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Nearly 400 years after the birth of Newton, there are no algorithms with guaranteed rapid 
convergence not using the intuition of his celebrated Method for finding minima: make a 
local linear approximation and adapt parameters to move down the slope. We have 
advanced to produce adaptive versions in the form of the LMS and RLS algorithms and 
found forms that are easily implemented in finite precision arithmetic, and have even 
adapted gradient descent to work with neural networks in the form of back-propagation. 
Many variants have been proposed, with continuous and block adaptations. We have 
explicitly used Newton’s method to approximate non-convex problems as convex and so 
adapt in a set of (relatively computationally expensive) steps, albeit without guarantee of 
convergence, as for neural nets. We optimize in the dual domain, hoping it is less non-
linear, or apply other transformations and adapt using gradient methods in those domains. 
We have used feedback in controls to linearize problems in the region of the solution and 
thus allow gradient methods to be used in highly non-linear problems. But at the heart is 
always the basic fact of Taylor’s Theorem (the linear approximation is always locally 
good) combined with gradient descent. Non-linear adaptive methods exist (e.g., genetic 
algorithms) but they lack fast convergence properties; a broad set of heuristics for 
particular models lack both generality and guarantees, although they often work well 
enough. The obvious question for researchers in this space is then, given we have made 
such little progress since Newton in finding general methods with guaranteed 
convergence properties in non-convex problems, in spite of enormous incentives to find 
them, is there no realistic hope of a breakthrough? 
 
Leaving aside the possibility that someone might actually come up with The Beyond 
Newton AlgorithmTM, we offer a suggestion on the path forward without such a wonder. 
The main principle of design is that if some aspect of a problem is obviously very hard, 
change the problem by working on other parts of the design space. Just such an approach 
has been wildly successful in communications systems design. Amplifiers are necessary 
for long-range communication, and they are all based on non-linear devices. If such raw 
devices were used in the transmission path, it would be impossible to adapt the receiver at 
high speed and in real time to reliably decode the bits. But yet we do so with relative 
ease, using utterly standard least squares adaptation that handles unstable oscillators, 
rapid channel fading, inter-symbol interference, inter-channel interference, and echoes, 
and have done so since the heyday of voice-band modems. How? The answer is that we 
engineered the overall channel at every level so that least squares methods would work. 
Amplifiers include internal feedback so that they are linearized, and amplifier chains are 
used to improve noise/amplification/linearity tradeoffs. The functions of frequency lock, 
phase lock, symbol lock, automatic gain control, and equalization are all separated, 
usually assisted with training sequences/signals, so that second order loops can be used 
(i.e., such that least squares will work). Even signals are designed to make them easily 
distinguishable with feasible receivers. This was partly accidental—radio systems were 
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for many years implemented in purely analog form, and loop stability could not be easily 
engineered beyond second order systems. But it became embedded in training 
communication engineers. Then when channel coding was added, designers could be 
confident that the residual channel was quasi-stationary and Gaussian. This enables codes 
that approach Shannon capacity to be used, irrespective of whatever else is going on. 
Communication systems designers so love the Gaussian channel that even multiple 
access channels are largely transformed to be like them, via directed antennas and 
protocols that separate users into channels where the interference is well below the 
desired signal level. To be sure, many multi-user detection schemes have been proposed, 
but channel separation dominates in practice, even though this requires optimization of 
channel allocations, flow control, etc. It is with joy that designers greet the fact that the 
microwave band is very amenable to use of tight antenna beams, thus avoiding most of 
the non-linear optimizations associated with getting users to coexist on the same channel. 
 
I have cited physical layer communications systems design to illustrate how far we can 
go by physically transforming a non-convex problem into a set of easily solved 
(approximately) convex problems, mainly because I have spent so many years in that 
research space and teaching a graduate course on the topic. But the situation is quite 
similar in control systems, where linear methods were pushed very hard for many years 
for very similar reasons. In both cases, extensive use is made of physical understanding 
of the systems (i.e., a causal model) in order to develop useful approximations. The 
question is how far we can extend this design mind-set to other domains, where the 
models may be less known and more complicated. 
 
Let us consider data-driven adaptation. Right now, the dominant paradigm is to collect all 
the data and then adapt the neural net, i.e., fit the function. But we know that not all data 
is equal, nor are all classes equally hard to distinguish. For example, many phenomena 
follow a power law, where the probability distribution is consumed by a relatively small 
number of features or classes, but with heavy tails so that the number of features or 
classes can be very large. Could we not structure the adaptation of the classifier to take 
place in a sequence of steps? Small models (dealing with the small feature spaces) are 
easily trained with back-propagation. Transfer learning might then be used to train a 
slightly larger model. In effect we build out from sub-spaces to larger spaces in a 
sequential fashion. Recent work shows that using statistical invariance tests, one can 
rigorously test whether we have identified true causal models, rather than spurious 
causes. Effectively then we are easing the path for gradient methods to work by curating 
a sequence of data sets by exploitation of some structure in the mapping of features to 
classes. This is not without famous precedent. The scientific method effectively proceeds 
in this fashion, building out from simple models in a cycle of hypothesis, experimentation 
to collect data, and model refinement (often using least squares in some transform 
domain). Newton again! Why should not machine learning follow a similar multi-step 
cycle? Some additional machinery is needed: formulation of hypotheses requires 
counterfactual reasoning, and collecting data to advance some goal is a control problem. 
But there is great deal of research in each of these domains that can be brought to bear 
when we frame the learning problem not as one single event, but as a sequence of steps. 
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The other classical way the engineering discipline proceeds to cope with massive 
problems is to use hierarchy. The right set of abstractions has been hugely successful in 
managing both complexity and lack of tools that can handle the original problem. We are 
almost never by such means solving the exact original problem: approximations arise at 
many points, including in performance goals. But this may bring additional benefits, such 
as modularity that enables less effort in extending the model to new situations. For 
example, a hierarchy that corresponds to Pearl’s three rungs on the ladder of causation 
might be a path towards a more general AI, so long as we are explicit in designing the 
system with its growth over some sequence of experimental cycles in mind. In another 
cut at the problem, we may have a set of modules at the lowest rung that correspond to 
different baskets of items to classify, with higher level reasoning to determine which 
produces the most likely outcomes to justify further processing. Or we may go back and 
forth between global views (converting features into some type of “image”) and local 
views, perhaps with the aid of yet undiscovered compressive transforms designed to 
produce continuous spaces amenable to gradient search. 
 
In summary, there appear to be many plausible paths to transforming problems into 
approximate forms amenable to some iterative combination of gradient methods, causal 
reasoning, device/system development, and experimental data collection. Such an 
approach is well within the mainstream of engineering design practice; perhaps the time 
has come to systematize it. 


