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Abstract of the Dissertation

Adaptive Diversity Combining, Equalization and
Seqguence Decoding for Time-Varying Dispersive
Channels

Heung-No Lee

Doctor of Philosophy in Electrical Engineering
University of California, Los Angeles, 1999
Professor Gregory J. Pottie, Chair

Next generation wireless networking systems require a robust, flexible and efficient
establishment of a communication link over the underlying time-varying wireless channels
to be able to support different QoS requirements for various kinds of services such as voice,
video and data. In this dissertation, we investigate a robust wireless modem techniques that
should provide areliable, spectrally efficient communication link over rapidly time-varying
and severely delay-dispersive wireless channels. We first examine the feedforward channel
estimation techniques. Fast time-varying channel is tracked down by two steps. First a set
of snap-shot channel impulse estimates is obtained by utilizing the channel training
symbols periodically inserted into the stream of unknown data symbols. Then, the fast
time-varying channel during the unknown data segments is tracked down by the use of
interpolation on the set of snap-shot channel estimates. For this problem, we propose a set
of novel channel estimators.

Having obtained the feedforward channel estimates, a robust detection receiver
structure, utilizing the diversity receive antennas and the decision feedback equalizer, is
investigated for uncoded (or gray-coded) transmissions of a relatively small constellation

signals, such as QPSK (or DQPSK). Assuming that a number of independent diversity

XXii



signals are available at the receiver by the use of space-diversity antenna systems, we have
developed a robust diversity combining DFE (DC-DFE), which is derived under minimum
mean square error criterion (MMSE). Advantages of the new receiver include that the
complexity of obtaining the optimum coefficients does not increase as the number of
diversity channel increases. In addition, the proposed DC-DFE was derived under the
assumption of fast-time varying channel, unlike conventional derivations. Thus, the DC-
DFE provide a significant performance improvement over the previously proposed
diversity combining DFE receivers and also to the RLS channel tracking DC-DFE systems,
especially in fast-time varying channel conditions.

If the symbols from a large constellation are used to convey the digital information,
the spectral efficiency of the underlying wireless channels can be improved in multiple
times. For a large constellation signalling such as 64-QAM, we propose the use of
sequence-based detection schemes, derived under maximum likelihood sequence detection
(MLSD) criterion. The complexity problem implementing the MLSD is resolved by the use
of reduced complexity search algorithms. By comparing a set of several existing tree-or
trellis-search algorithms, we propose the use of T-algorithm along with the per-survivor
processing. The proposed sequence-based detection receiver using the T-algorithm is
extended further to be used in decoding of symbol-interleaved trellis-coded modulation
signals. Main research result in this is that the receiver searches a tree and thus is able to
perform ajoint decoding, deinterleaving and equalization. A joint decoding is optimal since
it does not make any early decision on the received symbol sequence and thus achieves the
full MLSD performance without doing any iteration. We show with an example of simple
trellis-code that the proposed joint, tree-search decoder achieves the full diversity benefit

available to the code without increasing the decoding complexity.
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Chapter 1

Introduction

1.1 Recent Advances in Communications Technologies

During the last three decades, we have witnessed an exciting and explosive
advancement of digital communication technologies, including high speed modems, the
cellular telephone systems, satellite networking, high speed local area computer
networking and the world wide Internet. We briefly address some of the major
achievements that are relevant to the topics of this dissertation. For convenience we begin
our discussion on two distinct but highly related areas of development, one in wireline and

the other wireless technologies.

1.1.1 The advent of the Internet

The most salient accomplishment of wireline communications/telecommunications
technology we have seen during the last two decades is the area of inter-networking of
computers where the information and user applications are shared and knowledge bases are

distributed in different parts of the world. The networking technology of today, which



started from a single file transfer from one computer to the other in the mid 60’s, has
reached up to the level that it is now very common to see that our office computers are
connected to high speed local area networks (LAN) with up to a few Gbps connection
speed. In addition, we have seen the fast emergence of the world wide internet over the last
several years. The wide area network (WAN) known as the Internet interconnects many
heterogeneous LANs scattered around the globe. This global networking of computers not
only allows sharing of computing resources and data bases amongst the members of a
particular local area group but also provides us with the remote access to services and
information that may exist and be available anywhere in the wide area network, at any time.
Now, the future of the Internet is believed to be the universal computing,
information disseminating and retrieval system, far exceeding the mere role of file transfers
and sharing applications amongst clusters of connected computers. In the next decade or
less, we will be able to ask the Internet, via a user-device [1] that interfaces us to the
Internet, more active service requests such as “Make a flight reservation to New York for
tomorrow for me” or “Make a video conference connections with all the members of my
group,” who may be on travel abroad, at home or at the office [2]. For this to happen, the
current Internet which consists mostly of wireline infrastructure of technologies such as
public switched telecommunications network (PSTN), last mile xDSL accesses, high speed
fiber-optic backbone networks and wired LANS, should be extended to allow tetherless and
seamless connections to the some existing and some futuristic wireless networks, including
the mobile cellular networks, the satellite networks, and various sizes of local area wireless

networks such as wireless office and home networks [5][6][7].

1.1.2 The wireless networks

Transmission of digital information over wireless communication links such as

terrestrial land mobile radio channels, indoor LAN channels and satellite channels has also



received much research and development attention, with many accomplishments during the
last twenty years. For example, TDMA or CDMA basezllular telephone technologies,
which were perhaps realized only in a small scale military application about two decades
ago, now has became a mass market with a large variety of services available. In cellular
networks, the base station located at the center of a cell relays all the telephone calls
directed from/to the wireless terminals residing in the cell for the duration of the call. It is

a connection oriented networking system, originally developed for the voice transmission
but now becoming available for data transmission as well. The current cellular phone
system has now tens of millions of subscribers in America [5] and has become almost an
essential part of our daily lives in many industrialized countries. Wireless connections also
provide a convenient means for indoor networking, removing the need of hard-wiring
among office computers and printers. This is in some ways a miniature version of the
cellular network. It interconnects computers in the vicinity of the base station, rather than
phones, and thus runs in the packet switching mode, as this is more suitable for computer-

oriented bursty data traffic.

1.1.3 The hybrid networks and emergence of the universal computing

systems

In the next decade, perhaps we will see the emergence of next generation
internetworking technology, the so called the next generation Internet, which may be a
hybrid of heterogeneous tiers of networks, from pico cells to micro cells, micro cells to
macro cells, telephone network to the Internet, low earth orbit (LEO) network to
geostationary earth orbit (GEO) network, all of which are to be interconnected. The Internet
today provides a convenient means to disseminate and retrieve information over the
wireline network. The next generation wireless communications technology will allow us

to have wireless access to the Internet in a much faster and ubiquitous manner. The goal is



to realize a global system that operates without regards to many limitations of today’s
system. It will provide seamless wireless connections regardless of any particular air-
interface technology, a broadband access with multimedia applications, remote access to
the computing resources and knowledge data base available in the network, without regard
to whether one is at home, at the office, in the street, in a fast moving vehicle, or in travel

abroad.

1.1.4 Need for spectrally efficient, robust wireless modem technologies

In order to bring such a universal communication and computing network into
reality, we need a wireless networking solution that ubiquitously and seamlessly
interconnects us to the existing wireline/wireless infrastructure and finally to the other part
of the communication entity. Since the goal is that the networking service is to be
established anywhere, at any time and for any kinds of services, the wireless networking
solution must perform well with a wide variety of networking scenarios, system
requirements and channel conditions. This has inspired new design concepts and
fundamental technological breakthroughs in almost every aspect of communication
research, including the investigation of wireless channel capacity, joint source and channel
coding/decoding, robust modulation and demodulation, the use of diversity transmit and
receive antennas, design of power control algorithms, design of new medium access control
(MAC) algorithms and development of new networking protocols.

In this dissertation, we focus on the design of a wireless modem which enables a
robust, reliable and spectrally efficient communication link to the higher MAC and network
layers. It is very difficult to realize such a wireless modem technology because of the
uncertain nature of the wireless channel, which may include high mobility, variation of
signal to noise radio (SNR) and multipath signal propagation. In addition, the spectrum is

a very scarce resource and thus the design should be optimized for bandwidth efficiency.



1.2 Overview of Dissertation

The scope of this dissertation is the wireless transceiver design and optimization in
the physical layer, which primarily deals with the combined problems of robust
transmission and detection of digital information over the wireless channels. Specifically,
we investigated a novel optimal performance solution for wireless channel estimation
problems, optimal receive antenna diversity combining techniques, minimum mean square
error decision feedback equalization (MMSE-DFE), a sequential detection technique for
large constellation signaling using maximum likelihood sequence detection (MLSD), and
the optimal/suboptimal joint sequential detection of channel-interleaved trellis-codes
transmitted over multipath fading inter-symbol interference (ISI) channels.

The objective of our research was to develop transceiver technologies to facilitate
the implementation of a reliable and spectrally highly efficient communication link over a
fast time-varying, severe delay-dispersive channel. The proposed transceiver should have
the capability to incorporate channel coding, adaptive bit rate transmission, adaptive
equalization, adaptive channel estimation, and explicit diversity combining through space
diversity antenna systems.

The channel studied was adopted from the perspective of outdoor mobile cellular
environments. There are three main distortion mechanisms: delay-spreading (frequency-
selective distortion) due to multipath propagation, channel variation (time-selective or
Doppler spread) due to motion of the mobile, and the large scale variation of SNR due to
shadowing. The distortion model employed follows the typical examples provided for IS-
54 [9] or GSM [34] systems where the use of an equalizer is mandatory.

For convenience of explanation, we categorize the channel environment into four
different regions as shown in Table 1-1 :. According to a particular channel distortion

region, the optimum technique may vary. For instance, differential phase shift keying



(DPSK) detection may be sufficient to provide a robust receiver performance for slowly
time-varying flat-fading channels, with low system complexity. However, the DPSK system
would eventually fail, producing an irreducible bit error rate (BER) floor due to intersymbol
interference once the ratio of the root mean square (rms) delay dispersion to the symbol
period exceeds a certain threshold, say about 1/10 the symbol period [49]. On the other
hand, the channel may start to exhibit fast fading when either one of the transmit or
receiving terminals begin to move at a high speed. This fast fading channel requires a highly
optimized fast channel tracking technique. In other circumstances, the transceiver might be
situated in a very low signal to noise ratio (SNR) environment, perhaps due to a large
scattering object along the signal path from the transmitter to receiver that obstructs signal
propagation. Then, the transceiver system may need a larger number of diversity antennas
or lower rate channel coding to account for the SNR loss of the link.

Table 1-1 : provides a tabular summary of all the basic channel-mitigation
techniques that can be utilized for each of these different channel situations. In all regions,
we assume frequency-selective channels and thus adaptive equalization. Figure 1-1
provides an overview of the system functions of the adaptive transceiver developed in the
dissertation. For example, at the transmitter a fixed sequence of training symbols are
periodically inserted into the unknown data streams for the purpose of channel estimation
at the receiver. For the channel situation A. in Table 1-1 :, a trellis-code can be used. For
adaptive rate transmission, frequency-division duplex (FDD) and time-division duplex
(TDD) systems can be assumed. The functions of the receiver include channel estimation,
diversity combining, symbol or sequential detection and sequential detection.

The adaptive transceivers are assumed to operate in the general framework of time
division multiple access (TDMA) systems. For this, we take as examples well-known
wireless cellular radio standards such as 1S-54, 1S-136 and GSM to obtain some of the

system parameters. These systems use TDMA as an efficient method of providing more



users in an assigned channel bandwidth, and employ training sequences, inserted into each
TDMA frame, for the purpose of tracking the time-varying channel during the burst. We
also use wireless channel parameters, such as delay spread and Doppler spread, that are

indicative of the channel environment where the system is expected to operate.

1.3 Roadmap of Dissertation

Figure 1-2 provides the road map of the dissertation. We describe the wireless
channel model in Chapter 2. This channel model was developed for the system
specifications of 1S-54 such as the signal bandwidth (30 kHz) and the carrier frequency of
900 MHz. It uses the representative multipath delay profile GSM recommends. Here, it was
used to simulate the channel situations described in Table 1-1 :.

Chapter 3 discusses some of the basic issues of digital communications system

Mulifpaith Fading (5] Channels

flicansmities Necaiver

-Channel estimation
-Periodic Training

-Diversity reception antennas

-Trellis-code

-Symbol-by-symbol detection
-Variable rate (D)éE) ¥-sy
FDD or TDD
( ) -Uncoded sequential
Diversity Antennas detection

-Sequential decoding

Figure 1-1 Overview of the transceiver techniques over the multipath fading ISI
channels
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* Symbol-by-symbol detec- receiver parameters
tion transceiver » Sequential detection
* Decision directed channel (MLSE)
tracking

Table 1-1 : Basic mitigation techniques for the frequency-selective channel with
varying degrees of time-selective distortion and shadowing.

simulation and discusses some equalizer design problems with examples of telephone
channels. In particular, minimum mean square error decision feedback equalizer (DFE),
linear equalizer (LE) and Tomlinson-Harashima precoder are compared as the mitigation
techniques for the dispersive telephone channels. In addition, the least mean squares (LMS)
and recursive least squares (RMS) adaptive algorithms are considered for the purpose of
training the DFE filter coefficients, and the simulation results are discussed.

Chapter 4 discusses the feedforward channel estimation and tracking problems. The



channel estimation is feedforward, in that explicitty known training symbols are
periodically inserted into the streams of unknown data for the purpose of the receiver’s
estimation of the channel. Tlsmap-shoestimates of the channel are interpolated to track
the channel variation of the time-segment inbetween the two adjacent channel training
segments. Novel channel estimators that utilizeahariori information of the transmit
shaping filter's impulse response at the receiver are proposed. Least squares, maximum
likelihood and maximuna posterioriestimators are derived. Closed form, theoretical mean
square errors for each estimator were derived and compared with the simulation results.

Chapter 5 discusses the diversity combining decision feedback equalizer (DFE) for
uncoded symbol transmission (gray coded or deferentially encoded). We have proposed an
optimal receiver architecture based on the minimum mean square error criterion and also
based on the performance obtained in the presence of channel estimation error. That is, we
have shown the equivalence of the two systems, the straightforward architecture and the
matched filtered diversity combining version, by deriving the latter from the former. We
have identified the eigenvalue spread problem of the former and proposed the use of the
latter architecture which provides much more stable performance than the former in the
presence of severe ISI and of channel estimation errors. Previous derivations of the MMSE
DFE were all done with the assumption of a time-invariant channel. Our new solution takes
into account the channel variation even during the duration of the decision delay of the
diversity combining receiver. The improved performance of the new solution particularly
stands out in the case of fast time-varying channels.

Chapter 6 deals with calculation of the theoretical matched filter bounds (MFB) and
the channel capacity (spectral efficiency). From MFB analyses, we will be able to see the
exact relationship between the order of diversity in terms of detection probability, and the

number of diversity channel or the delay-dispersion characteristics of the wireless channel.
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We will observe that the order of diversity is increased as the number of diversity antennas
are added, and also as the delay-dispersion of the wireless channel increase. In addition, as
the order of the diversity increases the detection performance converges to the results of
AWGN channel. These theoretical MFB bounds are compared with the relevant simulation
results in each Chapter of the dissertation.

In Chapter 7 we move into the area of sequence based detection using the maximum
likelihood sequence detection (MLSD) criterion. We also deal with larger signal
constellations, such as 64 QAM, to be used in the case of variable rate QAM transmission
where the number of bits can be varied from 1 bit to 6 bits according to the varying
conditions of the channel. Large size constellations and the use of a DFE is a potentially
problematic combination, because of the error propagation problem of a DFE. The
complexity problem of using the MLSD receiver is resolved by using a suboptimal tree-
search T-algorithm, instead of using the Viterbi algorithm. A comparison is made with
other sequential search algorithms. The T-algorithm is shown to give the best performance
with the lowest increase in the average complexity. Moreover, we have proposed the use of
per-survivor processing to estimate the channel mismatch at each path, to achieve a
substantial additional SNR advantage while reducing almost in half the number of survivor
paths. The reason is that the per-survivor processing of the channel estimate promotes early
elimination of bad paths from the survivor list.

Chapter 8 discusses the decoding of trellis-codes transmitted over the multipath
fading ISI channel. Since the channel has correlated fading, the code must be interleaved
before being transmitted to obtain the diversity benefit of the code. The use of the
interleaver makes it impossible to perform a joint decoding, based on the traditional
approach of constructing and searching a joint-trellis. However, since the T-algorithm is a
tree-search version of the sequential search algorithm, we were able to devise a way to

perform a joint tree-search on the combined state machines of encoder trellis, the de-
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interleaver and the minimum phase ISI channel. The minimum phase ISI channel is the
result of preprocessing of the wireless channel, where the preprocessing consists of
matched filtering (using the interpolated channel estimation results of Chapter 4) and the
mean square whitening filter (described in Chapter 7). The simulation results shows that the
receiver achieves the available time-diversity benefit of the trellis-code with only a modest
increase in the decoding complexity compared to the uncoded system.

In Chapter 9, we provide the conclusion of the dissertation and presents topics for

future inquiry.
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Chapter 2

Wireless Channels and Simulation Models

The focus of this Chapter is to introduce the major signal distortion mechanisms and
impairments of the wireless channel to be addressed in the body of the dissertation, explain
the physics behind them, and develop the simulation model for the frequency-selective
diversity channel to be used in the performance evaluation of the transceivers. The channel
impairments will be discussed include the signal fading due to multipath signal
propagation, intersymbol interference (ISI) due to multipath delay spread, frequency-
selective and non-selective channels, and the time-varying channels due to Doppler

broadening.

2.1 Characterization of Multipath Channels

When a signal is transmitted in a wireless environment, the propagation path of the
signal to the receiver is affected by the geometry of the environment. When an extremely
short pulse is transmitted in a wireless environment, for instance, the received signal might

appear as a dispersed train of pulses instead of a single pulse, as shown in Figure 2-2. The
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geometry of the environment at that moment determines the channel impulse response, the
dispersion of the pulse train. Each individual pulse at the receiver is the uniquely
determined end-product of the particular propagation environment at the moment the
transmitted signal pulse went through. The transmitted pulse may hit into buildings, trees,
streets and other scatterers in the environment. The more scatterers in the environment, the
more pulses might appear at the receiver and each might arrive at a different time. When
the geometry of the propagation medium changes--as the transmitter, the receiver or both
might be in motion, for example a mobile receiver in a moving vehicle or a transmitter in
an airplane--the shape of the multipath varies over time. This chapter attempts to
characterize such random channel behavior using some mathematical expressions,
especially to model the dispersion and the time-variant nature of the channel.

In the equivalent lowpass description the wireless channel can be expressed as a

train of impulses, i.e.,

—j2mf cTi(t)

c(t;t) = Zai(t)e O(T—T(t)), (2.1)

where a,(t) is the attenuation factor of the -th patt(t) is the propagation delay and
f .is the carrier frequency [65]. The sample impulse responses, shown in Figure 2-2, Figure
2-3 and Figure 2-4, indicate the multipath propagation paths with the phase information of

(2.1) ignored.

2.1.1 Multipath fading: the small-scale variation of the signal strength

Consider a case in which the multipath delay dispersion is much smaller than the
duration of the signal pulse. Specifically, suppose that thereKare multipaths with
propagation delay;(t) 0<i<K -1 and atransmit pulse of unit amplitude whose signal

duration is much greater than the maximum delay disperSigm 1, _,(t) , then the
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received signal can be written for the inte@a t < T + 1, _4(t) as,

K-t i2tf T (1)
Z (Xl(t)e_l T cTi

i=0

K-1

-6,
z ae
i=0

a complexvalued Gaussiamandom number

r(t)

Now, note that the attenuation factor and the dispersion delay associated with an individual
path does not change too fast, ie(t) = a; and) =T, compared to the duration of the
pulse. However, the phase fac@r= 2mtf 1, might vary significantly for a different path-

i since it changes bgm rad as changeﬁlby , Which is typically very small for a radio
frequency. The set of dispersion-delays and ('Ehe attenuation factors is determined randomly
by the propagation medium surrounding the receiver for each instant. If the receiver does
not move and there is no change in the environment, the summed number does not change.
However, as the receiver makes a movement or the environment changes--for example the
presence of a large moving scattering object in the vicinity--the number will take a different
value as there will be a change in the set of dispersion delays and attenuation factors. Thus,
the received signal can be modeled as a random process. In fact, with the assumption of a
large number of multipath components, i.e. a laKje , the central limit theorem can be
applied and thus the received signal can be modeled as a complex-valued Gaussian random
variable--hence the absolute value is Rayleigh distributed. As there will be changes in the
surrounding environment and movement of the receiver (or the transmitter) over time, the
received signal can be modeled as the complex-valued Gaussian random process,
parameterized with the time variable. The time-correlation behavior of this random process

over time will be studied in 2.1.4.
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2.1.2 Shadow fading: the large-scale variation of the signal strength

Multipath propagation of the signal produces small-scale signal fading when a
number of unresolved randomly phased pulses are added. The Rayleigh fading models
provide a good approximation to the amplitude variation of the signal in a small-scale local
region, such as the signal strength variation for a car moving along a short patch of a local
street. Shadow fading refers to the variation of a “local mean” over a large-scale space due
to terrain and large-scale obstacles such as buildings, while the local statistics may be
Rayleigh.

The path loss, the ratio of received power over transmitted power, at a local region

is widely modeled as a random variable having a log-normal distribution, i.e.

L(d)(dB) = Ls(d)(dB)+1OnIogEU£0E+ Xo» 2.2)

where

 dis the distance between the transmitter and the receiver

* d, is the reference distance, corresponding to a point located in the far field of the

antenna, typically taken to be 1 km for large cells.

* n is the value of the exponent, depending on the frequency, antenna heights, and
propagation environment. For example,= 2 for free space and higher for large

number of obstructions are present.

s L(d) = E%jg the free space loss, whede is the wavelength of the propagating

signal

* X denotes a zero-mean Gaussian random variable (in decibels) with standard devia-

tion o (typically, 6-10 dB)x, is site- and distance-dependent.
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2.1.3 Multipath delay spread

The autocorrelation function af(t ;t)  will be useful for the characterization of the
channel dispersion and provide a measure of the delay spread. First, we assume that the
channelc(t ;t) is wide-sense stationary and characterized as a complex-valued zero mean

Gaussian random process in the variable. Then, we define the autocorrelation function as
@(T1, T8 = E{ € (1 1)C(T, i(t+ A1)} . (2.3)

Assuming uncorrelated scattering at two different delays such that the phase shift and
attenuation of the channel associated with path delay tw@nd  are uncorrelated, (2.3)

becomes
E{C (T4 {t)C(T, i(t + At)} = @ (T A)S(T,—T,). (2.4)

If we let the observation time difference be zé&«b= 0 |, then the resulting autocorrelation
function is simply the average power output of the channel as a function of the delay

variablet . We call it th@power-delayfunction of the channel, which is defined as
(1) = @(T;At = 0). (2.5)

In the discrete-time channel case, it can be written as

9o(1) = ¥ El|a; (0] 18(t - 13(t))
| , (2.6)

= Z @ 0(T—T(1))

where we have defineg, ; = E[|ai(t)|2] far=0 . We will call this function as the
multipath power-delay profil@MPDP) of the channel.
Now, one can model the power-delay profile as a type of probability distribution by

normalizing @,(1) byJ’ooo @;(T)dt . Then, we use the standard deviation of , as the

rms
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measure of delay dispersion of the channel with a particular MPDP. Thais, is defined

as

o 1
. T2@(1)dt go r(pc(t)drg%
Trms = o T H 0

= [, e(n)dt . [, @D i

12 O
_ %;(pc, il _%go(pc, ITE%

0 O 00

In modeling a wireless channel, one may use a MPDP measured from the field test or may

(2.7)

i i 10
assume a certain MPDP such as exponential power delay pmqﬁ%ﬁm 0

S

2.1.4 Time-variation of a fading component

Due to the movement of the environment, the receiver or the transmitter, the
wireless channel should be modeled as time-varying. We use Jake’s model which is well-
known and widely used model for the generation of the time-varying ensemble path of the
fading channel [15]. The time-correlated fading can be explained as follows. Finst, let  be
the displacement vector from the transmitter to the receiver at tyne  and assume the
receiver is traveling ata velocity witlv| = v and the angle , which is between and
w, as illustrated in Figure 2-1. Then, the displacement vector from transmitter to receiver
is w+ Vot atty+ 0t . The distance for a short timé , can be approximated by a linear

function of time [16],

[w + vot| =w+ vdtcos(¢) . (2.8)

Then, the phase of the wave has changed/bycos(¢) f./c , Wwhere is the speed of the

light. Thus, from the attenuation of the path at tigye ot is
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K-1

((to+3) = Y aexpii2ns +v6tcoi(¢)f 5 (2.9)
i=0

We call the termcos(q))ﬂ: o] the Doppler shift or Doppler frequency. We then define the
maximum Doppler frequency,

fym = ~fo, (2.10)

and this will give a measure of how fast the channel is changing.
Next, in order to find out the time-correlation of the Rayleigh fading path we

consider, again assuming uncorrelated scattering dfthe  paths,

K-1 —]2T[Df T, + vt o) ¢ il
* 12Trf 1 c 00
E{r (t)r(tyg+ot)} = ED Z a; 0
%‘ =0 7 @
-1
—j2mcos(§) f 4,0t
= Z @ E{ € "
By modeling the angle of incidegt to be uniform random variablgdp@r) , we have

Direction of the mobile with velocity

Figure 2-1 Angle of incident of the incoming signal to the direction of mobile.
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21 —j2mcos() f 4,0t

1
Const 12—— e d

TJO ¢ (2.12)
Const(2mf 4,0t)

E{r (ty)r (ty+ 3t)}

whereJ,( ) denotes the zeroth order Bessel function. Thus, the autocorrelation function is
a real-valued function since the cross correlation of real and imaginary parts is zero. In
section 2.3, a method of generating Rayleigh fading paths with the time-correlation (2.12)

will be discussed.

2.2 Wireless Propagation Channels

The propagation channel is the surrounding physical environment which influences
the propagation of the radio signal from the transmitter to the receiver antenna. For design
of outdoor communications systems, the propagation channel is commonly categorized by
its typical impulse response, or a typical response to a wideband transmitted pulse for a
certain type of geographical region. From a particular geographic region to another, the
statistical behavior of the channel is assumed significantly different. In particular, the
outdoor cellular communication channels are usually categorized into three distinct areas
such as rural, urban and hilly terrains. To insure satisfactory operability of a radio over these
different characteristic regions, a system is tested under a set of channel impulse responses

carefully selected from field experiment and thus representing the particular region.

2.2.1 Typical multipath delay profiles

The following figures describe the physical propagation environmental settings for
the three different regions. Figure 2-2 illustrates the channel environment of a typical rural
area, and Figure 2-3 is for an urban area and Figure 2-4 for hilly terrain. Specifically, these
figures illustrate the physical propagation medium of typical down-link radio channels for

the choice of carrier frequencies and frequency bands relevant to the current cellular
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systems such as 1S-54, 1S-95, GSM and 1S-136. Each figure also includes the typical
wideband pulse responses, as well as the narrow-band pulse responses. As the bandwidth
of the pulse narrows, multipaths of the received signal becomes less distinguishable,

leading to the small-scale fading condition explained in Section 2.1.1.

2.2.2 Basic mechanism of signal propagation

Much of the observed propagation behavior can be explained in terms of reflection,
diffraction and scattering. Reflection occurs when the wave impinges on a smooth surface
with a very large dimension compared to the wavelength. Reflection is illustrated by path-
2 and 3 in Figure 2-3. Diffraction occurs when the radio wave impinges upon a sharp edge
of a dense object with a large dimension compared to the wavelength. The first path of
Figure 2-3 shows the result of diffraction. The building obstructs the direct line-of-sight

path between the transmitter and the mobile receiver but the secondary wave formed by the
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Figure 2-2 Outdoor wireless communication channels in cellular structure for the typical
rural area.
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Figure 2-3 Outdoor wireless communication channels in cellular structure for the typical
urban area.

sharp edge of the building still reaches the receiver. This is why it is often called shadowing.
Scattering occurs when the radio wave impinges on a surface or an object with a dimension
on the order of wavelength. The resulting waves are spread out in all directions. Typical
scattering objects are lampposts, street signs and foliage. Typical reflection and diffraction
objects are buildings and mountains.

The second row in each Figure is the graphical representation of the channel’s
wideband- or narrow-band pulse responses. The first shows the transmitted pulse, which
may be in the form of either an ideal impulse (having an extremely large bandwidth) or a
finite bandwidth pulse. The secohis the wideband impulse response of the channel for
the transmitted pulse shot at time zero. The third is the magnitude impulse response of the

wideband channel when the finite bandwidth pulse was transmitted.

1 Note that magnitude only is shown, neglecting the phase information for now.

22



a2

-

Transmitted pulse I\/‘Iyltipath Propagation Magnitude

) ~ Tﬁ; R

Vo U 01 . 13

Figure 2-4 Outdoor wireless communication channels in cellular structure for the Hilly
Terrain area.

2.2.3 Building a suitable channel model for a geographic region

The channel's impulse response represents the multipath propagation behavior of
the wireless channel. An extremely wideband pulse, approximately an impulse, can be
employed in a channel sounding experiment. That is, an impulse is transmitted at a
reference time at the base station and its responses are recorded at the receiver. Usually, a
number of distinct delay-spread impulses would reach the receiver. Each path is the result
of a different propagation mechanism with varying distance of travel, varying attenuation
factors and phases. The associated attenuation factor, phase and time of arrival of the
multipath components is determined by the surrounding medium. This is called multipath

propagation of the radio waves. The response is time-varying since the receiver is assumed
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to be mobile. Therefore, as there are numerous possible setting of the surrounding media
and as the receiver will experience many of them while receiving the signal, the channel is
usually modeled as a random process, as was given in (2.1).

The multipath profiles provided in Figure 2-5 are the measured impulse responses
for the rural, hilly terrain and urban areas. This set of channel responses is recommended
by the GSM systems standard [34] for generation of the simulation channel and
performance evaluation of a complete system via computer simulation.

Rural channels are often characterized by starting with a strong direct line-of-sight
path and quick, exponential decay of responses. It assumes no distant large scatters such as
large buildings and mountains. In this class of channels, the multipath is mainly due to
scattering objects such as trees and streets which are within the proximity of the mobile
receiver, and thus the span of arrival times is short. The typical rural area example shown
in Figure 2-5 indicates that there are no more arriving pulses after the first 1  sec. The first
impulse in Figure 2-2 is a direct line of sight path, and thus modeled as a deterministic
attenuation. The rest of the paths are recommended to be modeled as Rayleigh fading
amplitude [34], assuming they are the superposition of a large number of independent paths
having uniform phase distribution, as explained in 2.1.1.

In the urban case, shown in Figure 2-3, it is typically assumed that the mobile would
be surrounded by many reflective and diffracting objects such as buildings which are a
sizable distance away from the receiver which lead to distinguishable multipath arrivals at
the receiver, in addition to the small-scale scatterers in its proximity. As a result, the delay
spread becomes larger than that of the rural area. Figure 2-5 (c) indicates that most of the
multipath rays are arrived within the firsp5  sec.

On the other hand, the hilly terrain case indicates that there is a distinct second
group of late arriving rays to the receiver, set largely apart from the first group, due to the

presence of distant mountains and hills. Thus, the delay spread becomes the largest of all.
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In Figure 2-5 (b), it is shown that the second group arrives after the first 15 sec. GSM
recommends that all of the paths be modeled as independent and Rayleigh fading.
The rms delay spread of the channels shown in Figure 2-5 are 00977 sec, 5.0978

pusec and 1.026Q sec, for the rural area, the hilly terrain and the urban area respectively.

2.2.4 Frequency-selective channels due to multipath spread

The transmission bandwidth is 1.25 MHz for the CDMA systems such as 1S-95
whereas in TDMA cellular systems such as 1S-54 it is 30 KHz (or the effective bandwidth
of 24 KHz). The transmission bandwidth of the CDMA systems is about 42 times that of
the TDMA systems. As will be illustrated in this Section, the larger transmission bandwidth
provides greater multipath resolution power. That is, the receiver is able to resolve more
multipath components. Thus, the channel for CDMA systems is typically designed as
multitap filter, and for each tap a RAKE finger may be assigned for signal detection. For
IS-54 or 1S-136 systems, however, the number of channel taps depends on the region. In a
rural area, the channel can be modeled as a single tap fading channel. In the mountainous
terrain the channel should be a multitap channel due to the delay spread.

A channel whose magnitude response in the frequency-domain is not uniform
across the frequency band of interest is called a frequency-selective channel, where the
frequency band of interest is the transmission bandwidth of the signal. More precisely, this
implies that in the frequency-domain the folded spectrum of the channel is not flat. In the
symbol-rate sampled, discrete-time domain, the impulse response is not a single Kronecker
delta function but multiple delta functions, that cause interference among adjacent
transmitted symbols. This is call&@atersymbol interferenc@Sl). Any channel that results
in non-flat folded spectrum and thus results in ISl is a frequency-selective channel for the
chosen baud rate. Note that the reciprocal of the baud rate should be the effective bandwidth

of the transmit shaping pulse. Explained in another way, all radio communication systems
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have a finite delay resolution related to the reciprocal of their transmission bandwidth. Two
propagation paths separated by less than the system’s delay resolution will appear to the
receiver as one path. Thus, whether a channel is frequency-selective or non-selective
depends not only on the multipath delay itself but also on the transmission bandwidth. In
the frequency-domain, the frequency-selective channel is a channel where the coherence
bandwidth of the channel is significantly smaller than the transmission bandwidth.

All the channels in Figure 2-5 are frequency-selective channels with respect to the
wideband channel sounding pulse. We may note from the figure that the channel has a delay
resolution of atleast 0.t  sec and thus the bandwidth of the transmit and receive filter used
should have been more than 10 MHz. The pulse shaping filter of a practical system would
be much narrower than 10 MHz, and thus depending on the actual choice of the shaping
pulse, the channel can be categorized accordingly, frequency-selective or non-selective.
This will be illustrated next.

Take the urban area multipath profile given in Figure 2-5 (c) first. Suppose the pulse
has a transmission bandwidth of 1.25 MHz as would be appropriate for 1S-95 systems.
Figure 2-6 shows the scenario. Figure 2-6 (a) shows the shape of the overall pulse which is
the cascade of the transmit and receive filters, the raised cosine filter (i.e., assuming the
transmitter and the receiver used the same square-root raised filter). Figure 2-6 (c) is the
time-domain response of the cascade of the pulse (a) and the random channel (b), where the
random channel is realized with the FIR channel whose tap energy and tap spacings are
determined from Figure 2-6 (b) and the phases of the taps are independently selected from
the random variable uniform ové0, 2mm) . Figure 2-6 (d) is the frequency response of the
cascade of the random channel (b) and the pulse (a), sampled at,_—L%?te MHz, which is
twice the chip-rate. The response exhibits the frequency-selective magnitude response
across the frequency-band of interest.

Now, suppose a 30 KHz transmit pulse is used (e.g., 1S-54, 1S-136) instead of 1.25
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MHz pulse on the typical urban channel. Figure 2-7 (a) shows the cascade of the transmit
shaping pulse and the matched filter at the receiver. Note that the overall pulse is much
wider in time-domain. Thus, the resolution power in the time-domain is much less than the
previous case in Figure 2-6 (a). As a result, the frequency response of the channel and the
cascade pulse is almost flat as shown in Figure 2-7 (d). The resulting ISl is insignificant as
shown in Figure 2-7 (c). The typical urban channel is thus a flat fading channel for the use
of 30 KHz transmit pulse, but a frequency-selective channel for the systems using a 1.25
MHz pulse.

It is now shown in Figure 2-8 that the channel for the hilly terrain area should be
modeled as the frequency-selective channel, even when the 30 KHz narrow-band pulse is
used. This is due to the second group of pulses around 15 {0 20 sec. The frequency-
response given in Figure 2-6 (d) shows how one frequency response could be different from
the other. In this case, the channel will cause severe intersymbol interference. This hilly
terrain or a mountainous terrain model is the basis for the tapped delay line channel model
[62] for system simulation and we adopt the model. This frequency-selective channel will

be modeled as finite impulse response (FIR) filters in section 2.3.

2.2.5 Time-varying channel due to Doppler spreading

This section addresses the time-varying nature of the wireless channel, and
supplements our earlier treatment of Doppler fading in section 2.1.4. Basically, the channel
is time-varying because of the change in the environmental configuration surrounding the
transceiver or the movement of the mobile. The motion between the transmitter and the
receiver results in a changed propagation path. In indoor applications, for instance, the rate
of change may be insignificant due to the relatively slow movement (assuming the carrier
frequency is the same). In outdoor applications, on the other hand, it may become

significant since mobiles are capable of moving at highway speed.
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Invoking the wide sense stationary uncorrelated scattering argument, the evolution
of the random process corresponding to each tap is uncorrelated to each other. That is, the
time-variation of the tap coefficients are mutually uncorrelated while each of them obeys
the same time-correlation behavior. Thus, describing the time-varying property of a single
component will be sufficient since all the components obey the same law. Now, using the
correlation analyses result of 2.1.4, we now define the normalized time-autocorrelation

function (2.12) as

ColnstE{ r*('[O)r(to +0t)} |

J,(2mf 4 3t)

¢p(0t) (2.13)

whereJ(:) is the zeroth order Bessel function of the first kind dgg is the maximum
Doppler fading rate. The Fourier transform of (2.13) provides the Doppler power spectrum,
which is
2.-1/2
1-(fy/f fgl s f
S(fy) = g1~ (e’ Tam)) ol < Tam (2.14)
O 0 Afdl 2 fam

This is a model resulting from the dense-scatter model [15] which is reasonable for the
outdoor channel model. For the indoor model, a flat spectral density model may be used.

Then, using Jakes’ Rayleigh fading model [15], each Rayleigh fading channel tap

coefficientb, ;(k) can be modeled as the sum of nine sinusoids,

p(t;ST) = Nszz od;coS(213, f 4t + ST), (2.15)
where
* Np is a normalization coefficient that makes the second momep(toST;;) equal to
1.0,

* d; is the complex-valued amplitude for thg-{)-th Doppler frequency whose in-
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phase and quadrature components are

[l
0 J/2cosLH j = 0
0 40
Re q} = [ , (2.16)
E,Zcos%j% 1<j<8

and

O
Eﬁsin%j =0
Im{d} = 0 . (2.17)

éksin%j% 1<j<8

. 6j is a relative frequency scaling factor for tiel()-th Doppler shift which is

— BTN
6J- = cosD—S—jD. (2.18)

» ST is a randomly chosen real-number to begin the generation of the ensemble at a
random starting point. The distribution we have chosen is uniform over [-10000,
10000]. This can be used to simulate many ensemble of paths of wide-sense stationary

uncorrelated scattering taps.

Figure 2-9 illustrates the Doppler fading tap generated using (2.15)
fqm = 100 Hz, (a) is the amplitude variation and (b) is the variation of the phase. Figure
2-10 (a) compares the autocorrelation functions. One is a sample autocorrelation function

calculated from the generated ensemble (the dashed line curve), i.e.,

(k) = —= S =M= (+KT) (2.19)

I\Isample 1
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and the other is the exact autocorrelation function of Eq. (2.13).

2.3 The Diversity FIR Channel Model

We now describe the frequency-selective channel model that will be used
throughout the dissertation. As an effective counter-measure to the fading, the receiver
diversity technique is frequently suggested for the future generation of transceiver

technology. Thus, we develop the diversity channel model for the simulation of our system.

2.3.1 FIR representation of the channel, transmit and receive filters

In practice, the transmission bandwidth always exceeds the baud rate. This is to
allow a smooth transition from a passband to stopband of the transmit and receive shaping
filters since sharp transitions are hard to realize and expensive. In wireless channel
applications, the channel is unknown and the receive filter cannot perform the matched
filtering until the channel is estimated. As a result, the discrete-time sampled channel
should be modeled as a fractionally sampled filter. For example, IS-54 and 1S-136 systems
use 35% excess bandwidth of the baud rate, i.e. the baud rate is 24 ksps but the total
bandwidth of the shaping filter is 30 KHz. For such systems, a fractional sampling must be
employed in order not to lose any information until a matched filtering for the unknown
channel is performed. We use the half symbol-rate sampling system and the channel,
transmit and receive filters are modeled as finite impulse response filters (FIR). As will be
described in more detail, the wireless channel will be modeled as three-tap fading finite
impulse response (FIR) filter with tap-spacing of half the symbol period.

Figure 2-11 (a) illustrates the baseband representation of the system in continuous-
time domain. The symbol sequence is modulated with the transmit shaping filter and

transmitted to the wireless channel. The received signals are processed with the ideal brick-
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wall anti-aliasing filteru,, (t) W = Té + Excess Bandwidth before getting sampled

with a fractional rate, e.g. two sampIeBs per symbol period. This can be represented in the
frequency domain as illustrated in Figure 2-11 (b). The bandlimitegd 2 -sampled
received signal can be represented in Thg' 2 -sampled discrete time system, illustrated
in Figure 2-11 (c). In fact, the frequency-response ofTilae 2 -sampled discrete-time filter
is just a scaled version of the continuous response, repeating at every multptd pf
frequency. It is obvious that the transmit shaping filter can be represented gg2a -

spaced discrete-time sampled FIR filter because it is a bandlimited filter. The wideband

filter can also be represented as g’ 2 -spaced discrete-time sampled FIR filter, because

of the use of anti-aliasing filtew,(t) . Thatis, the combined respoaigget) U uy, (1) S
bandlimited and thus can be representedTig/ 2 -spaced sampled system. Note the
following,

f(t)Oc(t;t) = (1) Oc(t;t) Ouy(t) = f(r) O (c(t;t) O UZ/TB(T)),

whereu,, ¢ (1) is the brick-wall filter with bandwid®/ Ty  whose Fourier transform is

0 1
B

F{uy,r (D)} = 1 (2.20)
0,[f[>=
TB

I

Thus, we can usez/TB(T;t) = c(t;t) O UZ/TB(T) as a discrete-time FIR filter with tap-
spacing ofT 5/ 2 .

Now, we need to obtain the multipath profile suitable for the fractionally-spaced
system. The multipath delay profile for thg/2  -spaced sampled systemis just the filtered
/ sampled version of the wideband result (2.6) such that the autocorrelation function of the

low-pass filtered channel response
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O « 0
Qe 1,/2(T1, 10t = 0) = EECZ/TB(Tl;t)CZ/TB(TZ;t)E (2.21)

[ee] [oe]

EC[ € (@)U, (1, ~a)dat [ o(Bit)uy 7, (T, B)B ]
0, O

—00

00 00

= IIE{ C*(C(;'[)C(B;t)}UZ/TB(Tl—G)UZ/TB(TZ—B)dadﬁ.
From (2.4),
= I Icpc(a;ét = 0)o(a —B)u,, 1 (T3 —a)uy,1 (T, —B)dadp
= I(pc(a)UZ/TB(Tl_G)UZ/TB(TZ_G)dG' (2.22)

Itis observable from (2.22) that the multipath profile for the fractionally-spaced system can
be obtained from sampling the results of convolution of the wideband MPDP to the
autocorrelation function of the low-pass filter. Assuming the ideal brick wall, low-pass filter

with bandwidth2/ T such as (2.20), the sampled multipath components can be assumed

mutually uncorrelated. We now denote the low-pass filteredlggr? -sampled version of
the MPDP as

Qc1,/2(1) = @1 /o(iTg/2;0t =0), (2.23)
for i =0,1,...,Ng. We note that eachp. 1_,,(i) denotes the average power of the

multipath component of the -path.
In this paper, we use the following two classes of the low-pass filtered/sampled
version of MPDPs. One is adopted from [62] where thfgg 2 -spaced taps were used for

the simulation of mountainous MPDP. Each tap’s power is distributed as
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[0 -5 —15 —o] dB,
[9:7,/2(0) @c,/2(1) @7,/2(2)] = [0.7419 0.2436 0.0234 (2.24)

(2.24) is the MPDP used for the analyses results given in Chapter 4 and Chapter 5. For those
givenin Chapter 6, 7 and 8, we use the exponential distribution to obtain the average powers

of the three fading taps, i.e., for= 0, 1, 2

(PC,TB/z(i) = (2.25)

The evolution of the channel filter tap can now be generated by multiplying the square-root

value of the MPDP to the Rayleigh fading coefficient (2.15).

2.3.2 Diversity receive antennas

We assume diversity antennae at the receiver. The use of multiple receive antennae
provides rather large diversity benefit against signal fading and thus are a very desirable
receiver scheme. For this, we assume independent receive signals are available at the
receiver. There are many diversity techniques using a number of antenna to provide
independent fading signals. Among them are spatial-diversity and polarization antenna
techniques. In the former the receiving antennas are separated on the order of a few
wavelengths apart from each other to obtain independent fading. The latter approach is to
use different polarization antennae. We assume that independent receive signals are

available at our disposals by one of these techniques.

2.3.3 Diversity antenna channel model

Figure 2-12 illustrates the equivalent complex-baselawliversity channel model.
For the transmit shaping filtef(t) , we use a square root raised cosine (SRRC) filter with

a roll-off B = 0.35. The time-domain response of the square-root raised cosine filter is
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Figure 2-13 The square-root raised cosine filter: continuous wave form and the half-
symbol spaced filter coefficients. (Shown truncated at 10 symbol-periods).

given by
4a Dcos((1+ B)mt/Tg) + Ty sin((1-P)mt/Tg)/ (4Bt)
/Ty 1-((4Bt)/ Tg)?

f(t) = , (2.26)

wheref3 is the rolloff factorD.0< 3 < 1.0 . The half-symbol spaced sampled filter is used
for the simulation, see Figure 2-13 for an example.

Now, the symbols in Figure 2-12 are summarized here as

» The Tz/2-spaced sampled transmit filté(t) is represented by a unit energy [31 X 1]

column vectorf  which corresponds to a 15 symbol truncation.

 X,(t) the received signal at each diversity branch, which is bandlimited with the

excess bandwidth ofl§B)(1/Tg). Tg/2-spaced sampling is considered, i.g(t) =
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X (t = kTg/2), wherek denotes thd z/2-spaced epoch index.

* {1(k)} represents the symbol sequence at the half-symbol sampling rate. That is, itis
a zero stuffed sequence such thgk) at eveepresents the symbol transmitted at
the baud rate andl(k) at every oklds zero-valued. Later in Chapter 7, we develop a
more efficient convention using the polyphase representation of the filters. For now up

to Chapter 5, we will use this zero-stuffed convention.

* The noiseny(t) is also assumed to b&€g/2-spaced sampled and the sampled noise
sequence (k) is assumed to be a complex-valued additive white Gaussian with zero
mean and variance,2. The noise sequences for different branches are assumed to be

mutually uncorrelated and also independent with the wireless channel.

* by(K) = [ by o(K) ... bLNR_l(k) 17, represents the time-varying impulse response of
the | -th channel, wherl is the number of the time-varying channel taplg € 3 in

this dissertation).

+ Each Tg/2-spaced overall channel impulse responsg(k) is defined as

h,(k) = f O b,(k) , whered denotes the convolution operation.

2.3.4 Generation of independent diversity channels

In this section, we illustrate the generation of the diversity wireless channel in a
step-by-step manner.

1. Choose the MPDP, either from (2.24) or (2.25). Each diversity branch should have
the same MPDP profile because MPDP is dependent only upon a large geographic
region such that it is not dependent upon a diversity antenna. For example, get the
average power delay profile for the three tap{spc,TB/z(i),i =01 2 with
Zi @1, = 1.0

2. ThelL diversity channels are assumed to be mutually independent. In addition, all

channel taps are also assumed to be mutually uncorrelated by the wide-sense
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stationary uncorrelated scattering argument. Thus, in effect we need to generate
L INR uncorrelated scattering taps. For this selécENg starting phases
{ST;,1=1,...,L,i=0,1 2} independently from a uniform distribution for
example uniform of—1000Q 1000 . This method of generating the WSSUS tap

is adopted from [61].

3. Choose the maximum Doppler frequency using (2f1Q) = \—C/f . For example,

C

with a carrier frequency of 900 MHz and assuming a mobile moves at a maximum

highway speed of 120 km/hr,

120 km/hr
= 900x 1(PHz = 100 Hz, 2.27
dm = 3 0x 1 m/sec (2.27)

or for 12 km/hr,f 4, = 10 Hz . Usually, we use a normalized fading rate, such that
the normalized maximum Doppler fading rd{g,Tg is 0.00417 for 100 Hz since
the symbol rate is 24 ksps. In this dissertation we imply fast fadinigpy 100 Hz
(fgmTg = 0.00417) and the slow fading By, = 10 Hz {3, Tg = 0.000417).

4. Using 1, 2, and 3, each channel tap coeffidieptk) can be obtained by

T
by i (k) = (pc,TB/Z(i)pB = k3 ST”%, (2.28)

where p(t; ST,;) = NDZ?:Odjcos(ZnéjfdeST“) is the sum of nine
sinusoids defined in (2.15).
Figure 2-14 illustrates the time-variation of the twelve-tap truncated, combined

response oh (k) = f Ob,(k) over 80 symbol periods at the fading rate of 100 Hz.

2.4 Concluding Remarks

In this section, we have reviewed some of basic assumptions and simulation models

on the wireless radio channel, especially, for digital cellular radio channels. In particular,
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the delay dispersion and the time-varying nature of the channel are studied in reasonable
detail. In addition, the simulation model for independent diversity antennas has been
developed. In-depth characterization of the mobile radio communications channel are
available in many resources, including Sklar [35], chapter 13 of Proakis [65] and chapter 1
and 2 of Steele [17]. For example, the article by Sklar provides a good summary of fading
land mobile radio channels and the basic mitigation techniques for fading. Steele with more
rigorous mathematical treatment of the subject, provides more complete characterization of
digital cellular radio (DCR) channels, ranging from physical description of the propagation
channel to the mathematically rigorous channel models of Bello, and covers diverse topics
such as Rayleigh and Ricean fading channels, wideband or narrow band channels,
propagation loss in micro-cellular areas and indoor propagation media. The readers are

referred to the above references for in-depth coverage of the subject.
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Chapter 3

Background and Equalizers

In this Chapter, we want to qualitatively reviews some of the well-known
equalization structures for single carrier transmission systems, such as the linear equalizer,
decision feedback equalizer (DFE), Tomlinson-Harashima precoder [44] and maximum
likelihood sequence detection (MLSD) equalizer. Among them, the DFE and MLSD will
be developed rigorously in the upcoming Chapters as the proposed mitigation methods
against the rapidly time-varying multipath fading ISI channels. Other ISI mitigation
methods not discussed in this dissertation may include the use of spread-spectrum
modulation with orthogonal codes and RAKE receiver [65], and the use of multitone carrier
modulation [39][40]. While we discuss equalization methods, we also describe the
baseband communication systems and the simulation methodology. The voiceband
telephone modem [36] is taken as an example to show the baseband representation, need
for equalization and computer simulation results for some equalizers. We show that the
telephone channel is bandlimited and becomes highly delay-dispersive when the symbol

rate is increased up to the point comparable to the bandwidth of the telephone channel. As
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the symbol rate is increased, the transmission frequency band starts to contain the nulls at
the band edgésand thus severe intersymbol interference (IS1) occurs. Thus a sophisticated
equalizer is needed which handles the nulls gracefully. For this type of channel, an
equalizer which linearly inverts the channel would perform very poor. They are the
channels with a severe ISI, such that channels contain in-band nulls, for which a significant
difference in detection performance occurs between a good and a bad equalizer. For
example, the use of a non-linear equalization method, such as decision feedback equalizer
(DFE) significantly outperforms the linear equalizers. Furthermore, the use of MLSD
receiver via Viterbi Algorithm [88] makes another significant improvement over the use of
the DFE. On the other hand, when there is no null(s) in the transmission band, the
performance differences will be insignificant, and basically many equalization methods
perform well.

With the telephone channel example, we will illustrate in terms of an ideal output
SNR calculation that the difference between the linear equalizer (LE) and the DFE widens
as the symbol rate increases. The DFE, however, may suffer from a significant SNR loss
due to the inherent problem of error-propagation since the decided symbols are fed back
and used to cancel the post-cursor ISI. The use of a T-H precoder brings back most of the
SNR loss due to decision feedback by moving the feedback filter of the DFE into the
transmitter. Finally, we then discuss the training of the DFE filter using LMS and RLS

adaptation algorithms, and investigate their convergence properties.

3.1 Simulation of Digital Communication Systems

The performance of continuous-time passband communications system can be

simulated in the baseband by using the procedure described in this section. We take the

1. In fact, anywhere in the transmission bandwidth if there is a null, severe ISI occurs. For the case
of telephone modems, the nulls are included at the band-edges as the symbol rate is increased.
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voice-band telephone modem [36] as an example to illustrate the simulation methodology.
The voice-band modems are tested against a set of pre-specified passband channel impulse
responses. Figure 3-1 illustrates the three different channel impulse responses c0, c2 and
c4. The values in the ordinate represents the voltage (or the current) samples of impulse

response of the real telephone channels. The sampling rate was 8229 Hz.

3.1.1 Baseband Representation of the Bandpass Systems

Figure 3-2 describes the complex baseband equivalent system model for a carrier
modulation system. The real communication channel over which the signal is transmitted
are usually a shared medium, and thus the use of the channel almost always has to be
limited in bandwidth to an interval of frequencies centered about the carrier. For the
voiceband telephone channel, the channel is already limited in the transmittable region by
a band limit-filtering done priori to the telephone line. For the wireless channel, a fixed
amount of frequency spectrum is assigned for the establishment of a communication link,
and the transmit shaping filter is used to limit the spectrum use of the link. Thus, by

distribution of carrier frequencies among different users, the channel can be shared by

X Channel RX
Information Detection
Bit Sequence | q-QAM b eh f Receiver
AWGN
Up-sampler
h = cony(f, ch)

Figure 3-2 Baseband system descriptionded@AM transmission over the dispersive
channel and the receiver structure of fractionally-spaced decision feedback equalizer
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Figure 3-1 The passband channel impulse response of c0, c2 and c4. The sampling rate
is 8229 Hz. Total number of samples for each channel is 256 samples.
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multiple users. For telephone modems, the carrier frequency can be varied to find the best
frequency band to transmit the information. This passband operation of communication can
be equivalently represented in the baseband. The carrier modulation is performed on the
baseband signal at the transmitter to generate the bandpass signal and the carrier-
demodulation is performed at the receiver to recover the baseband signal. These upward
and downward modulation steps can be omitted without loss of generality. For this to
happen, however, we need to have the information symbols, the transmit/receive filters, and
the passband channel represented in the baseband.

For the quadature modulation using the cosine and sine carriers, the baseband
information symbols can be represented as complex-valued symbols, such that the real
parts of the information symbols are transmitted on the cosine-carrier and the imaginary
part on the sine-carrier.

The transmit and receiver filter have the same impulse response of square-root
raised cosine filter (SRRC). This combination of transmit and receive filters is desirable
since it is a matched filter when we have a flat channel response. In addition, the cascade of
SRRC in series results in a Nyquist overall pulse, the raised cosine pulse, and thus no ISI
occurs. The time-domain expression of the SRRC was given in (2.26). By the use of excess
bandwidth and assumption of frequency-selective channel response, we need to consider a
fractional sampling of the received signal (see Chapter 2 for more details on why).

In order to simulate the telephone-modem at different baud rates or at different
carrier frequencies, we first need to obtain the baseband equivalent channel for each of
passband channels for different combinations of the baud rate and the carrier frequency.
The passband channel should be interpolated first, resampled at the desired sampling
frequency, and then down modulated by the amount of the carrier frequency. Figure 3-3
illustrates the steps taken to generate the baseband equivalent channel for the channel cO

with the baud rate of 2400 sps and the carrier frequency 1829 Hz, where
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Figure 3-3 The channel-filter rate conversion process.
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* (a) represents the interpolation and resampling at a higher rate (4 times the baud rate)

* (b) shows the location of carrier frequendy. (= 1829  Hz), which is at the center of
the transmission band that is equal to the baud rate. Thus, as baud rate increase the

transmission band start to include the null at the band-edge.
* (c) shows the baseband channel at the sampling rate, four times the baud rate

* (d) finally represents the complex-baseband channel at the sampling rate, i.e. twice
the baud rate.

The baseband simulation of the system shown in Figure 3-2 can now be described.
The information bits are mapped tp -ary QAM symbols. Assuming fractional sampling
by two, the symbol sequence is upsampled by two (zero-stuffed at every other symbol) and
passedto &5 /2-spaced square-root raised cosine filter of 15% rolloff before transmitted
through theT 5 /2-spaced sampled channel. The received signal is corrupted by the additive
white Gaussian noise (AWGN) of varianag . It is finally matched filtered (matched TX
filter). We normalize thel'; /2-spaced combined response of transmit and channel filters,

to be denoted as a column vechor |, i.e.,

S i|h|* = 0.

Then, the input SNR can be simplified as follows

2
SNR = Ean D%i |hi| - Ea\zlg’ (3.1)
on on
where Eavg is the average energy of the input symbols afd is the variance of the
complex-valued noise. Thus, thg ~ /2-spaced no($¢ can be generated by
o2
n(k) = En(nl(k)ﬂ n,(K)), (3.2)

wheren, (k) andn,(k) are mutually independent Gaussian random variables having zero
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Figure 3-7 Baseband system description geQAM transmission over the dispersive
channel and the structure of fractionally-spaced decision feedback equalizer

mean and unit variance.

Figure 3-4, Figure 3-5 and Figure 3-6 are graphical illustrations of channel filter
rate conversion results for different combinatibogbaud rates and carrier frequencies, for
each channel c0, c2 and c4. The results are represented in amplitude responses in time-and
frequency-domain. We should note that as the baud rate increases, the null in the folded
spectrum (see next Section for definition) gets deeper. For example, the channel for cO at
3200 baud rate and 1829 carrier frequency Figure 3-4, has an in-band null which is about

1072,

3.2 LE, DFE and TH-precoder

We now compare performances of the minimum mean square error (MMSE) linear
equalizer (LE), the MMSE-DFE and the Tomlinson-Harashima (TH) Precoder. LE and
DFE are compared in terms of the ideal output SNR. DFE and T-H precoder are compared

with the symbol error rate evaluated from C++ system simulation.

1. See Table 3-1: for the combinations.
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Figure 3-4  Time and frequency domain responses of the channel cO at different
combination of the baud rates and the carrier frequencies.
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Figure 3-5 Time and frequency domain responses of the channel c2 at different
combination of the baud rates and the carrier frequencies.
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Figure 3-6  Time and frequency domain responses of the channel c4 at different

combination of the baud rates and the carrier frequencies.
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3.2.1 Ideal output SNR comparison of LE and DFE

Figure 3-7 shows the receiver structure of a fractionally-spaced DFE. It has a
feedforward transversal filter part and a symbol-spaced feedback filter part. With the use of
feedforward filter alone, the receiver is called a linear equalizer. We may define the error
signal to be the difference between the equalized pre-decision sample and the input symbol
(or decided symbol). The optimum criterion is to minimize the mean square of the error
signal. From this, the well known MMSE-LE and MMSE-DFE are derived [65].

The minimum mean square error of ideal MMSE-DFE is expressed as

ET e N 0 0O

DFE B 0

J_.~ = ex INnO————dwp, 3.3

min p% JT D((e]ooTB) + NOD 0 ( )
g 7 's O

and that of the ideal MMSE-linear equalizer (MMSE-LE) is

T,
e _ Te N

min = 5o ° dw, (3.4)

(e OTey + N
WTBX(eJ 8) + N,

where we denote((ej‘*’TB) to be the folded spectrum, i.e.,

HBo+ 2HTLBa2, (3.5)

whereH (w) denotes the frequency response of the combined channel, the transmit and the

X(el9Te) = =
(e%7s) TBH_Z_

channel filters. Then, the output SNR is given by

1-Jp
Vo = 50, (3.6)

min

In our simulation, the integrals are numerically evaluated as follows:

* Obtain theTz -spaced autocorrelation function by correlatinglthe  /2-spaced sam-
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pled overall channel by itself

X(K) = 3 0 T g (3.7)

» Take aN, point-DFT of the obtained sequerogk)} and take the absolute values
of the result to get the folded spectrum. Denote the resuX @y . Note that in the
sequencq x(k)} the value corresponding to the origfik=0) = 1.0 is located at
the center of the sequence, instead of at the first place of the sequence, thus we need to
take the absolute value to get the folded spectXifn) . If we had cyclically shifted
the sequencéx(k)} tolocatdk =0) at the first place of the sequence, then a real-

valued X (n) would have been obtained.

* Then, the integral can be evaluated by

™ g2 0
exp—— . 3.8
pDN fit, z [02+ X(n)} ] 59

The folded spectrum of a channel provides the most critical information about how
to design an equalizer and how well the equalizer would perform. For example, when a
relatively flat folded spectrum is obtained for a given channel, an inversion filter as a zero-
forcing equalizer may provide us with simple but satisfactory results. On the other hand,
when there is (are) deep null(s) in the folded spectrum, an inversion filter implies the
amplification of received noise at the frequency components where the null(s) are located.
Thus, a more sophisticated equalizer is required to achieve symbol detection without noise
enhancement.

The folded spectrum of the telephone channels not only depend on the channel
characteristics, but also on the choice of the baud rate and the carrier frequency since the
channel is bandlimited. As the baud rate is increased, the transmission bandwidth starts to

include the band edges of the channel. Then, the folded spectrum starts to contain deep
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nulls at the band edges. For the time-varying wireless channel, we don’t know whether or
not the folded-spectrum will contain any null at any given time instance. The null (s) in the
folded-spectrum will appear and disappear as the channel is evolving over time. The
frequency of appearance, the degree and the number of nulls completely depend on the rms
delay spread (2.7) of the wireless channel and the transmission bandwidth.

We now compare the performance of MMSE-DFE and MMSE-LE in terms of the
output SNR evaluated from (3.3) and (3.4). The results are tabulated in Table 3-1:. The
input SNR is 28.0 dB.

Table 3-1: Output SNR for ideal MMSE-DFE and MMSE-LE

channel Baud Rate f. DFE LE
cO 2400 1600 26.24 23.90
1800 26.10 23.62
3000 1800 24.84 20.05
2000 24.89 18.18
3200 1829 24.01 16.28
1920 23.92 16.29
c2 2400 1600 27.63 27.05
1800 27.54 26.77
3000 1800 26.47 23.02
2000 26.08 21.37
3200 1829 25.68 18.70
1920 25.60 18.78
c4 2400 1600 27.75 27.40
1800 27.84 27.63
3000 1800 27.17 25.57
2000 27.08 25.36
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Table 3-1:

Output SNR for ideal MMSE-DFE and MMSE-LE

channel

Baud Rate f. DFE LE
3200 1829 26.80 24.27
1920 26.80 24.40

Figure 3-4 ~ Figure 3-6 shows the folded spectrum of each combination. Note that
as the baud rate is increased, the folded spectrum contains a deeper null and the output SNR
degrades. Also note that the SNR difference for DFE and LE is larger when the null gets
deeper. From evaluation of output SNRs, a maximum constellation size for each
combination which satisfies a certain symbol error rate (for example, SER: ) can be
calculated, and then a maximum achievable transmission rate can be calculated by

multiplying the baud rate with the number of bits/symbol.

3.2.2 Output SNR for finite length DFE

For the illustration of a finite length DFE, we pick the channel cO vith = 1829
Hz and the baud rate of 3200 sps. The output SNR from Table 3-1: is 24.01 dB. The DFE
equation to obtain th&; /2-spaced feedfowarddgd  -spaced feedback filter coefficients
from the channel impulse response are described in [43]. Once the filter coefficients are
obtained, the output SNR for finite DFE can be readily computed using the expression
given in [43]. We found out that the use @f ;, N,) = (40, 40) achieves the output SNR of
23.0dB, whereN; denotes the feedfoward filter length Bipd  the feedback filter length.

Figure 3-8 describes the operation of the receiver step by step:

* (a) shows the amplitude response of the overall channel, the transmit shaping filter,

the channel cO and the receive filter
* (b) shows thel'; /2-spaced overall response including the feedfoward filter

* (c) indicates the symbol-spaced overall response including the feedfoward filter, RX,

61



ch, and TX. Note that the mean square error can be expressed as

Finite
min

J = 1.0— Overall Response at the optimum delay (3.9)

and thus the output SNR can be calculated from

1_0_JFinite

YEinite = Fin?:én (3.10)

min

* (d) represents the symbol-spaced overall response including the feedfoward filter and

the feedback filter, assuming perfect previous decision
* (e) shows the magnitude of the feedforward filter coefficients

* (f) shows the magnitude of feedback filter coefficients.

In the following section, we evaluate the symbol error performance of QAM signals
using the finite length DFE wittN;, N,) = (40, 40) and compare the results with those

obtained from using the T-H precoder.

3.2.3 TH-Precoder

The DFE was derived under the assumption that the feedback decisions are correct.
In practice, this assumption is not valid, and for severe ISI channels the DFE suffers from
error propagation. Tomlinson-Harashima-precoder get rid of the feedback part of the DFE
at the receiver, replacing it with the modulo-inverse filter at the transmitter. Figure 3-9
describes the baseband equivalent system description of TH-precoder and equalizer. The
inverse filter at the transmitter uses exactly the same filter coefficients as the decision
feedback filter of the DFE. In fact, postcursor removal is performed even before
transmission using the input symbols, instead of at the receiver using symbol decisions.
Thus, the error propagation problem of DFE is resolved. The precursor removal is still

performed by the feedforward filter which stays exactly the same as that of DFE.

62



The impulse response of TX*ch*(RX)

Absolute values

%
(©)

T-spaced response of TX*ch*RX*feedforward filter

50 100 150 200 250

Delay in half-symbol period

1.4

1.2

Absolute values
© o o
N (o)) [o¢] [

o
i)

WYYYYYWYYYYYY\%TTWWW

80 100 120 140

Delay in half-symbol period

T/2—spaced feedforward filter

Absolute values

T

(o)

T TTTTT?TJ@J?@W@F TT

10
Delay in half—-symbol period

40

(b)

T/2-spaced TX*ch*RX*fff response

14
()
1.2 1
©
o 1 O 1
(0]
=
o8 o) 1
&
306 -
(%2}
Q
<04 :
0.2 T 1
ool Reumonraceos,
80 90 100 110 120
Delay in half-symbol period
Overall response, including feedback filter
1
0.8
[%]
)
w 0.6
>
(V]
=
304
Qo
<
0.2
0 SEE833385588885 888833333388850
60 80 100 120 140
Delay in half-symbol period
(f) T—spaced feedback filter
1.4 T T T
1.2+ -
@
1h J
g 0.8 H B
S
L o6r B
0.4 -
0.2 [H 1
ST
o 10 20 30 40

Delay in symbol period

Figure 3-8 Step-by-step illustration of DFE transceiver operation
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TH-precoder requires the moduio- operation at the transmitter and the receiver
[44]. The following illustrate the modulo operation and the TH-precoder depicted in Figure
3-9:
* the range of the modulo- is(/2 1/2 ],

« if the input is greater than/2 t is subtracted an integral number of times until the

result is in the range,

«ifthe inputislessthart/2 1 isadded an integral number of times until the result is

in the range.

» The modulot operation is applied to each of the real and imaginary part individually,
ie.,
moduld complex numb&r= modulrealpart) + j Cmodula(imag part) .

» Chooset =2 Efja—| forg -QAM, to insure that both real and imaginary parts of

input symbols are within the range.

» The modulo operation removes the correlation and the possibility of instability intro-

duced by the inverse filter.

* For the input SNR defined in (3.1), the average power should be rescaled by

1 /2 1/2 5

- = 2 4 \2 -

Eavg = = J' J’ (x¢+y4)dxdy = x (3.11)
—1/2-1/2

 With a careful choice of the threshold valme , the modulo addition ou¥ht can

be assumed to be uniformly distributed over the rangegg, re-scaling of (3.11) is

valid.

3.2.4 Simulation comparison of DFE and TH-Precoder

The DFE, correct decision feedback DFE and TH-precoder are simulated using
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Figure 3-9 The baseband equivalent system description for the Tomlinson-Harashima
precoder and equalizer.

Monte-Carlo simulation. In Figure 3-11 symbol error rate of the receivers are compared for
g = 16, 32 and 64. The results indicate that the TH-precoder indeed achieves the symbol
error rate very close to that of correct decision feedback DFE. For 16 and 64-QAM, the
SNR difference of the two are within 1.0 dB. For non-square 32-QAM constellation, the

Ea\,g calculation of (3.11) is less accurate, and thus a higher SNR penalty is observed.

3.3 LMS and RLS training of DFE filter

In this Section we describe LMS and RLS training of DFE coefficients using training
symbols. The baseband channel used is the channel cO with the 2400 sps Baud rate and
1829 Hz carrier. The DFE filter lengths afld ¢, N,) = (40, 40). More in-depth coverage of
the LMS and RLS algorithms discussed in this Section can be found in [42][33].
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Figure 3-11 64-QAM symbol error rate simulation results on the telephone channel.

3.3.1 LMS training of DFE filters

We now provide the LMS training of DFE filter coefficients:

* BEGIN

* Pick the stepsizA O O0* , a small positive real value.

* Initialize W, = (0 ... O)t atk = 0.

*Fork = 0,1 2 ... until the end of the training sequence, Compute

Wiyq = Wy + AL, [, (3.12)

* END
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where we have defined

_ t
.Wk - [Wf’o nan Wf,Nf—l Wblo e Wb’ Nf—l] y

_ t
° Vk - [I‘2k+Dm r2k+Dm_]_ r|(+Dm—Nf+:|. Ik—l Ik—Nf] !

* r,, denotes thd z /2-spaced sampled received signal, the output of the SRRC receive

filter
o &y = Ik—IAk, WhereIAk = VE\ka
* A is the stepsize.
It is helpful to examine the eigenvalues of the system matriX,>aN correlation
matrix R, = E(va) . It provides critical information about the recursive algorithm, on
the selection criterion of the step size to ensure convergence, the speed of convergence and
the stability.
The convergence behavior of the algorithm can be given in statistical terms. We now

consider the mean value of the weight vector,

~ ~ H A~
E(W,,q) = E(W +A D, Ol =V, W,))
= (Snxn—AR )W + AE(V 1)
where =\, denotes the identity matrix. By orthogonal transformatiy), can be
diagonalized, i.e.
H .
R, = QD,,Q ", D, = diag(Ay, ..., Ay), (3.14)

whereQ is aN x N orthogonal matrix. Denoting = QH\ivk , (3.13) can be rewritten

E(Wys 1) = (Snxn—AD)W + AE(Q" il ) (3.15)

Note that (3.15)isasetd decoupled first-order difference equations. Considering the -
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th equation, the convergence of the -th subspace weight vector can be shown to be

proportional to
(1-A D)< (3.16)

Exponential convergence is ensured for all the subspace weight vectaors for =N 2,...,
provided that

1-AD\[<1,0r O.0<A<2)\—'0. (3.17)

This implies that the convergence speed of LMS algorithm is determined by the subspace
weight vector associated with the smallest eigenvalyg, . If we pick a stepsize
A=1/A it is given by from (3.16)

max?

k
(L= i/ A (3.18)

Figure 3-12 and Figure 3-13 shows the sorted distribution of eigenvalua% of
from smallest to largest, for two choices of filter lengths, N,,) = (40, 40) and (30, 10).
They indicate that the ratio of the largest to the lowest eigenvalt@('ﬂsog) . Thus, we
expect that the LMS algorithm would converge extremely slowly. For example, even after

k=10 iterations, the expected value is still significant

_g.10'
(1-10%" = 0.9048

This implies that it would take more ther0’ training symbols to converge to the optimal
DFE filter coefficients with the use of the LMS algorithm.
For the simulation of training of DFE coefficients using the LMS algorithm, we use

the stepsize of 0.01 fofN;, N,) = (40, 40). The stepsize chosen is a little smaller than
1 _ 1

traceR,, ~ 80.04

Section 3.2.2, the output SNR for this setting was obtained to be 23.84 dB

= 0.0125and thus satisfies the convergence requirement of (3.17). In

(Jin = 0.0052). Figure 3-14 shows the convergence speed of LMS training algorithm

min
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The eigenvalues of the system matrix at (Nf,Nb)=(40,40) & (Output SNR=23.8427)
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Figure 3-12 The eigenvalues of the system matrixfri,,) = (40, 40). Top figure shows
the eigenvalues in linear scale and the bottom figure shows them in the log-scale.
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The eigenvalues of the system matrix at (Nf,Nb)=(30,10) & (Output SNR=22.9780)
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The value of eigenvalue
w
T

0 1 1 1 1 1 1
0 5 10 15 20 25 30 35 4C

Index of the eigenvalues

The eigenvalues of the system matrix at (Nf,Nb)=(30,10) & (Output SNR=22.9780)
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Figure 3-13 The eigenvalues of the system matrixfri,) = (30, 10). Top figure shows
the eigenvalues in linear scale and the bottom figure shows them in the log-scale.
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using 5000 known 4-QAM symbols. It indicates that the average square error is still 0.0534
after 5000 iterations, where the last 100 squared errors are averaged. It can be concluded
from the simulation results that LMS algorithm is not suitable to be used in training of DFE

filter coefficients for channels which contain deep in-band null(s).

3.3.2 RLS training of DFE filters

The recursive least squares (RLS) algorithm may be considered to obtain rapid
convergence. The convergence speed of RLS does not depend on the eigenvalue spread of
the system. We have tried the standard RLS algorithm provided in Proakis [65] (or refer to
Chapter 4 of this dissertation) to train the equalizer, where we picked the forgetting factor
B of 0.99 and initial diagonal matrix of gain 0.1. Figure 3-15 shows that the average square
error has been lowered as much as to 0.01 (20 dB output SNR) only after training with a
few hundred 4-QAM symbols.

The standard RLS algorithm is not a regularized algorithm, and thus may incur
numerical instabilities in presence of ill-conditioned system matrix. As indicated in Figure
3-13 the eigenvalue spread of the system matrix is enormous. From the simulation we
notice that the feedforward filter trained by the standard RLS algorithm sometimes become
unstable--the energy of the feedforward filter diverges. To prevent this, we have also tested
aregularized RLS algorithm. The simplest form of regularized RLS [42] has been selected,
i.e.,

Wi 1 = Ris1Cpsqs (3.19)
where

« Ris1 = PRy+ (1-B)RO+ Vv, |

O *
*Ccirq = Bo+(1-B)c +1, vy,
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DFE trained by LMS algorithm (M=4)
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Figure 3-14 The LMS training of the fractionally-spaced DFE filter coefficients.
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DFE trained by the standard RLS algorithms (M=4)
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Figure 3-15 The standard RLS training of the fractionally-spaced DFE filter coefficients.
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. Cck’ = Rowk , and

«R? = K=« K is a small positive value.
Note that smallest eigenvalue of the correlation maRix is lower bounded to be greater
than or equal to . Figure 3-16 is the simulation result of the regularized RLS simulation
results with =0.99 and =0.01. The MSE results are similar to the standard RLS, but this

result is obtained without the possibility of an unstable feedforward filter.

3.4 Concluding Remarks

We have compared different equalizers for a set of telephone channels. For channels
with no deep null in folded spectrum, we expect no significant performance degradation
from the ideal AWGN results and no significant difference among different forms of
equalizations. For instance, if the 2400 sps baud rate would have been chosen, the detection
performance of MMSE-LE performance would also be acceptable. On the other hand, as
the baud rate is increased, the folded spectrum starts to contain nulls at the band edges and
thus more sophisticated equalizer is needed to maintain a satisfactory detection
performance.

We have picked a baseband channel which has abblita null in the folded spectrum
to test different equalizers. In Table-1 we observe the output SNR difference of 7.7 dB
between LE and DFE. We also compared the symbol error rates of DFE, correct decision
feedback DFE, and TH-precoder in section 3.2.4. We note that the performance of the TH-
precoder is very close to the correct decision feedback DFE. We also note that SNR penalty
of the correct decision feedback DFE is about 4.0 dB, which is very close to the difference
of input SNR and output SNR calculated in section 3.2.1. In addition, DFE and correct feed
back DFE curves shows about 2.0 dB difference.

Equalizer training is also very difficult for the channel with deep in-band nulls. For the
channel chosen to be simulated, the system matrix has a large eigenvalue spread and thus
the use of LMS training is almost impractical due to slow convergence. RLS algorithm can

be used instead at the cost of increased computational complexity. In general, these
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DFE trained by the regularized RLS algorithm (M=4)
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Figure 3-16  The regularized RLS training of the fractionally-spaced DFE filter
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standard adaptation techniques have been successfully applied to the telephone modem
systems; some of this is of use in mobile radio applications as well, adopted to track the
time-varying channel. However, as the simulations in Chapter 5 will show, these standard
adaptive algorithms have shown limited capability to track the fast time-varying channel we
are considering in the dissertation. Thus, further development of an adaptive transceiver

scheme was required, as will be discussed in the following Chapters.
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Chapter 4

Feedforward Channel Estimation and

Tracking

In Chapter 2, we showed how fast the channel impulse response (CIR) may vary
over time due to the possibility of the mobile terminal in a fast moving vehicle. From (2.10),
we note that the fading rate of the channel is directly proportional to the speed of the mobile
and also to the carrier frequency. This implies that the fading rate of 100 Hz for 900 MHz
carrier frequency will become doubled to 200 Hz for the signal transmission with 1.8 GHz
carrier frequency. Thus, in out-door mobile communications, we need faster channel
estimation techniques to accommodate the high mobility of the terminal. In this chapter, we
discuss the general framework of the channel estimation scheme we propose in this
dissertation as well as some of the novel channel estimators developed. The channel
impulse response estimation techniques developed in this chapter form the essential part of
the detection receivers discussed in the upcoming chapters such as diversity combining
decision feedback equalizer (Chapter 5), as well as the sequential detection (Chapter 7) and

joint decoding receivers (Chapter 8) using the maximum likelihood sequence criterion.
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4.1 Why Not Symbol-By-Symbol Recursive
Adaptation?

The standard symbol-by-symbol adaptive algorithms such as least mean squares
(LMS) or recursive least squares (RLS) algorithms that were introduced in Chapter 3 are
the classical, standard techniques in the area of equalizer training as well as channel
identification. These algorithms can be applied to adaptive update of equalizer coefficient

or to directly estimate the channel response.

4.1.1 Recursive adaptation of DFE filters using LMS and RLS

We have already investigated this subject when we use LMS and RLS to train the
DFE filter coefficients in Chapter 3. Recalling the results we had in chapter 3: LMS and
RLS were applied to find out the decision feedback equalizer taps in the training mode such
that known symbol sequences were transmitted over the channel. The LMS algorithm took
thousands of symbols, vs. a couple hundreds symbols for RLS before it converges. The
channel was a non-time varying channel. Why did it take so many symbols to converge? It
was because the channel contains deep in-band nulls (two deep in-band nulls along the band
edges for the worst case) in the folded spectrum. There was a large eigenvalue spread in the
system matrix that actually determines the tracking speed of LMS algorithm and causes a
severe instability problem in RLS algorithm. In the case of severe multipath delay spread
the mobile channel would also contain a deep null (or possible many nulls) in the folded
spectrum. In addition, a training sequence length of thousands or even hundreds cannot be
tolerable for the spectrum scarce wireless environment. Therefore, the use of the LMS and
the RLS adaptation of DFE filter coefficients is not recommended for the fast time-varying

channel we are considering here.
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4.1.2 Recursive channel estimation using LMS and RLS

Training of the DFE equalizer taps using the LMS or RLS algorithms is an indirect
way of channel estimation. In fact, an improved tracking performance could be obtained if
these algorithms are applied directly to track the channel parameters. That is, the LMS or
RLS algorithms can be applied to estimate the channel impulse response, instead of the
equalizer taps. Once the channel estimates are available, the equalizer coefficients can be
obtained from the channel estimates. Previous research in this direction include
Eleftheriou, et. al. [55]or Shuklar [67] where they compared the performance of RLS and
LMS algorithms in tracking the time-varying channel and computed the DFE coefficient
from the channel estimate. We apply the fast tracking RLS algorithm to the DC-DFE
receiver developed in Chapter 5, where the estimation of the Rayleigh fading channels is
performed by the RLS algorithm and the diversity combining DFE coefficients are
computed from the channel estimates. Figure 4-1 illustrates a simple model system for the
purpose of introducing the algorithms, where we have made following definitions and

assumptions:

* For now let’'s assume a symbol-spaced sampled system for simplicity akd let be the

symbol period epoch index.
* I (k) denotes the input symbols
* h(k) denotes the unknown time-varying channel vector with Nize

» w(k) denotes the equalizer tap vector, that can be computed from the channel esti-

mate vectoh(k) .
* X(k) denotes the received signal
* The symbol o implies it is an estimate.

 The error signal is definef{ k) = x(k) — X(k)
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* The input vector is defined(k) = (I(k) ... I(k=N,+1))T with(k) =0 for
k<O.

Now, we describe the two algorithms, applied to track the time-varying channel

vector. First, we start with the LMS update of the channel vector.

LMS update of the channel vector:
« BEGIN

« Pick the stepsizA 0 O* , a small positive real value

x(k)
Input Time-Varying Equalizer
Symbols Channelh(k) w(k)
I (k)
A
n(k)
Training
Mode N
_.\‘_ Channel EstimateX(k) *
- h(k) G
Decision Y
Directed
Mode Update the channel
estimate and the equalizer
taps
Detected
Symbols

(k)

Figure 4-1 The recursive algorithms applied for tracking of time-varying channels

1. See Section 3.3 for selection criterion.
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« Initialize h(k) = (0 ... 0)T atk = 0.
*Fork = 0,1 2 ... until the end of the training sequence, Compute

h(k+1) = h(k) +ACE(K) O(K). (4.1)

* END

Now, we describe the RLS update of the channel vector.

RLS update of the channel vector:
« BEGIN

* Pick a small positive numbérd O+

* Pick the exponential weighting factar (0, 1)

« Initialize h(k) = (0 ... 0)T atk = 0.

* Initialize P(k) = & [ey, whereeNh is Ny, x N, ) identity matrix.

*Fork = 0,1 2 ... until the end of training sequence, compute

K = P(k) O (K) . 4.2)
w+1T(k) P(k) O (k)

P(k+1) = (%(P(k)—K 1 7(k) CP(k)), and (4.3)

h(k+1) = h(k) + K CE(K). (4.4)

* END

As discussed in Section 3.3, the convergence speed of the LMS algorithm and the

stability condition of the RLS algorithm can be studied when we examine the system
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matrix. Following Lemma will help in this regard.
Lemma 1. For a well designed training sequence, the system matrix of the channel adaptive

algorithm is a weighted identity matrix.

Proof: The system matrix for the channel identification problem of Figure 4-1 is
E{1(k)IH(k)} . The property of a good training sequence is the pseudo-noise with a
white power spectral density such that the matrix becomes a weighted identity matrix,
ie.

E{1(I17 (K} = E{I"(KI(K)} (Ey,, (4.5)

where=,, is the identity matrix. QED.

Thus, there is no eigenvalue spread of the system matrix. Compare it with the system matrix
for the equalizer tap adaptive example of section 3.3.1. The part of the matrix contains the
channel correlation matrix which becomes a large eigenvalue spread system whenever a
significant null occurs in the folded spectrum of the channel. Eq. (4.5) suggests that the
convergence speed of the LMS algorithm will now be much faster once the convergence
requirement of Eq. (3.17) is met such that the stepsize is smaller than 2.0. In addition, this
implies that for the RLS case, the operation of RLS algorithm will also become much more
stable. From this observation, we can conclude.
Theorem 1: Recursive adaptation applied directly to the channel estimation problem
always converges faster than the same algorithm applied to the equalizer adaptatdn.
follows from Lemma 1.

In addition, this led to the following remark.
Remark: The LMS and RLS algorithms have the same channel tracking capability when
they are applied to track the time-varying channel directly with a white input sequence.

In fact, there are a few observations in this regards reported in the literature that the
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two algorithms would not make any significant performance difference in terms of tracking
speed when applied to a fast time-varying channel. If one fails at a certain point of tracking
speed, the other follows. We have performed some simulations to verify the claims. Figure
4-2 is the channel tracking results of the two algorithms when the fading rate of the channel
was 200 Hz. The channel was initially known from the start and both algorithms are in
training mode. The results show that both algorithms are capable of tracking the fast fading
channel in the training mode. There were four fading taps.

However, as we have also found out from our own simulation results (to be

discussed in Chapter 5) the symbol-by-symbol recursive algorithm could still not meet the

RLS channel tracking results: (real part) RLS channel tracking results: (imag part)

LMS channel tracking results: (real part) LMS channel tracking results: (imag part)

Figure 4-2 The RLS and LMS tracking of fast time-varying channel
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tracking speed requirement of the digital cellular system even at the fading rate of 100 Hz.

The reasons can be found from the following statements:

* Error propagation in the decision directed mode: The algorithm needs to be in a deci-
sion directed mode in order to increase the throughput of the link in the realistic sce-
nario of operation. There will be a possibility of decision error propagation,

especially after a deep fade

* Lag in the channel estimate due to decision delay: The channel is updated when a new
decision symbol becomes available. The received signal must pass through the trans-
versal equalizer filters to reach the decision device. Thus, there is always a significant
decision delay, and this delay must be a significantly large whenever the ISI of the
channel is severe since the length of the filter has to be long enough to suppress the
ISI.

In order to avoid the specified problems of the recursive adaptation, feedforward
channel estimation techniques [53][54][57][58][59][8][71] have been proposed in which
known training symbols inserted into the stream of data are used for the channel estimation
and the decided symbols are not used in channel estimation. Following Section will discuss

the proposed feedforward channel estimation techniques.

4.2 The Structure of Feedforward Channel Estimation

We use the ternfieedforwardto imply that we do not make use of the detected
symbols to estimate the channel or update the channel estimates. The channel estimation is
solely based on the knowledge forwarded from the transmitter, the known training symbols
periodically sent to sound the channel. The continuous transmitted data frames are
structured as illustrated in Figure 4-3.

The feedforward channel estimation method to be described in this chapter involves

two steps: The first step is to estimate the fractionally-spaced channel impulse response by

85



Gray blocks: known training symbols,
White blocks: unknown data symbols. Bsymbols (a frame)

N

Fading téap
evolutiorii

/ Interpolation for

Reference Time-Frame the channel variation
in this block using the four
channel estimates

0

® Channel estimates from the periodic training.
Interpolation on a Q (= 4) set of channel estimates

o Computes the interpolated estimates of the channel
at everyu symbol epoch.

Figure 4-3 Channel estimation and interpolation tracking on a TDMA frame.

observing the training segment of the received signal. The second is to obtain a finer time-
scale channel estimate for the channel responses in-between any two training segments, by
interpolating a set of obtained channel estimates.

The first step starts with an important assumption. That is, during the reception of

training segments, the channel parameters are assumed to be fixed (time-invariant). Without
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this assumption we run into the problem of an infinite number of solutions by having more
unknowns than the number of observation equations. This is callsdagp*shdtchannel
estimation. Specifically, the fractionally-spaced impulse response of the channel assumed
to be fixed during the observation period. Solving the set of observation equations provides
the estimate of the channel impulse response, which will be discussed in more detail in
Section 4.3.

The second step involves tracking the channel variation during the data segment in
the middle block as shown in Figure 4-3, by interpolating a set of the snap-shot channel
impulse response (CIR) estimates. Specifically, two parameters are required to be defined
for interpolation. One parameter is the frequency of periodic channel estimation, i.e., the
length of a framd3, where a frame consists of a training block of leni§ftand a data block
of lengthNy, i.e.,B =N, + Ng. According to the sampling theorei should at most satisfy
B<1/(2f,,T). For instance, ify,,T = 0.0042, the shortest expected period of a fading
tap is about 240 symbols. ThiBshould be less than 120 symbols. The other parameter is
Q, the number of channel estimates used in each interpolation. In this pape@ sdlyvill
be considered. Thus, an interpolation over 4 consecutive channel estimates, 2 past and 2
future, is performed to obtain an interpolate mfat an epoch during the middle data
segment. The maximum interpolation delay @« 4 is 3B symbol periods. We use a sinc
function (sirx/x) interpolator for the simulation results for DFE receivers in chapter 5 or a
square-root raised cosine interpolator for simulation results for chapter 7 and chapter 8. For

an example of interpolation using the sinc function; first define

Ot g Sin(mt/Teg)

sinc = , (4.6)
T oo T/ Test

where T, = Tg [B such that it is the sampling period of the estimated CIR samples.

Then, the interpolated channel vector can be represented in the following equation for any
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Tg 3Tg

of the channel estimate vector for= 0, X Tg — of the reference time-frame
indicated in Figure 4-3,
—iT
b(t) = Zf:_lbisinch—eSH (4.7)

est

At the expense of the interpolation delay, channel tracking technique by
interpolation resolves a few problems inherent in the recursive symbol-by-symbol
adaptation techniques. First, it uses only the channel estimate from the known training
symbols. Thus there is no decision error propagation problem. Second, there will be no
more decision delay problem which was the limiting factor of recursive channel tracking
techniques that must rely on the detected symbols to update the channel states.

The decision delay in the case of diversity combining decision feedback equalizer
in chapter 5 is the addition of all the anticausal delays in the receiver, i.e., the overall length
of the anticausal matched filter and anticausal feedforward filter, which will add up to quite
significant number. This advantage of having a channel estimate even during the decision
delay, however, has not been fully utilized in the framework of DFE symbol detection
schemes in previous research; for example see [10, 20]. In Chapter 5, a new DFE

computation algorithm that fully exploits this advantage will be developed.

4.3 Parametric Channel Estimation

The use of a bandwidth efficient square-root raised cosine (SRRC) transmit filter
increases the effective span of the overall channel impulse response (CIR) perceived at the
receiver. For thélat fading channel, a receive filter matched to the SRRC filter can be used
to recover an isolated source pulse with zero crossing at dveegonds. In the presence
of frequency-selective channbl , however, matched filtering with the SRRC filter alone

could not provide a Nyquist pulse: The composite puldg,b [ f , IS no longer a Nyquist
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pulse. Thus we need an estimate of the overall channel response for optimum symbol
detection.

For the description of the channel estimation procedure in this chapter we focus on
a single channel branch Figure 4-4 among the number of diversity channel branches
described in Figure 2-12 since each diversity channel branch has the identical structure.

Briefly reviewing the notation we have for Figure 4-4:

The Tg/2-spaced sampled transmit filtér is a unit energy [31 x 1] column vector

which corresponds to a 15 symbol truncation.

* X(t) the received signal at each diversity branch, which is bandlimited with the
excess bandwidth ol{B)(1/Tg). Tg/2-spaced sampling is considered, i.e.,

x(K) = x(t = kTg/2), (4.8)

wherek denotes th@ g /2-spaced epoch index.

* {I1(k)} represents the symbol sequence at the half-symbol sampling rate. That is, it is

(k)
SRRC "
I (K)

— f b(k) X(K)

\ /

g(k)  T/2-spaced FIR filter

Figure 4-4 Snap-shot channel parameter estimation
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a zero stuffed sequence such thék) at dysgpresents the symbol transmitted at

the baud rate anti(k) at every ddb zero-valued.

* The Tz/2-spaced sampled noise sequefogk)} Is assumed to be complex-valued

additive white Gaussian with zero mean and variange

*b(K)=[ by(k) ... b(NR_l)(k) 1", represents the Rayleigh fading time-varying impulse
response of thé -th channel, wheMg is the number of the time-varying channel

taps (g = 3 in this dissertation).

* Each Tg/2-spaced overall channel impulse responbék) is defined as

h,(k) .= f O b,(k), whered denotes the convolution operation.

4.3.1 Construction of channel estimation equation

The following two assumptions were made for the construction of the channel

estimation equation, so that a tractable solution could be obtained.

» Assumption 1: The channel vector is truncated tolg symbol periods:

To reduce the length of the training sequence required, a truncated channel is used in
the channel estimation equation. That is, the estimation accuracy is traded off for a
shorter training since longer CIR requires longer training sequences. We represent the

truncated overall CIR witha [@, x 1] vectbr , whéde  <15.

» Assumption 2: The channel is assumed to be a fixed vector, non-time varying during

the training observation period.

We make the snap-shot assumption that during the observation intefiéihe chan-

nel is effectively fixed. Consequently, we drop the epoch index of the channel vector,
denotingb(k) asb . Similarly, the cascade channgt) = f [ b(k) dukirg O,
1,....2m-1

For the half symbol-spaced system the received signal over an observation period is
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described by,
x(K) [0 Ziz':°0_lhil (k=i) +n(K), (4.9)

where{1(k)} is the zero stuffed input symbol sequence, it.éncludes known training
symbols for everk and 0.0 for odck. That is,k is the half symbol-spaced epoch index, the
zero stuffed input sequenégé(k)} represents the input symbols at the baud rate.

Note that there areN, unknown parameters in (4.9). Previous channel estimation
methods (e.g. see [9,10,20] for double sampling and [30, 33][Hgpaced sampling)
estimate these parameters without exploiting the fact that the overall CIR is a convolution
of the transmit shaping filter and the time-varying channel filter. In fact, the impulse
response of the shaping filteraspriori known to the receiver and thus the true unknown

parameters are only the time-varying channel filter taps.

Key equation:
Using thea priori knowledge of the transmit filter, the number of unknown parameters can

be reduced. The truncated CIR , the convolution of a truncated transmit filter and the
channel filter, can be represented by= F b , WhEre  isNy [2 Ng] matrix whose
elementsF ; ;) can be determined for the SRRC filter (an example of constructing the
matrix is given at the end of the section). Then, (4.9) can be rewritten as

x(K) szfco‘l ;\lz;lF(i,j)bjl(k—i)+n(k). (4.10)

Note that the number of unknown parameters in (4.10) is NawThis brings about a
number of benefits. First, with fewer unknown parameters, a shorter observation window is
needed. Second, with a shorter observation period the snap-shot channel estimation
performs robustly in fast fading. Since a snap-shot channel estimation problem relies on a
fixed channel during the observation period, a long observation may become

counterproductive [10, 20]. Finally, the estimates will be more accurate when there are
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fewer parameters to be estimated. Having obtained the estimates of the channel, the overall
channel can be computed from the convolution of the estinnael the SRRC filter.

The training observation vector = (x(0)x(1) ...x(2m-1))T is rax1 )
vector. We can divide the observation vector into two{ 1 ) vectors, collecting only even
elements ofx into even-observation vector and the rest to the odd-one. Each decomposed

observation vector poses a symbol-spaced channel estimation problem of

x = XFb +n, (4.11)
where

e x = (X(0)x(2) ...x(2m-2))T when we refer to the vector of even elements and

X = (X(1)x(3) ...x(2m-1))T when we refer to the vector of odd elements,

* X is a [m x Ng Toeplitz matrix whose elements are determined from the training

sequence of lengti; such that

1(0) 1(=2) ... 1(=2(Nc—1))
X = 1(2) 10) ... 1(-2(Nc-2))| (4.12)

I(2(r.r-1.— 1)) I(2(r.r.|.—2)) I(2(rr-1: NG)

* There is a relationship betwedy  the length of training sequence, the observation

period in symbol-epoch and.  the number of channel coefficients, which is

m= N, —N.+1. (4.13)
* Fis a [N. X Ng] SRRC matrix, ara priori SRRC matrix that can be determined for the

even and odd parts.

* The [mx 1] noise vecton is a multivariate Gaussian with a zero mean vector and a

covariance matrix of

= aore, (4.14)
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wheree,, denotes thgnx m) identity matrix.
4.3.1.1 Constructing the SRRC matrixF

An example withN, = 6 andNg = 3 is sufficient to describe the procedure of
obtaining the square root raised cosine filter maffrix. denotes the 31 tap square root raised
cosine filter, i.ef =ff;... fao T, wheref, s is the main tap of the SRRC vector. Then, a [12
x 1] truncated overall CIRh  can be described by a matrix and a vector multiplication as
h = F b,whereF isa[N_. xNg ] Toeplitz matrix which can be described by the first
row and the first column. The first row if § fq fg] T and the first column isf[ ... f1]"

Thus,F is

f10 f9 f8

F=|T T fo (4.15)

| Fa1 fo0 fig

Finally, aN_ x Nz matrixF in (4.11) for everx is obtained from taking all the even-indexed

rows of F . Similarly, taking all odd rows isfor oddx.

4.4 Novel Channel Estimators

Based on the new observation equation (4.11), we apply three classical parameter
estimation techniques. They are least squares, maximum likelihood and maximum a
posteriori estimation. From the two observation equations representing odd and even
symbols, two estimators &f can be obtained. We will choose the one that yields a smaller
theoretical mean square estimation error for a given training sequence. In the derivations of
the estimator, the training matr and thea priori matrix F are assumed to be fixed both
in the contents and in the dimension such that they are not subject of optimization in this

section. In addition we only considered cases with N, . Moreover, the inverse matrices
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to be derived are assumed to be well defined with an optimal or sub-optimal choice of the
training sequence matriX. The optimal training sequences will be discussed in section

4.6.

4.4.1 The Least Squares Estimator

If there is noa priori statistical knowledge about the noise and the channel, the LSE

of b can be considered and computed by

bLse:= argbminlx—XFb|2 = (FHXHXF) H(XF)Hx, (4.16)

where the superscriptf’ implies the conjugate transpose operation of a matrix angd
denotes the argument. This results in the lowest complexity estimator among the three. The
[Ng X m] matrix (FHXHXF)_l(XF)H can be precomputed and stored, and then an

estimate can be obtained by simply multiplying it with the observation vector.

4.4.2 The Maximum Likelihood Estimator

The MLE ofb can be obtained as follows,
bwmi = argbma>(p(x|b)) = argbma>{—(x—XFb)HRgl(x—XFb)], (4.17)

whereR,, is the covariance matrix of the noise. Setting the gradient of the quadratic term

equal to zero, we obtain
~ _ -1 -
buL = (FHXHRIXF) (XHFHRY) k. (4.18)

Thus, the MLE requires the second order statistics of the noise, such as the noise covariance
matrix R,. Thus, MLE would perform better than LSE provided that the noise is correlated
and that the autocorrelation function of the noise is acquired. In our estimation model of
(4.11), however, we have assumed white noise, Rgs O'ﬁ en, and thus the LSE is

identical to the MLE. Note that interpreting trﬁén_l as a weighting matrix, the MLE of
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can be interpreted as an optimally weighted LSEbofThus, the MLE also minimizes

weighted square residual errobs,—XF6| , but not the estimation e||tie¥$;|

4.4.3 The Maximum A Posteriori Estimator

An estimator which directly minimizes the mean square estimation errobs of
requiresa priori distribution ofb. The MAP estimator is in this category. In particular, the
MAP estimator can be obtained from

bmap = arg ma>(p(b|x)) = arg ma%pét()xg()m (4.19)

In our case, the noise vector is a multivariate Gaussian, and thus the posterior density
p(b|x)is also a Gaussian distribution where the mode and the mean coincide. Thus, with

some algebraic manipulations of the posterior density we can obtain the MAP estimator as
bmap = E{b|x} = Ry(FFXH)(XFR,FHXH + Rn)_lx, (4.20)

whereR, := E{bbH} . This MAP estimator df amounts to the minimum mean square
estimator ob.

Note that MAP not only require®,, but alsoRy. Thus, in practice it can be
employed only after enough information about the noise variance and multipath has been
obtained. While collecting the information we can employ the LSE. In this dissertation we
assume they are estimated. In particular, diagonal elements of the channel correlation
matrix Ry, are the average powers of multipath components such as defined in (2.24) and
(2.25). They are assumed to be estimated; off-diagonal elements are all zero valued
assuming wide-sense stationary uncorrelated scattering of the multipath components. We

consider more practical cases when these assumptions fail in Section 4.7.
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4.5 The Mean Squares Channel Estimation Errors

It is useful to compare the estimators in terms of their theoretical mean square
channel estimation error (MSCEE) performance. We first derive the mean square
estimation error matrix for each criterion. Then, a MSCEE is obtained froitnabeof the
mean square estimation error matrix. These theoretical results will be compared with
simulation MSCEEs in section 4.7.

The MLE (or LSE with similar steps) can easily be verified to be an unbiased
estimator by taking theexpectationof the following equation which is obtained by

substituting (4.11) into (4.18), i.e.,
BuL = b+ (FHXHRIXF) " (FHXHR Y)n, (4.21)

and by using={ n} = 0, where 0., defines arfix 1] vector of element of zeros. Thus, for
the MLE and the LSE the error covariance matrix of the estimator is equal to the mean
square channel estimation error matrix. The mean square estimation error matrix of the

MLE is
O = E{ (buL —E(BM)) (B —EBm))M} = (FAXHRIIXF) . (4.22)

This error covariance matrix of (4.22) meets the Cramer-Rao lower bound (unbiased class).
Thus, by, is the best linear unbiased estimator for the estimation problem of (4.11).

2

In our problem, howevelRR,, = 0,°e, is assumed, thus LSE and MLE produce

identical results, i.e.,
Oy, = 02(FHXHXF)™ = 0, (4.23)

andBML = BLSE-

Theorem 3 The maximum likelihood estimator achieves the Cramer-Rao lower bound for
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unbiased estimators.

Proof: Stating the Cramer-Rao lower bound for unbiased estimators as,
Covb)=M™, (4.24)

whereM is the Fisher information matrix defined as
v = [ B in(px o) Ein(pxi)) |- (4.25)
' Bb [Tdb

We will prove the equality, i.eGov(by,) = M ™

Note,

%In(p(x|b)) = —%(—Z(XF)HRglx + 2((XF)HR;1(XF))b), (4.26)

then,
M = [(XF)HR; (XF)ICoubm)[(XF)HR,(XF)] = [(XF)HR,Y(XF)], (4.27)

since we already knowov(by ) = [(XF)H Rgl(XF)]‘1 from (4.22). Thus the equality

in (4.24) holds.

MAP estimator achieves the minimum mean square error. Since the MAP estimator is a
biased estimator, we directly obtain the mean square error matrix sjing = B*x ,

whereB* = R (FHXH)(XFR,FHXH+R)™ i,

Onmap = E{ (BMAP_b)(BMAP_b)H} (4.28)

= B'E{xx"} B —E{bx"}B*" —B*E{xbH} + E{bbH} .

Then, we find
Ouap = E{bbH} —B'E{xb"} = (R,—-B"XFR,). (4.29)

Theorem: The MAP estimator achieves the minimum mean square estimaton of

Proof: Define B™ to be the best linear estimation operator, and then the linear

97



estimator that achieves the MMSElfs defined to bdd = B*x . Thery  will satisfy the

following equality,

b = argbmin(E{(B—b)H(B—b)}). (4.30)

The orthogonality relationE{ (b —b)xH} = 0 , leads BOE{xx"} = E{br"} , and

finally
B" = E{brH}E{xx"} ", (4.31)

whereE{xxH} = E{(XFb +n)(XFb +n)H} = (XFR,FF'XH+R,) ,
andE{brH} = E{b(XFb +n)H} = R FHXH . We note thaB" is identical to the MAP
operator in (4.20).

As defined in (4.11) there are twa priori matrices,F for the even and odd
observation vectors, and thus two estimatordafan be obtained for each estimation
criterion. In this paper, for an estimation criterion we selectRhbat produces a smaller
MSCEE for a given training sequence. Then, the estimhtarith the selected~ will

represent the estimator for the criterion.

4.6 The Optimal Training Sequences

Crozier [4] tabulates binary training sequences (BTS, binary sequences of 1 and -1)
for different channel lengthbBlc and observation length®s. The design criterion of the
sequence is to minimize theace of the error covariance matrix of a LSE of and thus
they are optimal in the least squares error sense. They are found either from exhaustive
computer search or using the “m-sequences.” The same design concept can be applied to
the LSE ofb, and new training sequences which minimizettlaee of the error covariance
matrix of the LSE ob can be obtained by the procedure.

The LSE criterion applied to ar x 1] observation vectox = Xh +n  produces
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the LSE ofh , i.e.,
s~ T
h = X'x, (4.32)

wherex' = (XHX)_lxH anch isalfl, x 1] vector. Then, the covariance matrix of the

estimator is
© = E{(A—E(R))(A—E(A)"} = a3(XHX)™". (4.33)

Therefore, the optimum sequences (stored in mAfriare the sequences that satisfy,

X = argxmin{tr(e)}. (4.34)

GivenNcandm, the optimum binary training sequence (OBTS) satisfies (4.34) and makes
the matrixXHX as close as possible to diagonal.

From (4.23), the covariance matrixipfsg  is
~ ~ ~ A 2 -1
O, se:= E{ (bLse~E(bLse)(bLse—E(bise)™"} = op(FIXHXF) *.  (4.35)

Now, the optimal training sequence is the sequence that niaikxs! X F to be as close as
possible to diagonal. This optimization problem can be approached by representing the
convolution operatiofXF in a matrix and vector multiplication form d8,X = ¢, where
x=[lg I1 I5... Inta] is @ [N; x 1] vector, is now aNl, x N, ] matrix, andis the [N, x 1]
OBTS vector. Then, the new optimal sequerdhat minimizes thdérace{ © gg can be
obtained as

x = Flc, (A1)
whereF] is the generalized inverse ©f [34]. The veatshould be scaled so that the
energy of the scaled vectois N; .

However, for two reasons Crozier's BTS will be used for our system simulations.

First, an improvement of the new sequence is typically less than a 1 dB SNR saving

compared to the BTS, while the exact SNR saving depends on the vaNjg of m. &od
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a short training sequence, the difference narrows. This indicates that the BTS achieves a
near optimum performance also for the estimatiot.dbecond, the elements of the new
sequence are real valued and not usually members of a digital modulation constellation.

The following table summarizes the training symbols used in this dissertation.

Table 4-1: The optimal binary training sequences

(N Np) The Sequence
(15, 6) 1111-1111-11-1-1-1-11
(11, 6) 11-1-1-11-11111
(7, 4) 1111111

4.7 Simulation Results and Discussion

In Figure 4-5, the performance of two channel estimators, LSE and MAP, in terms
of the mean square channel estimation errors (MSCEE) are assessed both in theory and in
simulation. The training sequence of len@th and the truncation lengtN, are 11and 6
respectively. We first note the effect of truncation at high SNR. Recall the channel
estimation of (4.10) where we truncate the length of the overall channel iy bgmbol
intervals. The slow fading curves stay very close to theory out up to 30 dB, whereas the
slow fading curves forN;, N.) = (7, 4) deviate significantly from theory at high SNR due
to the truncation errors.This suggests that truncatiox. &t 6 is sufficient for the purpose
of channel estimation. Next, we note that the fast fading curves show deviations from the
slow fading curves at 30 dB. These degradations are due to the snap-shot assumption that
during the observation perioas (= N; - N +1) the channel is fixed. Finally, we note that
the marked advantage of MAP estimation over LSE at low SNRs.

In Figure 4-6, we evaluate the MAP estimator performance in two practical
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Figure 4-6 (a). Simulation of MAP estimators using the estimated powers of the multipath
components. (b). Analytical results of correlated multipath channel, the numbers in the
parentheses indicate the mutual correlation coefficients of the three paths.
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situations; (1) when the multipath power profile is not available; (2) when the multipath
undergoes a correlated scattering but we assume the paths are uncorrelated. For (1), we
estimate the power profile from the estimateb.ofhat is, for the first frame in a 16 frames
long trial we use the MLE; for the rest 15 frames we switch to the MAP. The diagonal
matrix of Ry, at each frame is obtained by simply averaging the powers of each estimated
taps from previous frames. We plot the simulation result in Figure 4-6 (a). The results are
averaged over 500-1000 independent trials. We observe that the MAP with noisy estimates
still performs better than the MLE.

In order to evaluate the sensitivity of MAP against the correlation of the path, we revisit Eq.
(4.28). In particular, two separate channel correlation matrices can be employed in the calculation
of the mean square error matrix such that one is the diagonal nfijtix denote the uncorrelated
scattering channel correlation matrix for the MAP operﬁsrr and the d&er to denote the
expressionE{ bbH} in Eq. (4.28)R, is non-diagonal matrix and each off-diagonal term
indicates the correlation value of the two corresponding fading taps. That is, for the MAP

estimator operator we use
buap = BTx, (4.36)

whereB* := R (FHXH)(XFR FHXH + Rn)_1 and for the calculation of the mean square
error we use

Opap = E{ (Buap—b)(Buap—b)"}

= B'E{xxH}B"" —E{bxH}B"" - B"E{xbM} +R,
Figure 4-6 (a) Curve #1 is the results for the MLE. Curve #2 is the results of usual MAP
estimator. That is, both correlation matrices are uncorrelated ones, i.e.,
Ry, = R, = diag— matrix. Curve #4 is the case wheR,  is not diagonal reflecting the
correlation of the paths and al$®, = R, . Comparing #2 and #4 we see that the MAP

exploits the path correlation and achieves a better MSCEE. The extreme case of this is
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described in curve #5, when all three paths are perfectly correlated in which case the MAP
estimator practically becomes a MLE having only one unknown to be estimated. Curve #3
shows how much we will lose by assuming uncorrelated scattering of the taps, i.e., a
diagonalR,, . We note that curve #3 is still better than #2 which implies the MAP with the
assumption of uncorrelated paths still benefits from the correlated paths.

In this experiment, we observe: (1) the MAP takes advantage of the path correlation,
(2) when assuming uncorrelated scattering the receiver still achieves SNR advantage over
the MLE but not as much as knowing the correlations. Thus, our conclusion is as follows:
Provided that the path correlation among the fading taps in a real operation scenarios of the
transceiver would not be as large as our examples (i.e., the mutual correlation coefficients
of (1.0, 0.8, 0.6) and (1.0, 1.0, 1.0)), we can conclude that the path correlation is not a big

concern at least from the channel estimation point of view.

4.8 Concluding Remarks

In this chapter, we provided the feedforward channel estimation techniques. We
have pointed out some of problems with the recursive adaptation schemes such as LMS and
RLS. Whether the recursive algorithm is applied to equalizer taps directly or to track the
channel tap, the tracking speed could not deal with a fast Rayleigh fading channel. The
channel estimation technique proposed in this section uses the training symbols to estimate
the snap-shot channel impulse response and interpolate a set of them to capture finer time-
scale channel variation. This scheme avoids the problem of error propagation of recursive
algorithms running in a decision directed mode. We have proposed also a novel channel
estimators which utilize tha priori channel information of transmit shaping filter in the
estimation equation. The number of unknown coefficients were significantly reduced while

the performance became much more robust against fast fading channel. This performance
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advantage of the new channel estimation technique will dramatically improve the detection
performance of the receivers in the upcoming chapters. Future work in the channel
estimation may include the tracking of the maximum Doppler frequency so as for us to be
able to reduce/increase the training overhead. Others include the design of combined
estimation problem in the channel parameter estimation problem. We have used only one
term (even or odd) of the observation vector in estimating the channel vector. If we were
able to somehow combine the two estimates into a final estimate, we would expect a further

improvement in the estimation performance.
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Chapter 5

Diversity Combining DFE

We consider the use of decision feedback equalizer (DFE) as the proposed non-
linear symbol detection receiver for uncoded, single level constellation symbol
transmission. As shown in chapter 3, the use of DFE provides a significant advantage in
detection performance over that of linear transversal equalizers for severe ISI channels at a
very small increase in complexity--the increase in complexity is due to the calculation of
the feedback filter coefficients. Thus, the DFE has been successfully applied in practice, for
equalization of telephone channels as well as the time-varying wireless channels. In this
chapter, we want to investigate the design issues of DFE when we have available multiple
independently received signals from the diversity receiving antennas and the feedforward
channel estimates. Specifically, based on the assumption that the given channel estimates
are perfect, we derive a jointly optimum receiver in which the DFE and the multiple
received signals from the diversity antennas are optimally combined. In addition, unlike
previous assumptions that the channel is a fixed or quasi-static vector for the duration of a

burst, in our derivation of the DC-DFE the assumption is generalized to include the time-
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varying channel. As a result, a novel diversity combining DFE equation is obtained to cope

with the fast time-varying channel.

5.1 Robust Signal Detection over Fast Multipath
Fading, ISI Channels

Wireless digital communications systems such as IS-54, GSM, and PCS suffer from
many channel impairments such as discussed in Chapter 2, including low detection SNR
due to signal fading, intersymbol interference (ISI) due to multipath spread, and the time-
varying channel due to Doppler spread. For each of these channel impairments, a counter-
measure must be considered and should be optimally combined in a successful transceiver
design.

Let's discuss individual counter-measure techniques to deal with the stated
problems. To deal with a very low instantaneous channel SNR due to signal fading, use of
multiple independent receiving antennas are desired as they provide higher order of signal
diversity. To deal with the ISI problems, caused by multipath propagation of the signal as
well as a stringent shaping requirement of transmit filter, the use of an equalizer is highly
recommended for the land mobile systems. For a low complexity, simple transceiver
system, no equalizers are used and in this case the channel can be blindly assumed to be
flat-fading. In such systems the transceiver may employ the differential encoded symbol
transmission and differential detection at the receiver. Such a system would not provide a
robust performance due to intersymbol interference when the transceiver is to operate in a
high delay-spread region such as Urban areas as well as hilly terrains where a distant-
scatters are present. The ISI-induced irreducible bit error floors become significantly high
and persistent once the rms delay spread of the multipath power delay profile (MPDP) of

the region exceeds about 1/10 the symbol pefigd [1, 3, 8, 32]. This holds true regardless
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of the fading rate.

In addition, the transceiver design must also take care of the channel mobility since
the frequency-selectivéading channels is also capable of being rapidly time-varying
channel due to the highway speed mobile movement. For example, in IS-54, with a carrier
frequency of 900 MHz and assuming a mobile moving at a maximum highway speed of 120
km/hr, the maximum normalized Doppler fading r§jgT g (the product of the maximum
Doppler fading rate and the symbol period) reaches up to 0.0042 [8]. This implies that the
minimum time between the two fading nulls is 5 ms (}49 which is even shorter than the
proposed burst length of 6.7 ms.

To deal with such rapidly time-varying, fading and dispersive channels, we are
considering the use of decision feedback equalizers, diversity receiving antennas and the
feedforward channel estimation developed in chapter 4.

For tracking of fast time-varying dispersive channels, a block adaptive decision
feedback equalizer (DFE) based on feedforward channel estimation [4, 10, 20] has been
shown to be more effective than the conventional symbol-by-symbol adaptation methods,
such as least mean squares (LMS) or even recursive least squares (RLS) [5, 26] as discussed
in Chapter 4. Other block adaptive schemes, based on the feedforward channel estimation
but using the maximum likelihood sequence estimator (detector), can be found in [6, 9, 11],
and the chapter 7 and 8 of this dissertation.

In this chapter, we follow the block transmission scheme and the feedforward
channel estimation and tracking methods in chapter 4. That is, the receiver is assumed to
operate on continuous transmitted frames, where each frame consists of training and
unknown data segments. A “snap-shot” channel estimate is obtained from training
segment. Channel tracking during the data segments is performed by interpolating a set of
the snap-shot channel estimates. With the interpolated channel estimates, the receiver filter

coefficients are computed.
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The contributions of this chapter is that our results significantly extends the
previous published results [10, 20] in the areas of block adaptive strategy using the channel
estimate-based DFE. First, we compare two possible diversity combining DFE
implementations and propose the structure that is more robust and less computationally
complex for the block adaptive strategy. Second, we propose a new DFE coefficient
computation algorithm to deal with very fast time-varying channels. Third, we illustrate the
improved performance of the derived diversity combining DFE receiver and the
feedforward channel estimation through Monte-Carlo computer simulations. Finally, we

suggest a low computational complexity but very feasible suboptimal solution.

5.2 Baseband Equivalent Channel Model

In section 2.3, we have developed the diversity channel model and generation
methods for simulation. Here, we briefly review the channel model and notations. The
channel model is again illustrated in Figure 5-1.

Now, the symbols in Figure 5-1 are summarized here as

» f is a unit energy [31 x 1] column vector. It represents the transmit shaping filter,
obtained from truncating the square root raised cosine filter (with roll-off fg&tor ) for

the duration of seven symbol periods each side and sampling at theTrate 2/

* X(t) represents the received signal at each diversity branch, which is bandlimited
with the excess bandwidth of{B)(1/Tgz). Tg/2-spaced sampling is considered, i.e.,

X (k) := x(t = kTgz/2), wherek denotes thd 5/2-spaced epoch index.

* {1(k)} represents the symbol sequence at the half-symbol sampling rate. That s, it is
a zero stuffed sequence such thgk) at dvespresents the symbol transmitted at

the baud rate ant(k) at every ddis zero-valued.

» The noisen(t) is also assumed to b&g/2-spaced sampled and the sampled noise
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sequencen (k) is assumed to be complex-valued additive white Gaussian with zero
mean and variance,2. The noise sequences for different branches are assumed to be

mutually uncorrelated and also independent with the wireless channel.

* by(K) = [ by o(K) ... bLNR_l(k) 17, represents the time-varying impulse response of
the | -th channel, wherl is the number of the time-varying channel tapig € 3 in

this dissertation).

+ Each Tg/2-spaced overall channel impulse responsg(k) is defined as

h,(k) = f O b,(k) , whered denotes the convolution operation.

In this chapter, we adopt the feedforward channel estimation and tracking scheme
developed in Chapter 4. That is, we use the interpolated channel estimate vechp(&)Yor

and thush,(k) in computing the receiver coefficients.

AWGN
ny(K)
zero stuffed
symbols %, (K)
k) —— b, (k) '
. ° n|_(k)
Transmit .
Filter b, (K) X (K)
Channel
Filters

Figure 5-1 The baseband model for multiple diversity antenna channels where each
channel introduce the multipath delay dispersion.
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5.3 Diversity-Combining DFE

In this section we illustrate how to obtain diversity combining DFE coefficients
using the interpolated channel estimates. For the channel-estimate based receiver, the
coefficients of diversity combining DFE are computed from the channel estimates, which
involves some form of matrix inversion. Thus, a stable method of computing the DC-DFE
coefficients or the receiver architecture resulting in more stable solution would be desirable.
In Section 5.3.1, we apply the minimum mean square error (MMSE) criterion to the
receiver structure depicted in Figure 5-3, and obtain the Isasightforwardsolution. The
straightforward DC-DFE turns out to be disadvantageous, due to high tendency to
developing severe eigenvalue spread in the correlation matrix of the Wiener-Hopf equation.

The eigenvalue spread will be large for a severe ISI channel. In addition, the straightforward

AWGN
zerobstluffed l(':() " j w, (K)
symbols 1K) ik -
'« f by (L&l 1 PLOlw ] T (k)
' even
° l_
: k ' Fary
Transmit U n"(x) » w, (k) _
Filter b (K)|-& L Nigr X.(k)vvﬁ(k)-
' L
Channel VVb(k)
Filters Feedforward
Filters Feedback
Filters

j > Receiver parts

Figure 5-2 The receiver architecture of straightforward diversity-combining DFE
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DC-DFE increases the degree of eigenvalue spreads as the diversity order increases.
Advancing a few critical steps from the straightforward Wiener-Hopf equation, however,
we derive the proposed, matched filtered form of the DC-DFE which solves the problem of
eigenvalue spreads. Thus we explicitly prove that the two structures are exactly the same.
This provide us good insights into how the two are related. The first DFE realization will
be termed thetraightforwardrealization, and the other asratched filteredealization.

On the other hand, the decision feedback equalizer solutions were traditionally
derived under the assumption of non time-varying impulse response during the decision-
delay of the receiver. These conventional solutions had been applied without any
modification of the solution according to the time-varying channel. As the results, even in
a genie-aided mode where the channel variation is perfectly known to the receiver the DFE
receiver using the static coefficient computation method develops high irreducible
detection error floors such that no matter how large the input SNR may be the symbol error
rate does not decrease. To correct this problem, when deriving the MMSE DC-DFE
derivation we explicitly take into account of the channel variation during the decision delay.
Thus, the derived solution will fully utilize all the channel variation during the decision
delay. Specifically, the channel variations during the decision delay are available from
interpolation method described in Chapter 4. These were obtained at the expense of
interpolation delay, thus all should be utilized in finding the optimum receiver coefficients.

Main goal in the following sections is to obtain the matched filtered diversity
combining DFE that takes into account the channel variation over the decision delay. Main
purpose of the straightforward solution is to illustrate the eigenvalue spread problem and

the relationship with the matched filtered DC-DFE.

5.3.1 The Wiener-Hopf normal equation

The receiver side of Figure 5-2 depicts the straightforward diversity combining
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DFE (DC-DFE). We apply the minimum mean square error (MMSE) criterion to this
structure and obtain the straightforward solution. Briefly reminding the notation and our
assumption, the indek denotes theT 5/2-spaced epoch and thus evegorresponds to
symbol rate samplinga, (k) denotes the complex valued AWGNtlatoranch with zero
mean and variance of2 . We assume that the noises at each diversity branches are
mutually independent, and also independent to the channel and the transmitted symbols,
and that a transmitted symbol is an independent, identically distributetl) (complex-
valued random variable with zero mean and unit variance.

For the convenience of deriving the matched filtered diversity combining DFE, we
choose the received signat (k) to be the input signal into the adaptive parts
{ w,(k), w,(k)}. We might have also choser/'(k)  as the input signal to the adaptive parts
{ w,(k), w,(k)}, which is the approach we have taken in section 5.3.2.

EachT/2-spaced feedforward filter is representedvoy(k) andTthespaced
feedback filter by aNl, x 1] vectorw, (k) . We denotev(k) fw](k)...w[(K)w/[ (k)]T
Each Tg/2-spaced interpolated overall channel is assumed perfectly estimated and
represented by ai[g x 1] vectby(k) . We assuﬁ@e is evenL\Ign:d Ng/ 2

We now want to find the optimal vectar, (k)  that minimizes the mean square error

at each decision instak € 0, 2, 4..), i.e.,

w,(k) = arg minEHT(k)—l(k—A)|2|h|(q), q=k k=1, ... k=01 =1, ..., L5 (5.1)
w(k) O O

whereA is the required decision delay in unitslét. We also assume that is even, and

A=A/2.The predecision valufe(k) is now described by,
1(k) = Zle XTRW(K) + 1 Twp(K), (5.2)

where 1, (k) = [I(k—2—&)... I(k—2Nb—5)]T (assuming the past decisions were
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correct), and where X(k) :=[x;(k) x,(k=1) ... xl(k—ﬁ)]T . By defining

s(k) = [x{(K) ... x[ (k) IT(K)]T, 1(k) can be written compactly d¢k) = sT(k)w(k)

Note that the length ox, (k) i +1 and thus the length of the feedforwgid) is also
A+ 1. At this point, we are simply assuming a very large feedforward filter length for the
derivation of the matched filtered solution. The desired relationship between the
feedforward filters of a finite length and the decision delay can be established later for each
solution.

Now each input vectax, (k) to the feedforward filver(k) can be written as

x(K) = H, (k)1 (k) +n,(K), (5.3)
where we have defined
oK) N,k 7. _o(K) 0 0 |
0 b 1(k=1) hy 5(k-1) h g, _q(k=1) ©
0 h o(k=2) hy (k=2 h « .(k=2) 0
H,(K) = 1, 0(k=2) hy 5(k=2) I,Ng—z( )
0 hy4(k-A-1) h y(k-A-1) ... hmg_l(k—ﬁ—l)
0 hokd) kD) .. hg (kD) |

L(K) =1 (k)1 (k=2)...1(k=2(A + Ny = 1))]7, andn (k) :=[n(k)n, (k- 1)...n,(k—8)]T :

In what follows, assuming a decisionlat 0, we omit the notation of epoch (the
parenthesis) from the matrices for brevity and retrieve it after the solution is derived. We
also omit the notation for the mathematiaadnditioning operation in (5.1) but it is
understood that the mathematiexipectationis meant to apply only to the noise and the
symbol sequences. Then the mean square measure of (5.1) can be compactly written as

E{|sTw—I(—5)|2}. Invocation of the  orthogonality  principle  gives
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E{s($'w" —1"(=A))} = 0, which results in the Wiener-Hopf normal equation

E{sd}w" = E{sI"(-A)}. (5.4)
Now we denotex:= [xi". . . x "I, R, = EDxx"}, R ;== E{xlp},
w,=(WT; ... wT)", andc :=E{xI*(-A)} . Then, (5.4) can be rewritten as,
Ryx Ryt | |w, _ E(xxH) E(xIF)|{w _ {c} (5.5)
Ryp EUpIE)| (W E(Ipx™) =n, <n,| [Wh On,

and in a detailed form as,

E(xyxt) E(xgxb!) .o E(xq 15N [wy C1
E(xpxt) E(xox8) ... E(ol )| [wy| _ | € (5.6)
E(x) EQpd) o Sngen,) (Wl |Ony

where we have useB{ 1" (-A)} @Nb aml(l I £) kN, - Recall our assumption
that the noise at each diversity branch are mutually independent, and also independent with
thei.i.d. input symbols. Next, eacr(i& +1) x1 ]cross correlation vector can be shown to

be the(A + 1) th columnoH, ,i.e.,

c, = E{(H/I +n)I"(-A)} = Hi ¢ ay1=1..L (5.7)
The individual sub-matrices of (5.6) can be identifiegs 1,..., L,as
E{xix]H} = E{(H;l +n;)(H;l +nj)H} = HiHjH+0r2]6(i—j)CD, (5.8)

where d(¢) is the Kronecker delta function adud ,(5;& 1) x (5 +1) ] autocorrelation

matrix of the noise, is equal ta . The otheéﬁ[+ 1) x N, ] submatrices of

(A+1)x(A+1)
(5.6) arefoi =1,..., L,

E{xiI§'} = E{(H;l +n)If} = HiEE{I} = Hi ariaeny (5.9)

115



andj = 1,..., LE{beJH} = E{lel';'}H.
The derivation of the matched filtered solution will be continued from the results
obtained so far. In this dissertation, the optimal solutmbtained from (5.6) will be

categorized as a “straightforward solution.”

5.3.2 A straightforward solution

For the straightforward solution with finite filter lengths, we may want toxj'¢&) ,
the received signal after the receive-SRRC filter as depicted in Figure-1, to be the input
signal to the adaptive partsy,'(k)  amwg,(k) . The benefit of this approach is that the
required adaptive filter Iengthif' of theg /2-spaced feedforward filtegk) can be
shorter than that ofv,(k) . From the standard procedure of Section 5.3.1, (5.3) - (5.9), a
matrix equation isomorphic to the straightforward solution of (5.6) can be obtained. The
differences are thatx'(k) replaceg(k) , and that only thfef' k1 ] sub-vector
Xll,A—Nf roRa1 instead of the ([& + 1) x 1 ] vector, represents the input vector in (5.3).
This leads to the following modifications to (5.3) - (5.9):

* h (k) with length Ng represents the convolution of the chatng) and the raised
cosine function.

* H, represents thelq[f' X (Ng +4) ] sub-matrbkll GoRy+2h+1:)

» The cross-correlation vectocg , each individual sub-matrli({o<fixjH , and that of
E{x;! '} are appropriately truncated to have the correct dimensid;of [L 1,
[Nf' X Nf'], and [Nf' x Ny, ] respectively.

* Theij th element of the noise autocorrelation matrix in (5.8) is now
cD(i,j) = f,.((i—=])Tg/2), wheref .(t) isthe raised cosine function with a roll-off
B=0.35.

The decision delay of this solution takes the forﬁns Nf'—1+Ag (equality with a
sufficient number of feedback filter taps), Whéx& is the main tap location of the channel

h(k) . Furthermore, ignoring the channel variation obaafr‘ the straightforward solution of
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{w,'(k), wy(k)} reduces to the one of [20].
In fact, theL N;' Tg/2-spaced coefficients of the feedforward filters can be

obtained from solving

[R,, —R, RE Iwi = c, (5.10)

and theN, T-spaced feedback filter coefficients from

wp = —RH wi. (5.11)

We now illustrate two major drawbacks of the straightforward methods. First, the
computational complexity increases exponentially with diversity order. The complexity is
order (LN'¢)® provided we use a Cholesky factorization to solve (5.10). Second, a more
serious problem, is that the matrRXX—RXI R;'I becomes extremely unstable as we
increase the number of diversity order1 ; a huge condition number (the ratio of the
largest and the smallest eigenvalues) occurs.

A large eigenvalue spread occurs when the cross-correlation submatrin;&of
of (5.6) have large values. Recalling that since éxpectationdoes not apply to the
channelsh,(k) from (5.1), the cross-correlation between any two diversity channel at any
given time is not zero valued in general. These non-zero off-diagonal matriEg&in are
the main cause of the large eigenvalue spreads of the r’rfést(r)% . For a simple illustration,

consider a two-by-two correlation matrix, i.e.,

A;rﬂﬂﬂﬂ&&izkc

} , for which a diagonalization reduces to

E(X;X;,) E(X;X,) cb
a-¢ 0 | (5.12)
0 b+¢
where c2<alb from the Schwartz inequality and wher@ is denoted as
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Figure 5-3 The receiver structure of the matched filtered diversity combining DFE.

&= %(m—la— b). It is evident from this example that there will be only

one significant eigenvalue when the cross-correlatitamds to its maximum. By the same
analogy, the condition number (Rxx may become very large whenever the cross-
correlation submatrices have large values. In our simulation, at high SNR (more than 15
dB), the order of the condition number of matRy, for a relatively smallN;" £ 4) often
reaches up to Bfor L = 2 or 16 for L=4. Therefore, without a regularization technique

to relieve the eigenvalue spreads, the DFE coefficients obtained at high SNR often become

unreliable due to magnification of the channel estimation errors.

5.3.3 A matched filtered diversity combining DFE solution

We now discuss the matched filtered diversity combining DFE, depicted in Figure-

2. Since channels are estimated, at each diversity branch the received signals can be
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matched filtered byM (k) . The matched filtered signals are then combined and can be
sampled at the symbol rate without loss of information. The  -spaced sampled combined
signal is then fed to th& 5 -spaced feedforward filek) . The correlation matrix of this
structure does not suffer from large eigenvalue spreads.

From the results in [52] it can be observed that, although not explicitly stated, the
channel diversity combining DFE problem can be treated as an equivalent single channel
DFE problem when using the matched filtered solution. This implies that for a finite length
DFE solution the dimension of the correlation matrix becomes independent of diversity
orderL. Thus, there will be no cross-correlation submatrices to spread the eigenvalues.

The derivations in [52], however, are performed using a quasi-static channel
assumption and focus on obtaining mean square errors of an infinite order DFE from which
the Chernoff upper bounds on bit error probability can be related. What we need, however,
is a solution (with finite filter lengths) that takes into account the rapid channel variation
over a decision delay. This can be accomplished relatively easily with a matrix
representation of the signals and filters as we have developed in V.1.

In this section, we continue the derivation of the NT-DFE solution from the
straightforward solution (5.6).

TheL simultaneous matrix equations of (5.6) can now be rewritten as
(HyHE + 00y o )Wy +HiHEW, + .+ HiE{I i wy = ¢ forl=1,  (5.13)

2
n

HoHE W, + (HoHE + 002y oy Wo + .. + HE{IL Y wy = oy forl=2,  (5.14)
similarly for up tol = L, and the last matrix equation for the feedback part is
E{ 1,/ "} H W + E{1,1H}HE W, + .. +wy = Oy . (5.15)

Arranging theL matrix equations in termswf) and substituting them into (5.15)(5.14),

each of thedlk matrix becomes
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L * 2 * L * _
H S o Hiwe + o —H EQIEYE(IIMY S - HEw, = . (5.16)

Now, by defining M;:= H,—HE{II F}E{I IH} and V"= Z'r‘leer: , and
rearranging with respect wf , (5.16) produces
WT = %(—I\/ﬁ a%a +¢) = M|\~/*,for eachl, (5.17)
Gn
where the (5 +1)x(A+1) ] matriM, is equal to the sub-matrixqf
My = H (. 0n) (5.18)
and the elements of thef + 1) x1 ] vecware defined as
~ 2 .
gl—vi)/on = A
Vi=g ., . (5.19)
E(—Vi)/on i=0..,A-1

We note from (5.17) that each feedforward filtey can be decomposed into a matched
filter at each diversity branch andlg;  -spaced feedforward filter which is common to alll
the diversity branches.

Next, pre-multiplyingM ! and substituting,  of (5.17) into the correspondling

th equation of (5.16), and then summing over allLtleguations produces
[ SOMHAM, S S MHM. + 02 MHM}V*: “ MHe (5.20)
Z:l ! lDZrzl P ”lel F lel L= '

Now define a {A +1) x (A+1) ] matrix¥, .= MHM, , and not#, = MM, = WH |
and similarly for¥ := ZIL_ W= WH _ Also note thaZL_ 1M|HcI of (5.20) is just the
(A+1)-th column ofY, i.e., Z:‘_1M|Hc| =Y Finally, substituting (5.17) into

(5.15), we have the feedback coefficients,

* L % L .
Wb = _$|=1E{lblH}H'HMIEV = EZ|:1(H|,(A+1:A+Ng,:))HMIEV . (5.21)
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From inspection of (5.17) and (5.20) all the necessary information on the matched
filtered diversity combining structure can be obtained. Specifically, the matched filter
coefficients of (5.24) can be determined fravf?  , the combined signal of the diversity
matched filter outputs is the input signal to thg  -spaced feedforward¥ilter , and the
decision delay should ba = Ng +2(N;-1) forBg -spaced feedforward filter length
with N .

In particular, considering/,_y .., for a feedforward filter with length, |

(5.20) can be reduced to

*

RVa_N,+1:0a = Waon,+1:80) (5.22)

whereR := (WWH + cﬁw)(A_NfJ, 1:4,0-N, +1:4) - And thell x 1] feedback filter can

be obtained from

Wp = BV a_N, +1:4 (5.23)

where the N, x N ] matrixB := a:‘: L(Hi@ariasn, M lao:Nb—l,A—N, P
For the matched filtered diversity combining DFE, the decision delay is the
summation of the matched filter and feedforward filter lengths. It is defined in unitg of ~ /
2-spaced epochs ad\ = Ng +2(N¢=1) , or in units dfspaced epochs as
A= Ng+N¢-1, whereN; is the length off 5 -spaced feedforward filter (k)
The [Ng x 1] matched filter can be identified as, assuntng 0 is the current

epoch,
_ * . _ * . _ * _N T
M, = [h|,Ng—1( 1) hI,Ng—Z( 2) ... hio(=Ng)]". (5.24)
Note the decreasing epoch index of the vector elements. Thus each matched filter at an
epochk needslqlg previous snap-shot channel estimates.

To describe the DFE filters, it is convenient to first defing g-spaced sampled

summed channel autocorrelation function (SCAF), i.e.,
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)= T Wa(0), (5.25)

where each diversity channel autocorrelation function| fof, ...,L and forr =0, -1, ..., -
Nf +1, is defined as

Ng—1—

I =
Wi.a(r) zq:\a
fora = -Ng+1,...,0,...,Ny-1 andy, o(r)=0fora=|N

lal | « N N
“h I,q—a(q_Ng_a"' 2r) Eh|,q+a(q_Ng_a"' 2r),

g| . Note that the phases of the
main termsy, o(¢) are equalized. Thus the main tepp(+) is the resultohstructive
additions while non-main terr{sp ()} ,,, are not.

Now, theij th element of aN; x N¢] correlation matrixR can be described as

R, = 3;‘_1N;L W) WL (=) + opw; (=), (5.26)

fori,j = 0,1 ...,N;-1..

A [N; x 1] cross-correlation vectd?  can be identified asj fer0, 1, ..., N; -1 :
Pi = Wy, 1-i(). (5.27)
Finally, a Ny x N¢] matrix B is, fori = 0,1, ..., N,—=1,andj = 0,1,...,N; -1,
B,y = Wn,+i-j (=) (5.28)

Then, theT-spaced feedforward filter can be obtained from solvinRV* = P, and the
feedback filterw, fromw, = —B V" . We refer this as a matched filtered non-Toeplitz
DFE (NT-DFE). Note that this solution utilizes all the channel state information during the
last A(T/Z) period. When time invariance of the channel over the decision delay is
assumed, the channel matri (k) of (5.3) becomes block Toeplitz, and all the epoch
terms inside the parenthesis of (5.26) - (5.28) can be ignored. We refer this as a matched
filtered Toeplitz DFE (T-DFE).

In fact, we have shown that the matched filteribgliversity combining DFE
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Figure 5-4 The equivalent symbol-spaced, single channel DFE setting.

problem can be treated as an equivalent single chamgespaced DFE problem, as
depicted in Figure-2. Leh  denote the symbol spaced epoch. The equiladpaiced

channel is a [(JZ\Ig -1 ) x 1] vectop(n) whose elements arg thg(n)} of (5.25),

a<|N
ie., qJ_Ng+ 1(n) is the first element of(n) ; and the equival@rdpaced ngoise is(n)

with a2 [p,(n) as its autocorrelation function. Then, tflespaced samplea(n) is
2(r) = ()1 (n) +v(n), wherel (n) :=[i(n) I(1—1) ... I(1—2Ny+1)] - Now, for

a [N x 1] input vectorz(n) =[z(n)... z(n— N; + 1)]T , the predecision valugn)
analogous to (5.2) can be defined és) z™n)V(n) + | p(N)wy(n) . Then, following the
standard procedure analogous to (5.3)-(5.9) the matched filtered solution of (5.26) - (5.28)

can be reproduced.

5.3.4 The equivalent single channel

The matched filtered diversity combining DFE has lower complexity than the
straightforward approach and does not suffer from the large eigenvalue spread that is
observed in the straightforward solution. Note that the dimension of the correlation matrix

R, [N; X Ng], stays the same for any diversity order. Thus, there are no cross-correlation
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Figure 5-5 Addition of the symbol-rate sampled matched filter outputs.

submatrices to spread the eigenvalues. Thus, the eigenvalue spread of the correlation matrix
is now fully determined by the SCAF vectap(n) . Also note that SCAF values
{Wa(n)}, ., in (5.25) correspond to ISI terms relative to the phase equalized main term
YPo(n), and that their energies relative to the main term decrease for increadihgs, the
correlation matrix tends to be more stable for increasinghis indicate that the explicit
diversity reduces the intersymbol interference problem. In fadt, # o , the equivalent
single channel becomes AWGN. For our block adaptive strategy, the use of matched filtered
diversity combining also helps stabilize the DFE computation algorithm; it is obvious since
the ISlisreduced ak is increased. Thus, the DFE coefficients obtained from the channel
estimates become less susceptible to channel estimation noise enhancement.
Comparing the matched filtered NT-DFE and T-DFE, the NT-DFE is optimal
because it uses all the channel state information during the decision delay which are
provided by the channel interpolation. The T-DFE uses only partial information and is thus

suboptimal but has lower complexity than the NT-DFE. The NT-DFE provides a
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performance advantage over the T-DFE only when the channel is in fast fading and tracked
with a reasonable accuracy. The NT-DFE used in an ideal channel reference mode (the use
of perfect channel) can serve as a benchmark to identify the source of irreducible symbol
detection errors in fast fading. In the next Section, the above comparisons will be made

through computer simulations.

5.4 Simulation Results and Discussion

We now discuss the simulation results. For computer simulation of the developed
systems for wireless channels, we developed the custom-made C++ routines. The wireless
channel virtually has an infinite set of possible impulse responses for each channel with a
given multipath power delay profile. Therefore, the performance evaluation of
communications systems for wireless channels may take a large amount of CPU time until
properly averaged simulation results are obtained. For this reason, a system simulation code

that can be compiled is highly recommended.

5.4.1 BER performance in slow fading

In Figure 5-6, the BER performances of two receivers are compared with the
theoretical matched filter bounti@VIFB) developed in Chapter 6. The MFB is the lowest
attainable bound since it is obtained assuming the transmitted pulses are far enough apart
so that no ISI occurd-lat fading indicates the matched filter bound for the single tap
Rayleigh fading channel, and was given as a reference.

In Figure 5-6, “LSE and interpolation NT-DFE” refers to the use of least squares
channel estimation, channel tracking by interpolation, and non-Toeplitz DFE. “RLS

channel tracking T-DFE” refers to the use of a recursive least squares algorithm to track the

1. Symbol error rate probabilities developed in Chapter 6 can be translated into the bit error rate
results with a minor modification.
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Figure 5-6 Average QPSK BERs in slow fading: RLS channel tracking T-DFE and
LSE NT-DFE compared with theoretical matched filter bounds.
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time-varying channel (i.e., without channel interpolation), and the Toeplitz DFE for symbol
detection. The T-DFE is used since the channel states during the decision delay are not
available with the recursive adaptation. With regard to the use of RLS algorithm, the
channel-estimate approach, instead of a conventional direct adaptation on the DFE
coefficients without channel estimation, is selected since the channel-estimate based DFE
(without diversity) has been shown to be more effective than the direct DFE adaptation
[54][67]. Specifically, we use the exponential windowing RLS algorithm from [67]. To be

a fair comparison the same known training blocks are inserted in the data stream. Thus,
during the training segment the RLS algorithm and DFE filters are refreshed at the same
rate. Furthermore, the exponential weighting faciaf the RLS algorithm is optimized at
various SNRs, fade rates, and channel lengths. For this, the following equation is adopted
from [67],

(Nc+1) (1-w)°
(2f 4, T’ (1 + w)?

SNR= (5.29)

The filter orders used in the simulation afeg( Ni, Np) = (20, 5, 5). The channel is
in slow fading affy,= 10 Hz g4,T = 0.00042) We note that the slopes of BER curves for
both methods (e.g. about ?Qner 10 dB SNR folL = 1) are close to those of their MFBs
and steeper than those (e.g-ler 10 dB forl = 1) of the theoretical flat fading channel.
This indicates that both receivers take advantage of the implicit diversity gain, which is
inherent in the frequency selective channel. The RLS T-DFE and LSE NT-DFE show

comparable performance in slow fading.

5.4.2 BER performance in fast fading

In Figure 5-7, BER performance of RLS T-DFE with DQPSK signaling is evaluated

for fy = {10, 50, 100}. Since T-DFE ignores the channel variation over the feedforward
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Figure 5-7 Average DQPSK BER simulation: Toeplitz DFE with RLS channel tracking.
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filter length, longer filters might become counter productive in fast fading (this behavior is
also observed in [58] without diversity). Thusfgt,= 100 Hz we use shorter filters dil(J ,
Ni, Np) = (12, 4, 4) which have been determined to be optimal from our simulations.

We observe that d,,,= 100 Hz the irreducible BERSs are too high (0.1 for 1 and
0.01 forL =2) to be of any practical use. Therefore, we confirm that RLS actually fails to
track the three-tap fast Rayleigh fading channel.

In Figure 5-8, the BER performance of LSE and MAP NT-DFE receivers with
DQPSK signaling is evaluated &}, = 100 Hz. “MAP NT-DFE” refers to the use of
maximuma posteriori channel estimation, channel tracking by interpolation, and non-
Toeplitz symbol detection. We note that both receivers show a superior and robust BER
performance against the fast fading. LSE and MAP NT-DFE curves are not even flat out up
to 30 dB. Moreover, we note the significance of NT-DFE, which is illustrated by “the ideal
CIR NT-DFE curves” (the use of perfect channel at all epochs) since the NT-DFE exhibits
no sign of irreducible error floors. T-DFE would display irreducible error floors even with
the ideal CIR supplied. An example of this can be found in [58] where a DFE receiver, using
T-DFE without diversity, shows relatively high irreducible BER floors even in the ideal
channel reference mode (the use of perfect channel estimates at all epochs).

We observe that LSE and MAP NT-DFE curves show less than 1 dB difference
below a BER of 1(%. This suggests that the use of LSE is a reasonable design choice, at
least for an uncoded system. In addition, we note that the throughput rate at this BER is

B-N; 80-11
= = 0. 2
5 20 0.8625.

5.4.3 The sources of BER floor

In Figure 5-9, the causes of the BER floor at the fastest fading rate can be
distinguished. In particular, the non-Toeplitz-DFE and the Toeplitz-DFE are compared, and

three modes of obtaining channel impulse responses are also compared. The three modes
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Figure 5-8 Average DQPSK BER performance: LSE and MAP NT-DFE with channel
tracking by interpolation. Ideal CIR NT-DFE implies NT-DFE with no channel
estimation errors at all time.
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are the MAP channel estimation and interpolation tracking, interpolation on perfect
channel estimates, and the ideal channel reference. Comparison of these curves should
identify the main cause of the symbol detection errors at the high SNRs. The optimal filter
orders for the T-DFE are agailﬂlg, Ni, Np) = (12, 4, 4). The filter orders used for the NT-
DFE are (20, 5, 5).

Not much difference is observed for low SNR. Thus, we pay attention to BERs at
30 dB. First, note that the T-DFE curves entail higher BER floors. Even the ideal CIR T-
DFE produces a higher BER floor than the MAP NT-DFE does. This illustrates the
detrimental consequence of ignoring the channel variation during the decision delay in the
DFE coefficient computation. Second, by comparing the NT-DFE curves it is demonstrated
that the irreducible BER floors are mainly due to the interpolation errors. As it seems
natural that the interpolator performs poorly in the middle of the data segment, thus, the
decision errors occur predominantly during the middle of the data frame. This problem
persists even aB = 40 for which the BER at 30 dB is about 3x2qnot shown in the

figures). Thus, there is still room for improvement.

5.4.4 The suboptimal T-DFE and the DFE update periods.

In Figure 5-10, the impact on BER from increasing the DFE update pepiasls
investigated afty,,=100 Hz, whereu is the number of symbol periods between any two DFE
coefficients updates. Again, the BER performances of the Toeplitz and non-Toeplitz DFE
are compared. We use the optimal filter ordeﬁkg(l\lf, Np) = (12, 4, 4), for the Toeplitz
case. For the non-Toeplitz case (20, 5, 5) are used fot, while shorter filter orders (16,

4, 4) are used for other valuesofThe MAP estimator is used for both. First, note that the
performance difference of the two deepens for a higher diversity order and for a higher
SNR, whereas it becomes almost negligiblelfer 1 and for low SNR. Second, the non-

Toeplitz method maintains its superiority to the Toeplitz onlyffior 1 , as the BER gain
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quickly disappears fop >1 . Thus, if a largehas to be chosen for a lower computational

complexity, then the use of T-DFE is suitable.

5.4.5 Computational complexities

In Table 5-1: we summarize the number of complex multiplications and divisions
required for the RLS T-DFE, LSE T-DFE, and LSE NT-DFE. The first and second rows
indicate the required number of operations for the channel tracking techniques. For the
channel tracking by interpolation, we assume thaffit2esampled sinc function is stored.
Then, the interpolated channiel can be obtained fhw® complex multiplications and
the convolution ob andf requires anotheh\IRI(Ig . The matched filter coefficient vedlor
can be obtained without any computation since it is a pure mapping from the interpolated
overall channel. The third row indicates the summation of the number of operations
required to form the summed channel autocorrelation function, the correlation matrix, the
cross-correlation vector, and the feedback filter matrix. The forth row is the required
computations to solve for the feedforward filter with lendth provided the Cholesky
factorization [24] is used. The last row are example calculationk fod, 2,1 =1, with a
typical set of filter lengths and channel estimation parameters,
(Ng, N¢, Np, B, Nt, NO = (12,6 4 4 80 11 §. For the T-DFE receivers, required
numbers of operations for a larger DFE update periogi 6f 5 are also calculated and

presented inside the parenthesis.

5.5 Concluding Remarks

We have presented robust channel estimation methods which require little training
overhead over the fast Rayleigh fading dispersive channel. It has been shown through

simulations that channel tracking by interpolation along with our proposed channel
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Figure 5-10 Average QPSK BER simulations to determine the source of error floor
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estimation method is significantly better than the RLS channel tracking method and
previously published feedforward channel estimation methods in terms of both the
throughput and the BER performance.

For the block adaptive diversity combining DFE scheme we have proposed the
matched filtered approach because of its stable performance in the presence of channel
estimation errors. The matched filtered DFE simplifiesltfeversity combining decision
feedback equalizer into an equivalent single-channel DFE problem. This provides a
reduced computational burden in tracking the optimum coefficients of the receiver and
leads to a well-conditioned correlation matrix.

We have derived a matched filtered diversity combining NT-DFE which takes into
account the channel variation over the decision delay. This NT-DFE can obtain the full
benefit of the channel interpolation and thus provides a benchmark for performance. While
optimal, the NT-DFE incurs relatively high computational complexity, and thus for a
suboptimal but low complexity solution we propose the use of the T-DFE which still

provides better performance than the RLS algorithm.
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Table 5-1:

The number of complex multiplications and divisions required

RLS channel
tracking T-DFE LSE T-DFE LSE NT-DFE
Channel 9LNg (LmNg) (LmNR)
estimation +6 (B—Nt) (B—Nt)
Channel . N
tracking by the N/A 2LNR(Q+ Ng) 2LNR(Q+ Ng)
interpolation
Forming the
SCAF, the corr. Y
matrix, the Loy = Loy = L(Ng+Ng—1)+
Cross-corr. 5(Ng +Ng) + 5(Ng+Ng)+ N?(Ng +N,)-
vector, and the
feedback | Nr(Ng*Ne=1) | Ne(Ng*N¢ =111 0n5, g2 )
matrix 6
1\3 2 1\3 2 NE: 2
Feedforward | g(N¥+9Nf-4N¢) | &(N7+ONF-4AN) | =(N7+ONF-4Ny)
filters
+ Ny + Ny + Ny
Feedback filter, N¢Np N¢Np N¢Np
L =1 2and 279 (147) 263 (53) 464
H=1@ =5) 465 (271) 436 (88) 714
The last row of table show example calculations  for

(Ng N, N, B, Nt N = (12,6 4 4 80 11 B, and

m = Nt— Nc+ 1 = 6. The shaded region implies that the numbers of multiplication can

Ng = Ng/2

be divided byu , wher@ is the DFE filter update periods in units of symbol period.
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Chapter 6

Matched Filter Bounds and Spectral
Efficiency

This Chapter provides theoretical bounds on the detection probability of the
transceiver schemes discussed in the dissertation. They are matched filter bounds which
provide the best attainable detection performances in terms of bit error probability or
symbol error probability as a function of SNR. The detection probability curves obtained
from the matched filter analyses for any given modulation scheme indicate the benchmark
performance, which may or may not be obtainable in reality with the use of any particular
detection scheme. These matched filter bounds, therefore, will provide meaningful
information, when compared with the bit error rate (BER) or symbol error rate (SER)
curves obtained from extensive computer simulations.

The spectral efficiency of a channel indicates the capacity (bits/sec/Hz) of the given
channel. In this Chapter, the spectral efficiency of the multipath fading ISI channels will be
computed using the matched filter output SNR. This will provide insights into how to

design a power-and rate-adaptation protocol. The protocols which operating between the
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transmitter and the receiver, determine at a particular instant of time how many information
bits/sec/Hz and how much power should be used to transmit a symbol across the channel
while insuring a particular detection probability.

The matched filter bounds and spectral efficiency calculation techniques provided
in this Chapter are specific tq -ary QAM signals and the three-tap Rayleigh fading
diversity channel models developed in Chapter 2. However, they should be generally
applicable to any frequency-selective (or non-selective) fading channels and for any linear

modulation.

6.1 Matched Filter Bound

Based on the matched filter theory [73], the detection SNR of any linearly filtered
received signal is maximized when the matched filter is applied to the received signal
perturbed by additive noises. The matched filter bound analyses are based on the ideal
assumptions that the symbol detection SNR is maximized to achieve the input SNR such
that the ideal detector uses a perfect channel estimation and is free from intersymbol
interference by the assumption of a single-shot transmission. Therefore, it will provide the
benchmark detection performance, which may or may not be achievable. Nevertheless, the
matched filter bounds provide invaluable information when compared with the simulation
results of the proposed transceivers developed in Chapters 4, 5 and 7.

The derivation provided in this section closely follows the eigenvalue
decomposition methods provided by Fuyun Ling [74] and Proakis [33]. New results are that
the matched filter bounds are obtained épr -QAM signalligg, is 4, 16, and 64, and for
the three-tap half symbol spaced diversity channels.

Before starting with the derivations, let us review some of the important

assumptions we make in the derivation:
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» Assumption 1 Matched filter bound is based on a single-shot symbol transmission

and detection such that it ignores any intersymbol interference.

» Assumption 2 The matched filter theory holds with the colored noise; however in
this Chapter we assume that the noise is white, following the same channel conditions

given in Chapter 2.

» Assumption 3 The channel is assumed to ti@e-invariant over the duration of the

overall pulse, which include the channel, the transmit shaping and the receive filters.

» Assumption 4 The half-spaced fading components are mutually uncorrelated. The
uncorrelated scattering assumption of the wide-band multipath components explained
in Chapter 2 is the basis for this assumption.

Based on the assumptions, we first obtain the matched filter bounds for a single
channel case from which results for multiple diversity receive channels can be evaluated.
Recalling the channel model developed in Section 2.3, the received signal for a single-shot

transmission of a pulse modulated by the information syripol  can be written as

Ng—1
X(t) = Z by f(t—pTg)lo+n(t) = h(t)ly+n(t), (6.1)
p=0
where
* h(t) denotes the signal part of received sigr& <t <o due to the single-shot

transmission of the symbo},  at= 0%,

* |, denotes the transmitteg  -ary QAM symbol

1. A non-causal representation of transmission and reception of the signal is used for brevity.
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. bp denotes the -th component of tig/2  -spaced delay dispersion of the channel,
which is non-time-varying followingAssumption 3; we useNg = 3. In addition,
from the assumption that the channel is a low-pass filtered version of the wide-band
channel, whose low-pass bandwidth2gT 5 as assumed in Chapter 3, each compo-
nentsbp is mutually uncorrelated. Thus, the uncorrelated scattering assumption still
holds. Thus, we havkssumption 4,

E{b,bg} = @ 1,/2(P)3(P—0q)

. , (6.2)
o25(p—0)

where we denotef, = @ TB/z(p) forth€g/2 -spaced sampled, average multipath

power delay profile of the low-pass MPDP.

» f(t) is a square root raised cosine filter as defined in (2.26),F(vd) denotes the

Fourier transform off (t) ,
F(w) = f’ f (t) exp(—jwt)dt (6.3)

* n(t) denotes the zero-mean, complex-valued additive white noise with double-side

power spectral density &,

Now consider the Fourier transformfoft) , which is denoted as

Ng—1

[0 v BO
H(w) = F{h()} = F(w) $ byexpg-iwp—p, (6.4)
p=0
and the complex-conjugaté” (w)  can be written as
Ng—1 T
H*(w) = F*(w) z b;expgwpfg. (6.5)
p=0
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Based on the matched filter theory [73]," (w) is the optimal filter that maximizes the
detection SNR. Now applying the matched filter respoHSgw) to the received signal
X(t), we have the matched filtered signal which can be written in the Fourier transform

domain as

H* (w)X(w) = H"(w)H(w)l,+H*(W)N,. (6.6)

The inverse Fouier transform of (6.6) provides the time-domain response of the matched
filtered signal. Now notice that the autocorrelation function channel, which is the inverse

Fouier transforngl—n]': H* (w)X(w)exp(jwt)dw , is Hermitian symmetric around O

Thus, by sampling the matched filtered output response=a0 , we achieve the optimal

matched filter output.

6.1.1 Sampled, matched filter output

Now let z, denote the received signal, sampled at 0 , and then the sufficient

statistics for the detection of is to consider the following simple equation

z, = A+ v, (6.7)
where

* A, denotes the value of the Hermitian symmetric autocorrelation channel sampled at
timet = 0; itis a random variable and implies the instantaneous energy of the cas-

cade filter, the channel and transmit-shaping filters, and can be written as

ziTJioH*(W)X(W)eXp(th)dWtzo = ZLTJ:OH*(W)H(W)CIW

. Ng—1 NR 1 (6.8)
=5 i, (W)F(w) z b expgwp Z b expD qu > %jw

From the uncorrelated scattering assumptidssimption 4) above, (6.8) can be
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written as

Ng—1Ng—1

_ * 1 o0 2 |:| . TB
A= 3 Y bybsof IF(w)l expg-iw(q - p)— Hiw
p=049g=0 (6 9)
Ng—1Ng—1 T '
- * _ B[]
- z Z bpbqfrc% =(a- p)?[]
pP=00q=0
where f .(t) is the raised cosine filter response,
* |, denotes the transmittefd  -ary QAM symbe(,l;) = 0.0 and
var(ly) = @ (6.10)
* v, denotes the matched filtered noise output sampled-ad which is
v, = J’:n(r)h(t—r)dr : (6.11)

t=0

thusv, is zero-mean witllar(vy) = Ny DA
(6.7) provides the sufficient information we need to compute the detection performance of
the single-shot matched filter receiver. Note tiqt is the instantaneous energy of the
cascade filter and is a random variable since the chamnfigl at a particulek time  is a

random vector.

6.1.2 Square-QAM symbol error probability

In this section, for a particular valug, amt],  the symbol error probability will
be evaluated for squarg -ary QAM signaling, ge= oK wHhere iseven. Then, referring

to Figure 6-1 the following relationships are useful:

» The average energy of the square-QAM signaling set can be computed as, using

(6.10) and the definition given in Figure 6-1
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_ ey - 20a-DAsf - g-1,2
E, = E(lo)DﬁD = 3 DﬁD =73 A. (6.12)
* The minimum Euclidean distance of the square-QAM constellation is
din = ~2 0A,. (6.13)
* The instantaneous signal to noise ratio is
signal power _  _ __B _@-1A
noise power ¥ “B =3 [N, 3 N, (6.14)

S

wherey is the instantaneous SNR= logx(./q) the number of bits per sympol,
is the instantaneous SNR/bit.

Then, theg -ary square-QAM symbol error probability at a particular channel gain

A, = a, can be computed as

e---¢---9---9-1-3---3---9---3-Y_
Id

e---¢e---€e---¢e-f-€e--—-€e-—-€e———&—

Figure 6-1 64-QAM illustrationA; denotes the instantaneous combined channel gain.
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0 dpyin(2) (a) O
P.(A.=a) = 2 rfe—m EHl BLD (6.15)
s E’l % 2, /Var(vy) D O % 2, /Var(vy) DD
which can be tightly upper-bounded by the first term as indicated in Figure 6-2. Note in
Figure 6-2 the approximation is asymptotically efficient and very tight even at low SNR

region. Thus, we have

(a)D
P (a)<2=1-— rfc Hin 6.16
q(8) <28 He N (6.16)
Now, solving fora in (6.12), i.e.a2 = ﬁEs we have
23
d..,(a) = J2a = (—q-_-T)ES, (6.17)

but using (6.14), (6.17) is

mln( a) = ,\/( l)akyb o’ (6.18)

Then, the tight upper bound of symbol error probability (6.16) can be written as

Py(a) = 2%1 Hsrch/ 5T be, (6.19)
Py(a) = 2%1—%%”% 5o (6.20)
q 0

6.1.3 Average symbol error probability for square-QAM

or simply

Now, the symbol error probability, averaged over the ensemble of the chiainel

or equivalently that oA, , can be computed from

Pa(Ve) = [o Po(@)PT(A; = a)da, (6.21)
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where P_q(\Tb) denotes the averaged symbol error probability of -ary QAM system for

average input SNR which is

Vo = Efvet = SHeray (6.2

at a given noise spectral densNy, . Thus, we need to know the distribution function of the
random variableA, .

From (6.9), we may note that the random variable can be written as follows:

f..(0) f,.(Tg/2) f(Tg) Epo%
A= (bp by b)) |, (Te/2) ,.(0) fo(Te/2) i (6.23)
f(Tg) f,o(Te/2) f,.(0) |Db0

Denote the matrix in the middle &5, . Now, from (2.15) and (6.2) we know that a fading
channel tap can be written &s = a;p , the multiplication of an attenuation and the unit-
variance, complex-valued Gaussian random varigble . And, thus, we can write the

channel vectob as

an 0F D
0 o0
b=ap=H a HPiO (6.24)
5 0
0 2
00 o

whereE(ppH) = ZNgx Ny » the 3 x 3identity matrix such that i = 0,1, 2 are mutually
uncorrelated from the uncorrelated assumption (6.2).

(6.23) can now be rewritten using (6.24),

H
A, = b 'F.b = pHaHFrCap, (6.25)
= pHGp
where in the second line we have defir@d= aHF,.a . Note that for a fixed MBDP, is
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fixed. Also note thaG  is Hermitian symmetric, and sirfke  is the energy of the cascade

filter (6.8) it is non-negative definite. For any non-negative definite Hermitian symmetric

matrix G , there exist an orthonormal matfx  such @ﬂQH =A , or
G = Q"AQ (6.26)
whereA is a diagonals matrix with the diagonal elemehgsz Op , =012, beingthe

eigenvalues of the matri®

Now rewriting (6.25) using (6.26) we have
H 2 -2
As = pHGp = pHQ"'AQp = pHAp = ¥ Alpy|, (6.27)
=0

where we have definep = Qp . Note thqlip p=012 are again mutually
independent, complex-valued Gaussian random number with zero-mean and unit-variance,

and thus )\p|b |2 ,p=0,1 2, areiid x2 -distributed random variables with the

characteristic functlo?ll—) . Thus, the characteristic functioAof is the product
S0
_ 1
E{exp(ivA)} = |‘|(l e (6.28)

6.1.3.1 Distinct eigenvalues (no eigenvalues in multiplicity)

When all the eigenvalues are distinct, (6.28) can be expressed as

E{ exp(jvA)} = Z 1= M (6.29)
where we have defined the weight of an individual random variable to be
? 1
(6.30)

Tt = —
P q[lo(l—)\q/)\p)

q#p
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Finally, we can write the probability density function f8g ~ which is the weighted sum of
Ng (= 3) x? -distributed random variables. That is,

2 SN
Pr(A,=a) = z " (6.31)
p= P

Now substituting (6.31) and (6.20) into (6.21) we have

Po(Vp) = j‘Z;’Pq(a)Pr(AS = a)da
-/ (6.32)

2

10 njlare °
2-1 - — Tt [, erfce [— da
%l JaDpZO p|o 2NOD )\p

Now define

Y = =%, (6.33)

then by change of variable (6.32) can be rewritten

(6.34)

A

where we have definedfqr = 0,1, ...,D-1 X,p = ﬁ . Note that the Weightterrps
0

stays the same. The expression in the curly-brace of is evaluated in (6.83) in the Appendix

of this Chapter. Then, (6.34) becomes

D-1 ’
— — 1 .D _ A,
Palie) = 43 @%ZO”'E“ Ewwes (6:39)

where the relationship between the average SNR/bits and the eigenvalues are

— _2(q-1)E{A} _2(g-1)
Yo O TR 2N, T T 3K

2(

E{Y} = _Iil_ Z (6.36)

Now, the following steps describe the procedure of how to compute the matched
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filter symbol error probability bounds when the input parameters are the average SNR/bits

y_b, the constellation size  and the mutipath power delay profile.

« Evaluate the eigenvalugs\;,i =0, 1, ..., Ng} using given MPDP and the transmit

shaping filter, which is described in (6.23) to (6.27).

* Now determine the value (%_I%I_% for the given value/_gf gnd by
[0}

3y, lo
e e Lo.cim (6.37)
o 2a-1)Y TN
. Calculate{}\i, i=0,1 ..., Ng} byevaluating
N = 6.38
T (6.38)

* Finally, substitute (6.38) into (6.35) to calculate the average symbol error probability.

6.1.3.2 Eigenvalues occurring in multiplicity

We now consider the casedftimes repeated eigenvalues, i.e.

E{ exp(jvA)} = Eﬂ-}vAﬁP' (6.39)

This is the case when we have equal gain, independent diversity sources. Then, (6.27) takes

the expression
p-1
A= Y Myl (6.40)
p=0

Where|pp| againarad Chi-square distribution with unit mean. The distribution function
. , —a/\
for this case isPr(A;=a) = ;aD—le M . Then, the average symbol error

(D-1)IA7
probability is
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Py(Yp) = J‘S’Pq(a)Pr(As: a)da

1 —a/A

=2 rfcd aD—le ‘da

fo 7 ﬁﬁe E‘JZN (D 1)IAD (6.41)
1 —a/A

4 erfc a_[] aP-le " "'da.

37 ﬁP 27 "H2NHp — 1P

A
Then, by definingy = ﬁ , we have
(0]

R — )\1
Py(Vo) = 4%1 J‘;"Zerfc(@)——————DyD 1Y Mgy, (6.42)
(D-1)IA1
: - A
where we again defined, = oN. From (6.86), we have
(0]
1 Q —1+k11+Q
Pve) = 40— il z R (6.43)
7\1

where we defined =

1+
Now, following steps dlescrlbe the procedure of how to compute the matched filter

symbol error probability bounds when the input parameters are the average Sl‘vlg/bits ,

the constellation sizg and D diversity paths of equal §ain

* Now determine the value %il_ for the given value/_gf gnd by
[0}

1 3yplog,q
2N, 2(q-1)DA, (6.44)
M xl
. )\ = —— and thu) = -
2No 1+,

* Finally, substituteQ into (6.43) to calculate the average symbol error probability

The considered situation is when each diversity channel is a single Rayleigh fading
tap channels. Then, the matched filter combiner simply becomes the maximal ratio

combining of the received signal. Figure 6-3 Figure 6-4 Figure 6-5 are the matched filter
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bounds of SER forg -QAM transmission over the -diversity antenna channels for
equal to 4, 16 and 64. As the order of diversity increases the matched filter bouhds of -

diversity channels approach the SER performance of the AWGN channel.

6.1.3.3 Combination of distinct and multiple poles

We now considelL  diversity antenna cases, where the instantaneous, diversity-
combined channel gaiA;  can be shown to be

L-—1Ng-1

A= 33 Mol (6.45)
I=0p=0

where P|.,p , p=0,1.. Ng are mutually independent, complex-valued Gaussian
random number with zero-mean and unit-variance, and ﬂn”s,', ID|2 iidrex? -
distributed random variables. Note that the MPDP stays the same for different antennas,
and thus the same set bff;  (distinct) eigenvalues should be repéating  times. Thus, the
characteristic function becomes

Ng—1

E{exp(VA)} = [] —

— (6.46)
oo (L= jVA,)

Now, for the example ol = 2 anbll; = 3 , by the method of partial fraction expansion

(6.46) can be decomposed into

2 2
1 g r r [

[——== 30— —+r—510 (6.47)

p=0(1_JV)\p) p:Oql_JV)\p) J pD

wherel" values are the expansion coefficients. Then, the probability density function is

~a/\,
_a/a.

+r, ——al-1g % (6.48)
0

2 0 A
Pr(As=a) = Z glip A 2,p
p

p=0

Then, the average symbol error probability is
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Py(Yp) = Iqu(a)Pr(A = a)da

E'Il % 2 D —a/)\p 1 L1 _a/)\p[ﬂ]
= [ 2=1— rfcd 1Y +r, ———al-1e (Tda
Jo HJ2N, %pz 0 > P(L-1m; M (6.49)

2
1 - -
- 4%1_ ﬁgp;[u oPI(A) + T 5 o Po(A )]

where we have defined

: 10 A, O
Pi(hg) = 30 v 0,
+P,(hp = S 5L b -1y o
2Ap) = izod ; [0 2 O
X :ﬁ_
P 2N,

Now, the following steps describe how to compute the average probability given the
MPDP, the number of diversity channkel , the average SNRY,TBits and the constellation

sizeq :

* Define the average SNR/bits (note, this is not the average SNR/bits/channel),

_ _E{A) _
Vi - 2(%k1) le: _ 2(%kl)E{Y} _ 2(q 1)D ST % z A (6.50)

i=o

* Evaluate the eigenvalugs\;,i =0, 1, ..., Ng}  for givén , MPDP and the transmit

shaping filter, taking the same approach as (6.23) to (6.27).
. 1 . —
Now determine the value (%WOD for the given valueypf L , gnd by

1 3y, log.q

N 1
2N, (- 1)L Oy, 5

(6.51)

155



. Calculate{)\h 1=0,1..,Ng} byevaluating

x—)‘p 6.52
P 2N, (6.52)

* Finally, substitute (6.52) into (6.49) to calculate the average symbol error probability

Figure 6-6 Figure 6-7 Figure 6-8 shows the matched filter boundg|for -QAM
transmissiong = 4, 16, and 64, over the multipath fading frequency-selective channels
which have MPDP-1 £0.7413 0.2343 0.0234 and MPDP-2 = (0.6652 0.2447 0.0900)
and for the number of diversity channdls= 1,2 . Note that in this Chapter we use the
SNR/bits to draw the matched filter bound curves. When they are compared with the
simulation results in Chapter 5 and 7, they are translated to the curves for SNR/bits/

Channel, which can be readily done by ignoring  in (6.51).
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Prob. of symbol error

SNR per bit

Figure 6-6 Matched filter bounds symbol error probability for 4-QAM; 1, 2
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Prob. of symbol error

SNR per bit

Figure 6-7 Matched filter bounds symbol error probability for 16-QAM; 1, 2
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Prob. of symbol error

Figure 6-8

10 15 20 25 30 35
SNR per bit

Matched filter bounds symbol error probability for 64-QAM; 1, 2
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6.2 Spectral Efficiency of the Fading ISI Channels

The continuous growth in the number of subscribers and traffic volume in mobile
telecommunications creates the demand for more radio spectrum. Due to the limited
spectrum available, however, spectral efficiency is one of the primary concerns in the
design of future wireless communications systems. Spectral efficiency of a wireless
communication system can be achieved at various system levels. We focus on the spectral
efficiency that can be achieved at the link layer level, and thus we define “spectral
efficiency” as the average data rate per unit bandwidth that can be transmitted at a specified
average SNR and BER over the time-varying frequency-selective channel.

In recent publications [77 - 81], variable rate transmission systems with multi-level
QAM, which is adaptive to the fading envelope of the receiver, were investigated as a means
to increase the spectral efficiency of a flat fading channel. Specifically, the transmitter
varies the number of modulation levels according to the fade level being experienced at the
receiver, such that when the receiver is not in a fade the transmitter uses a large QAM
constellation, and as the receiver enters a fade the transmitter decreases the size of the QAM
constellation. These scheme assume a duplex system so that the fade level information can
be send back to the transmitter. With the feedback information, the transmitter determines
the size of the QAM constellation which provides a specified BER and transmit power.

In this section, we investigate the theoretical spectral efficiency bounds for the
adaptiveg-QAM modulation scheme in the frequency-selective fading channel. In the open
literature this type of capacity calculation has been investigated only for flat fading
channels [80], but not for the frequency-selective channel. We take a similar approach [80]
for capacity calculation for the frequency-selective fading channels. In addition, we utilize
the single-shot matched filter SNR that has been developed in Section 6.1, to calculate the

instantaneous BER. Figure-9 is the spectral efficiency limit obtained for the frequency-
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selective channel as a function of average SNR at the fixed BER specified.

6.2.1 Maximum Spectral Efficiency Calculation

We now consider the maximum spectral efficiency of the frequency-selective
channels, using variable rate and variable power -QAM transmission. For this we assume
the same fourAssumptions we made in Section 6.1 and modify (6.1) to include the

parameter of power-variable. The single-shot received signal is now defined as

Ng
X(t) = fPs0,0% aipi(t)f%—l—;ig+ n(t)
=0 , (6.53)
Ng T
= [P0,0% bif%——2§i5+ n(t)
i=0

where
* P, denotes the instantaneous transmitter power, assumed fixed for the duration of the

pulse

* |, denotes the transmitted information signal from the -QAM constellation, and

Var(l,) is defined to be unit-variance regardless of the size of constellation
* Ng is the number of multi-path components

* a; is the average magnitude o#()-th path, i.e.0? is the average power of (i+1)-th

Ng

path, and we assume thEti a2 =1.0

=0 I
* p;(t) denotedid complex-valued Gaussian random process

» f(t) denotes the transmit pulse shaping real-valued filter, i.e., it is a Nyquist filter

* n(t) denotes the complex-valued Gaussian noise, independent of signal and channel
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fading.

We now assume that the received sigrg(t) is passed through the matched filter. The

sampled matched filter output, analogous to (&7), can be written as

z, = PAJl+ Vg, (6.54)
where the variables in the right side of the equation is defined as

* P, the instantaneous transmission and receive powed the average powé_’rs IS

the contraint of the optimization

* |, the transmitted information signal from tlee  -QAM constellati&gl,) = 0.0

andVar(l,) = 1.0, regardless of the size of constellation

* Vg a complex-valued Gaussian random variable with zero mean and variance of

Var(vg) = NyAg (6.55)

» A, the fading gain random variable havifigf A;)) = 1.0 , which was evaluated in
Section 6.1 for various cases. In this Section, we assune 1 Nanek 3 , and
thus we discuss the case with distinct eigenvaues. Note that this choice is suitable since
for a single antenna channel there will be no eigenvalues with the same values, due to
correlation introduced by the use of SRRC filter. Thus, from (6.31) the probability

density function is

Ng TG a
Pr(A=a) = =0A—:e><pE—xE, (6.56)

1.absorbing the propagation loss in the channel model and the variance of the
noise
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_ 1
P |_|q-0(1 A/ A
q#p

whereTt

Total received energy for the one-shot signal pulse may be defined asP, DAg rg

Then, the instantaneous received SR is defined as
2
Signal Power_  _ EWg _ PsOTgUAs _ PAg
—=—— =y = log,(q)y, = = =
Noise Power AN Wy AN, N,Wg
,  (6.37)
2
— PsTgAsWp = log,(q) PsThAWg = log,(q) PsAs dﬂB[
AN Wy 92 N, Wpg 2N WGHR,
where
s Wg = T_ denotes the effective transmission duration of a QAM symbol
B
T
* T, = i0g ( ) denotes the effective transmission duration of a bit
9214
* R, = = denotes the bit rate
Tb
*R = W b denotes the spectral efficiency, representing the number of bits for a chan-
B

nel use [bits/sec/Hz]
We find it useful to define the instantaneous channel-SNR, i.e.

PA;

Ven = RWo (6.58)

P
thusE(y,) = NRTA W which we defined as the average received SNR. Then, by the change
B

of variablé using (6.56) we obtain the probability distributionyqf, as
—_ —_ NR
Pr(yen=xdx = _O)\ expD )\—Eplx (6.59)

whereA, ; = A; [E(Ycp) -

1. Substituted = ——— into the expressibt, (A = a)da = expD y %m

E(ych)
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The variable rate and power transmission scheme can now be stated as follows: The
receiver, estimate the channel, calculate the instantaneous channel SNR and feedback to the
transmitter. The transmitter then adjust the power and constellation sgge of -QAM for
= 2, 4, 16 and 64. Here, it is an ideal assumption that the feeback information is
instantaneously available to the transmitter and perfect. Thus, the obtained curves indicate
the maximum attainable spectral efficiency of the frequency-selective channel.

For a fixed channel, the instantaneous spectral efficiency can be calculated from,

C O Ps(Vch) L
== (Yen) = logy(1+y) = log, O+ ="y L. 6.60
w, (Yen) = 10g2(1+y) = log, L+ —=Fyerl (6.60)

Then the spectral efficiency of the multipath ISI channel is obtained by taking the

expectation

C Py(x
W, = max J’Iog2 EIL+

)xEPr(ych = x)dx , (6.61)

S

subject to the power constraint

J’Ps(x)Pr(ych = X)dx. (6.62)
The capacity achieving, optimal power control policy is the “water-filling” solution [79],

011
o x (6.63)

Do

Thus, substituting (6.63) into (6.61) the maximum attainable spectral efficiency can be

S(><)

calculated
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C _ . X _
W, = Ilog2 B(OEbr(VCh_ x)dx, (6.64)

Xo

wherex, id determined by
Dl 1%3r(ych— x)dx = 1. (6.65)

We obtainx, and thu% from a numerical solution.

We note that the derived expression (6.64) is the maximum spectral efficiency,
regardless of coding or modulation scheme, and holds for many other classes of fading
channel: for each class, we just need to switch the density furittign, = x)

We now continue with the derivation of maximum attainable spectral efficiency
using uncoded] -QAM constellation. For this, we may use the upper bound BER formula
used in [80], good to within 1 dB fog>2 . Then, the BER for an instantaneous channel-

SNRYy,, = X is expressed as

(11 5¢P(X)0
BER < Lexprr XTI (6.66)
5 Pr-1 P, O

and thus the modulation siggx)  at a particular channel SNR is expressed as

_ 1.5x  Ps(¥)
q(x) = 1+—In(SBER) 5 (6.67)
The maximum spectral efficiency is then obtained by maximizing
E(log,alyen) = [loga(x)Pr(ych = x)dx
0 , (6.68)
_ 0 1.5x PO
= [log: B 5ERER) 5 EPr(Vch X)dx
0
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subject to the power contraint
J"(’;’Ps(x)Pr(yCh = x)dX. (6.69)

The power control policy that maximize (6.68) is again the “water-filling” solution, i.e.

0
1 1 Xo
0= —— x>=2
P(x) Dx XK 77K
Sl O : (6.70)
S D X0
0 X< ==
0 K
. . : _ 15
where x, is the cutoff received SNR fa)(zllng depth, aKd= ———_In(SBER) . Thus,
substituting (6.70) into (6.68) and defirg = RO we obtain the spectral efficiency
Co—oam _ ocIog Di%Dr(y = x)dx (6.71)
Xy
wherex, should be obtained from numerically evaluating
"ol 1
I%(—K—)-(Ervr(ychz x)dx = K. (6.72)

Figure 6-9, Figure 6-10, and Figure 6-11 show the maximum spectral efficiency
calculation based on (6.71) and (6.72) for a flat fading channel and frequency-selective
channels with MPDP-1 and MPDP-2, at a particular BER. Figure 6-12 compares the
spectral efficiencies of the three channels at BERC=" . We observed from Figure 6-6,
Figure 6-7 and Figure 6-8, that MPDP-2 achieves the highest diversity benefit. In this
section, we have shown that the channel with MPDP-2 also achieves the highest capacity
among the three. However, one thing that should be noticed is that in spite of the hugh SNR
difference shown in Figure 6-6, Figure 6-7 and Figure 6-8, the differences in terms of

channel capacity are not much as shown in Figure 6-12.
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Spectral Efficiency vs. Avg. SNR
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Figure 6-9 Spectral Efficiency for frequency-flat fading channel.
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Spectral Efficiency vs. Avg. SNR
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Figure 6-10 Capacity for the frequency-selective channels, MPDP 1.
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Spectral Efficiency vs. Avg. SNR
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Figure 6-11 Capacity for frequency-selective channels, MPDP 2
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Spectral Efficiency vs. Avg. SNR
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Figure 6-12 Capacity comparison, flat fading, MPDP1 and MPDP2.
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6.3 Concluding Remarks

In this Chapter, we have derived the lower bounds on symbol error probability using
the matched filter SNR for square-QAM signals, transmitted over the diversity frequency-
selective channels. These theoretical bounds may not be attainable in reality due to the
impractical assumptions made in deriving the bounds. Nonetheless, they provide invaluable
information in designing the complex communication systems and analytical tools to
provide comparison to the simulation results of the transceiver schemes developed
throughout Chapter 4, 5 and 7. Specifically, we shall be able to observe the exact
relationship between the asymptotic slopes of SER curves and different MPDPs, and how
much an addition of an antenna would affect the SER performance. For future work, we
would like to extend these matched filter bound results to the coded transmissioh cases
Simulation results in Chapter 8 for trellis coded modulation and sequential detection are not
compared with any theoretical bounds.

We then derived the capacity of the frequency-selective fading channels. This
information provides a meaningful guideline in designing and evaluating the spectrally

efficient variable rate and power adaptation protocols.

1. Useful literature in this regard includes Chini [40], Cavers [83] and Fechtel [84].
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Appendix A

Integration of erfc-function over Chi-
sguare distribution

This Appendix briefly reviews basic properties of the Chi-square distributed
random variables, and evaluates an integral expression which is useful in deriving the
matched filter bounds of symbol error probability. We want to evaluate the following forms

of integration
EY%erfc(ﬂ)g - I%erfc([y)Pr(Y = y)dy, (6.73)
0

whereY is a Chi-square-distributed random variable. We start with evaluBti(g = y)

for number of cases. Then, we evaluate the integral for each case. In particular, we provide

a closed form solution for the integral expression, (1) when all the poles of the characteristic

function of Y are distinct; (2) when all the poles of the characteristic function are the same.
Generally, a Chi-square random variable can be constructed from the squared

magnitude of Gaussian random variables. The number of real-valued, component Gaussian

random variables determines the degrees of freedom of the Chi-square distribution. For

example, let

Yo = A Xy (6.74)
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whereX; is a complex-valued Gaussian r.v. Wt(x;) = 0 afar(X;) = 1.0 . Then
Y, is a Chi-square random variable with 2 degrees of freedom (note that there are two
Gaussian random variables, real- and imaginary paxt, of

Y, has
2
* E(Yy) = ME([Xy) = A4

jvY,

* E(e 1 = 1

1-jVE(Yy)  1-jvAg

):

(Characteristic function of; )
* The probability density o¥; is then
1 -vi/E(Y) _ 1 —yi/N

P1(y1) = Pr(Y,=y,) = EWl—)e = )—\—1e ,y120. (6.75)

Substituting (6.75) into the integral equation (6.73), we have

EY%erfc(ﬂ)g = J’%erfc(fy)Pr(Y = y)dy
0

J’lerfc(«/})ie_yl/}\ldy (6.76)
2 A
0

10 A O
= s- 0
20 N1+A0

For a more general case, we may consider a Chi-square random variable which is

defined as
D-1 D-1 ,
Y= 3 = 3 AP 677)
i=0 i=0

where X; ,i = 0,1,...,D-1, are complex-valueddependent identically distributed
Gaussianrandom variables wittE(X;) = 0.0 an¥ar(X;) = 1.0 . Thel, is a Chi-

square random variable witlb2 -degrees of freedom with
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D-1 D - D-1

*EB(Y) = Z:oE(Yi) - Zi )\E(|X| ) Z:o}\i’
and the characteristic function ¥f

£y = [°2 1 _ —=P-1 1

|_Ii:0 1-jvE(Y,) |_Ii:0 1—jvA;’ (6.78)

When all the roots are distinct, by the method of partial fraction, (6.78) can be

expressed as

jvY
E{e '} = Z 1_M : (6.79)
where we have defined
D-1 n
m, = e (6.80)
P q[lo(l—)\q/)\p)
a#p
Note that
D-1 D-1D-1
5= 3 N asgny - o 689
p=0 p=0q =
a#p
Then, the probability density function f can be written as
D-1 -1 S /EC)
Pr(Y=y) = Z TPr(Y, =y) = z T['EE(Y) R
D1 (6.82)
_ 1 —y/\
= 2 Tye
i=0

Substituting (6.82) into the integral equation in (6.73), we have
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o D-1
1 1 —yi/\
Ey%erfc(ﬂg = J’éerfc(ﬁ/) > mse A gy
0 i=0 !

D-1 = 5
z TtiEYiEIéerfc( ﬁi)% (6.83)

A D
ZT['ZD 1+)\

Next, consider when the polynomial has multiple roots of the same values. That is,

the characteristic rational polynomial (6.79) is

vy, _og 1 P
E(é') = D (6.84)

The probability density function for (6.84) is known as

1 —y/ E(Y1)
P(Y=y) = D-1
R AR I AL
(6.85)
- 1 yD-1 Y/ M
(D-1)IA;
Substituting (6.85) into the integral equation in (6.73), we have
D—1 —y/ Ay
EYEQerfc(A/T()D Izerfc(@)(D o, yD-1e”" My
(6.86)
_=oP o P-1tkg+ o
- O2 O Z O g 02 0O
=0
hereQ = |1
whereQ = Toh,
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Chapter 7

Sequential Detection

In this chapter, we develop an adaptive, low complexity, tree-search sequential-
search receiver for the detection of uncodegry QAM symbols  up to 64) transmitted
over the time-varying, diversity reception, multipath fading ISI channels. The sequence
search method is based on the maximum likelihood sequence detddtio8D) criterion.
Unlike previous research on the sequence-based detection, a symbol-spaced channel is not
assumed givera priori; instead the receiver utilizes the channel estimation technique
developed in Chapter 4 to derive the pre-processing receive filters such that after filtering
by pre-processor, the symbol-spaced equivalent channel and the symbol-spaced sufficient
statistics become available for the post-processor performing the sequential detection. The
new receiver will be extended to the sequential decoding of the channel-interleaved trellis-

coded symbols in Chapter 8.

1. MLSE, is the other equally commonly used term in the open literature which is an acronym for
maximum likelihood sequence estimation. We prefer the terminaletpctionbecause the tech-
nigue is employed in detecting the transmitted symbols.
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7.1 Introduction

We now briefly discuss our motivation for considering the sequence-based search
technigues and bring up some critical issues we have to deal with in realizing the benefit of

maximum likelihood sequence detection (MLSD).

7.1.1 Motivation for sequence based detection

For the detection of a signal having a certain memory structure, a sequence-based
detection scheme is the optimum [33]. The ISI channel creates the memory structure of the
received signal. A sequence-based detection will enhance the equalization performance
greatly and always provide a detection performance better than, or at least equal to, that of
the correct decision feedback MMSE-DFE. Namely, the minimum Euclidean detection-
distance of MLSD is always larger than or equal to that of the ideal DFE: The difference
between the two becomes larger as ISI becomes worse. This is because the DFE follows
only a single path amongst all the possible hypothetical paths in the decision tree and thus
has to make an early decision, whereas the MLSD follows every possible paths and does
not make any early decision until the end of the sequence is reached.

In addition, in practice the DFE has the inherent problem of error-propagation due
to decision feedback. This error-propagation problem of the DFE may be tolerable for a
small signal constellation such as QPSK or for channels with insignificant ISI. However,
the problem becomes catastrophic as the size of signal set grows or as the channel starts to
contain severe in-band nulls in the folded-spectrum. In general, this error-propagation
problem can be resolved by replacing the feedback filter of the DFE with the modulo-
addition feedback filter at the transmitter with exactly the same coefficients calculated for
the feedback filter of DFE. This can indeed be a good solution if the channel is not expected

to vary much during the reception of the signal burst. We have seen a good example of the
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T-H precoder in Chapter 3: The T-H precoder operating on the severe ISl telephone channel
shows a significant SNR advantage over the use of the DFE. Unfortunately, the use of the
T-H precoder for ISI mitigation in the rapid time-varying channel environment is not a
practical solution. For the fast time-varying channel, the receiver might have to send back
to the transmitter the updated feedback filter coefficients or the channel-state information
as frequently as almost every symbol-epoch, representing an intolerable overhead.

On the other hand, there is a scenario where the transceiver may have to operate in
a low average SNR region for example due to shadow-fading. In order to increase the area
of coverage to such a region, we might have to consider the use of channel-coding, e.g. the
use of a spectrally efficient trellis-code. In this scenario, the optimum receiver must
facilitate joint detection and decoding. In this regard, the DFE is not a canonical receiver
structure again due to the error propagation problem; although in an ideal situation where
no decision feedback error and thus no error propagation are assumed, the use of DFE is
believed to be canonical also for the coded transmission [107].

Therefore, in this chapter we start with the feasibility of MLSD for uncoded
transmission of spectrally efficient digital signals having a large signaling constellgtion (
QAM signaling up tag = 64). In chapter 8, we extend the receiver to sequence detection of
trellis-coded modulation that is capable of supporting joint decoding and equalization, as

an alternative to the simple case of cascading the DFE with a sequence decoder.

7.1.2 Reduced complexity sequence based detection techniques

Inimplementing MLSD, the issue of computational complexity and feasibility must
be addressed properly. For example const€AM signaling up toq = 64 and channel
memory length of up tdN, =6 symbol periods. The Viterbi algorithm (VA) is known to be

an efficient method to carry out MLSD operations while achieving the full performance
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advantage of MLSD: The VA is a complete search method. With MLSD the achieved
symbol error rate is very close to the fundamental matched filter bounds. For example, in
MLSD over any two tap channkthere is no performance loss at all, fully achieving the
detection performance of the fundamental matched filter bound. However, the
implementation complexity of the complete search VA grows exponentially with the length
of channel memory and the size of the signaling set. Therg&re state84®e.g. for 64-
QAM) andq branches out of each state in the trellis.

The complexity problem becomes even worse for the time-varying channel. One of
the salient features of the VA, when applied to the time-invariant ISI, is that VA can be
implemented only with comparisons of metrics, without any multiplications. The
multiplication was required only once to obtain the I1SI channel output values at each of the
q x Vs branches. Later in decoding, they are simply compared with the received sequence.
When we have time-varying ISI, however, we need to recompute all ISI channel output
values to advance to the next section of the trellis. Even without considering the additional
complexity required to perform comparisons, we note that implementing the complete
search VA is impractical for a large constellation and for time-varying channels.

A great deal of research has been undertaken to reduce the computational
complexity while still achieving a detection performance close to that of the complete
search VA. Research in this arena might be addressed as follows, divided largely in two
different categories; one approach is to reduce the number of states and the other is to use
a sequential search algorithm. The former is to construct a trellis which has a reduced
number of states, utilizing the distances among a set of element-symbols defined in the
signal constellation. The underlying principle is that the difference of the decision-metrics

used in comparing sequences is directly dependent up on the Euclidean-distance of the

1. Symbol-spaced tapped delay line channel
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element-symbols associated with the paths in comparison. The larger the Euclidean
distance is in the element-symbols of any pair of state-transition paths on the original state-
trellis, the larger the difference is in decision-metrics associated with the two paths. Thus,
amongst those paths in the original state-trellis whose Euclidean metric differences are
large enough, early detection-decisions can be made amongst the set of symbol-elements
and they can be considered significantly reliable. Those states that belong to the set of
involved paths can be collapsed to form a new single state. A subset-trellis is obtained from
using the Ungerboeck-like set partitioning rules [98] to collapse a larger number of states
into a smaller number of states. It then searches the subset-trellis with the Viterbi algorithm.
This technique is called the reduced state Viterbi algorithm (RSVA) [101]. The other
obvious method of constructing the subset-trellis to truncate the length of channel response
by canceling the contribution of the channel response truncated by the use of previously
decided symbols.

The RSVA techniques then utilize the well established VA on the subset trellis. One
observation we can immediately point out is that RSVA trades-off the optimality of MLSD
with the reduction of number of states because some paths of the full trellis are permanently
removed from consideration, and the loss is permanent for a choice of subset-trellis.

We found out that we can achieve better, near-optimal performance-complexity
trade-offs by using sequential search algorithms such as M-algorithm, the Fano-algorithm
and the T-algorithm [94-96,103,104]. The search algorithms operate on the original trellis
and are much more flexible in dealing with the time-varying channels.

The Fano algorithm [92] attempts to expand only the most probable path through
the trellis. The Fano metric provides a “fair’” measure of goodness at different depths of
exploration, unlike the cumulative metric used in VA: it compensates for the depth of an
exploration. The value of the Fano metric of a correct path will increase on the average,

while those of incorrect paths decrease on the average. We have derived the Fano metric for
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the matched filtered ISI channel in Appendix B. However, we found out that there are big
drawbacks hindering the use of Fano-algorithm for symbol detection in the time-varying
channel. The calculation of the metric becomes too complex due to the time-varying
channel and more research insights must be gained to proceed further.

On the other hand, the use of the T-algorithm provides the best performance-
complexity trade-offs compared to the use of M-algorithm, Fano-algorithm and RSVA. The

intuition regarding our claim will be addressed after we introduce the basic equations and

the T-algorithm in 7.3.3.

7.1.3 The pre-processing filters

By the pre-processing unit of the MLSD receiver, we imply all the receiver

A.

Time-Varying
Channel

Figure 7-1 The wireless channel models
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functions required to bring down the continuous wavefbreteived signal to the symbol-
spacedsufficient statisticsequence and the equivalent symbol-spaced channel. The
sequential search methods are then applied to the equivalent symbol-spaced channel model
and the symbol-spaced decision statistics. This pre-processing filtering is largely ignored
in the literature of maximum likelihood sequence detection using the so-aiieckte-

time white noise mod&hich models the transmitter, channel, matched filter and the noise
whitening filter as a tapped delay line model with symbol-spaced taps. For example, see
[123][124][125]. Moreover, each of the symbol-spaced taps is modeled as Rayleigh fading.

It will be clear after section 7.2 that such an approach is counter-productive. We emphasize

that the pre-processing is very important for wireless channels because
* the channel is time-varying and unknown and

* the efficiency of the reduced complexity post-processing search algorithms depends

heavily on the choice of preprocessing.
The channel is time-varying and unknown, and thus the time-varying channel must be
estimated prior to the matched filtering i.e. before the function block-B. in Figure 7-1 can
be calculated. In addition, with the assumption of excess bandwidth, the channel must be
fractionally-spaced taps and thus the matched filter also must be fractionally-spaced. That
is, we are claiming that the symbol-spaced channel-model, described in the block-C in
Figure 7-1, is invalid for the purpose of fading multipath channel description where the
assumption is that the function block-B is already performed and contained in the channel
model.

There are a number of different ways to shape the overall ISI by pre-processing.

1. Or, the fractionally-spaced sampled received signal. Since the received signal is bandlimited, the
fractionally sampled signal is equivalent to the continuos waveform signals once the fractional
sampling rate is fast enough, such that the inverse of sampling rate is more than the bandwidth of
the signal.
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Among them are the whitened matched filter (WMF), the mean square whitened matched
filter (MS-WMF) and matched filtering only. The WMF [60] has a nice feature: the output
of the WMF forms a non-correlated sufficient statistic sequence for the detection of the
input sequence, and thus the branch metric calculation and comparison become relatively
simple. However, the use of a WMF in a time-varying channel poses some problems. When
the matched filtered ISI contains a null in the Nyquist band, the whitened matched filter
may not be well defined [59]. Even when it exists, since the whitening operation is still a
channel inversion operation, it may cause some noise enhancement problems in the
presence of channel estimation errors. Moreover, in adapting to fast fading the complexity
of obtaining the whitened matched filter coefficients becomes non-trivially high. This may
be the reason why the whitened matched filter is used mostly in the context of time-
invariant channels only.

In the beginning we preferred to try out the last approach of using only matched
filters at each diversity branch, followed by combining to give the symbol-spaced sufficient
statistics to the post-processors using the Ungerboeck type of metric calculation. The
matched filter coefficients are obtained from the channel estimates with a simple Hermitian
operation, without the matrix inversion required for the whitening operation and thus
without the instability problem involved with inverting the channel. However, we found out
that the sequential search algorithms has to consider the full-trellis operating on the
matched filtered outputs, and any sub-optimal reduced search effort will result in a large
loss in the detection performance. This result is for the channel with a significant ISI. For
non-null channels, in any methods work well.

As the proposed approach we use the feedforward filter of a decision feedback
equalizer as the pre-processing structure to the MLSD. The feedforward filter takes the role
of mean squares WMF (MS-WMF), and shapes the overall channel to be minimum phase.

In addition, unlike the WMF, a MS-WMF always exists.
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7.2 Optimum Diversity Combining MLSD

In this section, we derive the optimal pre-processing blocks for the diversity
reception signals. The derivation will provide an opportunity to gain insights on the
structure of DC-MLSD receiver, compared with that of the MMSE DC-DFE, and the

optimal and sub-optimal pre-filtering solutions.

7.2.1 The baseband channel model

Figure 7-2 illustrates the baseband equivalent channel model fdr-theersity
channel receiver. The basic properties of the channel model stays the same as was
developed in Chapter 2. The difference is that we now use the polyphase representation of
the channel operation, which is suitable for describing the fractional-sampling of the
received signals in terms of the symbol-spaced symbol transmission. We briefly describe
the channel model, notations and assumptions. We assume the shaping filter employs
excess bandwidth, and then the baseband received signal at -th diversity branch should be
fractionally sampled. We denote the cascade of the transmit pulse shaping filter, the base-
band equivalent time-varying channel and any anti-aliasing filter at the receiver (assumed
to be an ideal brick wall filter) by the fractionally-spaced sampled fihlle(lk) , for
| = 1,2 ..., L. We denote the sampling interval &g Tg/N; ,whé&g isthe symbol
period andN =2 . We assume the effective span of the overall channel extendd pver
symbol periods, i.e., the delay dispersion is zero outside of an intervéN [Ug ]. The
sampled noise is assumed to be complex-valued additive white Gaussian with zero mean
and variancejﬁ . Forthke -th symbol interval we havg  discrete-time received samples

of x!(t) which can be described by

Xlk, i = Xl(t)|t= (k+i/NJT Z:\I: 1! jhl((k+ I/NJT =T ; KT) +u'((k+i/NgT),
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Figure 7-2 The baseband representation of the diversity channels
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for0<i<Ng—1 andl = 1, ..., L . For convenience of notation, we now define

—ul -
Xk, No—1

!
Xk, No—2

Th((m+ (Ny=1)/NQ)T ; kT)]
h((m+ (Ng—2)/NJT ; kT)

hl (k) =
i hi(mT ; kT)
and
[u'((k+ (Ng=1)/NJT)]
| u'((k+(NS—2)/NS)T)
Uk = .

ul'(kT)

(7.1)

, (7.2)

(7.3)

Thus, a [(N,, + 1)Ng ) x 1] vectorh!(k) represents the non-zero portion of the overall

channel impulse response, sampled at the rali 61 5
(k) = [h! | | t
h'(k) := [h§(k)t h)(k)t ... hNh(k)t] :

Then, for the time interval of interesO<t<(N+ N,)Tg

eqguation is given by
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(7.4)

, the discrete-time system



“ 0. 7
" Xan, ] [PO(N+Np) hE(N+Ny) .. bl (N +Ny) 07 | Nn
N-1
x}WNh_l _ hi(N+N,-1) .. h}\lh(N+Nh—1)
Iy
D N ¢ h(0) h!(0) ... h}\,h(O)_ 0, 75)
L h 1, .
— u||\l+Nh —_
|
4 UN+N-1
[ uy
or more compactly by
x! = HI"+ul, (7.6)

where

« x! is the vector storing the fractionally-sampled received signals during

0<st<s(N+NpTg,

« H! is the channel matrix,

ol = (0}\lh I Of\,h), Oy, is the (N, x 1) vector of zeros, anid = (Iy_; ... IO)t IS

the transmitted data symbols. Tiog_ is used in place of the training segments for

simplicity.

« u' denotes the noise vector.

In this chapter, we again assume the continuous transmission of frames explained
in Chapter 4, where a frame consists of training and unknown data segments. The
feedforward channel estimation procedure given in Chapter 4 is assumed to provide the
estimates of the time-varying channel vectors in (7.5). Briefly, the feedforward channel

estimation is comprised of two modes--the snap-shot channel-vector estimation using the

187



training symbols and then the interpolation of a set of channel estimate vectors to supply
the estimates of the channel in-between the training segments. The least squares channel

estimator (LSE) in Chapter 4 is used in this chapter.

7.2.2 Derivation of the optimum diversity combining MLSD

Figure 7-3 shows the optimum diversity combiner. Each of the  independent
fractionally sampled received signals are fed to the matched filter at each branch, and the
matched filtered signals are combined, sampled at the symbol rate to form the sufficient
statistics sequencgz} . In this section, we provide the standard MLSD derivation and
show that the symbol rate sampled, matched-filtered diversity-combining signal is
indeed the sufficient statistic for MLSD processing of the -diversity received signals. In
addition, in 7.2.3 and 7.2.4, the Ungerboeck and Forney MLSD receivers are derived and
compared, and then they are shown to be equivalent in achieving MLSD. When applied to
reduced search detection using T-algorithm, however, Forney form turns out to be more
efficient, requiring significantly fewer survivors on average. Thus, the derivation of
Forney’s receiver is emphasized. In 7.2.5 and 7.2.6, finite length whitening filter (WF) and
mean-squares whitening filter (MS-WF) are discussed respectively.

Now, we start the standard MLSD derivation. Given the independent diversity

discrete-time received sequences, we want to find the maximum likelihood seduence , i.e.,

~

arg maxPr{x!...x\| B!
| 01

.4 ~n24
arg min DZ|L21||X'—X'|| O (7.7)
ol o U

arg min {C + Ml(|~) + M2(I~)}
IO

where
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filtering, diversity combining, and symbol-rate sampling.
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« the hypothetical channel output sequerte  based on the hypothetical input sequence
1" is
X = HI (7.8)
* a constant term since it is simply the energy of the received signal

C = zle XX (7.9)

e the cross term is

M, (1) = —2R¢{ Z:‘:lf('Hx'} (7.10)

« finally the quadratic term regarding the hypothetical sequence s
M,(1) = zlei'Hi'. (7.11)
Next, substituting (7.8) into (7.10) and (7.11), we have
M, (1) = —2Re{THZIL:1H'Hx'} = —2Re{ "7}, (7.12)
and
M, (1) = TH(zlelH'HH')T = [Hy, (7.13)
where we have defined
z = Z:‘:lH'Hx', (7.14)
and
W= (3, HPHY. (7.15)

Now, recalling thatl" = (Of\lh I OtNh) and thus ignoring the influences of zero-padded
vectors in the final equation, we can write the diversity combining matched filter results

in terms of I . From (7.14), we note that the multiplicatieh'Hx! represents the
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fractionally-spaced matched filtering operation and symbol-rate sampling at each diversity
branch, and the summation implies diversity combining. Therefore, isthe symbol-spaced
sufficient statistics for the maximum likelihood sequence estimation. Then, the input/

output relationship can be rewritten as

z = VY| +v, (7.16)

where the noise vector
- <L Ha
v=S_Hn (7.17)

is the [N x 1 ] noise vector with zero mean vector and the correlation mé&fixvH} =
02 Y. Based on (7.16), the overall system can be described as the symbol-spaced tapped

delay line model of Figure 7-3 (b).

7.2.3 The Ungerboeck’s receiver

Having obtained the symbol-spaced sequefgg of (7.16), Ungerboeck’s metric
computation method can be applied to implement the VA or T-algorithm, as depicted in
Figure 7-3 (c). Ungerboeck’s path metric uses only (7.12) and (7.13), i.e, not the constant
term. Ungerboeck’s MLSD receiver has major advantages over Forney’s form. First, it does
not require the noise whitening filter of Forney’s receiver. In fact, the noise whitening
operation is embedded in Ungerboeck’s metric computation routine. Considering imperfect
channel estimation, any channel inversion effort (to achieve noise whitening) is subject to
noise enhancement and instability as well, and is not desirable. Second, the complexity of
obtaining the noise whitening filter is relatively large. We either have to solve for the root
of the polynomial in a static channel or solve a sufficiently large matrix equation in the
time-varying channel case.

The use of Ungerboeck’s receiver, however, is not suitable for a reduced complexity
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sequential search such as the T-algorithm or M-algorithm. The following analysis helps
clarify the reason behind it. Now, consider the branch metric computation using Forney and

Ungerboeck form: Forney’s metric is calculated from

M = [ef]”,
where
ef = N Teem = S f AT+ 7.18
k — yk_zmzo m'k-m ~ Zmzo mBlk-m* Ny ( . )
The Ungerboeck metric is
Y = 2Re{ ikel}, (7.19)

N ~ .
wheree! = z, — zmh: oWmlk-m and thus can be rewritten
N ~ N *

As indicated in the second term of right side in (7.20), the Ungerboeck metric is
influenced by the future symbols. The VA performs a complete search and thus achieves the
full MLSD performance. The VA purges only if there are merged paths to the same states.
For the merged paths, the first and the second terms of (7.20) are the same, such that the
purging is only based on the cumulative metric difference accumulated before the merge.
This is why the Ungerboeck form works in the context of the complete-search VA.

For the case of suboptimal sequential search such as M- or T-algorithms, survivors
are dropped based on the metric difference. However, as indicated in the previous
paragraph, the Ungerboeck metric is fair only when they are compared among the paths
converging to the same state. In fact, the suboptimal search algorithm doesn’t work for a
severe ISI channel even with zero input noise. The metric difference build-up by the first
term in (7.20) is very vulnerable to interference from the second term if the ISI is severe,

which implies the magnitudes of off-diagonal terms of summed channel autocorrelation
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function{{, m# 0} have large values. Our test simulation results on a severe ISI, static
channel,(1/2,1/(4/2), 1/ 2) which is a worst ISI channel at the length of 3 [33] with the

use of 4-QAM modulation indicates that we need to keep all the paths to get performance
close to that of MLSD. With any suboptimal search, the receiver detection performance

stays flat even with zero input noise. Thus, we turn to the use of Forney’s MLSD receiver.

7.2.4 Forney’s MLSD receiver

For static channels, by the use of spectral factorization the summed channel
autocorrelation function can be factored into two Hermitian symmetric polynomials, i.e.,

W(D) = ziN:h _thiDi = F (D YF(D), (7.21)

where theF(D) is the causal, minimum phase response

F(D) = zi'“; D™ (7.22)

Then, the whitening filter i¢/F (D)

For the time-varying channels, we may want to use Cholesky factorization, which
is analogous to spectral factorization. By the use of Cholesky factorization, the positive-
definite matrix W (7.16) can be factored into the upper triangular mdtrix  and its

Hermitian transpose,
F (7.23)
and

(7.24)

Thus, the matched filtered symbol spaced sequence of (7.16) can be rewritten as

z = FMFl +v. (7.25)
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Now, by applying the whitening filteF " @ we have:
y=F'z=Fl+o, (7.26)

where the noise terng§ = Fy , iIs now whitened having the diagonal correlation matrix

E{00"} = E{F"W'F} = FPE(wW I F? (7.27)

- - - -1
= o2(FWF Y = o2F FTFFT = o=y,

where=,, istheN x N identity matrix. Now, note that the maffixs an upper triangular

matrix and thus it is causal according to our definition equation (7.16). In fact, the non-zero

elements of each row of matrik converges to the coefficients &F(D) , i.e., for
i =01..,N,
’\lliian(N_l;N_1+i) = f,. (7.28)

The following table summarizes the similarities between the spectral factorization
theorem for the static channels and the Cholesky factorization for the time-varying
channels.

Table 7-1: Factorization theorems for static and time-varying channels

Static Channel Time-Varying Channel
Channel h(t) H
: H - H

Factoriza- _ * W = H H+02= = F'SF,
tion Wic = Ih(t)h (t+kT)at where= isarN x N identity

(D) +N, = S,f*(D1)f(D) matrix.
MS- WF f*l _, s or

! () s .e F

Feedforward filter oDFE,, Ne—1"N¢-1

Feedforward filter of the NT-DFE

Min. P.R. f(D)’ F' Upper triangular (band matrix)
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The matrixF™ is the optimal whitening operator for the entire receive signal . Since it
is impossible to obtailf " asthe length of the sequence become large, a suboptimal, finite
filter length solution should be considered and it will be discussed in 7.2.5.

We continue our derivation of the Forney receiver from the basic MLSD equation

(7.7). The three terms in (7.7) can be rewritten as follows

» The constant term: (USI{H'HH -y =F'F  agd= F_HZHIHU )
C = Zx'Hx = Z(H'I +u')H(H'I +ul)

H H
IHEZH'HH% 41 HZH'HU+ZU' H'l +ZUI ul

= 1"EMEL 4+ HZHlHu " ZU'HH'I +Zu'HuI

= 1"EMEL ) HFHB:_HZH'HUE+ iu'HH'F_lgzl +§UHH'F_1%:_HZH'HUE

= (FI +0)"(F1 +0) = y"y (7.29)

Thatis,C = XX = yHy :

* Next, note the first metric term depends on the hypothetical sequence and can be rewrit-

ten as:

. . Ol oH O
My(i) = 2Re(IMS T HIFX} = —ZRQSzlelx'Hx'H (7.30)

= 2R "z} = —2Re[T"(F"FI +v))

2R (1HF)Y(FI +F M H )} = 2Ry},
wherey = FI an&k = HI .

 Thirdly, the last metric term also depends on the hypothetical sequence and can be
rewritten as:
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M, (1) = 'H(Z HHHNT = THWT = (HEYY(FT) = §7. (7.31)
Substituting the three terms (7.29) ~ (7.30) into (7.7), we have
2 O N ~12
[ = arg min {ly-y"} =argmin 0y |%-¥
101 o1 Hk=1

(7.32)

000

The following table summarizes the three terms of the basic MLSD equation (7.7) in each
receiver. Note that the only difference between the Ungerboeck and Forney receivers is that

the Ungerboeck receiver does not use the constant term of (7.7) in its metric computation

routine
Constant Ml(f) M2(|~) Required
Basic L JIHI L ~IH ~|H 5 Fractional
Equation Z=1X X _ZRe(zl=lX x) zl—l Sampling
Plus, Matched
Unger- B ~H “HinT Filter Bank and
boeck Not used 2Re( 1Mz} "W Symbol Rate
Sampler
’ 9’ y Plus, Symbol-
Forney yy 2Ry 'y} yy Spaced Whitening
Filter

Table 7-2: Comparison of the metric computation for Ungerboeck and Forney

7.2.5 The finite length whitening filter

The whitening operatoF_H is the optimal solution for the purpose of MLSD for
the time-varying channel. However, for large block sike it is impractical to olitaih
due to high complexity. In this section, we describe the procedure to obtain a finite length

whitening filter.
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The symbol-rate sampled, matched filtered signal  can be collected for the length

of the whitening filteN; , and can be written as

o1 %-P_Nh(k+Nf—l)...LPO(k+Nf—l)...‘PNh(k+Nf—1) OE
Do n, o0 D Wiy (k+ Np=1).. . Wo(k+ N =1)... W (k+N;=1) [
g“"N 0= 0 0
S %
0z 0O 0O W_y (K)... Wo(K)... Wy (K) 0

O+ N+ N =10 DVies N, 10
0 0

[ [

O 0 v [
>(Dk+Nh+Nf ZD_I_Dk+Nf ZD, (7.33)

O . O 0 0

O O O 0

0O hken, 00 % O

which can be rewritten compactly using the matrix convehtion
Zkr (N =1): k) = Ploe N =1k, ke NNy + 1 k+ N (ke N+ N =1 k=N T 7.34)
Vi+ N;=1:k

Decomposing the first term into three terms, (7.34) is

Zir (N =1): k) = Palke Ny +N, =1 ke N, —1) (7.35)

+Wol e n -1 ¥ Pel ko1 k=N F VRN, —1 k0
where we have defined
* WA= PN =1k, Ko Ny =N+ 1 k=N,

* Wo = Wian, -1k, keN, +1: k) Note this matrix is Hermitian symmetric and the

autocorrelation matrix of the combined channel, and

*We = Whoan —1k, K+ 1 k+N,) -

Then, the whitening filtew(k) is obtained from

1. For example, (1:4) implies a vector with elements (1, 2, 3, 4); (4:1) implies (4,3,2,1). In addition,
the first field in the parenthesis indicates the row index, the second the column index.
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Wi(K)Wo(k) = ey, 4 (7.36)
or
w'(k) = ey, _1Fo (KFg (K), (7.37)
where we decomposed tig x N;  Hermitian symmetric autocorrelation matrix
Wo(k) = Fo (K)Fo(K), (7.38)

in to multiplication of the lower triangular matriEg'(k) and the upper triangular matrix

Fo(k).

Now ignoring the epoch terms for brevity. We have

t t
WZh (N -1): k) = W Pol ke N -1: 19 (7.39)

t t t
TW WAl en -1 ke N ) FW WAl o) W Ve N -1k
Now investigating the properties of each term on the right side of (7.39):

 The first term in (7.39) produces the exact input symbol & the -th epoch:
t t
W ol e, —1:k) = BNyt ke -1 1) = i (7.40)

WhereetNf _1 =(0,0,...,1) isdefined to be the vector of zeros except the value of 1.0 at
the location indicated by the subscript.

» The second term indicates the pre-cursor residual ISI terms:
RUN =SV, 7.41
WA ks N, +N =1 k+Ny) = zjzo WSAc, TkeN, +N—1-j> (7.41)

with sufficient length of N; this term becomes close to zero. However, wien is
relatively short this pre-cursor residual term becomes significant, especially for channel
with a deep in-band null (or nulls).

* The third term corresponds to the strict-causal response:
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t N,—1 t
wt¥cl_1:k-ny) = jio WWei plk-1-j (7.42)

That is, together with the first term, the third term forms the causal, minimum phase
response.

» The last is the noise term, which is supposed to be whitened. Defining

0, = WT(k)Vk+ N,-1:k, the correlation function can be obtained as

* Ot H g
R,(d) = E{6,6,, 4} = E%WVk+Nf—1:ka+Nf—1+d:k+dW E (7.43)
2t * _ 2 _
Sonw Wow = o Wy, _4(k) ,d=0
= 50.0 Jdl < Ng »
Usmall but non-zeros terms ld| = N

such that if we have a largdl;  the cross-correlation terms goes to zero. Figure 7-4
describes the example of whitening matched filtering on a severe ISI channel. Figure 7-4
(a) is the symbol-spaced autocorrelation function for the channel (ACF). The folded-
spectrum, Figure 7-4 (b) shows that the channel has ab8t dB in-band null at the
normalized frequency of 0.1. Convolution of the ACF with the whitening filter shown in
Figure 7-4 (b) results in the response give in Figure 7-4 (c). Figure 7-4 shows the roots of

the Z-transform polynomial of the ACF.

7.2.6 The mean-square whitening filter

Now, we consider (7.36) again. When the ISl is severe, and the eigenvalue spread
of matrix W, is large, such that the channel has a large in-band null in its folded spectrum,
the whitening operation would be unstable and enhance the noise and the channel
estimation error. Thus, in practice we may have to consider the use of a stable matrix

W, =W+ cﬁE instead ofW, . In fact, this is analogous to use of the minimum mean
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square error criterion (e.g. MMSE-DFE). For example, for the static channel, the following
spectral factorization can be used to obtain the feedforward]fﬂﬂé{*(D_l)

l'I',mmse(D) - Z|N2 _NhLIJiDi + Oﬁ = Fl*(D_l)Fl(D)- (7-44)

Note this factorization always exists, whereas (7.21) may not.
Using the Cholesky factorization, we have

W, = Y,+0= = F,"F,, (7.45)

where agairFlH is the lower triangular matrix &hd is the upper triangular matrix.
The smallest eigenvalue &P, is now restricted to be greater than or equal to the noise

varianceorz] . The MS-WI\'fvﬁn(k) is thus obtained as follows:
wi(K)Wy(k) = ey _;. (7.46)

Note that (7.46) is the same equation that is used to obtain the feedforward filter of the non-

Toeplitz DFE (NT-DFE) in Chapter 5. (5.20) translates into the notation of this chapter as
2 *
(WoWot+t o, Wolw,, = WO(:‘ N, —1)° (7.47)

which provides the solution for obtaining the feedforward filter of NT-DFE. By writing
LPO(:, N —1) = Woen, -1 and cancelling¥,  from both side of (7.47), and (7.47) becomes
(7.46).

Applying the MS-WFW:n(k) tZ( 4 (N, —1): k) We have:
t t
sz(k+(Nf—1): k) = quJOI (k+N;—-1:k) (7-48)
t t t
WAl e ngen =1 ke N =1) F WPl o1 ke Ny F WinVks N1k

Now, note the following:

t 2,y _ .t t ot -1-—H
* From (7.46), we havev(K)(Wy+0o,l) = ey _; ow, =ey _,F, F; ,andthus
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t t

t , . ,
WPy = ey, _1—0ﬁwm. Therefore, the first term in (7.48) can be written as

t _ ot 2t _ 2 t
WinWol ke Ny =100 = (BN, 21— FnWid lie N 10 k) = 1= OnWinl (ke N, —1: 1) (7-49)

= (1—oﬁwm, N,—1) | T precursor ISI terms fofk + N¢ -1, ..., k+ 1} .

 The second term is the precursor residual ISI termgker N, + N —1, ..., K+ N;}

t _ ~1 ot
Win Walger ng+N—1:k+N) = D=0 W Wae, plken,+N -1 (7.50)

with sufficient length olN;  this term becomes near-zero.

* The third term corresponds to the causal response kt the -th epoch:

t No—1  t
Wi Wel ko1 :k-ny) = jio Wi e, plk-1-j (7.51)

which is the post-cursor ISI terms for the—1, ... k— N}
From (7.49) ~ (7.51), we divide the terms for
{k+N,+N;-1, ..., k+1,k k=1,... k=N;} by (1—0ﬁwm] N,—1) and denote the

result
1 t
fi(k) = > W (KW s Ny —1: kKt i) (7.52)
(1_GnWm, Nf—l)
fori = -N,—-N¢+1 ...,-1,0 1 ..,N,. Note that{ f;(k)},,, represents the causal
response and the rest the anticausal residual I1SI. Also note thdt, (kg is 1.0, and for

1<i<N, we have

1

2
(1- 0Wn, N; — 1)

fi(k) =

Wi (K We. _y(K). (7.53)

f;(k) will be used in the T-algorithm receiver in section 7.3. Note that the MS-WF
asymptotically converges to the WF.

Figure 7-5 illustrates the results of applying the MS-WF to the same channel given
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in Figure 7-4. Compare Figure 7-5 (c) with Figure 7-4 (c). Figure 7-5 (c) shows the non-

zero pre-cursor responses as well as the difference in the causal responses.

7.3 The Proposed MLSD Postprocessor

In this section, it is assumed that the MS-WF is used to perform Forney’s MLSD
receiver, depicted in Figure 7-6 (a). Since we are using MS-WF, the resulting channel is not
minimum phase response, i{d,(k)}, .,  are notzero-valued as shown in Figure 7-5. Here

we simply ignore the contribution from the non-causal tefi¢k) } . Then, we will use

i<0
Forney’s metric (7.32) to perform the T-algorithm. Then, Figure 7-6 (b) describes the causal
symbol-spaced tap filtef (k) , which represents the overall channel betjiggn and
{y,} for the purpose of the T-algorithm search. As this model disregards the anticausal
terms resulting from the use of finite length MS-WF as well as any estimation error in the
causal responsé(k) as well, the discrepancies would certainly degrade the detection
performance of the complete receiver. By the use of per-survivor processing, discussed in

section 7.4, however, some of the performance penalty can be recovered. The T-algorithm

is discussed in 7.3.1 and the LMS algorithm per-survivor processing is discussed in 7.4.

7.3.1 The equivalent input/output equation

Referring to Figure-5, the input/output relationship including the MS-WF can be

written
Y, = zi“‘;ofi(k)|k_i+qk, (7.54)
wheren, is now assumed to be whitened noise and fhek)} are as defined in (7.52).
Then, Forney’s metric for a hypothetical sequehcqz can be computed from
30190 = I_y(1:«_1) + B fork = 0, ...,N—1 (7.55)
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whereB, is the branch metric at tke -th symbol epoch
N ~ ~
B = V= 31 o Fi(0Tk—| = [yie= - (7.56)
Then, the MLSD sequence is determined from

I = arg min AN} (7.57)
I O1

7.3.2 The proposed T-algorithm

The tree-search version of the T-algorithm is proposed in this paper. The parameters
of importance of the T-algorithm afe,,,, , the maximum number of paths that can be kept
atan epoch,and |, the threshold value. The following steps describe the T-algorithm used:

* At the zeroth epoch, start from the unique known path that is composed of the training

symbols ofN,—1 and seﬂk(fg; n,-1) = 0 , where the superscript denotes the path

index which is from 0 td®,,,,—1 .

* BEGIN:
* (Step-1)Path extensionAt k-th epoch, extend each survived pats i <P_,,,—1 ,and

calculate the cumulative metric
] i i,
I 1ng-1+1) = J(l1ing—2+k) + B, (7.58)

forj =0,1,...,P,..,[M—1, where the branch metrIBik’OI , from -th pathjto -th paths

' max

by thek -th hypothetical iantk O Alphabetof g-QAM , is defined as
. N ~i ~ ~
By = [y S, £ (0Temi =Tk oK), (7.59)

* (Step-2) Update 08, Update the minimum metric and its path indg¥, i, ) ., i.e.,

forj=01..P,, ,[M-1,

' maX
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- 7 7
if Jk(ll: Ng—1+k) < Jmin, k™ Jmin, k= Jk(l 1 Ng—1+k)a (7.60)

whereJ i, « = 0.0 is initialized for eack

* (Step-3)Threshold testing and truncatio€ount the number of paths whose path metric

difference withJ,;;,  is less tha§ and whose hypothetical input synﬁbol\,D is
~] (I min . .

different with I|J((_ N[;k) , whereN, is the depth of the tree. If the number is greater than

the P, lower the threshold = (-, and count again until less tRgn, paths

remains. Reject all paths that fail.
* (Step-4) Return to Step-3 until the end of the sequence.
* END.

The T-algorithm can be applied to the trellis also. The trellis-search version requires
an additional step. First we need to investigate all the survivors if any two survivors have
merged. This can be carried out by checking if the Mgt symbols of the survivors have
the same hypothetical symbols. Among those merged, only the minimum metric path
survives. Thus, the trellis operation requires additional storage elements and additional set

of comparison operations.

7.3.3 Why T-algorithm is efficient?

Assuming there is no channel estimation error and based on the metric calculation

(7.59), the Forney’s metric is calculated from

AE = |ef]”,

where

N ~ N ~
ef = yk_zmhzofmlk—m thzofmAlk_m+ Nk (7.61)

207



with ATk = Ik—|~k the hypothetical symbol errors associated with a particular survivor
path. The simple observation one should make out of (7.61) is that a large Euclidean
distance|Al|, in the hypothetical symbols results in a large metric differfefdg . Of
course, this is a very loose observation. However, the RSSE is based on this underlying
principle such that when states are having a large path-distance they are collapsed into a
single state and the VA is applied. One other situation to consider is when the frequency of
the error sequenc(aATk} coincides with the null frequency of the channel. The loose
relationship surely not hold in such a case as the t{rﬁq‘,‘: 0 fmATk_ m , tends to zero. For
this reason, an optimum design of RSSE for time-varying channel requires one to vary the
coset labelling and thus the decoding structure to guarantee a detection-distance, which is
smaller than the detection-distance of the complete trellis.

Instead of using the distance criterion, we may want to directly use the metric
criterion to perform the reduced search. M-algorithm and T-algorithm are in this category.
Both use the metric difference as the discard criterion. Briefly illustrating the key aspects

of the two algorithms, we note that

» M-algorithm: Use metric difference, but the number of survivors are fixed at each

exploration. The metric difference varies at each exploration.

* T-algorithm: Fix the metric difference to keep, but the number of survivors varies.
Thus, the detection performance of the T-algorithm whf . is the same as the M-

algorithm withP ., = M.

7.4 Per-Survivor Tracking of the Channel Mismatch

In section 7.3, we apply the T-algorithm to the output sequence of the mean-square
whitening filter (MS-WF). The big assumptions are that the channel estimates are perfect

and the MS-WF filter closely approximates the WF. Therefore, the output sequence is the
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Figure 7-7 lllustration of channel mismatch

set of sufficient statistics, and the resulting overall channel response--including all the
diversity channels, the matched filters at the diversity branches and the symbol-spaced
whitening filter--is a symbol-spaced minimum phase response and estimated perfectly. In
practice, the channel estimate is not perfect, and thus together with the use of finite length
MS-WF, a significant channel mismatch may occur between the overall channel that is
calculated solely based on the channel estimate and the actual cascades of the unknown

channels, matched filters, and the MS-WF. Based on the illustration Figure 7-7, we may
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define the channel mismatch as
e(k) = f(k)=f(k). (7.62)

One of the advantages in dealing with the sequential detection is that one can make use of
the hypothetical sequences to improve the channel estimates. The assumption is that there
is always one correct sequence in the pool of sequences you are currently considering, and
that sequence will provide additional information of the channel. For the purpose of T-
algorithm processing, this additional processing helps to reduce the increase in the average
number of survivors to keep. That is, the detection performance improves while reducing
the complexity. The underlying principle is that in the wrong path, the channel mismatch
estimate quickly degrades and this promotes early elimination of the path; while in the
correct path, the channel estimate is always improving and thus increases the detection
Euclidean distance of the algorithm. In this section, we present the per-survivor estimation

of the channel-mismatch.

7.4.1 The channel mismatch and optimal tracking

Figure 7-8 illustrates the channel mismatch. The channel used is the one for Figure
7-4 and Figure 7-5. Note the asymmetric channel response in Figure 7-8 (a), which is the
cascade of the channel and the matched filter obtained from the channel-estimate, the blank
dots compared with the filled dots which represent the perfect autocorrelation function
using perfect channel estimates. Figure 7-8 (c) shows the results after the MS-WF, one from
the channel estimate the other from perfect channel knowledge. Figure 7-8 (d) indicates the
difference of the two.

Figure 7-9 illustrates the optimum use of per-survivor processing, for the
feedforward channel estimation scheme. We have the continuous set of channel estimates

available, and thus the matched filters and the MS-WFs for the duration of the block. The
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Figure 7-9 Optimal use of PSP is to feedback the channel mismatch information of the
overall channel estimate and recompute the matched filters, the MS-WF and finally

recompute the output sequengg}{at each survivor.
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use of per-survivor processing, however, will provide updated channel information in the
form of /f\(k) . This information first needs to be compared with the stcfr(ekj . The
matched filters and the MS-WF need to be updated accordingly. Thus, we need a function
that maps the obtained channel mismatch informa?o(rk) —f(k) to update the matched
filter and MS-WF. This operation must be performed for every survivor path. This is almost
impossible for our setting of the problem. If we were assuming the symbol-spaced
whitened channel model as commonly used in the open literature, we may be able to
perform the optimal processing. However, it is not plausible with the use of realistic pre-
processing filters. For this reason, we turn to the use of suboptimal solution that the channel
mismatch information is used only once to feedforwardly cancels the channel mismatch,

rather than the optimal feedback.

7.4.2 Modeling and suboptimal tracking of the channel mismatch
We now model the channel mismatch. The basic equation (7.54) can be rewritten as
— Ng 2 Ng
where we have defined:

. fi(k)is the estimated response of the overall channel, the cascade of the channel esti-
mates, the matched filters and combiner and the symbol-spaced MS-WF. Note that the

MF and MS-WF are obtained from the channel estimate.

. {fi(k)} is the unknown, true response which is the cascade of the channel, the

matched filter and the MS-WF.
* The error terng,; (k) is defined as fo= —N,, —N;+1,...,0, ..., N,

g(k) = Ti(k) - (k). (7.64)

213



The combined error term can be defined as
N, = N
&(k) = yk—zi jofi(k)lk_i =n .+ Zi i—Nf—Nh+1£i(k)|k—i' (7.65)

As seen in (7.65), the second error term is the convolution of the transmitted signal and the
error vectore . Now, we ignore the contribution of the future symbols and only model the
contribution from the previous symbols since it can be cancelled with the use of
hypothetical symbols in the survivors; while that of future symbols cannot.

Now, define
. . ~i H N ~ ~i
&' (k) = ey, (K) Oiccion, andg (k) = y,= 5772  Filk) i - (7.66)

Then, the LMS algorithm, described in Chapter 4, updates the error vector at each path with

the following equation:
ebn, (K) = ey (k=1) +ATE () - €' () Ok k-, (7.67)

whereA is the stepsize of the LMS algorithm.

Finally, the causal part of the response is updated using the new esﬂM@) ,

Hik = fi(k) + € (K, (7.68)

fori = 0,1, ...,N,. This LMS per-survivor processing estimates the channel mismatch
vector in the minimum phase response and lowers the SNR penalty due to the imperfect MF
and MS-WF. As mentioned, this method is not optimum. To be optimum, the information
should be fed back to recalculate the matched filter and the WF, and re-obtain the minimum
phase response. Then as the iteration proceeds the receiver would achieve the performance
of the genie-aided receiver operating with perfect channel knowledge. However, the
complexity of such a receiver is prohibitively high as iteration is required. At each iteration

the matrix inversion must be performed to re-estimate the WF, which is the most intensive
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computation. The proposed receiver avoids this problem by an one-step, feedforward
adjustment (7.68) to the unknown respon(sefi(k)}iZO . Significant performance
difference has been observed in terms of detection SNR as well as in reducing the number

of survivors.

7.5 Simulation Results and Discussion

In this section we study the performance of the proposed receiver via computer
simulations. First, we examine two sample static channels that are obtained from the
ensemble of wireless channels in consideration. These channels have a severe nulls in the
folded-spectrum as we desire to test the equalization performance of the proposed receiver.
The first channel, denoted as channel-1, hasa null in its folded-spectrum, see Figure
7-10; the other has 402 null, see Figure 7-11. We first examine the proposed receiver
performance on these channels; in the mean time, we may tune the parameters of the
proposed receivers, such as the feedforward filter length, feedback filter length of MS-
WMF, the threshold value, the maximum path allowed, and the stepsize of LMS channel
estimation error tracking. Later, we apply the receiver to the time-varying ISI channels.

We now briefly review the simulation parameters and assumptions. A fractionally
sampled system, i.elNg, = 2 in(7.1), is assumed. The SRRC filter uses 35% rolloff factor

and is represented with the column vector

f =(0.0404 -0.0953 -0.0600 0.4297 0.7749 0.4297 -0.0600 -0.0953 0,04G%)69)

which is four symbol truncation of the SRRC filter. For both fading and static channels, a
Monte Carlo method with 2,000-50,000 independent trials was used. To evaluate the
adaptation on continuously transmitted frames, each trial consisted of 5-16 frames, where
a frame is a block oB = 80 symbols including th&l, = 11 training symbols. The sum of

nine-sinusoids described in Chapter 2 was used to generate ititiependent diversity
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channels coefficients, which is continuously varied at a given fading rate. The half symbol-
spaced complex-valued additive noise samples were independently generated. The channel
interpolation is performed using two future and two past channel estimates. The training

symbols are also the same as defined in Chapter 4, i.e.,
I = (J9-1) +i(Jg-1))(1 1-1-1-11-111119', (7.70)

for g -QAM q =4, 16, and 64. Finally, assuming a symbol rate of 24 ksps, fast fading
corresponds tdy,, = 100 Hz g4, = 0.0042) and slow fading t&,, = 10 Hz (4T =
0.00042).

7.5.1 Static channel simulation
The static channel examples are

b, = (-0.2695+0.3785i 0.9619+0.0303i 0.0730-0.2938i) (7.71)

and

b, = (0.3236-0.7876i 0.3222+0.8566i -0.0155+0.1278i) (7.72)

in Tg/2-spaced sampled response. Then, the overall channels can be obtained from
convolution of the SRRC filter, i.eh; = b; O f , which spans five symbol periods. The
folded spectrum of the channle}  ahd  are given in Figure 7-10 (a) and Figure 7-11 (a)
respectively.

Figure 7-10 (b) and Figure 7-11 (b) show the 4-QAM symbol error simulation
results using the T-algorithm receiver over channel-1 and channel-2 respectively, compared
with the fundamental matched filter bound (solid line). The feedforward and feedback filter
lengths of NT-DFE or the MS-WF of the T-algorithm receiver &M, N,)) = (6, 6) for

each of the six different receivers. First, let's compare results of the T-algorithm and the NT-
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DFE with the channel perfectly known as a benchmark. Since the channel is static, the NT-
DFE is the same as the conventional DFE. We observe there is about 1.5 ~ 2.0 dB SNR
penalty (ath_4 ), even for the correct decision feedback DFE (CDF-DFE), for both
channels. The T-algorithm us¢B,,,,, {) = (1000 4.0  and achieves the performance of
the VA for both channels. As the folded spectrum of channel-2 exhibits a deeper null than

the channel-2, the SNR penalty of the DFE is larger for the channel-2.

* Next, compare the rest of the curves where the channel is estimated using the least
squares estimator (LSE). Observe that the use of the T-algorithm receiver with

(P () = (100, 3.0 improves detection SNR by 2.0dB over the use of a DFE or

max

about 0.5 to 1.0 dB over the use of the correct decision feedback-DFE for both chan-
nels. The T-algorithm receiver employing the per-survivor LMS channel mismatch
tracking is denoted as T-alg-LMS receiver. The receiver's simulation parameters are

(Pmaw € »P) = (100, 3.0 0.00% for the maximum allowed paths, the threshold

max

value, and the stepsize of the LMS algorithm. LMS stepsize is chosen according to

orA< S . T-alg-LMS receiver achieves an additional 1.0 to

i <
e, A >

ot (q) N, 67(q)

1.5dB SI\IIR advantage over the use of T-algorithm without the use of LMS tracking.
That is, about 3.0 dB SNR advantage compared to the DFE.

The static channel simulation results can be summarized as follows:

» The T-alg. closely achieves VAs performance when used with a sufficiently large
number of paths and a large threshold value. With the ideal channel estimates avail-
able, the T-alg (1000,4.0) achieves the performance of the VA as indicated in Figure 7-
10 and Figure 7-11.

* This performance is obtained with the average number of paths of only a few tens of

paths for simulations with the input SNR greater than 9 dB.
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» The symbol error rate (SER) of the T-algorithm is lower than that of the correct deci-

sion feedback DFE (CDF-DFE).

» The LMS tracking of the channel estimation error helps reduce the number of paths
and provide further SNR advantage, recovering some of the SNR penalty due to

imperfect channel estimation.

7.5.2 The Rayleigh fading ISI channel

The rms delay spread of the Rayleigh fading channel that are used in the simulation
is 0.3257T . The diagonal term of the channel autocorrelation matrix is the MPDP. The

matrix is

E{b'b'"} = diag(0.6652 0.2447 0.0900 (7.73)

The following table summarizes the receiver parameters used in simulations.

Table 7-3: Simulation parameters and results

QXM Threshold M?;El;m rigoRn s'tl_e:'\g:ze A\éz;ige SER
4 25-40 100 15-25 0.05 1.0~30.0 le-2~1e4
16 4.0 200 20-30 0.01 10.0 le-2 ~1e4
64 45-5.5 200 25-35 0.001 30-40. le-2 ~ letd

Figure 7-12 is the symbol error rate (SER) simulation results of 4-QAM signalling,
compared with the matched bound calculated for the 4-QAM modulation format over the
Rayleigh fading I1SI channel. The T-alg-LMS receiver shows very robust symbol error rate
performance for the fading channel. At the fastest fading rate (100 Hz, the vehicle speed of
120 km/hr), the SNR degradation from the slow fading (1 Hz, quasi-static channel) is only
about 3.0 dB, whereas in the case of NT-DFE it was about 6.0 Bt SER.
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Figure 7-13 and Figure 7-14 are the SER simulation results for 16-QAM and 64-
QAM signalling over the Rayleigh fading ISI channels, compared with the matched filter
bound. While maintaining the superiority to the NT-DFE receiver, we now observe that the
SER for the fast fading reaches irreducible error floors. Figure 7-15 is the SER simulation
results for 64-QAM signalling when 2-independent diversity channel is available. From
these figures, we observe that the proposed receiver does bring a significant SNR advantage
over the NT-DFE.

Looking at the fading channel simulation results, we conclude that the proposed T-
algorithm using the LMS-per-survivor channel mismatch tracking indeed is superior to the
use of the NT-DFE receiver developed in chapter 5. In addition, the computational
complexity problem of MLSD can be controlled by the use of a reduced search algorithm.
However, we immediately note that the receiver could not overcome the limitation imposed
by the channel estimation error. This was one reason we explored the possibility of
feedback of the channel mismatch information obtained from the LMS per-survivor
processing stage. As mentioned earlier this is extremely unrealistic due to our realistic
multi-stages of pre-processing receive filtering to produce the sufficient statistics.

Another point worthy to note is that the advantage of MLSD over the DFE does not
stand out as much as those of static channels given in Figure 7-10 and Figure 7-11. In fact,
the performance of MLSD stands out only when the channel develops a severe ISI channel
or in other word contains a deep null (or nulls) in the folded spectrum. For a channel with
no nulls in the folded spectrum, there is little performance difference among MMSE-LE,
MMSE DFE or MLSD. The simulated multipath ISI fading channels with the multipath
power delay profile (MPDP) given in (7.73) would occasionally develop such deep in-band
nulls just like the static channel examples of Figure 7-10 and Figure 7-11 and this is when
a large performance difference can occur. For other occasions when there are no nulls, the

performance of the NT-DFE should be comparable with that of T-algorithm receiver. Since
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the simulation results for fading ISI channels are the averaged results over all the possible
channels, it is understandable that the advantage in detection SNR over the use of NT-DFE

is not as large as the static channel case.
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Figure 7-12 4-QAM simulation results for the fading ISI channel
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64-QAM Symbol Error Rate for Rayleigh Fading ISI channel
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Figure 7-14 64-QAM simulation results for the fading ISI channel
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Figure 7-15 64-QAM simulation results for the fading ISI channel (L = 2).
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7.6 Concluding Remarks

In this section, we have proposed the reduced complexity MLSD receiver
architecture, where the feedforward channel estimation and interpolation, front-end filter
derivation, and the application of the T-algorithm are integrated. First, we have investigated
a number of different receiver schemes using different front-end filters (e.g., the matched
filter, the WF, or MS-WF). Among them we determined the cascade of matched filters,
combiner and the MS-WF, which is suitable for the T-algorithm. Ungerboeck receiver
operates only with the matched filtering and diversity combining, but it turned out that the
sequential search methods using Ungerboeck metric, such as T-algorithm or M-algorithm,
required exploration of every possible path, especially for a channel with a deep in-band
null. Thus, we proposed use of the finite length MS-WF to approximate the WF, where the
T-algorithm receiver was shown to exhibit desirable error-rate versus average-
computational-complexity behavior. In addition, we also proposed the use of per-survivor
channel mismatch tracking using the LMS algorithm in conjunction with the T-algorithm.
The per-survivor channel mismatch tracking helps further reduce the average-complexity
while achieving higher SNR advantage. The developed receiver was shown to be
operational for alargg -QAM signalling, up to 64.

In Chapter 8, the pre-processing filters and the T-algorithm receiver will be
extended to decode the trellis-coded signal transmitted over the time-varying I1SI channel.
Since the coded sequence has a larger minimum distance than uncoded sequences, a near-
optimum MLSD performance can be obtained without significantly increasing the average

number of survivors that the T-algorithm receiver must consider.
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Appendix B The Fano metric

In this section, we derive the Fano metric for Syenbolspaced matched filter ISI
model. For the derivation of the Fano metric we follow the random tail method of Massey
[93]. We assume a forward search which explores the trellis from the beginning for the
description of the Fano metric. That is, we consider the Fano metric for the input sequence
of lengthn ,1<n< N, whereN is the total length of the transmitted input sequence. It
should be recognized that a backward search, a search started from the end of the trellis,
has exactly the same property as the forward search. Since the rdatrix is Toeplitz
Hermitian symmetric, the state machine exhibits the same distance property for both
directions. Thus, bidirectional sequential decoding [104] can be applied to alleviate the
variability of detection effort.

The Fano metric is in fact obtained from a maximw@arposteriori probability
density regarding an input sequence of length  given the sequence of matched filter output
samples. Following the random tail method [93], the MAP measure of a hypothetical

sequencé, ... |, given the observatmn... z IS
q 1 n Ill N

Pr(zl:nl yl:n)Pr(ylzn)

Pr(z,.) (7.74)

Pr(yl:nl Z1:N) =

After taking the logarithm and defining the log MAP measure as the Fano metric, we have
o1y ... 1) = logPr(z;.,| y1.,) —10gPr(z;.,) +logPr(y;.,) - (7.75)

The third term in (7.75) can be readily computed since we assunie an input sequence,

i.e.,
n-1 n
Pr(ypm) = []Pr(¥ia ¥)Pr(y) = []Pr() =M™, (7.76)
i=v i=1

and thudogPr(y,.,) = —nlog,M , wherb/ is the size of modulation constellation set.
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The second term in (7.75) is a pure observation. If we are comparing the MAP
measure for the same length of sequence, it can be consolidated to the universal constant
term. However, the Fano metric is supposed to give a fair distinction among different
lengths of hypothetical input sequences. Thus, we should include the second term in
comparison of different length sequences.

The first term of the Fano metric is the likelihood function. We define the first term

as

= logPr(z;.,| y1.n) = Const
1 —1 -1 -1 —1
_é{ Zl1_|:an Z1:n _y|1_|:an Z1:n _Z|1_|:an Yint ylH:an yl:n} ' (7.77)
10 1 O
= COﬂSt—é[Zl an 1n— [ZRd Zl:n)_llH:annll:n] Ch

U U

where we have usel, @2 . We can show that the first compaieiR-"'z, . can be

computed from the fractionally sampled received samples, i.e.,
R _ UH
Zln n Z1n = Xv:iv+n—1X:ven-1- (7-78)

It should be recognized that the rest of terms in (7.77) are the same as Ungerboeck’s MLSD
cross-correlation measure. In fact, the metric for the M-algorithm is the likelihood function

L,, without the termezf! R-'z, .. Specifically, we define

— H pt
‘]n - I-n_Zl:an Zi:n-

Then, we can show thdf, can be computed recursively from

J, = Jp_1 A forn=1,2 .., N,withJ, =0; (7.79)

n-— n-1,n’

where the cumulative metrit;, is
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— n n * 0 n s [
Jy = Z:lzjzlliljwi_j—zRaazizl|izi5, (7.80)

and the branch metria, , from the-1)-th node ton-th node is

n-1,n

)‘n—l,n = —ZRB{ Ir’;zn} +|:1|anO+2Re{ IFIZ:_:lln—qui}-
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Chapter 8

Decoding of Trellis Coded Modulated
Signals

In this chapter, a new receiver is proposed for decoding trellis coded modulation
signals transmitted over fast fading ISI channels. The feedforward channel estimation and
the adaptive matched and whitening filters developed in previous chapters are used to
combine diversity signals and obtain the estimate of the causal, symbol-spaced FIR
channel. Then, the proposed receiver performs the T-algorithm search over the combined
tree, which includes the code, the deinterleaver and the causal FIR channel. In Chapter 7,
the T-algorithm is used as an equalizer and is shown to achieve near-optimal performance
(in the MLSD sense) for uncoded systems at a reduced complexity. We show that the T-
algorithm can be applied to a joint decoding/equalization problem, and the coding benefit
can be achieved without increasing the complexity. We use the 8-PSK, 8-state trellis code
[98] with modest block interleaving to show that the proposed receiver achieves the
available time-diversity benefit of the code for the fast Rayleigh fading ISI channel. The

proposed receiver is also compared to the other suboptimal receivers, using the T-algorithm
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for equalization and the Viterbi decoder for the deinterleaved soft-equalized symbols.
Simulation results indicate that the proposed joint receiver is superior in terms of both BER

and complexity.

8.1 Introduction

Trellis coded modulation is an efficient coding technique, which achieves coding
benefit at no cost in bandwidth. This makes the use of TCM very attractive for any wireless
communications applications where the spectrum and the battery power are limited
resources.

TCM was originally designed and optimized for additive white Gaussian noise
(AWGN) channels [98]. The design goal is to increase the free Euclidean disignge of
the coded sequence. One method of decoding is the Viterbi algorithm (VA) which searches
the code trellis for the maximum likelihood sequence having the minimum Euclidean
metric. For a static channel with intersymbol interference (ISI) in addition to AWGN,
optimum decoding can be achieved by first forming a joint trellis which combines the code
and ISl trellises and then employing the Viterbi algorithm to search the joint trellis for the
minimum Euclidean metric path. Suboptimal but reduced complexity search techniques
such as the reduced state sequence estimation (RSSE), the M-algorithm or the T-algorithm,
can also be considered when the number of states of the joint trellis is large.

For Rayleigh or Rician flat-fading channels, the TCM design criterion is to obtain
as much signal diversity as possible. Thus, first it is desirable to have the encoded symbols
interleaved so as to provide independent fading on adjacent symbols. Then, the primary
code design criterion is to increase the length of the shortest error event path; the secondary
one is to increase the product of branch distances along that path, to achieve as large as

possible time-diversity. The Viterbi decoder or other reduced search techniques can be used
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to search the deinterleaved sequence.

For fading ISI channels, such as the frequency-selective Rayleigh fading channels
we are considering in this paper, the optimum decoder must again search the combined
trellis of the encoder and the ISI. However, the use of the interleaver/deinterleaver forbids
the formation of a joint trellis due to the prohibitive complexity. Provided an interleaver is
not used, the joint trellis can be formed but little signal diversity can be achieved from the
use of TCM. It was reported that TCM designed for the flat fading channel may bring worse
bit error rate (BER) performance than an uncoded modulation, where the receiver uses the
VA to search the joint trellis without interleaving [49].

In this paper, we propose a new receiver scheme to decode TCM signals which are
interleaved and transmitted over fast Rayleigh fading frequency-selective channels. The
receiver employs the feedforward channel estimation techniques in Chapter 4 and the front-
end filters developed in Chapter 7 which optimally combine diversity antenna signals and
provide a symbol spaced, causal overall channel estimate to the sequence estimator using
the T-algorithm. The T-algorithm receiver then searches the combined tree of the TCM
encoder, the deinterleaver and the I1SI formed by the overall channel estimate. In Chapter 7
it was shown that for uncoded signal transmission over the fading ISI channels the T-
algorithm receiver brings a substantial SNR benefit over a decision feedback equalizer at a
moderate increase in complexity. We show here that by the use of T-algorithm the joint
decoding can be performed even for interleaved sequences and the efficiency of T-
algorithm search is further enhanced while achieving the coding benefit.

This chapter is organized as follows. Section 8.2 describes the system in
consideration. Section 8.3 explains the receivers. Section 8.4 presents the simulation

results. Section 8.5 provides the conclusion of the chapter.
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8.2 The system description

Figure 8-1(a) describes the baseband equivalent system used for the simulation. It
is a part of the complete system, from A to B in Figure 8-2. The complete system will be
used to explain the operation of the decoding processes in which the detailed system (a) is
replaced with the simplified tapped delay line (TDL) model (b). More explanation will be
followed later in this section.

In Figure 8-1, the modulated symbol sequejigg is transmitted using the transmit
shaping filter (TX) with 35% excess bandwidth. Then, the transmitted signal is received
through thd. frequency-selective channels, assumed to be mutually independent by the use
of L space-diversity antennas. Since the shaping filter employs excess bandwidth, a half
symbol period sampling of the received signal is assumed. Accordingly, the TX, diversity
channels and matched filters (IVII%lre realized with half symbol-spaced finite impulse
response (FIR) filters. Mrt each diversity branch is matched to the cascade of TX and the
|-th channel Ch Then, the matched filtered signals are combined and symbol-rate
sampled.

The mean-square whitening filter (MS-WF) is an anticausal, symbol-spaced FIR
filter, which whitens the noise colored by the matched filtering at each diversity branch and
provides the “quasi” minimum phase overall channel response between the input
symbolq |,} and the output symbdlg, }

In Chapter 5, the same diversity combining structure of Figure 8-1 is derived under
the criterion of minimum mean squares error-DFE. In Chapter 7, the same structure is also
shown to be the optimum (in MLSE sense) pre-processor to be used with the T-algorithm
post-processor for uncoded use. In fact, by the use of a finite length MS-WF, instead of
using an infinite length WF, the overall channel is generally not minimum phase nor is the

resulting noise perfectly whitened. The non-causal part of the response tends to vanish but
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Figure 8-1 (a) Baseband system description of the system from A to B in Figure
8-2. (b) The symbol-spaced TDL is the model representing the system from Ato B

for the operation of T-algorithm receiver.
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not exactly zero-valued, even with perfect knowledge of the channel. As was shown in
Chapter 7, however, the MS-WF provides a practical and stable solution suitable for use in
the presence of channel estimation error and for channels with a null (nulls) in the folded
spectrum (i.e. severe ISI).

For the purpose of T-algorithm search, therefore, the non-causal part of the overall
responsd (k) isignored, and the noise is assumed to be whitened. Then, the input/output
relationship betweefil,} ardy,} is given by as depicted in Figure 8-1 (b)

Yo = zil\lzhofi(k)lk—i-l'rlk’ (2)
whereN,, is the length df(k) angl,  is assumed to be white Gaussian noise.

To update the MF, MS-WF and thugk) , we use the channel estimation and
tracking methods described in Chapter 4. That is, we assume a contiguous transmission of
frames, where a frame constitutes a training segment and an unknown data segment. A set
of four channel estimates obtained during the training segments is interpolated to track the
channel variation for the second data block. From the interpolated channel estimates, the
MF' and the MS-WF are obtained. Readers are directed to Chapter 7 for further details of
the pre-processing receiver and the procedure to obtain the MF, MS-\M?(I@hd from the
channel estimates.

Figure 8-2 provides the description of the complete system where the detailed
system given inside the box of Figure 8-1 (a). is replaced with the overall channel estimate
f(k) and the equivalent noisg, . The equally-likely uncoded bits are mapped to the
encoded symbol sequence and the modulated sequences are interleave(Nyyxtihg))
interleaver before being transmitted. The training sequence of léxgth is inserted into
each row of the interleaved sequence as described in Figure 8-3, and transmitted row by
row. These training symbols are used for the feedforward channel estimation as well as for

the start and end of a decoding process (i.e., a sequence starts with a known state and ends
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Figure 8-2 The block diagram of the overall system: the details of the system from
A to B are described in Figure 8-1 (a).
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in a known state.)

8.3 The receivers

In this section, we describe the proposed receiver and the other suboptimal receivers
that are in comparison. All of the receivers use the Euclidean distance metric, obtained
under the criterion of maximum likelihood sequence estimation (MLSE). Thus, we first

begin with the derivation of the metric.

8.3.1 The Euclidean distance metric from MLSE

The maximum likelihood bit-sequence can be determined from

A~

b = arg maxPr{y| b}, (8.1)
bOB

whereb is the sequence of independent, equally likely bitseand is the set of all possible

bit sequences. The code trellis provides a one-to-one mapping from a sequenc®of bits  to

a sequence of trellis coded modulation symhdks) . Therefore, (8.1) can be rewritten as
b = arg max  Pr{y| I}. 1)
| O{1(b): bOB}

Then, from the relationship given by (2) we have

-1
0
arg min [J -yd O (2)
I ﬂ(ZOW( k|D

A

b= argmin  {ly-y%
I O{1(b): b OB}
where we usedy Hyy_q - yo)t ang, = ziNjOfi(k)I'k_i . The second equality

follows from the assumption that  is white.

8.3.2 Joint decoder without the use of interleaver

Now consider a situation where no interleaver is usedN,e= 1 . Then, the ISI

trellis with g\s states and the encoder trellis wih ~ states can be readily combined to form
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a super-trellis, and the complete search of (2) can be performed by the use of VA which
searches over the joint-trellis with(Sx %)  states. When the number of trellis state
become too large for the VA to be of any practical use, reduced search techniques can be
considered. In [117], the M-algorithm, the T-algorithm and RSSE are applied to decode
trellis coded signals transmitted over a static ISI channel, and it is reported that the T-
algorithm which operates on the joint trellis achieves the performance of RSSE at much less
average computational cost.

When applied to fading channels, however, the joint trellis decoder may not provide
any coding benefit [124] since the interleaver is not used. In the design of trellis-coded
signals for fading channels the primary objective is not to obtain a large free Euclidean
distance but to achieve as large a diversity order as possible. Then the potential diversity
gain of the code can be achieved fully for an ideal system operating on an independent
fading channel, and partially for systems which use a finite length interleaver to implement
independent signal fading. The asymptotic BER performance of the ideal system would
behave proportional t&N R®  where the power exponBnt s the order of diversity
provided by the code for flat Rayleigh fading channels.

The joint decoder without an interleaver uses the same T-algorithmNyitk 1 :
described in section 8.3.4. This joint decoder employs the least mean squares (LMS) per-
survivor channel tracking scheme developed in Chapter 7 to enhance the channel estimate
and thus improve the decision. The intermittent training symbol sequence enforces the
sequence to start from and end in a known state within a frame, and thus the decoding is
performed on a per frame basis. We refer to this receiver as ‘no interleaver joint T-

algorithm’ (NI Joint T-alg).

8.3.3 Separate equalization and decoding with the use of an interleaver

In this system the interleaver-deinterleaver is employed to achieve the diversity

239



benefit provided by TCM. The sequence of symb@lsl ,!,...) are interleaved and the
interleaved sequencgsyly I,y ---)  are transmitted over the multipath fading channel as
shown in Figure 8-2. Then the equalization and the decoding steps are separated at the
receiver. The T-algorithm equalization in Chapter 7 is first performed on the received
signals, which are corrupted by the overall charfri&l) . The T-algorithm searches on the
interleaved sequence without exploiting the sequence constraint imposed by the code
trellis. The sequence estimator also works on a per frame basis using the training symbols
at both ends. The T-algorithm equalization provides hard decigiig, Ion; ---) on the

transmitted symbols in the expanded signal set. These hard decisions are then used to

cancel the ISI and generate the sequence of soft equalized c(ll@;&tli;;,\,l o.) where
5 Y= S Follpn |
kN, +i = e = lyn, +i + Noise (8.2)
o(k)

fork =0,1,...,N;=1andi =0,1,...,N,—1.The LMS per-survivor channel tracking
is again used to reduce the number of survivors and improve on the hard decisions.

The deinterleaved soft output sequer(d:~§l~1l~2...) is fed to the Viterbi decoder
which searches the code trellis wigh  states to decide the minimum metric path. We refer

this receiver as the ‘T-alg. & VA receiver.

8.3.4 The proposed joint tree searching T-algorithm receiver

We now describe the proposed T-algorithm receiver which performs jointly the
decoding, deinterleaving and equalization. Since it is a joint search of the maximum
likelihood path, there is no information loss due to early decisions (definitely there is some
information loss due to the use of the suboptimal T-algorithm search, instead of complete
search) nor is “turbo” like iteration required between the ISl trellis and the code trellis. It is

the case that for a separate equalization and decoding scheme, a turbo-iteration would be
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beneficial since the two state machines are separated by the deinterleaver. The results of the
iterations would converge to that of the joint-search.

As elaborated more in the sequel, the T-algorithm follows the code tree, while
cancelling the contribution of post-cursor ISI by the use of the tentative decision symbols
stored in the survivor-sequence, or by the use of the decided symbols when the depth of the
T-algorithm is shorter thahl,N,, . The decided symbols are quite reliable since they are the
results of sequential search, not a symbol by symbol decision as in the case of DFE. That
is, the ISI cancelling is carried out in each of the survivors.

We now describe the proposed receiver algorithm. The following receiver

parameters can be selected by the receiver designer:

* P,ax denotes the maximum number of survivors allowed.
* { denotes the threshold value afjd  denotes the reduction value.

* N, determines the depth of the tree, iy, = Ny [N,

Then for the description of the algorithm we use the following notation.

¢ | denotes the survivor index, i.e.= 0,1 2 ...,P 1

max_

* ] denotes the contender index, ie5 0,1, 2 ..., MP,,,—1

« ', denotes the -th survivoi, = 0,1, 2 ..., P 1 , &Npx1) vector which

max_

stores a history of hypothetical encoded symbols.
« S'y denotes the history of encoder-states ofithe -th survivor.

* B,,e(i,q) denotes the metric of the branch which is the -th transition from the state
of i-th survivor, and is computed by

Nh

oK) oy~ T oK) 3)

wherel, represents the modulation symbol defined in the encoder-trellis for the transition.

Bmet(i’ q) = ‘yk_

241



* Jeum(i) the cumulative metric of thie  -th survivor.

* J.oni(]) denotes the cumulative metric of the -th contender, i.e.,
JCOI’lt(j :iNb+q) = qum(i)-l_Bme[(i;q), (4)

whereN, is the number of branches out of a state.

* D, denotes the decided symbol sequence.
* D¢ denotes the decided encoder-state sequence.

» P denotes the length of survivor list that is updated at each epoch.

Then, the joint-tree searching T-algorithm can be described as:

* (Step-1) Start from the state-0 of the encoder, and thug sg(0) = 0.0 S,%D =0
and the length of the survivét = 1

Then foreactk = 0, 1,..., N, [N; -1 the following steps are taken:

* (Step-2) Fori =0,.. P—1 , extend the -th survivor intg contenders. At each
extension stepJ.,,{j) is computed by (4), the minimum medre, and the best
survivor indexi,,;, are updated by a binary comparisdpf = J.ont0) ), and the

survivor-path index , i.eP,4(j) =1 , are recorded.

* (Step-3) Mark and count the contenders which pass the threshold test
‘]cont(j)_‘]min<Z 5)
and possess the same path-history symbol as the one in the best metric path. If the counter

p reachesP beforg reachBdN, ,stop and lower the threshalg by , and then mark

max
and count again. From the marked paths, generate a survivor list which records the

contender’s index§ (p) = j P is the size of the survivor list.

* (Step-4) Forp = 0, 1, ..., P—1 obtain the index of the survivors uskg ang ,
i.e.r = Piy(Sq(p)) , and form the new survivoi®, ., asP.1 by concatenating

the new symbol and the new encoder-state which are obtained from the trdlljs to
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andS', respectively.

* (Step-5) Foik > N, , release the symbol and the encoder-state of the best metric path

to D, andDg .

8.4 Simulation Results and Discussion

In this section we study the performance of the proposed receiver via computer
simulations. Let’s briefly explain the simulation environment and parameters.
* We use thél g/ 2 -spaced sampled system for the fractionally sampled system.

» The transmit filter uses a nine tap square root raised cosine filter with 35% roll-off,

which is a 4-symbol period truncation.

» Each diversity channel is a three tap filter, and each independent Rayleigh fading tap

is realized with the sum of nine-sinusoids method as explained in Chapter 2.

* The average powers of the three fading taps @#&652 0.2447 0.0900 , for which
the rms delay spread is about 0.3257 the symbol period.

* During reception of the signal the channel taps are continuously varied according to
the given fading ratd 4, . As a worst case scenario of 120 km/hr vehicle speed, the
fading rate reaches 100 Hz. This requires the frequency of training to be at least every

120 symbols for the purpose of channel interpolation.

* In this chapter we use the eleven training symbols for every 69 symbols, so that a
frame consists of 80 symbols. The training sequence usedN.) = (11, 6) as

defined in Chapter 4 which is
I, =(11-1-1-11-11111". (6)
* The MF and the MS-WF use 12 taps and 6 taps respectively.

» A Monte Carlo method with 2,000-50,000 independent trials was used to obtain an
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averaged performance over the randomly varied channel. To evaluate the adaptation on

continuously transmitted frames, each trial consisted of 5-16 frames.

» We use the 8-PSK, 8 state code given in Figure 8-4. The length of the shortest error
event path in the trellis is 2 and the square product Euclidean distance is equal to 8.0.
Thus, it provides a potential diversity gain of order 2. The code has 3.6 dB asymptotic
coding gain over AWGN.
We simulate different receiver schemes for the purpose of comparison with our
proposed receiver. All the following receivers use the same number of taps for the front-end
filters. In particular, the matched filter at each diversity branch uses 12 half symbol-spaced

taps. The symbol-spaced MS-WF uses 6 symbol-spaced taps.

» The ‘NT-DFE’ represents the non-Toeplitz DFE in Chapter 5 which is used to decode
Gray-mapped 4-QAM signals. The feedback filter uses six taps.

* The ‘NI-Joint T-alg.” stands for the joint T-algorithm receiver described in 8.3.2. The
T-algorithm parameters af€ . (. Np, A) EO00Q 2.5 50 0.00p , whehe is the

stepsize of the least mean squares (LMS) algorithm.

* The ‘T-alg. & VA implies the receiver scheme described in section 8.3.3 in which the

T-algorithm of Chapter 7 is employed to obtain the equalized, soft-output sequence

{Y\} . then deinterleaved and fed to the VA decoder which searches the 8-state trellis.

That is, the equalization and the decoding are separated by the use of deinterleaver as

shown in Figure 8-2. The T-algorithm parameters afB, ., Np,A) =
(100, 2.5 50 0.00%

» The ‘Joint T-alg.’ represents the proposed receiver where the equalization and decod-
ing are jointly performed by the joint T-algorithm. The joint T-algorithm searches the
combined tree formed by the encoder trellis, the interleaver/deinterleaver and ISI. The

T-algorithm parameters a(®,,,,, {, Np) €00, 2.5 50

* The ‘Ideal Joint T-alg.’ is the Joint T-alg. operating with perfect knowledge of the fad-
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ing channel. Doppler fading at 200 Hz is used to simulate an ideal interleaving. The T-
algorithm parameters g, {, Np) (2000 2.5 50

Figure 8-5 shows the average BER performance of different receivers at the fast
fading ratef 4, =100 Hz. First we note that the NI-Joint T-alg. receiver achieves no coding
benefit at all, showing only a slight performance advantage over the NT-DFE at high SNR.
On the other hand, the receivers with the use of interleaver/deinterleaver show drastic
performance difference. The ‘T-alg. & VA and ‘Joint T-alg.’ receivers shows substantial
SNR benefit, which is abot- 6 dB forL = 1 and3-4dBfoL = 2 atthe avage BER
10™* over the NT-DFE. Comparing the ‘Joint T-alg.’ receiver with the ‘Ideal’ receiver the
SNR loss due to channel estimation error can be estimated, which is about 5 dB SNR loss
forL = 1land4dBforL = 2 .

Comparing the ‘T-alg. & VA’ and the proposed ‘Joint T-alg’, it seems that there is
not much noticeable difference in terms of BER. The ‘Joint T-alg’ receiver provides an
SNR benefit less than 1.0 dB compared to the T-alg. & VA receiver. The BER advantage of
the Joint T-algorithm, however, is obtained by keeping a far smaller number of survivors on
average. Figure 8-6 indicates the average number of survivors required for the T-algorithm
employed in different receivers. The ‘T-alg. & VA receiver requires more than 60 survivors
for equalization alone to obtain the BER performance presented in Figure 8-5. Additional
complexity is required for the VA decoding. In addition, the overflow percentage of this
receiver reaches 100%, suggesting the need to lower the threshold value at the expense of
bit error rate increase. On the other hand, the Joint T-alg receiver shows very low average
number of survivors, requiring about 10 average survivors in the SNR region where BER

is acceptable. The overflow percentage is less than 0.1%.
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Figure 8-5 Average BER performance over the fading I1SI channels (100 Hz). 4-QAM
Gray coding is the signalling format for NT-DFE and 8-states 8-PSK trellis modulation
for the other receivers, T-alg. & VA, joint-T-alg and Ideal Joint-T-alg. The Ideal receiver
Is the same as the joint-T-alg., but the channel is perfectly known to the receiver, which
Is fading at 200 Hz to implement the ideal interleaving.
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8.5 Concluding Remarks

We proposed a new receiver scheme which may be used to decode the coded symbol
sequences transmitted over fast fading frequency-selective diversity channels. It consists of
the pre-processing receiver discussed in Chapter 7 and the post-processing sequence
decoder using the T-algorithm.

The pre-processing receiver optimally combines the diversity channel outputs and
provides the symbol-spaced sufficient statistic to the post-processing receiver. Using the
pre-processing receiver, the overall channel response can be approximated as a quasi
minimum-phase ISI with the additive-noise term whitened (approximately). This is
desirable for the T-algorithm processor. The efficiency of T-algorithms depend on the
channel response. It makes early decisions to purge based on the metric difference. If the
channel has the larger energy taps early in the response, then the metric difference will be
larger between the correct and incorrect paths, and a more reliable early decision can be
made.

Provided with the sufficient statistic sequence and the estimate of the minimum
phase overall response at our disposal, in this Chapter we designed a new receiver that
jointly and computationally-efficiently decodes the trellis-codes which had been channel-
interleaved and transmitted over the fast time-varying multipath fading I1SI channels. The
use of the interleaver is necessary to realize the potential diversity benefit of the trellis-code
designed for a fading channel. The problem of joint decoding and equalization is not a
trivial problem since the use of interleaver hinders a formation of a super trellis and make
the decoding process difficult. The separate decoding/equalization receiver is suboptimal,
due to early decision made at the equalization step.

The proposed T-algorithm is a tree-searching receiver, thus the formation of a joint-

trellis is not required and the ISI cancellation and deinterleaving can be performed on a per
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survivor basis. The decoder follows the code tree and at each survivor cancels the
contribution of the minimum phase ISI using the hypothetical symbols stored in the
survivor. This differentiates the proposed receiver from the separate equalization and
decoding receiver, where the I1SI cancellation is performed using the hard decision symbols
in the extended signal set and the decisions are made without the knowledge of the
sequence constraint of the code.

Our simulation results show that the proposed joint tree-search T-algorithm brings
out the available coding benefit at a very moderate complexity in terms of the average

number of survivors that the algorithm had to keep.
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Chapter 9

Conclusion

The vision of universal communication networking and computing systems
provided in the introduction of this dissertation requires many technical breakthroughs. In
this dissertation, we have focused on the design of reliable, efficient wireless
communication techniques at the link-layer. In particular, we have proposed a TDMA
based systems where using the intermittent training symbols, the receiver estimates the
channel and obtains the optimum filter coefficients to process the received signals. We paid
special attention to ensuring robust receiver performance in fast time-varying fading
channel conditions and for signal modulation with a large constellation to improve spectral
efficiency. The development of the transceiver was extended to support the trellis-coded
modulation, which would be useful in extending the coverage area of the transceiver. The
transceiver techniques introduced in the dissertation may be a stepping stone towards the
realization of the envisioned wireless networking systems. We now conclude the
dissertation with summary of research contribution and a list of possible future research

topics.

251



9.1 Research Contributions

This dissertation presents advances in the design of wireless transceiver in a number
of areas. A summary of these contributions is given below.

1. We have proposed a novel channel estimation scheme, wheagtlei information
of the transmit shaping filter was used to reduce the number of unknown parameters in
the channel parameter estimation problem. This brings about a number of benefits.
First, with fewer unknown parameters, a shorter observation window is needed.
Second, with a shorter observation period the snap-shot channel estimation performs
robustly in fast fading. Since a snap-shot channel estimation problem relies on a fixed
channel during the observation period, a long observation may become
counterproductive [10, 20]. Finally, the estimates will be more accurate when there are
fewer parameters to be estimated. Having obtained the estimates of the channel, the
overall channel can be computed from the convolution of the estimate and the filter.

2. Based onthe new channel estimation equation, we have obtained the channel estimators
under least squares estimation (LSE), maximum likelihood estimation (MLE), and
maximuma posteriori estimation (MAP) criteria. Theoretical as well as simulation
mean squares channel estimation errors are evaluated for each of the channel
estimators.

3. We have proposed the use of a matched filtered diversity combining decision feedback
equalization (DFE) instead of the “straightforward” diversity combining DFE [72] for
symbol detection in a relatively small constellation such as QPSK and DQPSK. We
have explicitly shown the theoretical equivalence of the two structures by deriving the
matched filter form from the straightforward form under the assumption of perfect
channel estimates. We have also identified the eigenvalue spread problem of the
straightforward form, which significantly degrades the performance of the overall
receiver in the presence of channel estimation error. A large scale channel estimation
noise enhancement occurs. The matched filtered form solves the eigenvalue problem,

and requires less computation than the straightforward form does.
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4.

To cope with the fast time-varying ISI channel, we have proposed a new DFE
computation algorithm for the matched filtered diversity combining DFE, termed the
non-Toeplitz DFE (NT-DFE). This is obtained by incorporating the channel variation
during the decision delay into the minimum mean square error criterion. For time-
invariant channels, the longer the DFE filters the better the ISI suppression capability.
However, in fast time-varying channel, long DFE filters might become counter-
productive due to the channel variation during the DFE length [58].

Simulation was performed to evaluate the DFE receivers, which employ the proposed
channel estimation and the diversity combining DFE methods. The proposed receiver
has been shown superior to the receiver that employs a recursive least square channel
tracking receiver and diversity combining DFE. The feasibility of a suboptimal
matched filtered DFE, suitable for a handset application since it requires significantly
less computations, was also evaluated.

We have derived the matched filter bound symbol error rate expressiaqns for -ary QAM
signalling. With this theoretical expression, we were able to observe how an addition
of an antenna and the change of the channel’s MPDP may affect the overall detection
performance of the transceiver and the expected order of diversity. In addition, we
continued the results of matched filter SNR to derive the spectral efficiency limit of the
frequency-selective channel for variable rate -QAM signaling.

We have identified the symbol spaced equivalent ISI channel model which combines
the L explicit diversity branches with only matched filtering required at each branch.
This will provide the sufficient statistics and the necessary ISl trellis for the maximum
likelihood sequence detection (MLSD).

We developed an adaptive, low complexity tree-search detection receiver for uncoded
(or gray-coded) modulation signals using the T-algorithm for the fast fading multipath
ISI channels. Unlike previous research on sequence based detection receiver, a symbol
spaced receiver is not assumed a priori, rather the receiver utilizes the feedforward
channel estimation to derive the matched filter, and obtains the symbol-spaced channel

taps and the sequence of sufficient statistic to be used in the T-algorithm search.
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9. We have proposed the use of per-survivor processing in conjunction with the use of the
T-algorithm to reduce the average number of survivor paths, which at the same time
brings a further SNR advantage over the DFE receiver. The reason for the win-win
situation is that in a correct path, the channel estimate is enhanced; while in the wrong
paths, the channel estimate degrades quickly, promoting early elimination of the path
from the survivor list.

10. We have extended the tree-search receiver using the T-algorithm for the decoding of
the channel-interleaved trellis-code transmitted over the fast fading multipath 1SI
channels. Since the receiver uses a tree-search version of the T-algorithm, joint
decoding of the trellis code over the de-interleaver and the ISl trellis can be performed.
The simulation results indicate that the receiver achieves the available time-diversity
benefit of the code for the fast Rayleigh fading ISI channels, with a very moderate
increase in the decoding complexity compared to the uncoded DFE.

In total, these contributions significantly extend the ability to achieve spectrally

efficient and reliable communications over wireless channels.

9.2 Future Work

Much work remains to be solved to realize the envisioned universal
communications networks. The following three layers of future work may be meaningful
extension to this dissertation. They are VLSI implementation at the chip level, futher
improvement at the system design level, and system integration of the transceiver with
higher networking layers such as power and medium access controls.

We note that VLSI implementation of the T-algorithm is possible [127]. Thus, the
post-processor receiver techniques developed for Chapter 7 and Chapter 8 can be
implemented in VLSI chips. The most challenging problem is to reduce the number of
operations required to implement the pre-processing filtering of the received signals,

especially the matrix inversion operation requied to obtain the mean-square whitening
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filter.

In recent research it was shown that the spectral efficiency of the wireless
transceiver can be improved dramatically by the use of multiple transmit diversity antennas
along with the use of multiple receive diversity antennas. It was shown in [128] that the use
of both transmit and receive diversity antennas creates a new degree of freedom (space-
dimension) to play with in Shannon-theoretic capacity calculations, and the capacity of the
wireless channel can be increased multiple times, as much as linearly with the number of
antennas used at the transmitter, compared to the single transmit antenna system. The use
of multiple diversity antennas was considered only at the receiver in this dissertation. An
explosively growing body of publications [129][130] repeatedly confirms the benefits of
using multiple transmit and multiple receive antennas.

We have focused on spectrally efficient systems only at the link-layer in this
dissertation. In the context of multiple users sharing the same allocated frequency spectrum
and physical spaces, we should be able to come up with an area efficient networking
scheme which implements efficient controls of transmit power, medium access and sharing

taking full benefit of the link-flexibility the new transceiver provides.
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Glossary

List of Acronyms and Abbreviations

AMPS
AWGN
BER
CDMA
DCA
DCR
DECT
DPCA
DQPSK
DS
FCC
FDMA
FEC

FH

Advanced Mobile Phone Service

Additive white Gaussian noise

Bit error rate

Code division multiple access

Dynamic channel allocation

Digital cellular radio

Digital European Cordless Telecommunications
Dynamic power and channel allocation
Differential quadrature phase-shift keying
Direct sequence

Federal Communications Commission (U. S.)
Frequency division multiple access

Forward error correction

Frequency hop
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GSM Groupe Spécial Mobile or Global System for Mobile Communication

IS-54 Interim Standard 54 (TIA/EIA TDMA cellular standard, U. S.)
IS-95 Interim Standard 95 (TIA/EIA CDMA cellular standard, U. S.)
ISDN Integrated Services Digital Network

ISI Inter-symbol interference

ISM Industrial, Scientific, and Medical (bands, devices)

LAN Local area network

MPDP Multipath Power-Delay Profile

MTSO Mobile telephone switching office

PBX Private branch exchange

PCN Personal Communications Network (Europe)

PCS Personal Communications Services (U. S.)

PN Pseudo-noise

PDC Personal Digital Cellular (Japan)

PSTN Public Switched Telephone Network

QAM Quadrature amplitude modulation

QOS Quiality of service

SIR Signal-to-interference ratio

SNR Signal-to-noise ratio

SS spread spectrum

TCM Trellis coded modulation
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TDMA Time division multiple access

TIA Telecommunications Industry Association (U. S.)

Definitions

Baud: The unit of number of bits per symbol.

Bit error rate: The ratio of the number of bits incorrectly received to the total number
of bits transmitted.

BCH Codes A large class of cyclic block codes that include both binary and nonbinary
alphabets.

Block codes A type of error correcting code of fixed lengtih TheseN symbols
represent& symbols of information and\ - K) parity or redundancy symbols
whereN = K .

Blocking: New users to the system are declined services due to the lack of channel
resources.

Capacity: In the context of networking, power control or medium access control, it
implies the maximum number of users a system can support. In the context of
link-layer, it implies the maximum number of bits a channel can support with an
arbitrary small error.

Cellular Radio: A system in which a service area is divided into smaller areas called
cells where users in each cell communicate with a base station usually located
near the center of the cell.

Channel coding: Adding controlled redundancy to the information sequence to
improve reliability of data transmitted through a noisy channel.

Coherence bandwidth A statistical measure of the range of frequencies over which
the channel passes all spectral components with approximately equal gain and
linear phase.

Coherent detection: Detection using a reference signal that is synchronized in
frequency and phase to the transmitted signal.
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Convolutional codes A type of code in which output sequence consists of a selected
set of linear combinations of the input sequence.

Code division multiple access:A way of sharing a common spectrum in which
signals from different transmitters are distinguished by a code known to the
intended receiver. It is usually divided into two categories: direct sequence (DS)
and frequency hop (FH).

Differential quadrature phase-shift keying (DQPSK): A digital modulation scheme
that uses the phase changes of multiples of ninety degre®#2 fsom the previous
symbol to carry two bits of information.

Dispersion: The spreading, separation, or scatter of a waveform during transmission.

Diversity: The reception of different versions of the same information, each is usually
with independent fading levels.

Down-link: The radio link where the base station is transmitting to a user in the
coverage area. Also known as the forward link.

Erlang: A unit-less measure of the offered load.

Fading: The variation of the intensity or relative phase of any frequency component of
areceived signal due to changes in the characteristics of the propagation path with
time.

Finite impulse response (FIR)filter: A discrete-time filter of which the coefficients
represents the sampled, truncated impulse response of a filter.

Flat fading: Fading resulting in similar attenuation of all frequency components of
signal.

Forward link: The radio link where the base station is transmitting to a user in the
coverage area. Also known as the down-link.

Frequency diversity: A transmission technique used to minimize the effects of fading
wherein the same information signal is transmitted and received simultaneously
on two or more independent carrier frequencies.

Frequency reuse:The scheme of assigning different frequencies to adjacent cells so
that users communicating at the same frequency would not be too close to one
another.
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Frequency-selective fading:Fading in which not all frequency components of the
received radio signal are attenuated equally.

Hand-off (HO): The process of a user changing the base station it communicates with
as it moves across the cell boundaries. Also known as hand-over.

Integrated services digital network (ISDN): An integrated digital network which can
establish connection for data and telephony services using the same transmission
equipment.

Interleaving: A method of spacing successive symbols of a given codeword at wide
intervals in time to overcome burst errors.

Offered load: The ratio of the new user arrival rate divided by the system service rate.
It may be normalized to the number of channels are available to the system.

Modulation: The process of varying certain characteristics of a carrier in accordance
with a message signal.

Multilevel trellis coded modulation: A modified trellis coded modulation where the
uncoded bits are coded often with an error correcting code that explore the
geometric properties of the signal constellations.

Multipath: The large set of propagation paths that the transmitted signal takes to the
receiver. The multiple paths could be caused by scattering.

Multipath fading: Fading that results when radio signals reach the receiving antenna
by two or more paths.

Multiple-Access A sharing scheme that enables dispersed users to simultaneously
access a common channel resource.

Network: An organization of terminals capable of intercommunication.

Outage: A condition wherein a user is deprived of service due to unavailability of the
communication system.

Parity-check code: A simple forward error correcting block code of raté,F1). It
adds a parity bit at the end d¥i{1) information bits so that thi&-bit block would
have even number of ones. This code can be decoded using a simple two-state
trellis decoder.
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Personal Communication Services (PCS)For standard purposes, it is an umbrella
term to describe services and supporting systems that provide users with the
ability to communicate anytime, anywhere, and in any form.

Power control (PC): A technique employed to adjust the transmit power from every
radio link to the minimum level required for reliable transmission.

Quadrature amplitude modulation: A coherent digital modulation technique that
uses the amplitude in both the I-channel and the Q-channel of the signal to
represent information.

Reverse link: The radio link where a user is transmitting to a base station. Also known
as the up-link.

Signal-to-Interference Ratio (SIR): The ratio of the desired signal power divided by
the total power of the interference and the background noise.

Spread Spectrum (SS)A signaling scheme in which the transmission bandwidth is
much greater than the information rate.

Transceiver: A contraction of “transmitter/receiver.” The term is used when a
communication device can both transmit and receive.

Trellis coded modulation (TCM): A digital bandwidth-efficient modulation technique
that incorporates the concept of set partitioning and channel coding.

Up-link: The radio link where a user is transmitting to a base station. Also known as
the reverse link.

White noise: Noise whose frequency spectrum is uniform over a wide frequency band.

Wireless Communications:General term for communication without wires.
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