spectral efficiency limit of

frequency-selective channel for variable rate -QAM signaling.

7. We have identified the symbol spaced equivalent ISI channel model which com

theL explicit diversity branches with only matched filtering required at each bran

This will provide the sufficient statistics and the necessary ISI trellis for the maxim

likelihood sequence detection (MLSD).

8. We developed an adaptive, low complexity tree-search detection receiver for unc

(or gray-coded) modulation signals using the T-algorithm for the fast fading multip

ISI channels. Unlike previous research on sequence based detection receiver, a s

spaced receiver is not assumed a priori, rather the receiver utilizes the feedfo

channel estimation to derive the matched filter, and obtains the symbol-spaced ch

taps and the sequence of sufficient statistic to be used in the T-algorithm search

q

q
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9. We have proposed the use of per-survivor processing in conjunction with the use

T-algorithm to reduce the average number of survivor paths, which at the same

brings a further SNR advantage over the DFE receiver. The reason for the win

situation is that in a correct path, the channel estimate is enhanced; while in the w

paths, the channel estimate degrades quickly, promoting early elimination of the

from the survivor list.

10. We have extended the tree-search receiver using the T-algorithm for the decod

the channel-interleaved trellis-code transmitted over the fast fading multipath

channels. Since the receiver uses a tree-search version of the T-algorithm,

decoding of the trellis code over the de-interleaver and the ISI trellis can be perfor

The simulation results indicate that the receiver achieves the available time-dive

benefit of the code for the fast Rayleigh fading ISI channels, with a very mode

increase in the decoding complexity compared to the uncoded DFE.

In total, these contributions significantly extend the ability to achieve spectr

efficient and reliable communications over wireless channels.

9.2 Future Work

Much work remains to be solved to realize the envisioned univer

communications networks. The following three layers of future work may be meanin

extension to this dissertation. They are VLSI implementation at the chip level, fu

improvement at the system design level, and system integration of the transceiver

higher networking layers such as power and medium access controls.

We note that VLSI implementation of the T-algorithm is possible [127]. Thus,

post-processor receiver techniques developed for Chapter 7 and Chapter 8 c

implemented in VLSI chips. The most challenging problem is to reduce the numbe

operations required to implement the pre-processing filtering of the received sig

especially the matrix inversion operation requied to obtain the mean-square white
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In recent research it was shown that the spectral efficiency of the wire

transceiver can be improved dramatically by the use of multiple transmit diversity ante

along with the use of multiple receive diversity antennas. It was shown in [128] that the

of both transmit and receive diversity antennas creates a new degree of freedom (

dimension) to play with in Shannon-theoretic capacity calculations, and the capacity o

wireless channel can be increased multiple times, as much as linearly with the num

antennas used at the transmitter, compared to the single transmit antenna system. T

of multiple diversity antennas was considered only at the receiver in this dissertation

explosively growing body of publications [129][130] repeatedly confirms the benefit

using multiple transmit and multiple receive antennas.

We have focused on spectrally efficient systems only at the link-layer in

dissertation. In the context of multiple users sharing the same allocated frequency spe

and physical spaces, we should be able to come up with an area efficient netwo

scheme which implements efficient controls of transmit power, medium access and sh

taking full benefit of the link-flexibility the new transceiver provides.
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Glossary

List of Acronyms and Abbreviations

AMPS Advanced Mobile Phone Service

AWGN Additive white Gaussian noise

BER Bit error rate

CDMA Code division multiple access

DCA Dynamic channel allocation

DCR Digital cellular radio

DECT Digital European Cordless Telecommunications

DPCA Dynamic power and channel allocation

DQPSK Differential quadrature phase-shift keying

DS Direct sequence

FCC Federal Communications Commission (U. S.)

FDMA Frequency division multiple access

FEC Forward error correction

FH Frequency hop
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GSM Groupe Spécial Mobile or Global System for Mobile Communicatio

IS-54 Interim Standard 54 (TIA/EIA TDMA cellular standard, U. S.)

IS-95 Interim Standard 95 (TIA/EIA CDMA cellular standard, U. S.)

ISDN Integrated Services Digital Network

ISI Inter-symbol interference

ISM Industrial, Scientific, and Medical (bands, devices)

LAN Local area network

MPDP Multipath Power-Delay Profile

MTSO Mobile telephone switching office

PBX Private branch exchange

PCN Personal Communications Network (Europe)

PCS Personal Communications Services (U. S.)

PN Pseudo-noise

PDC Personal Digital Cellular (Japan)

PSTN Public Switched Telephone Network

QAM Quadrature amplitude modulation

QOS Quality of service

SIR Signal-to-interference ratio

SNR Signal-to-noise ratio

SS spread spectrum

TCM Trellis coded modulation
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TDMA Time division multiple access

TIA Telecommunications Industry Association (U. S.)

Definitions

Baud: The unit of number of bits per symbol.

Bit error rate: The ratio of the number of bits incorrectly received to the total numb

of bits transmitted.

BCH Codes: A large class of cyclic block codes that include both binary and nonbin

alphabets.

Block codes: A type of error correcting code of fixed lengthN. TheseN symbols

representsK symbols of information and (N - K) parity or redundancy symbols

where .

Blocking: New users to the system are declined services due to the lack of cha

resources.

Capacity: In the context of networking, power control or medium access contro

implies the maximum number of users a system can support. In the conte

link-layer, it implies the maximum number of bits a channel can support with

arbitrary small error.

Cellular Radio: A system in which a service area is divided into smaller areas ca

cells where users in each cell communicate with a base station usually loc

near the center of the cell.

Channel coding: Adding controlled redundancy to the information sequence

improve reliability of data transmitted through a noisy channel.

Coherence bandwidth: A statistical measure of the range of frequencies over wh

the channel passes all spectral components with approximately equal gain

linear phase.

Coherent detection: Detection using a reference signal that is synchronized

frequency and phase to the transmitted signal.

N K≥
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Convolutional codes: A type of code in which output sequence consists of a selec

set of linear combinations of the input sequence.

Code division multiple access:A way of sharing a common spectrum in whic

signals from different transmitters are distinguished by a code known to

intended receiver. It is usually divided into two categories: direct sequence (

and frequency hop (FH).

Differential quadrature phase-shift keying (DQPSK): A digital modulation scheme

that uses the phase changes of multiples of ninety degrees orπ/2 from the previous

symbol to carry two bits of information.

Dispersion:The spreading, separation, or scatter of a waveform during transmiss

Diversity: The reception of different versions of the same information, each is usu

with independent fading levels.

Down-link: The radio link where the base station is transmitting to a user in

coverage area. Also known as the forward link.

Erlang:  A unit-less measure of the offered load.

Fading: The variation of the intensity or relative phase of any frequency componen

a received signal due to changes in the characteristics of the propagation pat

time.

Finite impulse response (FIR)filter: A discrete-time filter of which the coefficients

represents the sampled, truncated impulse response of a filter.

Flat fading: Fading resulting in similar attenuation of all frequency components

signal.

Forward link: The radio link where the base station is transmitting to a user in

coverage area. Also known as the down-link.

Frequency diversity: A transmission technique used to minimize the effects of fad

wherein the same information signal is transmitted and received simultaneo

on two or more independent carrier frequencies.

Frequency reuse:The scheme of assigning different frequencies to adjacent cell

that users communicating at the same frequency would not be too close to

another.
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Frequency-selective fading:Fading in which not all frequency components of th

received radio signal are attenuated equally.

Hand-off (HO): The process of a user changing the base station it communicates

as it moves across the cell boundaries. Also known as hand-over.

Integrated services digital network (ISDN):An integrated digital network which can

establish connection for data and telephony services using the same transm

equipment.

Interleaving: A method of spacing successive symbols of a given codeword at w

intervals in time to overcome burst errors.

Offered load: The ratio of the new user arrival rate divided by the system service r

It may be normalized to the number of channels are available to the system

Modulation: The process of varying certain characteristics of a carrier in accorda

with a message signal.

Multilevel trellis coded modulation: A modified trellis coded modulation where th

uncoded bits are coded often with an error correcting code that explore

geometric properties of the signal constellations.

Multipath: The large set of propagation paths that the transmitted signal takes t

receiver. The multiple paths could be caused by scattering.

Multipath fading: Fading that results when radio signals reach the receiving ante

by two or more paths.

Multiple-Access: A sharing scheme that enables dispersed users to simultaneo

access a common channel resource.

Network: An organization of terminals capable of intercommunication.

Outage: A condition wherein a user is deprived of service due to unavailability of

communication system.

Parity-check code:A simple forward error correcting block code of rate (N,N-1). It

adds a parity bit at the end of (N-1) information bits so that theN-bit block would

have even number of ones. This code can be decoded using a simple two

trellis decoder.
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Personal Communication Services (PCS):For standard purposes, it is an umbrel

term to describe services and supporting systems that provide users wit

ability to communicate anytime, anywhere, and in any form.

Power control (PC): A technique employed to adjust the transmit power from eve

radio link to the minimum level required for reliable transmission.

Quadrature amplitude modulation: A coherent digital modulation technique tha

uses the amplitude in both the I-channel and the Q-channel of the sign

represent information.

Reverse link:The radio link where a user is transmitting to a base station. Also kno

as the up-link.

Signal-to-Interference Ratio (SIR): The ratio of the desired signal power divided b

the total power of the interference and the background noise.

Spread Spectrum (SS):A signaling scheme in which the transmission bandwidth

much greater than the information rate.

Transceiver: A contraction of “transmitter/receiver.” The term is used when

communication device can both transmit and receive.

Trellis coded modulation (TCM): A digital bandwidth-efficient modulation technique

that incorporates the concept of set partitioning and channel coding.

Up-link: The radio link where a user is transmitting to a base station. Also know

the reverse link.

White noise:Noise whose frequency spectrum is uniform over a wide frequency ba

Wireless Communications:General term for communication without wires.
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